1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32
33 /*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
120
121 /*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128 static int
xfs_reflink_find_shared(struct xfs_perag * pag,struct xfs_trans * tp,xfs_agblock_t agbno,xfs_extlen_t aglen,xfs_agblock_t * fbno,xfs_extlen_t * flen,bool find_end_of_shared)129 xfs_reflink_find_shared(
130 struct xfs_perag *pag,
131 struct xfs_trans *tp,
132 xfs_agblock_t agbno,
133 xfs_extlen_t aglen,
134 xfs_agblock_t *fbno,
135 xfs_extlen_t *flen,
136 bool find_end_of_shared)
137 {
138 struct xfs_buf *agbp;
139 struct xfs_btree_cur *cur;
140 int error;
141
142 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
143 if (error)
144 return error;
145
146 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
147
148 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
149 find_end_of_shared);
150
151 xfs_btree_del_cursor(cur, error);
152
153 xfs_trans_brelse(tp, agbp);
154 return error;
155 }
156
157 /*
158 * Trim the mapping to the next block where there's a change in the
159 * shared/unshared status. More specifically, this means that we
160 * find the lowest-numbered extent of shared blocks that coincides with
161 * the given block mapping. If the shared extent overlaps the start of
162 * the mapping, trim the mapping to the end of the shared extent. If
163 * the shared region intersects the mapping, trim the mapping to the
164 * start of the shared extent. If there are no shared regions that
165 * overlap, just return the original extent.
166 */
167 int
xfs_reflink_trim_around_shared(struct xfs_inode * ip,struct xfs_bmbt_irec * irec,bool * shared)168 xfs_reflink_trim_around_shared(
169 struct xfs_inode *ip,
170 struct xfs_bmbt_irec *irec,
171 bool *shared)
172 {
173 struct xfs_mount *mp = ip->i_mount;
174 struct xfs_perag *pag;
175 xfs_agblock_t agbno;
176 xfs_extlen_t aglen;
177 xfs_agblock_t fbno;
178 xfs_extlen_t flen;
179 int error = 0;
180
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 *shared = false;
184 return 0;
185 }
186
187 trace_xfs_reflink_trim_around_shared(ip, irec);
188
189 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
190 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
191 aglen = irec->br_blockcount;
192
193 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
194 true);
195 xfs_perag_put(pag);
196 if (error)
197 return error;
198
199 *shared = false;
200 if (fbno == NULLAGBLOCK) {
201 /* No shared blocks at all. */
202 return 0;
203 }
204
205 if (fbno == agbno) {
206 /*
207 * The start of this extent is shared. Truncate the
208 * mapping at the end of the shared region so that a
209 * subsequent iteration starts at the start of the
210 * unshared region.
211 */
212 irec->br_blockcount = flen;
213 *shared = true;
214 return 0;
215 }
216
217 /*
218 * There's a shared extent midway through this extent.
219 * Truncate the mapping at the start of the shared
220 * extent so that a subsequent iteration starts at the
221 * start of the shared region.
222 */
223 irec->br_blockcount = fbno - agbno;
224 return 0;
225 }
226
227 int
xfs_bmap_trim_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,bool * shared)228 xfs_bmap_trim_cow(
229 struct xfs_inode *ip,
230 struct xfs_bmbt_irec *imap,
231 bool *shared)
232 {
233 /* We can't update any real extents in always COW mode. */
234 if (xfs_is_always_cow_inode(ip) &&
235 !isnullstartblock(imap->br_startblock)) {
236 *shared = true;
237 return 0;
238 }
239
240 /* Trim the mapping to the nearest shared extent boundary. */
241 return xfs_reflink_trim_around_shared(ip, imap, shared);
242 }
243
244 static int
xfs_reflink_convert_cow_locked(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_filblks_t count_fsb)245 xfs_reflink_convert_cow_locked(
246 struct xfs_inode *ip,
247 xfs_fileoff_t offset_fsb,
248 xfs_filblks_t count_fsb)
249 {
250 struct xfs_iext_cursor icur;
251 struct xfs_bmbt_irec got;
252 struct xfs_btree_cur *dummy_cur = NULL;
253 int dummy_logflags;
254 int error = 0;
255
256 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
257 return 0;
258
259 do {
260 if (got.br_startoff >= offset_fsb + count_fsb)
261 break;
262 if (got.br_state == XFS_EXT_NORM)
263 continue;
264 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
265 return -EIO;
266
267 xfs_trim_extent(&got, offset_fsb, count_fsb);
268 if (!got.br_blockcount)
269 continue;
270
271 got.br_state = XFS_EXT_NORM;
272 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
273 XFS_COW_FORK, &icur, &dummy_cur, &got,
274 &dummy_logflags);
275 if (error)
276 return error;
277 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
278
279 return error;
280 }
281
282 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
283 int
xfs_reflink_convert_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)284 xfs_reflink_convert_cow(
285 struct xfs_inode *ip,
286 xfs_off_t offset,
287 xfs_off_t count)
288 {
289 struct xfs_mount *mp = ip->i_mount;
290 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
291 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
292 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
293 int error;
294
295 ASSERT(count != 0);
296
297 xfs_ilock(ip, XFS_ILOCK_EXCL);
298 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
299 xfs_iunlock(ip, XFS_ILOCK_EXCL);
300 return error;
301 }
302
303 /*
304 * Find the extent that maps the given range in the COW fork. Even if the extent
305 * is not shared we might have a preallocation for it in the COW fork. If so we
306 * use it that rather than trigger a new allocation.
307 */
308 static int
xfs_find_trim_cow_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,bool * found)309 xfs_find_trim_cow_extent(
310 struct xfs_inode *ip,
311 struct xfs_bmbt_irec *imap,
312 struct xfs_bmbt_irec *cmap,
313 bool *shared,
314 bool *found)
315 {
316 xfs_fileoff_t offset_fsb = imap->br_startoff;
317 xfs_filblks_t count_fsb = imap->br_blockcount;
318 struct xfs_iext_cursor icur;
319
320 *found = false;
321
322 /*
323 * If we don't find an overlapping extent, trim the range we need to
324 * allocate to fit the hole we found.
325 */
326 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
327 cmap->br_startoff = offset_fsb + count_fsb;
328 if (cmap->br_startoff > offset_fsb) {
329 xfs_trim_extent(imap, imap->br_startoff,
330 cmap->br_startoff - imap->br_startoff);
331 return xfs_bmap_trim_cow(ip, imap, shared);
332 }
333
334 *shared = true;
335 if (isnullstartblock(cmap->br_startblock)) {
336 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
337 return 0;
338 }
339
340 /* real extent found - no need to allocate */
341 xfs_trim_extent(cmap, offset_fsb, count_fsb);
342 *found = true;
343 return 0;
344 }
345
346 static int
xfs_reflink_convert_unwritten(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool convert_now)347 xfs_reflink_convert_unwritten(
348 struct xfs_inode *ip,
349 struct xfs_bmbt_irec *imap,
350 struct xfs_bmbt_irec *cmap,
351 bool convert_now)
352 {
353 xfs_fileoff_t offset_fsb = imap->br_startoff;
354 xfs_filblks_t count_fsb = imap->br_blockcount;
355 int error;
356
357 /*
358 * cmap might larger than imap due to cowextsize hint.
359 */
360 xfs_trim_extent(cmap, offset_fsb, count_fsb);
361
362 /*
363 * COW fork extents are supposed to remain unwritten until we're ready
364 * to initiate a disk write. For direct I/O we are going to write the
365 * data and need the conversion, but for buffered writes we're done.
366 */
367 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
368 return 0;
369
370 trace_xfs_reflink_convert_cow(ip, cmap);
371
372 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
373 if (!error)
374 cmap->br_state = XFS_EXT_NORM;
375
376 return error;
377 }
378
379 static int
xfs_reflink_fill_cow_hole(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)380 xfs_reflink_fill_cow_hole(
381 struct xfs_inode *ip,
382 struct xfs_bmbt_irec *imap,
383 struct xfs_bmbt_irec *cmap,
384 bool *shared,
385 uint *lockmode,
386 bool convert_now)
387 {
388 struct xfs_mount *mp = ip->i_mount;
389 struct xfs_trans *tp;
390 xfs_filblks_t resaligned;
391 xfs_extlen_t resblks;
392 int nimaps;
393 int error;
394 bool found;
395
396 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
397 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
398 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
399
400 xfs_iunlock(ip, *lockmode);
401 *lockmode = 0;
402
403 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
404 false, &tp);
405 if (error)
406 return error;
407
408 *lockmode = XFS_ILOCK_EXCL;
409
410 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
411 if (error || !*shared)
412 goto out_trans_cancel;
413
414 if (found) {
415 xfs_trans_cancel(tp);
416 goto convert;
417 }
418
419 ASSERT(cmap->br_startoff > imap->br_startoff);
420
421 /* Allocate the entire reservation as unwritten blocks. */
422 nimaps = 1;
423 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
424 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
425 &nimaps);
426 if (error)
427 goto out_trans_cancel;
428
429 xfs_inode_set_cowblocks_tag(ip);
430 error = xfs_trans_commit(tp);
431 if (error)
432 return error;
433
434 /*
435 * Allocation succeeded but the requested range was not even partially
436 * satisfied? Bail out!
437 */
438 if (nimaps == 0)
439 return -ENOSPC;
440
441 convert:
442 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
443
444 out_trans_cancel:
445 xfs_trans_cancel(tp);
446 return error;
447 }
448
449 static int
xfs_reflink_fill_delalloc(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)450 xfs_reflink_fill_delalloc(
451 struct xfs_inode *ip,
452 struct xfs_bmbt_irec *imap,
453 struct xfs_bmbt_irec *cmap,
454 bool *shared,
455 uint *lockmode,
456 bool convert_now)
457 {
458 struct xfs_mount *mp = ip->i_mount;
459 struct xfs_trans *tp;
460 int nimaps;
461 int error;
462 bool found;
463
464 do {
465 xfs_iunlock(ip, *lockmode);
466 *lockmode = 0;
467
468 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
469 false, &tp);
470 if (error)
471 return error;
472
473 *lockmode = XFS_ILOCK_EXCL;
474
475 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
476 &found);
477 if (error || !*shared)
478 goto out_trans_cancel;
479
480 if (found) {
481 xfs_trans_cancel(tp);
482 break;
483 }
484
485 ASSERT(isnullstartblock(cmap->br_startblock) ||
486 cmap->br_startblock == DELAYSTARTBLOCK);
487
488 /*
489 * Replace delalloc reservation with an unwritten extent.
490 */
491 nimaps = 1;
492 error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
493 cmap->br_blockcount,
494 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
495 cmap, &nimaps);
496 if (error)
497 goto out_trans_cancel;
498
499 xfs_inode_set_cowblocks_tag(ip);
500 error = xfs_trans_commit(tp);
501 if (error)
502 return error;
503
504 /*
505 * Allocation succeeded but the requested range was not even
506 * partially satisfied? Bail out!
507 */
508 if (nimaps == 0)
509 return -ENOSPC;
510 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
511
512 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
513
514 out_trans_cancel:
515 xfs_trans_cancel(tp);
516 return error;
517 }
518
519 /* Allocate all CoW reservations covering a range of blocks in a file. */
520 int
xfs_reflink_allocate_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)521 xfs_reflink_allocate_cow(
522 struct xfs_inode *ip,
523 struct xfs_bmbt_irec *imap,
524 struct xfs_bmbt_irec *cmap,
525 bool *shared,
526 uint *lockmode,
527 bool convert_now)
528 {
529 int error;
530 bool found;
531
532 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
533 if (!ip->i_cowfp) {
534 ASSERT(!xfs_is_reflink_inode(ip));
535 xfs_ifork_init_cow(ip);
536 }
537
538 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
539 if (error || !*shared)
540 return error;
541
542 /* CoW fork has a real extent */
543 if (found)
544 return xfs_reflink_convert_unwritten(ip, imap, cmap,
545 convert_now);
546
547 /*
548 * CoW fork does not have an extent and data extent is shared.
549 * Allocate a real extent in the CoW fork.
550 */
551 if (cmap->br_startoff > imap->br_startoff)
552 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
553 lockmode, convert_now);
554
555 /*
556 * CoW fork has a delalloc reservation. Replace it with a real extent.
557 * There may or may not be a data fork mapping.
558 */
559 if (isnullstartblock(cmap->br_startblock) ||
560 cmap->br_startblock == DELAYSTARTBLOCK)
561 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
562 lockmode, convert_now);
563
564 /* Shouldn't get here. */
565 ASSERT(0);
566 return -EFSCORRUPTED;
567 }
568
569 /*
570 * Cancel CoW reservations for some block range of an inode.
571 *
572 * If cancel_real is true this function cancels all COW fork extents for the
573 * inode; if cancel_real is false, real extents are not cleared.
574 *
575 * Caller must have already joined the inode to the current transaction. The
576 * inode will be joined to the transaction returned to the caller.
577 */
578 int
xfs_reflink_cancel_cow_blocks(struct xfs_inode * ip,struct xfs_trans ** tpp,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb,bool cancel_real)579 xfs_reflink_cancel_cow_blocks(
580 struct xfs_inode *ip,
581 struct xfs_trans **tpp,
582 xfs_fileoff_t offset_fsb,
583 xfs_fileoff_t end_fsb,
584 bool cancel_real)
585 {
586 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
587 struct xfs_bmbt_irec got, del;
588 struct xfs_iext_cursor icur;
589 int error = 0;
590
591 if (!xfs_inode_has_cow_data(ip))
592 return 0;
593 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
594 return 0;
595
596 /* Walk backwards until we're out of the I/O range... */
597 while (got.br_startoff + got.br_blockcount > offset_fsb) {
598 del = got;
599 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
600
601 /* Extent delete may have bumped ext forward */
602 if (!del.br_blockcount) {
603 xfs_iext_prev(ifp, &icur);
604 goto next_extent;
605 }
606
607 trace_xfs_reflink_cancel_cow(ip, &del);
608
609 if (isnullstartblock(del.br_startblock)) {
610 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
611 &icur, &got, &del);
612 if (error)
613 break;
614 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
615 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
616
617 /* Free the CoW orphan record. */
618 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
619 del.br_blockcount);
620
621 xfs_free_extent_later(*tpp, del.br_startblock,
622 del.br_blockcount, NULL);
623
624 /* Roll the transaction */
625 error = xfs_defer_finish(tpp);
626 if (error)
627 break;
628
629 /* Remove the mapping from the CoW fork. */
630 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
631
632 /* Remove the quota reservation */
633 error = xfs_quota_unreserve_blkres(ip,
634 del.br_blockcount);
635 if (error)
636 break;
637 } else {
638 /* Didn't do anything, push cursor back. */
639 xfs_iext_prev(ifp, &icur);
640 }
641 next_extent:
642 if (!xfs_iext_get_extent(ifp, &icur, &got))
643 break;
644 }
645
646 /* clear tag if cow fork is emptied */
647 if (!ifp->if_bytes)
648 xfs_inode_clear_cowblocks_tag(ip);
649 return error;
650 }
651
652 /*
653 * Cancel CoW reservations for some byte range of an inode.
654 *
655 * If cancel_real is true this function cancels all COW fork extents for the
656 * inode; if cancel_real is false, real extents are not cleared.
657 */
658 int
xfs_reflink_cancel_cow_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count,bool cancel_real)659 xfs_reflink_cancel_cow_range(
660 struct xfs_inode *ip,
661 xfs_off_t offset,
662 xfs_off_t count,
663 bool cancel_real)
664 {
665 struct xfs_trans *tp;
666 xfs_fileoff_t offset_fsb;
667 xfs_fileoff_t end_fsb;
668 int error;
669
670 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
671 ASSERT(ip->i_cowfp);
672
673 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
674 if (count == NULLFILEOFF)
675 end_fsb = NULLFILEOFF;
676 else
677 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
678
679 /* Start a rolling transaction to remove the mappings */
680 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
681 0, 0, 0, &tp);
682 if (error)
683 goto out;
684
685 xfs_ilock(ip, XFS_ILOCK_EXCL);
686 xfs_trans_ijoin(tp, ip, 0);
687
688 /* Scrape out the old CoW reservations */
689 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
690 cancel_real);
691 if (error)
692 goto out_cancel;
693
694 error = xfs_trans_commit(tp);
695
696 xfs_iunlock(ip, XFS_ILOCK_EXCL);
697 return error;
698
699 out_cancel:
700 xfs_trans_cancel(tp);
701 xfs_iunlock(ip, XFS_ILOCK_EXCL);
702 out:
703 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
704 return error;
705 }
706
707 /*
708 * Remap part of the CoW fork into the data fork.
709 *
710 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
711 * into the data fork; this function will remap what it can (at the end of the
712 * range) and update @end_fsb appropriately. Each remap gets its own
713 * transaction because we can end up merging and splitting bmbt blocks for
714 * every remap operation and we'd like to keep the block reservation
715 * requirements as low as possible.
716 */
717 STATIC int
xfs_reflink_end_cow_extent(struct xfs_inode * ip,xfs_fileoff_t * offset_fsb,xfs_fileoff_t end_fsb)718 xfs_reflink_end_cow_extent(
719 struct xfs_inode *ip,
720 xfs_fileoff_t *offset_fsb,
721 xfs_fileoff_t end_fsb)
722 {
723 struct xfs_iext_cursor icur;
724 struct xfs_bmbt_irec got, del, data;
725 struct xfs_mount *mp = ip->i_mount;
726 struct xfs_trans *tp;
727 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
728 unsigned int resblks;
729 int nmaps;
730 int error;
731
732 /* No COW extents? That's easy! */
733 if (ifp->if_bytes == 0) {
734 *offset_fsb = end_fsb;
735 return 0;
736 }
737
738 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
739 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
740 XFS_TRANS_RESERVE, &tp);
741 if (error)
742 return error;
743
744 /*
745 * Lock the inode. We have to ijoin without automatic unlock because
746 * the lead transaction is the refcountbt record deletion; the data
747 * fork update follows as a deferred log item.
748 */
749 xfs_ilock(ip, XFS_ILOCK_EXCL);
750 xfs_trans_ijoin(tp, ip, 0);
751
752 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
753 XFS_IEXT_REFLINK_END_COW_CNT);
754 if (error == -EFBIG)
755 error = xfs_iext_count_upgrade(tp, ip,
756 XFS_IEXT_REFLINK_END_COW_CNT);
757 if (error)
758 goto out_cancel;
759
760 /*
761 * In case of racing, overlapping AIO writes no COW extents might be
762 * left by the time I/O completes for the loser of the race. In that
763 * case we are done.
764 */
765 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
766 got.br_startoff >= end_fsb) {
767 *offset_fsb = end_fsb;
768 goto out_cancel;
769 }
770
771 /*
772 * Only remap real extents that contain data. With AIO, speculative
773 * preallocations can leak into the range we are called upon, and we
774 * need to skip them. Preserve @got for the eventual CoW fork
775 * deletion; from now on @del represents the mapping that we're
776 * actually remapping.
777 */
778 while (!xfs_bmap_is_written_extent(&got)) {
779 if (!xfs_iext_next_extent(ifp, &icur, &got) ||
780 got.br_startoff >= end_fsb) {
781 *offset_fsb = end_fsb;
782 goto out_cancel;
783 }
784 }
785 del = got;
786
787 /* Grab the corresponding mapping in the data fork. */
788 nmaps = 1;
789 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
790 &nmaps, 0);
791 if (error)
792 goto out_cancel;
793
794 /* We can only remap the smaller of the two extent sizes. */
795 data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
796 del.br_blockcount = data.br_blockcount;
797
798 trace_xfs_reflink_cow_remap_from(ip, &del);
799 trace_xfs_reflink_cow_remap_to(ip, &data);
800
801 if (xfs_bmap_is_real_extent(&data)) {
802 /*
803 * If the extent we're remapping is backed by storage (written
804 * or not), unmap the extent and drop its refcount.
805 */
806 xfs_bmap_unmap_extent(tp, ip, &data);
807 xfs_refcount_decrease_extent(tp, &data);
808 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
809 -data.br_blockcount);
810 } else if (data.br_startblock == DELAYSTARTBLOCK) {
811 int done;
812
813 /*
814 * If the extent we're remapping is a delalloc reservation,
815 * we can use the regular bunmapi function to release the
816 * incore state. Dropping the delalloc reservation takes care
817 * of the quota reservation for us.
818 */
819 error = xfs_bunmapi(NULL, ip, data.br_startoff,
820 data.br_blockcount, 0, 1, &done);
821 if (error)
822 goto out_cancel;
823 ASSERT(done);
824 }
825
826 /* Free the CoW orphan record. */
827 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
828
829 /* Map the new blocks into the data fork. */
830 xfs_bmap_map_extent(tp, ip, &del);
831
832 /* Charge this new data fork mapping to the on-disk quota. */
833 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
834 (long)del.br_blockcount);
835
836 /* Remove the mapping from the CoW fork. */
837 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
838
839 error = xfs_trans_commit(tp);
840 xfs_iunlock(ip, XFS_ILOCK_EXCL);
841 if (error)
842 return error;
843
844 /* Update the caller about how much progress we made. */
845 *offset_fsb = del.br_startoff + del.br_blockcount;
846 return 0;
847
848 out_cancel:
849 xfs_trans_cancel(tp);
850 xfs_iunlock(ip, XFS_ILOCK_EXCL);
851 return error;
852 }
853
854 /*
855 * Remap parts of a file's data fork after a successful CoW.
856 */
857 int
xfs_reflink_end_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)858 xfs_reflink_end_cow(
859 struct xfs_inode *ip,
860 xfs_off_t offset,
861 xfs_off_t count)
862 {
863 xfs_fileoff_t offset_fsb;
864 xfs_fileoff_t end_fsb;
865 int error = 0;
866
867 trace_xfs_reflink_end_cow(ip, offset, count);
868
869 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
870 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
871
872 /*
873 * Walk forwards until we've remapped the I/O range. The loop function
874 * repeatedly cycles the ILOCK to allocate one transaction per remapped
875 * extent.
876 *
877 * If we're being called by writeback then the pages will still
878 * have PageWriteback set, which prevents races with reflink remapping
879 * and truncate. Reflink remapping prevents races with writeback by
880 * taking the iolock and mmaplock before flushing the pages and
881 * remapping, which means there won't be any further writeback or page
882 * cache dirtying until the reflink completes.
883 *
884 * We should never have two threads issuing writeback for the same file
885 * region. There are also have post-eof checks in the writeback
886 * preparation code so that we don't bother writing out pages that are
887 * about to be truncated.
888 *
889 * If we're being called as part of directio write completion, the dio
890 * count is still elevated, which reflink and truncate will wait for.
891 * Reflink remapping takes the iolock and mmaplock and waits for
892 * pending dio to finish, which should prevent any directio until the
893 * remap completes. Multiple concurrent directio writes to the same
894 * region are handled by end_cow processing only occurring for the
895 * threads which succeed; the outcome of multiple overlapping direct
896 * writes is not well defined anyway.
897 *
898 * It's possible that a buffered write and a direct write could collide
899 * here (the buffered write stumbles in after the dio flushes and
900 * invalidates the page cache and immediately queues writeback), but we
901 * have never supported this 100%. If either disk write succeeds the
902 * blocks will be remapped.
903 */
904 while (end_fsb > offset_fsb && !error)
905 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
906
907 if (error)
908 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
909 return error;
910 }
911
912 /*
913 * Free all CoW staging blocks that are still referenced by the ondisk refcount
914 * metadata. The ondisk metadata does not track which inode created the
915 * staging extent, so callers must ensure that there are no cached inodes with
916 * live CoW staging extents.
917 */
918 int
xfs_reflink_recover_cow(struct xfs_mount * mp)919 xfs_reflink_recover_cow(
920 struct xfs_mount *mp)
921 {
922 struct xfs_perag *pag;
923 xfs_agnumber_t agno;
924 int error = 0;
925
926 if (!xfs_has_reflink(mp))
927 return 0;
928
929 for_each_perag(mp, agno, pag) {
930 error = xfs_refcount_recover_cow_leftovers(mp, pag);
931 if (error) {
932 xfs_perag_put(pag);
933 break;
934 }
935 }
936
937 return error;
938 }
939
940 /*
941 * Reflinking (Block) Ranges of Two Files Together
942 *
943 * First, ensure that the reflink flag is set on both inodes. The flag is an
944 * optimization to avoid unnecessary refcount btree lookups in the write path.
945 *
946 * Now we can iteratively remap the range of extents (and holes) in src to the
947 * corresponding ranges in dest. Let drange and srange denote the ranges of
948 * logical blocks in dest and src touched by the reflink operation.
949 *
950 * While the length of drange is greater than zero,
951 * - Read src's bmbt at the start of srange ("imap")
952 * - If imap doesn't exist, make imap appear to start at the end of srange
953 * with zero length.
954 * - If imap starts before srange, advance imap to start at srange.
955 * - If imap goes beyond srange, truncate imap to end at the end of srange.
956 * - Punch (imap start - srange start + imap len) blocks from dest at
957 * offset (drange start).
958 * - If imap points to a real range of pblks,
959 * > Increase the refcount of the imap's pblks
960 * > Map imap's pblks into dest at the offset
961 * (drange start + imap start - srange start)
962 * - Advance drange and srange by (imap start - srange start + imap len)
963 *
964 * Finally, if the reflink made dest longer, update both the in-core and
965 * on-disk file sizes.
966 *
967 * ASCII Art Demonstration:
968 *
969 * Let's say we want to reflink this source file:
970 *
971 * ----SSSSSSS-SSSSS----SSSSSS (src file)
972 * <-------------------->
973 *
974 * into this destination file:
975 *
976 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
977 * <-------------------->
978 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
979 * Observe that the range has different logical offsets in either file.
980 *
981 * Consider that the first extent in the source file doesn't line up with our
982 * reflink range. Unmapping and remapping are separate operations, so we can
983 * unmap more blocks from the destination file than we remap.
984 *
985 * ----SSSSSSS-SSSSS----SSSSSS
986 * <------->
987 * --DDDDD---------DDDDD--DDD
988 * <------->
989 *
990 * Now remap the source extent into the destination file:
991 *
992 * ----SSSSSSS-SSSSS----SSSSSS
993 * <------->
994 * --DDDDD--SSSSSSSDDDDD--DDD
995 * <------->
996 *
997 * Do likewise with the second hole and extent in our range. Holes in the
998 * unmap range don't affect our operation.
999 *
1000 * ----SSSSSSS-SSSSS----SSSSSS
1001 * <---->
1002 * --DDDDD--SSSSSSS-SSSSS-DDD
1003 * <---->
1004 *
1005 * Finally, unmap and remap part of the third extent. This will increase the
1006 * size of the destination file.
1007 *
1008 * ----SSSSSSS-SSSSS----SSSSSS
1009 * <----->
1010 * --DDDDD--SSSSSSS-SSSSS----SSS
1011 * <----->
1012 *
1013 * Once we update the destination file's i_size, we're done.
1014 */
1015
1016 /*
1017 * Ensure the reflink bit is set in both inodes.
1018 */
1019 STATIC int
xfs_reflink_set_inode_flag(struct xfs_inode * src,struct xfs_inode * dest)1020 xfs_reflink_set_inode_flag(
1021 struct xfs_inode *src,
1022 struct xfs_inode *dest)
1023 {
1024 struct xfs_mount *mp = src->i_mount;
1025 int error;
1026 struct xfs_trans *tp;
1027
1028 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
1029 return 0;
1030
1031 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1032 if (error)
1033 goto out_error;
1034
1035 /* Lock both files against IO */
1036 if (src->i_ino == dest->i_ino)
1037 xfs_ilock(src, XFS_ILOCK_EXCL);
1038 else
1039 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1040
1041 if (!xfs_is_reflink_inode(src)) {
1042 trace_xfs_reflink_set_inode_flag(src);
1043 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1044 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1045 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1046 xfs_ifork_init_cow(src);
1047 } else
1048 xfs_iunlock(src, XFS_ILOCK_EXCL);
1049
1050 if (src->i_ino == dest->i_ino)
1051 goto commit_flags;
1052
1053 if (!xfs_is_reflink_inode(dest)) {
1054 trace_xfs_reflink_set_inode_flag(dest);
1055 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1056 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1057 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1058 xfs_ifork_init_cow(dest);
1059 } else
1060 xfs_iunlock(dest, XFS_ILOCK_EXCL);
1061
1062 commit_flags:
1063 error = xfs_trans_commit(tp);
1064 if (error)
1065 goto out_error;
1066 return error;
1067
1068 out_error:
1069 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1070 return error;
1071 }
1072
1073 /*
1074 * Update destination inode size & cowextsize hint, if necessary.
1075 */
1076 int
xfs_reflink_update_dest(struct xfs_inode * dest,xfs_off_t newlen,xfs_extlen_t cowextsize,unsigned int remap_flags)1077 xfs_reflink_update_dest(
1078 struct xfs_inode *dest,
1079 xfs_off_t newlen,
1080 xfs_extlen_t cowextsize,
1081 unsigned int remap_flags)
1082 {
1083 struct xfs_mount *mp = dest->i_mount;
1084 struct xfs_trans *tp;
1085 int error;
1086
1087 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1088 return 0;
1089
1090 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1091 if (error)
1092 goto out_error;
1093
1094 xfs_ilock(dest, XFS_ILOCK_EXCL);
1095 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1096
1097 if (newlen > i_size_read(VFS_I(dest))) {
1098 trace_xfs_reflink_update_inode_size(dest, newlen);
1099 i_size_write(VFS_I(dest), newlen);
1100 dest->i_disk_size = newlen;
1101 }
1102
1103 if (cowextsize) {
1104 dest->i_cowextsize = cowextsize;
1105 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1106 }
1107
1108 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1109
1110 error = xfs_trans_commit(tp);
1111 if (error)
1112 goto out_error;
1113 return error;
1114
1115 out_error:
1116 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1117 return error;
1118 }
1119
1120 /*
1121 * Do we have enough reserve in this AG to handle a reflink? The refcount
1122 * btree already reserved all the space it needs, but the rmap btree can grow
1123 * infinitely, so we won't allow more reflinks when the AG is down to the
1124 * btree reserves.
1125 */
1126 static int
xfs_reflink_ag_has_free_space(struct xfs_mount * mp,xfs_agnumber_t agno)1127 xfs_reflink_ag_has_free_space(
1128 struct xfs_mount *mp,
1129 xfs_agnumber_t agno)
1130 {
1131 struct xfs_perag *pag;
1132 int error = 0;
1133
1134 if (!xfs_has_rmapbt(mp))
1135 return 0;
1136
1137 pag = xfs_perag_get(mp, agno);
1138 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1139 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1140 error = -ENOSPC;
1141 xfs_perag_put(pag);
1142 return error;
1143 }
1144
1145 /*
1146 * Remap the given extent into the file. The dmap blockcount will be set to
1147 * the number of blocks that were actually remapped.
1148 */
1149 STATIC int
xfs_reflink_remap_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * dmap,xfs_off_t new_isize)1150 xfs_reflink_remap_extent(
1151 struct xfs_inode *ip,
1152 struct xfs_bmbt_irec *dmap,
1153 xfs_off_t new_isize)
1154 {
1155 struct xfs_bmbt_irec smap;
1156 struct xfs_mount *mp = ip->i_mount;
1157 struct xfs_trans *tp;
1158 xfs_off_t newlen;
1159 int64_t qdelta = 0;
1160 unsigned int resblks;
1161 bool quota_reserved = true;
1162 bool smap_real;
1163 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1164 int iext_delta = 0;
1165 int nimaps;
1166 int error;
1167
1168 /*
1169 * Start a rolling transaction to switch the mappings.
1170 *
1171 * Adding a written extent to the extent map can cause a bmbt split,
1172 * and removing a mapped extent from the extent can cause a bmbt split.
1173 * The two operations cannot both cause a split since they operate on
1174 * the same index in the bmap btree, so we only need a reservation for
1175 * one bmbt split if either thing is happening. However, we haven't
1176 * locked the inode yet, so we reserve assuming this is the case.
1177 *
1178 * The first allocation call tries to reserve enough space to handle
1179 * mapping dmap into a sparse part of the file plus the bmbt split. We
1180 * haven't locked the inode or read the existing mapping yet, so we do
1181 * not know for sure that we need the space. This should succeed most
1182 * of the time.
1183 *
1184 * If the first attempt fails, try again but reserving only enough
1185 * space to handle a bmbt split. This is the hard minimum requirement,
1186 * and we revisit quota reservations later when we know more about what
1187 * we're remapping.
1188 */
1189 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1190 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1191 resblks + dmap->br_blockcount, 0, false, &tp);
1192 if (error == -EDQUOT || error == -ENOSPC) {
1193 quota_reserved = false;
1194 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1195 resblks, 0, false, &tp);
1196 }
1197 if (error)
1198 goto out;
1199
1200 /*
1201 * Read what's currently mapped in the destination file into smap.
1202 * If smap isn't a hole, we will have to remove it before we can add
1203 * dmap to the destination file.
1204 */
1205 nimaps = 1;
1206 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1207 &smap, &nimaps, 0);
1208 if (error)
1209 goto out_cancel;
1210 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1211 smap_real = xfs_bmap_is_real_extent(&smap);
1212
1213 /*
1214 * We can only remap as many blocks as the smaller of the two extent
1215 * maps, because we can only remap one extent at a time.
1216 */
1217 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1218 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1219
1220 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1221
1222 /*
1223 * Two extents mapped to the same physical block must not have
1224 * different states; that's filesystem corruption. Move on to the next
1225 * extent if they're both holes or both the same physical extent.
1226 */
1227 if (dmap->br_startblock == smap.br_startblock) {
1228 if (dmap->br_state != smap.br_state)
1229 error = -EFSCORRUPTED;
1230 goto out_cancel;
1231 }
1232
1233 /* If both extents are unwritten, leave them alone. */
1234 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1235 smap.br_state == XFS_EXT_UNWRITTEN)
1236 goto out_cancel;
1237
1238 /* No reflinking if the AG of the dest mapping is low on space. */
1239 if (dmap_written) {
1240 error = xfs_reflink_ag_has_free_space(mp,
1241 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1242 if (error)
1243 goto out_cancel;
1244 }
1245
1246 /*
1247 * Increase quota reservation if we think the quota block counter for
1248 * this file could increase.
1249 *
1250 * If we are mapping a written extent into the file, we need to have
1251 * enough quota block count reservation to handle the blocks in that
1252 * extent. We log only the delta to the quota block counts, so if the
1253 * extent we're unmapping also has blocks allocated to it, we don't
1254 * need a quota reservation for the extent itself.
1255 *
1256 * Note that if we're replacing a delalloc reservation with a written
1257 * extent, we have to take the full quota reservation because removing
1258 * the delalloc reservation gives the block count back to the quota
1259 * count. This is suboptimal, but the VFS flushed the dest range
1260 * before we started. That should have removed all the delalloc
1261 * reservations, but we code defensively.
1262 *
1263 * xfs_trans_alloc_inode above already tried to grab an even larger
1264 * quota reservation, and kicked off a blockgc scan if it couldn't.
1265 * If we can't get a potentially smaller quota reservation now, we're
1266 * done.
1267 */
1268 if (!quota_reserved && !smap_real && dmap_written) {
1269 error = xfs_trans_reserve_quota_nblks(tp, ip,
1270 dmap->br_blockcount, 0, false);
1271 if (error)
1272 goto out_cancel;
1273 }
1274
1275 if (smap_real)
1276 ++iext_delta;
1277
1278 if (dmap_written)
1279 ++iext_delta;
1280
1281 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1282 if (error == -EFBIG)
1283 error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1284 if (error)
1285 goto out_cancel;
1286
1287 if (smap_real) {
1288 /*
1289 * If the extent we're unmapping is backed by storage (written
1290 * or not), unmap the extent and drop its refcount.
1291 */
1292 xfs_bmap_unmap_extent(tp, ip, &smap);
1293 xfs_refcount_decrease_extent(tp, &smap);
1294 qdelta -= smap.br_blockcount;
1295 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1296 int done;
1297
1298 /*
1299 * If the extent we're unmapping is a delalloc reservation,
1300 * we can use the regular bunmapi function to release the
1301 * incore state. Dropping the delalloc reservation takes care
1302 * of the quota reservation for us.
1303 */
1304 error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1305 smap.br_blockcount, 0, 1, &done);
1306 if (error)
1307 goto out_cancel;
1308 ASSERT(done);
1309 }
1310
1311 /*
1312 * If the extent we're sharing is backed by written storage, increase
1313 * its refcount and map it into the file.
1314 */
1315 if (dmap_written) {
1316 xfs_refcount_increase_extent(tp, dmap);
1317 xfs_bmap_map_extent(tp, ip, dmap);
1318 qdelta += dmap->br_blockcount;
1319 }
1320
1321 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1322
1323 /* Update dest isize if needed. */
1324 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1325 newlen = min_t(xfs_off_t, newlen, new_isize);
1326 if (newlen > i_size_read(VFS_I(ip))) {
1327 trace_xfs_reflink_update_inode_size(ip, newlen);
1328 i_size_write(VFS_I(ip), newlen);
1329 ip->i_disk_size = newlen;
1330 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1331 }
1332
1333 /* Commit everything and unlock. */
1334 error = xfs_trans_commit(tp);
1335 goto out_unlock;
1336
1337 out_cancel:
1338 xfs_trans_cancel(tp);
1339 out_unlock:
1340 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1341 out:
1342 if (error)
1343 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1344 return error;
1345 }
1346
1347 /* Remap a range of one file to the other. */
1348 int
xfs_reflink_remap_blocks(struct xfs_inode * src,loff_t pos_in,struct xfs_inode * dest,loff_t pos_out,loff_t remap_len,loff_t * remapped)1349 xfs_reflink_remap_blocks(
1350 struct xfs_inode *src,
1351 loff_t pos_in,
1352 struct xfs_inode *dest,
1353 loff_t pos_out,
1354 loff_t remap_len,
1355 loff_t *remapped)
1356 {
1357 struct xfs_bmbt_irec imap;
1358 struct xfs_mount *mp = src->i_mount;
1359 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1360 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1361 xfs_filblks_t len;
1362 xfs_filblks_t remapped_len = 0;
1363 xfs_off_t new_isize = pos_out + remap_len;
1364 int nimaps;
1365 int error = 0;
1366
1367 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1368 XFS_MAX_FILEOFF);
1369
1370 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1371
1372 while (len > 0) {
1373 unsigned int lock_mode;
1374
1375 /* Read extent from the source file */
1376 nimaps = 1;
1377 lock_mode = xfs_ilock_data_map_shared(src);
1378 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1379 xfs_iunlock(src, lock_mode);
1380 if (error)
1381 break;
1382 /*
1383 * The caller supposedly flushed all dirty pages in the source
1384 * file range, which means that writeback should have allocated
1385 * or deleted all delalloc reservations in that range. If we
1386 * find one, that's a good sign that something is seriously
1387 * wrong here.
1388 */
1389 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1390 if (imap.br_startblock == DELAYSTARTBLOCK) {
1391 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1392 error = -EFSCORRUPTED;
1393 break;
1394 }
1395
1396 trace_xfs_reflink_remap_extent_src(src, &imap);
1397
1398 /* Remap into the destination file at the given offset. */
1399 imap.br_startoff = destoff;
1400 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1401 if (error)
1402 break;
1403
1404 if (fatal_signal_pending(current)) {
1405 error = -EINTR;
1406 break;
1407 }
1408
1409 /* Advance drange/srange */
1410 srcoff += imap.br_blockcount;
1411 destoff += imap.br_blockcount;
1412 len -= imap.br_blockcount;
1413 remapped_len += imap.br_blockcount;
1414 }
1415
1416 if (error)
1417 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1418 *remapped = min_t(loff_t, remap_len,
1419 XFS_FSB_TO_B(src->i_mount, remapped_len));
1420 return error;
1421 }
1422
1423 /*
1424 * If we're reflinking to a point past the destination file's EOF, we must
1425 * zero any speculative post-EOF preallocations that sit between the old EOF
1426 * and the destination file offset.
1427 */
1428 static int
xfs_reflink_zero_posteof(struct xfs_inode * ip,loff_t pos)1429 xfs_reflink_zero_posteof(
1430 struct xfs_inode *ip,
1431 loff_t pos)
1432 {
1433 loff_t isize = i_size_read(VFS_I(ip));
1434
1435 if (pos <= isize)
1436 return 0;
1437
1438 trace_xfs_zero_eof(ip, isize, pos - isize);
1439 return xfs_zero_range(ip, isize, pos - isize, NULL);
1440 }
1441
1442 /*
1443 * Prepare two files for range cloning. Upon a successful return both inodes
1444 * will have the iolock and mmaplock held, the page cache of the out file will
1445 * be truncated, and any leases on the out file will have been broken. This
1446 * function borrows heavily from xfs_file_aio_write_checks.
1447 *
1448 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1449 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1450 * EOF block in the source dedupe range because it's not a complete block match,
1451 * hence can introduce a corruption into the file that has it's block replaced.
1452 *
1453 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1454 * "block aligned" for the purposes of cloning entire files. However, if the
1455 * source file range includes the EOF block and it lands within the existing EOF
1456 * of the destination file, then we can expose stale data from beyond the source
1457 * file EOF in the destination file.
1458 *
1459 * XFS doesn't support partial block sharing, so in both cases we have check
1460 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1461 * down to the previous whole block and ignore the partial EOF block. While this
1462 * means we can't dedupe the last block of a file, this is an acceptible
1463 * tradeoff for simplicity on implementation.
1464 *
1465 * For cloning, we want to share the partial EOF block if it is also the new EOF
1466 * block of the destination file. If the partial EOF block lies inside the
1467 * existing destination EOF, then we have to abort the clone to avoid exposing
1468 * stale data in the destination file. Hence we reject these clone attempts with
1469 * -EINVAL in this case.
1470 */
1471 int
xfs_reflink_remap_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)1472 xfs_reflink_remap_prep(
1473 struct file *file_in,
1474 loff_t pos_in,
1475 struct file *file_out,
1476 loff_t pos_out,
1477 loff_t *len,
1478 unsigned int remap_flags)
1479 {
1480 struct inode *inode_in = file_inode(file_in);
1481 struct xfs_inode *src = XFS_I(inode_in);
1482 struct inode *inode_out = file_inode(file_out);
1483 struct xfs_inode *dest = XFS_I(inode_out);
1484 int ret;
1485
1486 /* Lock both files against IO */
1487 ret = xfs_ilock2_io_mmap(src, dest);
1488 if (ret)
1489 return ret;
1490
1491 /* Check file eligibility and prepare for block sharing. */
1492 ret = -EINVAL;
1493 /* Don't reflink realtime inodes */
1494 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1495 goto out_unlock;
1496
1497 /* Don't share DAX file data with non-DAX file. */
1498 if (IS_DAX(inode_in) != IS_DAX(inode_out))
1499 goto out_unlock;
1500
1501 if (!IS_DAX(inode_in))
1502 ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1503 pos_out, len, remap_flags);
1504 else
1505 ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1506 pos_out, len, remap_flags, &xfs_read_iomap_ops);
1507 if (ret || *len == 0)
1508 goto out_unlock;
1509
1510 /* Attach dquots to dest inode before changing block map */
1511 ret = xfs_qm_dqattach(dest);
1512 if (ret)
1513 goto out_unlock;
1514
1515 /*
1516 * Zero existing post-eof speculative preallocations in the destination
1517 * file.
1518 */
1519 ret = xfs_reflink_zero_posteof(dest, pos_out);
1520 if (ret)
1521 goto out_unlock;
1522
1523 /* Set flags and remap blocks. */
1524 ret = xfs_reflink_set_inode_flag(src, dest);
1525 if (ret)
1526 goto out_unlock;
1527
1528 /*
1529 * If pos_out > EOF, we may have dirtied blocks between EOF and
1530 * pos_out. In that case, we need to extend the flush and unmap to cover
1531 * from EOF to the end of the copy length.
1532 */
1533 if (pos_out > XFS_ISIZE(dest)) {
1534 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1535 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1536 } else {
1537 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1538 }
1539 if (ret)
1540 goto out_unlock;
1541
1542 return 0;
1543 out_unlock:
1544 xfs_iunlock2_io_mmap(src, dest);
1545 return ret;
1546 }
1547
1548 /* Does this inode need the reflink flag? */
1549 int
xfs_reflink_inode_has_shared_extents(struct xfs_trans * tp,struct xfs_inode * ip,bool * has_shared)1550 xfs_reflink_inode_has_shared_extents(
1551 struct xfs_trans *tp,
1552 struct xfs_inode *ip,
1553 bool *has_shared)
1554 {
1555 struct xfs_bmbt_irec got;
1556 struct xfs_mount *mp = ip->i_mount;
1557 struct xfs_ifork *ifp;
1558 struct xfs_iext_cursor icur;
1559 bool found;
1560 int error;
1561
1562 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1563 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1564 if (error)
1565 return error;
1566
1567 *has_shared = false;
1568 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1569 while (found) {
1570 struct xfs_perag *pag;
1571 xfs_agblock_t agbno;
1572 xfs_extlen_t aglen;
1573 xfs_agblock_t rbno;
1574 xfs_extlen_t rlen;
1575
1576 if (isnullstartblock(got.br_startblock) ||
1577 got.br_state != XFS_EXT_NORM)
1578 goto next;
1579
1580 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1581 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1582 aglen = got.br_blockcount;
1583 error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1584 &rbno, &rlen, false);
1585 xfs_perag_put(pag);
1586 if (error)
1587 return error;
1588
1589 /* Is there still a shared block here? */
1590 if (rbno != NULLAGBLOCK) {
1591 *has_shared = true;
1592 return 0;
1593 }
1594 next:
1595 found = xfs_iext_next_extent(ifp, &icur, &got);
1596 }
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * Clear the inode reflink flag if there are no shared extents.
1603 *
1604 * The caller is responsible for joining the inode to the transaction passed in.
1605 * The inode will be joined to the transaction that is returned to the caller.
1606 */
1607 int
xfs_reflink_clear_inode_flag(struct xfs_inode * ip,struct xfs_trans ** tpp)1608 xfs_reflink_clear_inode_flag(
1609 struct xfs_inode *ip,
1610 struct xfs_trans **tpp)
1611 {
1612 bool needs_flag;
1613 int error = 0;
1614
1615 ASSERT(xfs_is_reflink_inode(ip));
1616
1617 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1618 if (error || needs_flag)
1619 return error;
1620
1621 /*
1622 * We didn't find any shared blocks so turn off the reflink flag.
1623 * First, get rid of any leftover CoW mappings.
1624 */
1625 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1626 true);
1627 if (error)
1628 return error;
1629
1630 /* Clear the inode flag. */
1631 trace_xfs_reflink_unset_inode_flag(ip);
1632 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1633 xfs_inode_clear_cowblocks_tag(ip);
1634 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1635
1636 return error;
1637 }
1638
1639 /*
1640 * Clear the inode reflink flag if there are no shared extents and the size
1641 * hasn't changed.
1642 */
1643 STATIC int
xfs_reflink_try_clear_inode_flag(struct xfs_inode * ip)1644 xfs_reflink_try_clear_inode_flag(
1645 struct xfs_inode *ip)
1646 {
1647 struct xfs_mount *mp = ip->i_mount;
1648 struct xfs_trans *tp;
1649 int error = 0;
1650
1651 /* Start a rolling transaction to remove the mappings */
1652 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1653 if (error)
1654 return error;
1655
1656 xfs_ilock(ip, XFS_ILOCK_EXCL);
1657 xfs_trans_ijoin(tp, ip, 0);
1658
1659 error = xfs_reflink_clear_inode_flag(ip, &tp);
1660 if (error)
1661 goto cancel;
1662
1663 error = xfs_trans_commit(tp);
1664 if (error)
1665 goto out;
1666
1667 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1668 return 0;
1669 cancel:
1670 xfs_trans_cancel(tp);
1671 out:
1672 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1673 return error;
1674 }
1675
1676 /*
1677 * Pre-COW all shared blocks within a given byte range of a file and turn off
1678 * the reflink flag if we unshare all of the file's blocks.
1679 */
1680 int
xfs_reflink_unshare(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1681 xfs_reflink_unshare(
1682 struct xfs_inode *ip,
1683 xfs_off_t offset,
1684 xfs_off_t len)
1685 {
1686 struct inode *inode = VFS_I(ip);
1687 int error;
1688
1689 if (!xfs_is_reflink_inode(ip))
1690 return 0;
1691
1692 trace_xfs_reflink_unshare(ip, offset, len);
1693
1694 inode_dio_wait(inode);
1695
1696 error = iomap_file_unshare(inode, offset, len,
1697 &xfs_buffered_write_iomap_ops);
1698 if (error)
1699 goto out;
1700
1701 error = filemap_write_and_wait_range(inode->i_mapping, offset,
1702 offset + len - 1);
1703 if (error)
1704 goto out;
1705
1706 /* Turn off the reflink flag if possible. */
1707 error = xfs_reflink_try_clear_inode_flag(ip);
1708 if (error)
1709 goto out;
1710 return 0;
1711
1712 out:
1713 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1714 return error;
1715 }
1716