1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
198 iput(fi->cow_inode);
199 fi->cow_inode = NULL;
200 release_atomic_write_cnt(inode);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 stat_dec_atomic_inode(inode);
203 }
204
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)205 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
206 block_t new_addr, block_t *old_addr, bool recover)
207 {
208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
209 struct dnode_of_data dn;
210 struct node_info ni;
211 int err;
212
213 retry:
214 set_new_dnode(&dn, inode, NULL, NULL, 0);
215 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
216 if (err) {
217 if (err == -ENOMEM) {
218 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
219 goto retry;
220 }
221 return err;
222 }
223
224 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
225 if (err) {
226 f2fs_put_dnode(&dn);
227 return err;
228 }
229
230 if (recover) {
231 /* dn.data_blkaddr is always valid */
232 if (!__is_valid_data_blkaddr(new_addr)) {
233 if (new_addr == NULL_ADDR)
234 dec_valid_block_count(sbi, inode, 1);
235 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
236 f2fs_update_data_blkaddr(&dn, new_addr);
237 } else {
238 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
239 new_addr, ni.version, true, true);
240 }
241 } else {
242 blkcnt_t count = 1;
243
244 *old_addr = dn.data_blkaddr;
245 f2fs_truncate_data_blocks_range(&dn, 1);
246 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
247 inc_valid_block_count(sbi, inode, &count);
248 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
249 ni.version, true, false);
250 }
251
252 f2fs_put_dnode(&dn);
253 return 0;
254 }
255
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)256 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
257 bool revoke)
258 {
259 struct revoke_entry *cur, *tmp;
260
261 list_for_each_entry_safe(cur, tmp, head, list) {
262 if (revoke)
263 __replace_atomic_write_block(inode, cur->index,
264 cur->old_addr, NULL, true);
265 list_del(&cur->list);
266 kmem_cache_free(revoke_entry_slab, cur);
267 }
268 }
269
__f2fs_commit_atomic_write(struct inode * inode)270 static int __f2fs_commit_atomic_write(struct inode *inode)
271 {
272 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
273 struct f2fs_inode_info *fi = F2FS_I(inode);
274 struct inode *cow_inode = fi->cow_inode;
275 struct revoke_entry *new;
276 struct list_head revoke_list;
277 block_t blkaddr;
278 struct dnode_of_data dn;
279 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
280 pgoff_t off = 0, blen, index;
281 int ret = 0, i;
282
283 INIT_LIST_HEAD(&revoke_list);
284
285 while (len) {
286 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
287
288 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
289 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
290 if (ret && ret != -ENOENT) {
291 goto out;
292 } else if (ret == -ENOENT) {
293 ret = 0;
294 if (dn.max_level == 0)
295 goto out;
296 goto next;
297 }
298
299 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
300 len);
301 index = off;
302 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
303 blkaddr = f2fs_data_blkaddr(&dn);
304
305 if (!__is_valid_data_blkaddr(blkaddr)) {
306 continue;
307 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
308 DATA_GENERIC_ENHANCE)) {
309 f2fs_put_dnode(&dn);
310 ret = -EFSCORRUPTED;
311 f2fs_handle_error(sbi,
312 ERROR_INVALID_BLKADDR);
313 goto out;
314 }
315
316 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
317 true, NULL);
318
319 ret = __replace_atomic_write_block(inode, index, blkaddr,
320 &new->old_addr, false);
321 if (ret) {
322 f2fs_put_dnode(&dn);
323 kmem_cache_free(revoke_entry_slab, new);
324 goto out;
325 }
326
327 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
328 new->index = index;
329 list_add_tail(&new->list, &revoke_list);
330 }
331 f2fs_put_dnode(&dn);
332 next:
333 off += blen;
334 len -= blen;
335 }
336
337 out:
338 if (ret)
339 sbi->revoked_atomic_block += fi->atomic_write_cnt;
340 else
341 sbi->committed_atomic_block += fi->atomic_write_cnt;
342
343 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
344
345 return ret;
346 }
347
f2fs_commit_atomic_write(struct inode * inode)348 int f2fs_commit_atomic_write(struct inode *inode)
349 {
350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 int err;
353
354 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
355 if (err)
356 return err;
357
358 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
359 f2fs_lock_op(sbi);
360
361 err = __f2fs_commit_atomic_write(inode);
362
363 f2fs_unlock_op(sbi);
364 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
365
366 return err;
367 }
368
369 /*
370 * This function balances dirty node and dentry pages.
371 * In addition, it controls garbage collection.
372 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)373 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
374 {
375 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
376 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
377 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
378 }
379
380 /* balance_fs_bg is able to be pending */
381 if (need && excess_cached_nats(sbi))
382 f2fs_balance_fs_bg(sbi, false);
383
384 if (!f2fs_is_checkpoint_ready(sbi))
385 return;
386
387 /*
388 * We should do GC or end up with checkpoint, if there are so many dirty
389 * dir/node pages without enough free segments.
390 */
391 if (has_not_enough_free_secs(sbi, 0, 0)) {
392 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
393 sbi->gc_thread->f2fs_gc_task) {
394 DEFINE_WAIT(wait);
395
396 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
397 TASK_UNINTERRUPTIBLE);
398 wake_up(&sbi->gc_thread->gc_wait_queue_head);
399 io_schedule();
400 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
401 } else {
402 struct f2fs_gc_control gc_control = {
403 .victim_segno = NULL_SEGNO,
404 .init_gc_type = BG_GC,
405 .no_bg_gc = true,
406 .should_migrate_blocks = false,
407 .err_gc_skipped = false,
408 .nr_free_secs = 1 };
409 f2fs_down_write(&sbi->gc_lock);
410 f2fs_gc(sbi, &gc_control);
411 }
412 }
413 }
414
excess_dirty_threshold(struct f2fs_sb_info * sbi)415 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
416 {
417 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
418 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
419 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
420 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
421 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
422 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
423 unsigned int threshold = sbi->blocks_per_seg * factor *
424 DEFAULT_DIRTY_THRESHOLD;
425 unsigned int global_threshold = threshold * 3 / 2;
426
427 if (dents >= threshold || qdata >= threshold ||
428 nodes >= threshold || meta >= threshold ||
429 imeta >= threshold)
430 return true;
431 return dents + qdata + nodes + meta + imeta > global_threshold;
432 }
433
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)434 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
435 {
436 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
437 return;
438
439 /* try to shrink extent cache when there is no enough memory */
440 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
441 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
442
443 /* check the # of cached NAT entries */
444 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
445 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
446
447 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
448 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
449 else
450 f2fs_build_free_nids(sbi, false, false);
451
452 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
453 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
454 goto do_sync;
455
456 /* there is background inflight IO or foreground operation recently */
457 if (is_inflight_io(sbi, REQ_TIME) ||
458 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
459 return;
460
461 /* exceed periodical checkpoint timeout threshold */
462 if (f2fs_time_over(sbi, CP_TIME))
463 goto do_sync;
464
465 /* checkpoint is the only way to shrink partial cached entries */
466 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
467 f2fs_available_free_memory(sbi, INO_ENTRIES))
468 return;
469
470 do_sync:
471 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
472 struct blk_plug plug;
473
474 mutex_lock(&sbi->flush_lock);
475
476 blk_start_plug(&plug);
477 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
478 blk_finish_plug(&plug);
479
480 mutex_unlock(&sbi->flush_lock);
481 }
482 f2fs_sync_fs(sbi->sb, 1);
483 stat_inc_bg_cp_count(sbi->stat_info);
484 }
485
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)486 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
487 struct block_device *bdev)
488 {
489 int ret = blkdev_issue_flush(bdev);
490
491 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
492 test_opt(sbi, FLUSH_MERGE), ret);
493 return ret;
494 }
495
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)496 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
497 {
498 int ret = 0;
499 int i;
500
501 if (!f2fs_is_multi_device(sbi))
502 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
503
504 for (i = 0; i < sbi->s_ndevs; i++) {
505 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
506 continue;
507 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
508 if (ret)
509 break;
510 }
511 return ret;
512 }
513
issue_flush_thread(void * data)514 static int issue_flush_thread(void *data)
515 {
516 struct f2fs_sb_info *sbi = data;
517 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
518 wait_queue_head_t *q = &fcc->flush_wait_queue;
519 repeat:
520 if (kthread_should_stop())
521 return 0;
522
523 if (!llist_empty(&fcc->issue_list)) {
524 struct flush_cmd *cmd, *next;
525 int ret;
526
527 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
528 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
529
530 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
531
532 ret = submit_flush_wait(sbi, cmd->ino);
533 atomic_inc(&fcc->issued_flush);
534
535 llist_for_each_entry_safe(cmd, next,
536 fcc->dispatch_list, llnode) {
537 cmd->ret = ret;
538 complete(&cmd->wait);
539 }
540 fcc->dispatch_list = NULL;
541 }
542
543 wait_event_interruptible(*q,
544 kthread_should_stop() || !llist_empty(&fcc->issue_list));
545 goto repeat;
546 }
547
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)548 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
549 {
550 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
551 struct flush_cmd cmd;
552 int ret;
553
554 if (test_opt(sbi, NOBARRIER))
555 return 0;
556
557 if (!test_opt(sbi, FLUSH_MERGE)) {
558 atomic_inc(&fcc->queued_flush);
559 ret = submit_flush_wait(sbi, ino);
560 atomic_dec(&fcc->queued_flush);
561 atomic_inc(&fcc->issued_flush);
562 return ret;
563 }
564
565 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
566 f2fs_is_multi_device(sbi)) {
567 ret = submit_flush_wait(sbi, ino);
568 atomic_dec(&fcc->queued_flush);
569
570 atomic_inc(&fcc->issued_flush);
571 return ret;
572 }
573
574 cmd.ino = ino;
575 init_completion(&cmd.wait);
576
577 llist_add(&cmd.llnode, &fcc->issue_list);
578
579 /*
580 * update issue_list before we wake up issue_flush thread, this
581 * smp_mb() pairs with another barrier in ___wait_event(), see
582 * more details in comments of waitqueue_active().
583 */
584 smp_mb();
585
586 if (waitqueue_active(&fcc->flush_wait_queue))
587 wake_up(&fcc->flush_wait_queue);
588
589 if (fcc->f2fs_issue_flush) {
590 wait_for_completion(&cmd.wait);
591 atomic_dec(&fcc->queued_flush);
592 } else {
593 struct llist_node *list;
594
595 list = llist_del_all(&fcc->issue_list);
596 if (!list) {
597 wait_for_completion(&cmd.wait);
598 atomic_dec(&fcc->queued_flush);
599 } else {
600 struct flush_cmd *tmp, *next;
601
602 ret = submit_flush_wait(sbi, ino);
603
604 llist_for_each_entry_safe(tmp, next, list, llnode) {
605 if (tmp == &cmd) {
606 cmd.ret = ret;
607 atomic_dec(&fcc->queued_flush);
608 continue;
609 }
610 tmp->ret = ret;
611 complete(&tmp->wait);
612 }
613 }
614 }
615
616 return cmd.ret;
617 }
618
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)619 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
620 {
621 dev_t dev = sbi->sb->s_bdev->bd_dev;
622 struct flush_cmd_control *fcc;
623 int err = 0;
624
625 if (SM_I(sbi)->fcc_info) {
626 fcc = SM_I(sbi)->fcc_info;
627 if (fcc->f2fs_issue_flush)
628 return err;
629 goto init_thread;
630 }
631
632 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
633 if (!fcc)
634 return -ENOMEM;
635 atomic_set(&fcc->issued_flush, 0);
636 atomic_set(&fcc->queued_flush, 0);
637 init_waitqueue_head(&fcc->flush_wait_queue);
638 init_llist_head(&fcc->issue_list);
639 SM_I(sbi)->fcc_info = fcc;
640 if (!test_opt(sbi, FLUSH_MERGE))
641 return err;
642
643 init_thread:
644 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
645 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
646 if (IS_ERR(fcc->f2fs_issue_flush)) {
647 err = PTR_ERR(fcc->f2fs_issue_flush);
648 kfree(fcc);
649 SM_I(sbi)->fcc_info = NULL;
650 return err;
651 }
652
653 return err;
654 }
655
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)656 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
657 {
658 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
659
660 if (fcc && fcc->f2fs_issue_flush) {
661 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
662
663 fcc->f2fs_issue_flush = NULL;
664 kthread_stop(flush_thread);
665 }
666 if (free) {
667 kfree(fcc);
668 SM_I(sbi)->fcc_info = NULL;
669 }
670 }
671
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)672 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
673 {
674 int ret = 0, i;
675
676 if (!f2fs_is_multi_device(sbi))
677 return 0;
678
679 if (test_opt(sbi, NOBARRIER))
680 return 0;
681
682 for (i = 1; i < sbi->s_ndevs; i++) {
683 int count = DEFAULT_RETRY_IO_COUNT;
684
685 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
686 continue;
687
688 do {
689 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
690 if (ret)
691 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
692 } while (ret && --count);
693
694 if (ret) {
695 f2fs_stop_checkpoint(sbi, false,
696 STOP_CP_REASON_FLUSH_FAIL);
697 break;
698 }
699
700 spin_lock(&sbi->dev_lock);
701 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
702 spin_unlock(&sbi->dev_lock);
703 }
704
705 return ret;
706 }
707
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)708 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
709 enum dirty_type dirty_type)
710 {
711 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
712
713 /* need not be added */
714 if (IS_CURSEG(sbi, segno))
715 return;
716
717 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
718 dirty_i->nr_dirty[dirty_type]++;
719
720 if (dirty_type == DIRTY) {
721 struct seg_entry *sentry = get_seg_entry(sbi, segno);
722 enum dirty_type t = sentry->type;
723
724 if (unlikely(t >= DIRTY)) {
725 f2fs_bug_on(sbi, 1);
726 return;
727 }
728 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
729 dirty_i->nr_dirty[t]++;
730
731 if (__is_large_section(sbi)) {
732 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
733 block_t valid_blocks =
734 get_valid_blocks(sbi, segno, true);
735
736 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
737 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
738
739 if (!IS_CURSEC(sbi, secno))
740 set_bit(secno, dirty_i->dirty_secmap);
741 }
742 }
743 }
744
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)745 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
746 enum dirty_type dirty_type)
747 {
748 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
749 block_t valid_blocks;
750
751 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
752 dirty_i->nr_dirty[dirty_type]--;
753
754 if (dirty_type == DIRTY) {
755 struct seg_entry *sentry = get_seg_entry(sbi, segno);
756 enum dirty_type t = sentry->type;
757
758 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
759 dirty_i->nr_dirty[t]--;
760
761 valid_blocks = get_valid_blocks(sbi, segno, true);
762 if (valid_blocks == 0) {
763 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
764 dirty_i->victim_secmap);
765 #ifdef CONFIG_F2FS_CHECK_FS
766 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
767 #endif
768 }
769 if (__is_large_section(sbi)) {
770 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771
772 if (!valid_blocks ||
773 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
774 clear_bit(secno, dirty_i->dirty_secmap);
775 return;
776 }
777
778 if (!IS_CURSEC(sbi, secno))
779 set_bit(secno, dirty_i->dirty_secmap);
780 }
781 }
782 }
783
784 /*
785 * Should not occur error such as -ENOMEM.
786 * Adding dirty entry into seglist is not critical operation.
787 * If a given segment is one of current working segments, it won't be added.
788 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)789 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
790 {
791 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
792 unsigned short valid_blocks, ckpt_valid_blocks;
793 unsigned int usable_blocks;
794
795 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
796 return;
797
798 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
799 mutex_lock(&dirty_i->seglist_lock);
800
801 valid_blocks = get_valid_blocks(sbi, segno, false);
802 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
803
804 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
805 ckpt_valid_blocks == usable_blocks)) {
806 __locate_dirty_segment(sbi, segno, PRE);
807 __remove_dirty_segment(sbi, segno, DIRTY);
808 } else if (valid_blocks < usable_blocks) {
809 __locate_dirty_segment(sbi, segno, DIRTY);
810 } else {
811 /* Recovery routine with SSR needs this */
812 __remove_dirty_segment(sbi, segno, DIRTY);
813 }
814
815 mutex_unlock(&dirty_i->seglist_lock);
816 }
817
818 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)819 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
820 {
821 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
822 unsigned int segno;
823
824 mutex_lock(&dirty_i->seglist_lock);
825 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
826 if (get_valid_blocks(sbi, segno, false))
827 continue;
828 if (IS_CURSEG(sbi, segno))
829 continue;
830 __locate_dirty_segment(sbi, segno, PRE);
831 __remove_dirty_segment(sbi, segno, DIRTY);
832 }
833 mutex_unlock(&dirty_i->seglist_lock);
834 }
835
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)836 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
837 {
838 int ovp_hole_segs =
839 (overprovision_segments(sbi) - reserved_segments(sbi));
840 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
841 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
842 block_t holes[2] = {0, 0}; /* DATA and NODE */
843 block_t unusable;
844 struct seg_entry *se;
845 unsigned int segno;
846
847 mutex_lock(&dirty_i->seglist_lock);
848 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
849 se = get_seg_entry(sbi, segno);
850 if (IS_NODESEG(se->type))
851 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
852 se->valid_blocks;
853 else
854 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
855 se->valid_blocks;
856 }
857 mutex_unlock(&dirty_i->seglist_lock);
858
859 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
860 if (unusable > ovp_holes)
861 return unusable - ovp_holes;
862 return 0;
863 }
864
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)865 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
866 {
867 int ovp_hole_segs =
868 (overprovision_segments(sbi) - reserved_segments(sbi));
869 if (unusable > F2FS_OPTION(sbi).unusable_cap)
870 return -EAGAIN;
871 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
872 dirty_segments(sbi) > ovp_hole_segs)
873 return -EAGAIN;
874 return 0;
875 }
876
877 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)878 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
879 {
880 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
881 unsigned int segno = 0;
882
883 mutex_lock(&dirty_i->seglist_lock);
884 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
885 if (get_valid_blocks(sbi, segno, false))
886 continue;
887 if (get_ckpt_valid_blocks(sbi, segno, false))
888 continue;
889 mutex_unlock(&dirty_i->seglist_lock);
890 return segno;
891 }
892 mutex_unlock(&dirty_i->seglist_lock);
893 return NULL_SEGNO;
894 }
895
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)896 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
897 struct block_device *bdev, block_t lstart,
898 block_t start, block_t len)
899 {
900 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
901 struct list_head *pend_list;
902 struct discard_cmd *dc;
903
904 f2fs_bug_on(sbi, !len);
905
906 pend_list = &dcc->pend_list[plist_idx(len)];
907
908 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
909 INIT_LIST_HEAD(&dc->list);
910 dc->bdev = bdev;
911 dc->lstart = lstart;
912 dc->start = start;
913 dc->len = len;
914 dc->ref = 0;
915 dc->state = D_PREP;
916 dc->queued = 0;
917 dc->error = 0;
918 init_completion(&dc->wait);
919 list_add_tail(&dc->list, pend_list);
920 spin_lock_init(&dc->lock);
921 dc->bio_ref = 0;
922 atomic_inc(&dcc->discard_cmd_cnt);
923 dcc->undiscard_blks += len;
924
925 return dc;
926 }
927
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)928 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
929 struct block_device *bdev, block_t lstart,
930 block_t start, block_t len,
931 struct rb_node *parent, struct rb_node **p,
932 bool leftmost)
933 {
934 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
935 struct discard_cmd *dc;
936
937 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
938
939 rb_link_node(&dc->rb_node, parent, p);
940 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
941
942 return dc;
943 }
944
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)945 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
946 struct discard_cmd *dc)
947 {
948 if (dc->state == D_DONE)
949 atomic_sub(dc->queued, &dcc->queued_discard);
950
951 list_del(&dc->list);
952 rb_erase_cached(&dc->rb_node, &dcc->root);
953 dcc->undiscard_blks -= dc->len;
954
955 kmem_cache_free(discard_cmd_slab, dc);
956
957 atomic_dec(&dcc->discard_cmd_cnt);
958 }
959
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)960 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
961 struct discard_cmd *dc)
962 {
963 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964 unsigned long flags;
965
966 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
967
968 spin_lock_irqsave(&dc->lock, flags);
969 if (dc->bio_ref) {
970 spin_unlock_irqrestore(&dc->lock, flags);
971 return;
972 }
973 spin_unlock_irqrestore(&dc->lock, flags);
974
975 f2fs_bug_on(sbi, dc->ref);
976
977 if (dc->error == -EOPNOTSUPP)
978 dc->error = 0;
979
980 if (dc->error)
981 printk_ratelimited(
982 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
983 KERN_INFO, sbi->sb->s_id,
984 dc->lstart, dc->start, dc->len, dc->error);
985 __detach_discard_cmd(dcc, dc);
986 }
987
f2fs_submit_discard_endio(struct bio * bio)988 static void f2fs_submit_discard_endio(struct bio *bio)
989 {
990 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
991 unsigned long flags;
992
993 spin_lock_irqsave(&dc->lock, flags);
994 if (!dc->error)
995 dc->error = blk_status_to_errno(bio->bi_status);
996 dc->bio_ref--;
997 if (!dc->bio_ref && dc->state == D_SUBMIT) {
998 dc->state = D_DONE;
999 complete_all(&dc->wait);
1000 }
1001 spin_unlock_irqrestore(&dc->lock, flags);
1002 bio_put(bio);
1003 }
1004
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1005 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1006 block_t start, block_t end)
1007 {
1008 #ifdef CONFIG_F2FS_CHECK_FS
1009 struct seg_entry *sentry;
1010 unsigned int segno;
1011 block_t blk = start;
1012 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1013 unsigned long *map;
1014
1015 while (blk < end) {
1016 segno = GET_SEGNO(sbi, blk);
1017 sentry = get_seg_entry(sbi, segno);
1018 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1019
1020 if (end < START_BLOCK(sbi, segno + 1))
1021 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1022 else
1023 size = max_blocks;
1024 map = (unsigned long *)(sentry->cur_valid_map);
1025 offset = __find_rev_next_bit(map, size, offset);
1026 f2fs_bug_on(sbi, offset != size);
1027 blk = START_BLOCK(sbi, segno + 1);
1028 }
1029 #endif
1030 }
1031
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1032 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1033 struct discard_policy *dpolicy,
1034 int discard_type, unsigned int granularity)
1035 {
1036 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1037
1038 /* common policy */
1039 dpolicy->type = discard_type;
1040 dpolicy->sync = true;
1041 dpolicy->ordered = false;
1042 dpolicy->granularity = granularity;
1043
1044 dpolicy->max_requests = dcc->max_discard_request;
1045 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1046 dpolicy->timeout = false;
1047
1048 if (discard_type == DPOLICY_BG) {
1049 dpolicy->min_interval = dcc->min_discard_issue_time;
1050 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1051 dpolicy->max_interval = dcc->max_discard_issue_time;
1052 dpolicy->io_aware = true;
1053 dpolicy->sync = false;
1054 dpolicy->ordered = true;
1055 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1056 dpolicy->granularity = 1;
1057 if (atomic_read(&dcc->discard_cmd_cnt))
1058 dpolicy->max_interval =
1059 dcc->min_discard_issue_time;
1060 }
1061 } else if (discard_type == DPOLICY_FORCE) {
1062 dpolicy->min_interval = dcc->min_discard_issue_time;
1063 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1064 dpolicy->max_interval = dcc->max_discard_issue_time;
1065 dpolicy->io_aware = false;
1066 } else if (discard_type == DPOLICY_FSTRIM) {
1067 dpolicy->io_aware = false;
1068 } else if (discard_type == DPOLICY_UMOUNT) {
1069 dpolicy->io_aware = false;
1070 /* we need to issue all to keep CP_TRIMMED_FLAG */
1071 dpolicy->granularity = 1;
1072 dpolicy->timeout = true;
1073 }
1074 }
1075
1076 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1077 struct block_device *bdev, block_t lstart,
1078 block_t start, block_t len);
1079 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1080 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1081 struct discard_policy *dpolicy,
1082 struct discard_cmd *dc,
1083 unsigned int *issued)
1084 {
1085 struct block_device *bdev = dc->bdev;
1086 unsigned int max_discard_blocks =
1087 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1088 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1089 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1090 &(dcc->fstrim_list) : &(dcc->wait_list);
1091 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1092 block_t lstart, start, len, total_len;
1093 int err = 0;
1094
1095 if (dc->state != D_PREP)
1096 return 0;
1097
1098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1099 return 0;
1100
1101 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1102
1103 lstart = dc->lstart;
1104 start = dc->start;
1105 len = dc->len;
1106 total_len = len;
1107
1108 dc->len = 0;
1109
1110 while (total_len && *issued < dpolicy->max_requests && !err) {
1111 struct bio *bio = NULL;
1112 unsigned long flags;
1113 bool last = true;
1114
1115 if (len > max_discard_blocks) {
1116 len = max_discard_blocks;
1117 last = false;
1118 }
1119
1120 (*issued)++;
1121 if (*issued == dpolicy->max_requests)
1122 last = true;
1123
1124 dc->len += len;
1125
1126 if (time_to_inject(sbi, FAULT_DISCARD)) {
1127 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1128 err = -EIO;
1129 goto submit;
1130 }
1131 err = __blkdev_issue_discard(bdev,
1132 SECTOR_FROM_BLOCK(start),
1133 SECTOR_FROM_BLOCK(len),
1134 GFP_NOFS, &bio);
1135 submit:
1136 if (err) {
1137 spin_lock_irqsave(&dc->lock, flags);
1138 if (dc->state == D_PARTIAL)
1139 dc->state = D_SUBMIT;
1140 spin_unlock_irqrestore(&dc->lock, flags);
1141
1142 break;
1143 }
1144
1145 f2fs_bug_on(sbi, !bio);
1146
1147 /*
1148 * should keep before submission to avoid D_DONE
1149 * right away
1150 */
1151 spin_lock_irqsave(&dc->lock, flags);
1152 if (last)
1153 dc->state = D_SUBMIT;
1154 else
1155 dc->state = D_PARTIAL;
1156 dc->bio_ref++;
1157 spin_unlock_irqrestore(&dc->lock, flags);
1158
1159 atomic_inc(&dcc->queued_discard);
1160 dc->queued++;
1161 list_move_tail(&dc->list, wait_list);
1162
1163 /* sanity check on discard range */
1164 __check_sit_bitmap(sbi, lstart, lstart + len);
1165
1166 bio->bi_private = dc;
1167 bio->bi_end_io = f2fs_submit_discard_endio;
1168 bio->bi_opf |= flag;
1169 submit_bio(bio);
1170
1171 atomic_inc(&dcc->issued_discard);
1172
1173 f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1174
1175 lstart += len;
1176 start += len;
1177 total_len -= len;
1178 len = total_len;
1179 }
1180
1181 if (!err && len) {
1182 dcc->undiscard_blks -= len;
1183 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1184 }
1185 return err;
1186 }
1187
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1188 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1189 struct block_device *bdev, block_t lstart,
1190 block_t start, block_t len,
1191 struct rb_node **insert_p,
1192 struct rb_node *insert_parent)
1193 {
1194 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1195 struct rb_node **p;
1196 struct rb_node *parent = NULL;
1197 bool leftmost = true;
1198
1199 if (insert_p && insert_parent) {
1200 parent = insert_parent;
1201 p = insert_p;
1202 goto do_insert;
1203 }
1204
1205 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1206 lstart, &leftmost);
1207 do_insert:
1208 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1209 p, leftmost);
1210 }
1211
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1212 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1213 struct discard_cmd *dc)
1214 {
1215 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1216 }
1217
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1218 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1219 struct discard_cmd *dc, block_t blkaddr)
1220 {
1221 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1222 struct discard_info di = dc->di;
1223 bool modified = false;
1224
1225 if (dc->state == D_DONE || dc->len == 1) {
1226 __remove_discard_cmd(sbi, dc);
1227 return;
1228 }
1229
1230 dcc->undiscard_blks -= di.len;
1231
1232 if (blkaddr > di.lstart) {
1233 dc->len = blkaddr - dc->lstart;
1234 dcc->undiscard_blks += dc->len;
1235 __relocate_discard_cmd(dcc, dc);
1236 modified = true;
1237 }
1238
1239 if (blkaddr < di.lstart + di.len - 1) {
1240 if (modified) {
1241 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1242 di.start + blkaddr + 1 - di.lstart,
1243 di.lstart + di.len - 1 - blkaddr,
1244 NULL, NULL);
1245 } else {
1246 dc->lstart++;
1247 dc->len--;
1248 dc->start++;
1249 dcc->undiscard_blks += dc->len;
1250 __relocate_discard_cmd(dcc, dc);
1251 }
1252 }
1253 }
1254
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1255 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1256 struct block_device *bdev, block_t lstart,
1257 block_t start, block_t len)
1258 {
1259 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1261 struct discard_cmd *dc;
1262 struct discard_info di = {0};
1263 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1264 unsigned int max_discard_blocks =
1265 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1266 block_t end = lstart + len;
1267
1268 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1269 NULL, lstart,
1270 (struct rb_entry **)&prev_dc,
1271 (struct rb_entry **)&next_dc,
1272 &insert_p, &insert_parent, true, NULL);
1273 if (dc)
1274 prev_dc = dc;
1275
1276 if (!prev_dc) {
1277 di.lstart = lstart;
1278 di.len = next_dc ? next_dc->lstart - lstart : len;
1279 di.len = min(di.len, len);
1280 di.start = start;
1281 }
1282
1283 while (1) {
1284 struct rb_node *node;
1285 bool merged = false;
1286 struct discard_cmd *tdc = NULL;
1287
1288 if (prev_dc) {
1289 di.lstart = prev_dc->lstart + prev_dc->len;
1290 if (di.lstart < lstart)
1291 di.lstart = lstart;
1292 if (di.lstart >= end)
1293 break;
1294
1295 if (!next_dc || next_dc->lstart > end)
1296 di.len = end - di.lstart;
1297 else
1298 di.len = next_dc->lstart - di.lstart;
1299 di.start = start + di.lstart - lstart;
1300 }
1301
1302 if (!di.len)
1303 goto next;
1304
1305 if (prev_dc && prev_dc->state == D_PREP &&
1306 prev_dc->bdev == bdev &&
1307 __is_discard_back_mergeable(&di, &prev_dc->di,
1308 max_discard_blocks)) {
1309 prev_dc->di.len += di.len;
1310 dcc->undiscard_blks += di.len;
1311 __relocate_discard_cmd(dcc, prev_dc);
1312 di = prev_dc->di;
1313 tdc = prev_dc;
1314 merged = true;
1315 }
1316
1317 if (next_dc && next_dc->state == D_PREP &&
1318 next_dc->bdev == bdev &&
1319 __is_discard_front_mergeable(&di, &next_dc->di,
1320 max_discard_blocks)) {
1321 next_dc->di.lstart = di.lstart;
1322 next_dc->di.len += di.len;
1323 next_dc->di.start = di.start;
1324 dcc->undiscard_blks += di.len;
1325 __relocate_discard_cmd(dcc, next_dc);
1326 if (tdc)
1327 __remove_discard_cmd(sbi, tdc);
1328 merged = true;
1329 }
1330
1331 if (!merged) {
1332 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1333 di.len, NULL, NULL);
1334 }
1335 next:
1336 prev_dc = next_dc;
1337 if (!prev_dc)
1338 break;
1339
1340 node = rb_next(&prev_dc->rb_node);
1341 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1342 }
1343 }
1344
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1345 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1346 struct block_device *bdev, block_t blkstart, block_t blklen)
1347 {
1348 block_t lblkstart = blkstart;
1349
1350 if (!f2fs_bdev_support_discard(bdev))
1351 return 0;
1352
1353 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1354
1355 if (f2fs_is_multi_device(sbi)) {
1356 int devi = f2fs_target_device_index(sbi, blkstart);
1357
1358 blkstart -= FDEV(devi).start_blk;
1359 }
1360 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1361 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1362 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1363 return 0;
1364 }
1365
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1366 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1367 struct discard_policy *dpolicy)
1368 {
1369 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1371 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1372 struct discard_cmd *dc;
1373 struct blk_plug plug;
1374 unsigned int pos = dcc->next_pos;
1375 unsigned int issued = 0;
1376 bool io_interrupted = false;
1377
1378 mutex_lock(&dcc->cmd_lock);
1379 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1380 NULL, pos,
1381 (struct rb_entry **)&prev_dc,
1382 (struct rb_entry **)&next_dc,
1383 &insert_p, &insert_parent, true, NULL);
1384 if (!dc)
1385 dc = next_dc;
1386
1387 blk_start_plug(&plug);
1388
1389 while (dc) {
1390 struct rb_node *node;
1391 int err = 0;
1392
1393 if (dc->state != D_PREP)
1394 goto next;
1395
1396 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1397 io_interrupted = true;
1398 break;
1399 }
1400
1401 dcc->next_pos = dc->lstart + dc->len;
1402 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1403
1404 if (issued >= dpolicy->max_requests)
1405 break;
1406 next:
1407 node = rb_next(&dc->rb_node);
1408 if (err)
1409 __remove_discard_cmd(sbi, dc);
1410 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1411 }
1412
1413 blk_finish_plug(&plug);
1414
1415 if (!dc)
1416 dcc->next_pos = 0;
1417
1418 mutex_unlock(&dcc->cmd_lock);
1419
1420 if (!issued && io_interrupted)
1421 issued = -1;
1422
1423 return issued;
1424 }
1425 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1426 struct discard_policy *dpolicy);
1427
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1428 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1429 struct discard_policy *dpolicy)
1430 {
1431 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432 struct list_head *pend_list;
1433 struct discard_cmd *dc, *tmp;
1434 struct blk_plug plug;
1435 int i, issued;
1436 bool io_interrupted = false;
1437
1438 if (dpolicy->timeout)
1439 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1440
1441 retry:
1442 issued = 0;
1443 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1444 if (dpolicy->timeout &&
1445 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1446 break;
1447
1448 if (i + 1 < dpolicy->granularity)
1449 break;
1450
1451 if (i + 1 < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1452 return __issue_discard_cmd_orderly(sbi, dpolicy);
1453
1454 pend_list = &dcc->pend_list[i];
1455
1456 mutex_lock(&dcc->cmd_lock);
1457 if (list_empty(pend_list))
1458 goto next;
1459 if (unlikely(dcc->rbtree_check))
1460 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1461 &dcc->root, false));
1462 blk_start_plug(&plug);
1463 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1464 f2fs_bug_on(sbi, dc->state != D_PREP);
1465
1466 if (dpolicy->timeout &&
1467 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1468 break;
1469
1470 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1471 !is_idle(sbi, DISCARD_TIME)) {
1472 io_interrupted = true;
1473 break;
1474 }
1475
1476 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1477
1478 if (issued >= dpolicy->max_requests)
1479 break;
1480 }
1481 blk_finish_plug(&plug);
1482 next:
1483 mutex_unlock(&dcc->cmd_lock);
1484
1485 if (issued >= dpolicy->max_requests || io_interrupted)
1486 break;
1487 }
1488
1489 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1490 __wait_all_discard_cmd(sbi, dpolicy);
1491 goto retry;
1492 }
1493
1494 if (!issued && io_interrupted)
1495 issued = -1;
1496
1497 return issued;
1498 }
1499
__drop_discard_cmd(struct f2fs_sb_info * sbi)1500 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1501 {
1502 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1503 struct list_head *pend_list;
1504 struct discard_cmd *dc, *tmp;
1505 int i;
1506 bool dropped = false;
1507
1508 mutex_lock(&dcc->cmd_lock);
1509 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1510 pend_list = &dcc->pend_list[i];
1511 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1512 f2fs_bug_on(sbi, dc->state != D_PREP);
1513 __remove_discard_cmd(sbi, dc);
1514 dropped = true;
1515 }
1516 }
1517 mutex_unlock(&dcc->cmd_lock);
1518
1519 return dropped;
1520 }
1521
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1522 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1523 {
1524 __drop_discard_cmd(sbi);
1525 }
1526
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1527 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1528 struct discard_cmd *dc)
1529 {
1530 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1531 unsigned int len = 0;
1532
1533 wait_for_completion_io(&dc->wait);
1534 mutex_lock(&dcc->cmd_lock);
1535 f2fs_bug_on(sbi, dc->state != D_DONE);
1536 dc->ref--;
1537 if (!dc->ref) {
1538 if (!dc->error)
1539 len = dc->len;
1540 __remove_discard_cmd(sbi, dc);
1541 }
1542 mutex_unlock(&dcc->cmd_lock);
1543
1544 return len;
1545 }
1546
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1547 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1548 struct discard_policy *dpolicy,
1549 block_t start, block_t end)
1550 {
1551 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1552 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1553 &(dcc->fstrim_list) : &(dcc->wait_list);
1554 struct discard_cmd *dc = NULL, *iter, *tmp;
1555 unsigned int trimmed = 0;
1556
1557 next:
1558 dc = NULL;
1559
1560 mutex_lock(&dcc->cmd_lock);
1561 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1562 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1563 continue;
1564 if (iter->len < dpolicy->granularity)
1565 continue;
1566 if (iter->state == D_DONE && !iter->ref) {
1567 wait_for_completion_io(&iter->wait);
1568 if (!iter->error)
1569 trimmed += iter->len;
1570 __remove_discard_cmd(sbi, iter);
1571 } else {
1572 iter->ref++;
1573 dc = iter;
1574 break;
1575 }
1576 }
1577 mutex_unlock(&dcc->cmd_lock);
1578
1579 if (dc) {
1580 trimmed += __wait_one_discard_bio(sbi, dc);
1581 goto next;
1582 }
1583
1584 return trimmed;
1585 }
1586
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1587 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1588 struct discard_policy *dpolicy)
1589 {
1590 struct discard_policy dp;
1591 unsigned int discard_blks;
1592
1593 if (dpolicy)
1594 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1595
1596 /* wait all */
1597 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1598 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1599 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1600 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1601
1602 return discard_blks;
1603 }
1604
1605 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1606 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1607 {
1608 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1609 struct discard_cmd *dc;
1610 bool need_wait = false;
1611
1612 mutex_lock(&dcc->cmd_lock);
1613 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1614 NULL, blkaddr);
1615 if (dc) {
1616 if (dc->state == D_PREP) {
1617 __punch_discard_cmd(sbi, dc, blkaddr);
1618 } else {
1619 dc->ref++;
1620 need_wait = true;
1621 }
1622 }
1623 mutex_unlock(&dcc->cmd_lock);
1624
1625 if (need_wait)
1626 __wait_one_discard_bio(sbi, dc);
1627 }
1628
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1629 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1630 {
1631 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1632
1633 if (dcc && dcc->f2fs_issue_discard) {
1634 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1635
1636 dcc->f2fs_issue_discard = NULL;
1637 kthread_stop(discard_thread);
1638 }
1639 }
1640
1641 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1642 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1643 {
1644 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1645 struct discard_policy dpolicy;
1646 bool dropped;
1647
1648 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1649 dcc->discard_granularity);
1650 __issue_discard_cmd(sbi, &dpolicy);
1651 dropped = __drop_discard_cmd(sbi);
1652
1653 /* just to make sure there is no pending discard commands */
1654 __wait_all_discard_cmd(sbi, NULL);
1655
1656 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1657 return dropped;
1658 }
1659
issue_discard_thread(void * data)1660 static int issue_discard_thread(void *data)
1661 {
1662 struct f2fs_sb_info *sbi = data;
1663 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1664 wait_queue_head_t *q = &dcc->discard_wait_queue;
1665 struct discard_policy dpolicy;
1666 unsigned int wait_ms = dcc->min_discard_issue_time;
1667 int issued;
1668
1669 set_freezable();
1670
1671 do {
1672 if (sbi->gc_mode == GC_URGENT_HIGH ||
1673 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1674 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1675 else
1676 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1677 dcc->discard_granularity);
1678
1679 if (!atomic_read(&dcc->discard_cmd_cnt))
1680 wait_ms = dpolicy.max_interval;
1681
1682 wait_event_interruptible_timeout(*q,
1683 kthread_should_stop() || freezing(current) ||
1684 dcc->discard_wake,
1685 msecs_to_jiffies(wait_ms));
1686
1687 if (dcc->discard_wake)
1688 dcc->discard_wake = 0;
1689
1690 /* clean up pending candidates before going to sleep */
1691 if (atomic_read(&dcc->queued_discard))
1692 __wait_all_discard_cmd(sbi, NULL);
1693
1694 if (try_to_freeze())
1695 continue;
1696 if (f2fs_readonly(sbi->sb))
1697 continue;
1698 if (kthread_should_stop())
1699 return 0;
1700 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1701 wait_ms = dpolicy.max_interval;
1702 continue;
1703 }
1704 if (!atomic_read(&dcc->discard_cmd_cnt))
1705 continue;
1706
1707 sb_start_intwrite(sbi->sb);
1708
1709 issued = __issue_discard_cmd(sbi, &dpolicy);
1710 if (issued > 0) {
1711 __wait_all_discard_cmd(sbi, &dpolicy);
1712 wait_ms = dpolicy.min_interval;
1713 } else if (issued == -1) {
1714 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1715 if (!wait_ms)
1716 wait_ms = dpolicy.mid_interval;
1717 } else {
1718 wait_ms = dpolicy.max_interval;
1719 }
1720
1721 sb_end_intwrite(sbi->sb);
1722
1723 } while (!kthread_should_stop());
1724 return 0;
1725 }
1726
1727 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1728 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1729 struct block_device *bdev, block_t blkstart, block_t blklen)
1730 {
1731 sector_t sector, nr_sects;
1732 block_t lblkstart = blkstart;
1733 int devi = 0;
1734
1735 if (f2fs_is_multi_device(sbi)) {
1736 devi = f2fs_target_device_index(sbi, blkstart);
1737 if (blkstart < FDEV(devi).start_blk ||
1738 blkstart > FDEV(devi).end_blk) {
1739 f2fs_err(sbi, "Invalid block %x", blkstart);
1740 return -EIO;
1741 }
1742 blkstart -= FDEV(devi).start_blk;
1743 }
1744
1745 /* For sequential zones, reset the zone write pointer */
1746 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1747 sector = SECTOR_FROM_BLOCK(blkstart);
1748 nr_sects = SECTOR_FROM_BLOCK(blklen);
1749
1750 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1751 nr_sects != bdev_zone_sectors(bdev)) {
1752 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1753 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1754 blkstart, blklen);
1755 return -EIO;
1756 }
1757 trace_f2fs_issue_reset_zone(bdev, blkstart);
1758 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1759 sector, nr_sects, GFP_NOFS);
1760 }
1761
1762 /* For conventional zones, use regular discard if supported */
1763 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1764 }
1765 #endif
1766
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1767 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1768 struct block_device *bdev, block_t blkstart, block_t blklen)
1769 {
1770 #ifdef CONFIG_BLK_DEV_ZONED
1771 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1772 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1773 #endif
1774 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1775 }
1776
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1777 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1778 block_t blkstart, block_t blklen)
1779 {
1780 sector_t start = blkstart, len = 0;
1781 struct block_device *bdev;
1782 struct seg_entry *se;
1783 unsigned int offset;
1784 block_t i;
1785 int err = 0;
1786
1787 bdev = f2fs_target_device(sbi, blkstart, NULL);
1788
1789 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1790 if (i != start) {
1791 struct block_device *bdev2 =
1792 f2fs_target_device(sbi, i, NULL);
1793
1794 if (bdev2 != bdev) {
1795 err = __issue_discard_async(sbi, bdev,
1796 start, len);
1797 if (err)
1798 return err;
1799 bdev = bdev2;
1800 start = i;
1801 len = 0;
1802 }
1803 }
1804
1805 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1806 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1807
1808 if (f2fs_block_unit_discard(sbi) &&
1809 !f2fs_test_and_set_bit(offset, se->discard_map))
1810 sbi->discard_blks--;
1811 }
1812
1813 if (len)
1814 err = __issue_discard_async(sbi, bdev, start, len);
1815 return err;
1816 }
1817
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1818 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1819 bool check_only)
1820 {
1821 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1822 int max_blocks = sbi->blocks_per_seg;
1823 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1824 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1825 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1826 unsigned long *discard_map = (unsigned long *)se->discard_map;
1827 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1828 unsigned int start = 0, end = -1;
1829 bool force = (cpc->reason & CP_DISCARD);
1830 struct discard_entry *de = NULL;
1831 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1832 int i;
1833
1834 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1835 !f2fs_block_unit_discard(sbi))
1836 return false;
1837
1838 if (!force) {
1839 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1840 SM_I(sbi)->dcc_info->nr_discards >=
1841 SM_I(sbi)->dcc_info->max_discards)
1842 return false;
1843 }
1844
1845 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1846 for (i = 0; i < entries; i++)
1847 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1848 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1849
1850 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1851 SM_I(sbi)->dcc_info->max_discards) {
1852 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1853 if (start >= max_blocks)
1854 break;
1855
1856 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1857 if (force && start && end != max_blocks
1858 && (end - start) < cpc->trim_minlen)
1859 continue;
1860
1861 if (check_only)
1862 return true;
1863
1864 if (!de) {
1865 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1866 GFP_F2FS_ZERO, true, NULL);
1867 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1868 list_add_tail(&de->list, head);
1869 }
1870
1871 for (i = start; i < end; i++)
1872 __set_bit_le(i, (void *)de->discard_map);
1873
1874 SM_I(sbi)->dcc_info->nr_discards += end - start;
1875 }
1876 return false;
1877 }
1878
release_discard_addr(struct discard_entry * entry)1879 static void release_discard_addr(struct discard_entry *entry)
1880 {
1881 list_del(&entry->list);
1882 kmem_cache_free(discard_entry_slab, entry);
1883 }
1884
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1885 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1886 {
1887 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1888 struct discard_entry *entry, *this;
1889
1890 /* drop caches */
1891 list_for_each_entry_safe(entry, this, head, list)
1892 release_discard_addr(entry);
1893 }
1894
1895 /*
1896 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1897 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1898 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1899 {
1900 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1901 unsigned int segno;
1902
1903 mutex_lock(&dirty_i->seglist_lock);
1904 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1905 __set_test_and_free(sbi, segno, false);
1906 mutex_unlock(&dirty_i->seglist_lock);
1907 }
1908
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1909 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1910 struct cp_control *cpc)
1911 {
1912 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1913 struct list_head *head = &dcc->entry_list;
1914 struct discard_entry *entry, *this;
1915 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1916 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1917 unsigned int start = 0, end = -1;
1918 unsigned int secno, start_segno;
1919 bool force = (cpc->reason & CP_DISCARD);
1920 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1921 DISCARD_UNIT_SECTION;
1922
1923 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1924 section_alignment = true;
1925
1926 mutex_lock(&dirty_i->seglist_lock);
1927
1928 while (1) {
1929 int i;
1930
1931 if (section_alignment && end != -1)
1932 end--;
1933 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1934 if (start >= MAIN_SEGS(sbi))
1935 break;
1936 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1937 start + 1);
1938
1939 if (section_alignment) {
1940 start = rounddown(start, sbi->segs_per_sec);
1941 end = roundup(end, sbi->segs_per_sec);
1942 }
1943
1944 for (i = start; i < end; i++) {
1945 if (test_and_clear_bit(i, prefree_map))
1946 dirty_i->nr_dirty[PRE]--;
1947 }
1948
1949 if (!f2fs_realtime_discard_enable(sbi))
1950 continue;
1951
1952 if (force && start >= cpc->trim_start &&
1953 (end - 1) <= cpc->trim_end)
1954 continue;
1955
1956 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1957 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1958 (end - start) << sbi->log_blocks_per_seg);
1959 continue;
1960 }
1961 next:
1962 secno = GET_SEC_FROM_SEG(sbi, start);
1963 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1964 if (!IS_CURSEC(sbi, secno) &&
1965 !get_valid_blocks(sbi, start, true))
1966 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1967 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1968
1969 start = start_segno + sbi->segs_per_sec;
1970 if (start < end)
1971 goto next;
1972 else
1973 end = start - 1;
1974 }
1975 mutex_unlock(&dirty_i->seglist_lock);
1976
1977 if (!f2fs_block_unit_discard(sbi))
1978 goto wakeup;
1979
1980 /* send small discards */
1981 list_for_each_entry_safe(entry, this, head, list) {
1982 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1983 bool is_valid = test_bit_le(0, entry->discard_map);
1984
1985 find_next:
1986 if (is_valid) {
1987 next_pos = find_next_zero_bit_le(entry->discard_map,
1988 sbi->blocks_per_seg, cur_pos);
1989 len = next_pos - cur_pos;
1990
1991 if (f2fs_sb_has_blkzoned(sbi) ||
1992 (force && len < cpc->trim_minlen))
1993 goto skip;
1994
1995 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1996 len);
1997 total_len += len;
1998 } else {
1999 next_pos = find_next_bit_le(entry->discard_map,
2000 sbi->blocks_per_seg, cur_pos);
2001 }
2002 skip:
2003 cur_pos = next_pos;
2004 is_valid = !is_valid;
2005
2006 if (cur_pos < sbi->blocks_per_seg)
2007 goto find_next;
2008
2009 release_discard_addr(entry);
2010 dcc->nr_discards -= total_len;
2011 }
2012
2013 wakeup:
2014 wake_up_discard_thread(sbi, false);
2015 }
2016
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2017 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2018 {
2019 dev_t dev = sbi->sb->s_bdev->bd_dev;
2020 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2021 int err = 0;
2022
2023 if (!f2fs_realtime_discard_enable(sbi))
2024 return 0;
2025
2026 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2027 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2028 if (IS_ERR(dcc->f2fs_issue_discard)) {
2029 err = PTR_ERR(dcc->f2fs_issue_discard);
2030 dcc->f2fs_issue_discard = NULL;
2031 }
2032
2033 return err;
2034 }
2035
create_discard_cmd_control(struct f2fs_sb_info * sbi)2036 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2037 {
2038 struct discard_cmd_control *dcc;
2039 int err = 0, i;
2040
2041 if (SM_I(sbi)->dcc_info) {
2042 dcc = SM_I(sbi)->dcc_info;
2043 goto init_thread;
2044 }
2045
2046 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2047 if (!dcc)
2048 return -ENOMEM;
2049
2050 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2051 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2052 dcc->discard_granularity = sbi->blocks_per_seg;
2053 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2054 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2055
2056 INIT_LIST_HEAD(&dcc->entry_list);
2057 for (i = 0; i < MAX_PLIST_NUM; i++)
2058 INIT_LIST_HEAD(&dcc->pend_list[i]);
2059 INIT_LIST_HEAD(&dcc->wait_list);
2060 INIT_LIST_HEAD(&dcc->fstrim_list);
2061 mutex_init(&dcc->cmd_lock);
2062 atomic_set(&dcc->issued_discard, 0);
2063 atomic_set(&dcc->queued_discard, 0);
2064 atomic_set(&dcc->discard_cmd_cnt, 0);
2065 dcc->nr_discards = 0;
2066 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2067 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2068 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2069 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2070 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2071 dcc->undiscard_blks = 0;
2072 dcc->next_pos = 0;
2073 dcc->root = RB_ROOT_CACHED;
2074 dcc->rbtree_check = false;
2075
2076 init_waitqueue_head(&dcc->discard_wait_queue);
2077 SM_I(sbi)->dcc_info = dcc;
2078 init_thread:
2079 err = f2fs_start_discard_thread(sbi);
2080 if (err) {
2081 kfree(dcc);
2082 SM_I(sbi)->dcc_info = NULL;
2083 }
2084
2085 return err;
2086 }
2087
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2088 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2089 {
2090 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2091
2092 if (!dcc)
2093 return;
2094
2095 f2fs_stop_discard_thread(sbi);
2096
2097 /*
2098 * Recovery can cache discard commands, so in error path of
2099 * fill_super(), it needs to give a chance to handle them.
2100 */
2101 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2102 f2fs_issue_discard_timeout(sbi);
2103
2104 kfree(dcc);
2105 SM_I(sbi)->dcc_info = NULL;
2106 }
2107
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2108 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2109 {
2110 struct sit_info *sit_i = SIT_I(sbi);
2111
2112 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2113 sit_i->dirty_sentries++;
2114 return false;
2115 }
2116
2117 return true;
2118 }
2119
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2120 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2121 unsigned int segno, int modified)
2122 {
2123 struct seg_entry *se = get_seg_entry(sbi, segno);
2124
2125 se->type = type;
2126 if (modified)
2127 __mark_sit_entry_dirty(sbi, segno);
2128 }
2129
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2130 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2131 block_t blkaddr)
2132 {
2133 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2134
2135 if (segno == NULL_SEGNO)
2136 return 0;
2137 return get_seg_entry(sbi, segno)->mtime;
2138 }
2139
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2140 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2141 unsigned long long old_mtime)
2142 {
2143 struct seg_entry *se;
2144 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2145 unsigned long long ctime = get_mtime(sbi, false);
2146 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2147
2148 if (segno == NULL_SEGNO)
2149 return;
2150
2151 se = get_seg_entry(sbi, segno);
2152
2153 if (!se->mtime)
2154 se->mtime = mtime;
2155 else
2156 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2157 se->valid_blocks + 1);
2158
2159 if (ctime > SIT_I(sbi)->max_mtime)
2160 SIT_I(sbi)->max_mtime = ctime;
2161 }
2162
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2163 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2164 {
2165 struct seg_entry *se;
2166 unsigned int segno, offset;
2167 long int new_vblocks;
2168 bool exist;
2169 #ifdef CONFIG_F2FS_CHECK_FS
2170 bool mir_exist;
2171 #endif
2172
2173 segno = GET_SEGNO(sbi, blkaddr);
2174
2175 se = get_seg_entry(sbi, segno);
2176 new_vblocks = se->valid_blocks + del;
2177 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2178
2179 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2180 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2181
2182 se->valid_blocks = new_vblocks;
2183
2184 /* Update valid block bitmap */
2185 if (del > 0) {
2186 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2187 #ifdef CONFIG_F2FS_CHECK_FS
2188 mir_exist = f2fs_test_and_set_bit(offset,
2189 se->cur_valid_map_mir);
2190 if (unlikely(exist != mir_exist)) {
2191 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2192 blkaddr, exist);
2193 f2fs_bug_on(sbi, 1);
2194 }
2195 #endif
2196 if (unlikely(exist)) {
2197 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2198 blkaddr);
2199 f2fs_bug_on(sbi, 1);
2200 se->valid_blocks--;
2201 del = 0;
2202 }
2203
2204 if (f2fs_block_unit_discard(sbi) &&
2205 !f2fs_test_and_set_bit(offset, se->discard_map))
2206 sbi->discard_blks--;
2207
2208 /*
2209 * SSR should never reuse block which is checkpointed
2210 * or newly invalidated.
2211 */
2212 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2213 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2214 se->ckpt_valid_blocks++;
2215 }
2216 } else {
2217 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2218 #ifdef CONFIG_F2FS_CHECK_FS
2219 mir_exist = f2fs_test_and_clear_bit(offset,
2220 se->cur_valid_map_mir);
2221 if (unlikely(exist != mir_exist)) {
2222 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2223 blkaddr, exist);
2224 f2fs_bug_on(sbi, 1);
2225 }
2226 #endif
2227 if (unlikely(!exist)) {
2228 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2229 blkaddr);
2230 f2fs_bug_on(sbi, 1);
2231 se->valid_blocks++;
2232 del = 0;
2233 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2234 /*
2235 * If checkpoints are off, we must not reuse data that
2236 * was used in the previous checkpoint. If it was used
2237 * before, we must track that to know how much space we
2238 * really have.
2239 */
2240 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2241 spin_lock(&sbi->stat_lock);
2242 sbi->unusable_block_count++;
2243 spin_unlock(&sbi->stat_lock);
2244 }
2245 }
2246
2247 if (f2fs_block_unit_discard(sbi) &&
2248 f2fs_test_and_clear_bit(offset, se->discard_map))
2249 sbi->discard_blks++;
2250 }
2251 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2252 se->ckpt_valid_blocks += del;
2253
2254 __mark_sit_entry_dirty(sbi, segno);
2255
2256 /* update total number of valid blocks to be written in ckpt area */
2257 SIT_I(sbi)->written_valid_blocks += del;
2258
2259 if (__is_large_section(sbi))
2260 get_sec_entry(sbi, segno)->valid_blocks += del;
2261 }
2262
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2263 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2264 {
2265 unsigned int segno = GET_SEGNO(sbi, addr);
2266 struct sit_info *sit_i = SIT_I(sbi);
2267
2268 f2fs_bug_on(sbi, addr == NULL_ADDR);
2269 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2270 return;
2271
2272 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2273 f2fs_invalidate_compress_page(sbi, addr);
2274
2275 /* add it into sit main buffer */
2276 down_write(&sit_i->sentry_lock);
2277
2278 update_segment_mtime(sbi, addr, 0);
2279 update_sit_entry(sbi, addr, -1);
2280
2281 /* add it into dirty seglist */
2282 locate_dirty_segment(sbi, segno);
2283
2284 up_write(&sit_i->sentry_lock);
2285 }
2286
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2287 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2288 {
2289 struct sit_info *sit_i = SIT_I(sbi);
2290 unsigned int segno, offset;
2291 struct seg_entry *se;
2292 bool is_cp = false;
2293
2294 if (!__is_valid_data_blkaddr(blkaddr))
2295 return true;
2296
2297 down_read(&sit_i->sentry_lock);
2298
2299 segno = GET_SEGNO(sbi, blkaddr);
2300 se = get_seg_entry(sbi, segno);
2301 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2302
2303 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2304 is_cp = true;
2305
2306 up_read(&sit_i->sentry_lock);
2307
2308 return is_cp;
2309 }
2310
2311 /*
2312 * This function should be resided under the curseg_mutex lock
2313 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2314 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2315 struct f2fs_summary *sum)
2316 {
2317 struct curseg_info *curseg = CURSEG_I(sbi, type);
2318 void *addr = curseg->sum_blk;
2319
2320 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2321 memcpy(addr, sum, sizeof(struct f2fs_summary));
2322 }
2323
2324 /*
2325 * Calculate the number of current summary pages for writing
2326 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2327 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2328 {
2329 int valid_sum_count = 0;
2330 int i, sum_in_page;
2331
2332 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2333 if (sbi->ckpt->alloc_type[i] == SSR)
2334 valid_sum_count += sbi->blocks_per_seg;
2335 else {
2336 if (for_ra)
2337 valid_sum_count += le16_to_cpu(
2338 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2339 else
2340 valid_sum_count += curseg_blkoff(sbi, i);
2341 }
2342 }
2343
2344 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2345 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2346 if (valid_sum_count <= sum_in_page)
2347 return 1;
2348 else if ((valid_sum_count - sum_in_page) <=
2349 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2350 return 2;
2351 return 3;
2352 }
2353
2354 /*
2355 * Caller should put this summary page
2356 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2357 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2358 {
2359 if (unlikely(f2fs_cp_error(sbi)))
2360 return ERR_PTR(-EIO);
2361 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2362 }
2363
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2364 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2365 void *src, block_t blk_addr)
2366 {
2367 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2368
2369 memcpy(page_address(page), src, PAGE_SIZE);
2370 set_page_dirty(page);
2371 f2fs_put_page(page, 1);
2372 }
2373
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2374 static void write_sum_page(struct f2fs_sb_info *sbi,
2375 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2376 {
2377 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2378 }
2379
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2380 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2381 int type, block_t blk_addr)
2382 {
2383 struct curseg_info *curseg = CURSEG_I(sbi, type);
2384 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2385 struct f2fs_summary_block *src = curseg->sum_blk;
2386 struct f2fs_summary_block *dst;
2387
2388 dst = (struct f2fs_summary_block *)page_address(page);
2389 memset(dst, 0, PAGE_SIZE);
2390
2391 mutex_lock(&curseg->curseg_mutex);
2392
2393 down_read(&curseg->journal_rwsem);
2394 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2395 up_read(&curseg->journal_rwsem);
2396
2397 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2398 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2399
2400 mutex_unlock(&curseg->curseg_mutex);
2401
2402 set_page_dirty(page);
2403 f2fs_put_page(page, 1);
2404 }
2405
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2406 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2407 struct curseg_info *curseg, int type)
2408 {
2409 unsigned int segno = curseg->segno + 1;
2410 struct free_segmap_info *free_i = FREE_I(sbi);
2411
2412 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2413 return !test_bit(segno, free_i->free_segmap);
2414 return 0;
2415 }
2416
2417 /*
2418 * Find a new segment from the free segments bitmap to right order
2419 * This function should be returned with success, otherwise BUG
2420 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2421 static void get_new_segment(struct f2fs_sb_info *sbi,
2422 unsigned int *newseg, bool new_sec, int dir)
2423 {
2424 struct free_segmap_info *free_i = FREE_I(sbi);
2425 unsigned int segno, secno, zoneno;
2426 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2427 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2428 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2429 unsigned int left_start = hint;
2430 bool init = true;
2431 int go_left = 0;
2432 int i;
2433
2434 spin_lock(&free_i->segmap_lock);
2435
2436 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2437 segno = find_next_zero_bit(free_i->free_segmap,
2438 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2439 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2440 goto got_it;
2441 }
2442 find_other_zone:
2443 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2444 if (secno >= MAIN_SECS(sbi)) {
2445 if (dir == ALLOC_RIGHT) {
2446 secno = find_first_zero_bit(free_i->free_secmap,
2447 MAIN_SECS(sbi));
2448 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2449 } else {
2450 go_left = 1;
2451 left_start = hint - 1;
2452 }
2453 }
2454 if (go_left == 0)
2455 goto skip_left;
2456
2457 while (test_bit(left_start, free_i->free_secmap)) {
2458 if (left_start > 0) {
2459 left_start--;
2460 continue;
2461 }
2462 left_start = find_first_zero_bit(free_i->free_secmap,
2463 MAIN_SECS(sbi));
2464 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2465 break;
2466 }
2467 secno = left_start;
2468 skip_left:
2469 segno = GET_SEG_FROM_SEC(sbi, secno);
2470 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2471
2472 /* give up on finding another zone */
2473 if (!init)
2474 goto got_it;
2475 if (sbi->secs_per_zone == 1)
2476 goto got_it;
2477 if (zoneno == old_zoneno)
2478 goto got_it;
2479 if (dir == ALLOC_LEFT) {
2480 if (!go_left && zoneno + 1 >= total_zones)
2481 goto got_it;
2482 if (go_left && zoneno == 0)
2483 goto got_it;
2484 }
2485 for (i = 0; i < NR_CURSEG_TYPE; i++)
2486 if (CURSEG_I(sbi, i)->zone == zoneno)
2487 break;
2488
2489 if (i < NR_CURSEG_TYPE) {
2490 /* zone is in user, try another */
2491 if (go_left)
2492 hint = zoneno * sbi->secs_per_zone - 1;
2493 else if (zoneno + 1 >= total_zones)
2494 hint = 0;
2495 else
2496 hint = (zoneno + 1) * sbi->secs_per_zone;
2497 init = false;
2498 goto find_other_zone;
2499 }
2500 got_it:
2501 /* set it as dirty segment in free segmap */
2502 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2503 __set_inuse(sbi, segno);
2504 *newseg = segno;
2505 spin_unlock(&free_i->segmap_lock);
2506 }
2507
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2508 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2509 {
2510 struct curseg_info *curseg = CURSEG_I(sbi, type);
2511 struct summary_footer *sum_footer;
2512 unsigned short seg_type = curseg->seg_type;
2513
2514 curseg->inited = true;
2515 curseg->segno = curseg->next_segno;
2516 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2517 curseg->next_blkoff = 0;
2518 curseg->next_segno = NULL_SEGNO;
2519
2520 sum_footer = &(curseg->sum_blk->footer);
2521 memset(sum_footer, 0, sizeof(struct summary_footer));
2522
2523 sanity_check_seg_type(sbi, seg_type);
2524
2525 if (IS_DATASEG(seg_type))
2526 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2527 if (IS_NODESEG(seg_type))
2528 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2529 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2530 }
2531
__get_next_segno(struct f2fs_sb_info * sbi,int type)2532 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2533 {
2534 struct curseg_info *curseg = CURSEG_I(sbi, type);
2535 unsigned short seg_type = curseg->seg_type;
2536
2537 sanity_check_seg_type(sbi, seg_type);
2538 if (f2fs_need_rand_seg(sbi))
2539 return prandom_u32_max(MAIN_SECS(sbi) * sbi->segs_per_sec);
2540
2541 /* if segs_per_sec is large than 1, we need to keep original policy. */
2542 if (__is_large_section(sbi))
2543 return curseg->segno;
2544
2545 /* inmem log may not locate on any segment after mount */
2546 if (!curseg->inited)
2547 return 0;
2548
2549 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2550 return 0;
2551
2552 if (test_opt(sbi, NOHEAP) &&
2553 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2554 return 0;
2555
2556 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2557 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2558
2559 /* find segments from 0 to reuse freed segments */
2560 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2561 return 0;
2562
2563 return curseg->segno;
2564 }
2565
2566 /*
2567 * Allocate a current working segment.
2568 * This function always allocates a free segment in LFS manner.
2569 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2570 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2571 {
2572 struct curseg_info *curseg = CURSEG_I(sbi, type);
2573 unsigned short seg_type = curseg->seg_type;
2574 unsigned int segno = curseg->segno;
2575 int dir = ALLOC_LEFT;
2576
2577 if (curseg->inited)
2578 write_sum_page(sbi, curseg->sum_blk,
2579 GET_SUM_BLOCK(sbi, segno));
2580 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2581 dir = ALLOC_RIGHT;
2582
2583 if (test_opt(sbi, NOHEAP))
2584 dir = ALLOC_RIGHT;
2585
2586 segno = __get_next_segno(sbi, type);
2587 get_new_segment(sbi, &segno, new_sec, dir);
2588 curseg->next_segno = segno;
2589 reset_curseg(sbi, type, 1);
2590 curseg->alloc_type = LFS;
2591 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2592 curseg->fragment_remained_chunk =
2593 prandom_u32_max(sbi->max_fragment_chunk) + 1;
2594 }
2595
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2596 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2597 int segno, block_t start)
2598 {
2599 struct seg_entry *se = get_seg_entry(sbi, segno);
2600 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2601 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2602 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2603 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2604 int i;
2605
2606 for (i = 0; i < entries; i++)
2607 target_map[i] = ckpt_map[i] | cur_map[i];
2608
2609 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2610 }
2611
2612 /*
2613 * If a segment is written by LFS manner, next block offset is just obtained
2614 * by increasing the current block offset. However, if a segment is written by
2615 * SSR manner, next block offset obtained by calling __next_free_blkoff
2616 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2617 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2618 struct curseg_info *seg)
2619 {
2620 if (seg->alloc_type == SSR) {
2621 seg->next_blkoff =
2622 __next_free_blkoff(sbi, seg->segno,
2623 seg->next_blkoff + 1);
2624 } else {
2625 seg->next_blkoff++;
2626 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2627 /* To allocate block chunks in different sizes, use random number */
2628 if (--seg->fragment_remained_chunk <= 0) {
2629 seg->fragment_remained_chunk =
2630 prandom_u32_max(sbi->max_fragment_chunk) + 1;
2631 seg->next_blkoff +=
2632 prandom_u32_max(sbi->max_fragment_hole) + 1;
2633 }
2634 }
2635 }
2636 }
2637
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2638 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2639 {
2640 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2641 }
2642
2643 /*
2644 * This function always allocates a used segment(from dirty seglist) by SSR
2645 * manner, so it should recover the existing segment information of valid blocks
2646 */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2647 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2648 {
2649 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2650 struct curseg_info *curseg = CURSEG_I(sbi, type);
2651 unsigned int new_segno = curseg->next_segno;
2652 struct f2fs_summary_block *sum_node;
2653 struct page *sum_page;
2654
2655 if (flush)
2656 write_sum_page(sbi, curseg->sum_blk,
2657 GET_SUM_BLOCK(sbi, curseg->segno));
2658
2659 __set_test_and_inuse(sbi, new_segno);
2660
2661 mutex_lock(&dirty_i->seglist_lock);
2662 __remove_dirty_segment(sbi, new_segno, PRE);
2663 __remove_dirty_segment(sbi, new_segno, DIRTY);
2664 mutex_unlock(&dirty_i->seglist_lock);
2665
2666 reset_curseg(sbi, type, 1);
2667 curseg->alloc_type = SSR;
2668 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2669
2670 sum_page = f2fs_get_sum_page(sbi, new_segno);
2671 if (IS_ERR(sum_page)) {
2672 /* GC won't be able to use stale summary pages by cp_error */
2673 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2674 return;
2675 }
2676 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2677 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2678 f2fs_put_page(sum_page, 1);
2679 }
2680
2681 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2682 int alloc_mode, unsigned long long age);
2683
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2684 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2685 int target_type, int alloc_mode,
2686 unsigned long long age)
2687 {
2688 struct curseg_info *curseg = CURSEG_I(sbi, type);
2689
2690 curseg->seg_type = target_type;
2691
2692 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2693 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2694
2695 curseg->seg_type = se->type;
2696 change_curseg(sbi, type, true);
2697 } else {
2698 /* allocate cold segment by default */
2699 curseg->seg_type = CURSEG_COLD_DATA;
2700 new_curseg(sbi, type, true);
2701 }
2702 stat_inc_seg_type(sbi, curseg);
2703 }
2704
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2705 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2706 {
2707 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2708
2709 if (!sbi->am.atgc_enabled)
2710 return;
2711
2712 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2713
2714 mutex_lock(&curseg->curseg_mutex);
2715 down_write(&SIT_I(sbi)->sentry_lock);
2716
2717 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2718
2719 up_write(&SIT_I(sbi)->sentry_lock);
2720 mutex_unlock(&curseg->curseg_mutex);
2721
2722 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2723
2724 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2725 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2726 {
2727 __f2fs_init_atgc_curseg(sbi);
2728 }
2729
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2730 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2731 {
2732 struct curseg_info *curseg = CURSEG_I(sbi, type);
2733
2734 mutex_lock(&curseg->curseg_mutex);
2735 if (!curseg->inited)
2736 goto out;
2737
2738 if (get_valid_blocks(sbi, curseg->segno, false)) {
2739 write_sum_page(sbi, curseg->sum_blk,
2740 GET_SUM_BLOCK(sbi, curseg->segno));
2741 } else {
2742 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2743 __set_test_and_free(sbi, curseg->segno, true);
2744 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2745 }
2746 out:
2747 mutex_unlock(&curseg->curseg_mutex);
2748 }
2749
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2750 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2751 {
2752 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2753
2754 if (sbi->am.atgc_enabled)
2755 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2756 }
2757
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2758 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2759 {
2760 struct curseg_info *curseg = CURSEG_I(sbi, type);
2761
2762 mutex_lock(&curseg->curseg_mutex);
2763 if (!curseg->inited)
2764 goto out;
2765 if (get_valid_blocks(sbi, curseg->segno, false))
2766 goto out;
2767
2768 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2769 __set_test_and_inuse(sbi, curseg->segno);
2770 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2771 out:
2772 mutex_unlock(&curseg->curseg_mutex);
2773 }
2774
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2775 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2776 {
2777 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2778
2779 if (sbi->am.atgc_enabled)
2780 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2781 }
2782
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2783 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2784 int alloc_mode, unsigned long long age)
2785 {
2786 struct curseg_info *curseg = CURSEG_I(sbi, type);
2787 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2788 unsigned segno = NULL_SEGNO;
2789 unsigned short seg_type = curseg->seg_type;
2790 int i, cnt;
2791 bool reversed = false;
2792
2793 sanity_check_seg_type(sbi, seg_type);
2794
2795 /* f2fs_need_SSR() already forces to do this */
2796 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2797 curseg->next_segno = segno;
2798 return 1;
2799 }
2800
2801 /* For node segments, let's do SSR more intensively */
2802 if (IS_NODESEG(seg_type)) {
2803 if (seg_type >= CURSEG_WARM_NODE) {
2804 reversed = true;
2805 i = CURSEG_COLD_NODE;
2806 } else {
2807 i = CURSEG_HOT_NODE;
2808 }
2809 cnt = NR_CURSEG_NODE_TYPE;
2810 } else {
2811 if (seg_type >= CURSEG_WARM_DATA) {
2812 reversed = true;
2813 i = CURSEG_COLD_DATA;
2814 } else {
2815 i = CURSEG_HOT_DATA;
2816 }
2817 cnt = NR_CURSEG_DATA_TYPE;
2818 }
2819
2820 for (; cnt-- > 0; reversed ? i-- : i++) {
2821 if (i == seg_type)
2822 continue;
2823 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2824 curseg->next_segno = segno;
2825 return 1;
2826 }
2827 }
2828
2829 /* find valid_blocks=0 in dirty list */
2830 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2831 segno = get_free_segment(sbi);
2832 if (segno != NULL_SEGNO) {
2833 curseg->next_segno = segno;
2834 return 1;
2835 }
2836 }
2837 return 0;
2838 }
2839
2840 /*
2841 * flush out current segment and replace it with new segment
2842 * This function should be returned with success, otherwise BUG
2843 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2844 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2845 int type, bool force)
2846 {
2847 struct curseg_info *curseg = CURSEG_I(sbi, type);
2848
2849 if (force)
2850 new_curseg(sbi, type, true);
2851 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2852 curseg->seg_type == CURSEG_WARM_NODE)
2853 new_curseg(sbi, type, false);
2854 else if (curseg->alloc_type == LFS &&
2855 is_next_segment_free(sbi, curseg, type) &&
2856 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2857 new_curseg(sbi, type, false);
2858 else if (f2fs_need_SSR(sbi) &&
2859 get_ssr_segment(sbi, type, SSR, 0))
2860 change_curseg(sbi, type, true);
2861 else
2862 new_curseg(sbi, type, false);
2863
2864 stat_inc_seg_type(sbi, curseg);
2865 }
2866
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2867 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2868 unsigned int start, unsigned int end)
2869 {
2870 struct curseg_info *curseg = CURSEG_I(sbi, type);
2871 unsigned int segno;
2872
2873 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2874 mutex_lock(&curseg->curseg_mutex);
2875 down_write(&SIT_I(sbi)->sentry_lock);
2876
2877 segno = CURSEG_I(sbi, type)->segno;
2878 if (segno < start || segno > end)
2879 goto unlock;
2880
2881 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2882 change_curseg(sbi, type, true);
2883 else
2884 new_curseg(sbi, type, true);
2885
2886 stat_inc_seg_type(sbi, curseg);
2887
2888 locate_dirty_segment(sbi, segno);
2889 unlock:
2890 up_write(&SIT_I(sbi)->sentry_lock);
2891
2892 if (segno != curseg->segno)
2893 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2894 type, segno, curseg->segno);
2895
2896 mutex_unlock(&curseg->curseg_mutex);
2897 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2898 }
2899
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)2900 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2901 bool new_sec, bool force)
2902 {
2903 struct curseg_info *curseg = CURSEG_I(sbi, type);
2904 unsigned int old_segno;
2905
2906 if (!curseg->inited)
2907 goto alloc;
2908
2909 if (force || curseg->next_blkoff ||
2910 get_valid_blocks(sbi, curseg->segno, new_sec))
2911 goto alloc;
2912
2913 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2914 return;
2915 alloc:
2916 old_segno = curseg->segno;
2917 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2918 locate_dirty_segment(sbi, old_segno);
2919 }
2920
__allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2921 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2922 int type, bool force)
2923 {
2924 __allocate_new_segment(sbi, type, true, force);
2925 }
2926
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2927 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2928 {
2929 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2930 down_write(&SIT_I(sbi)->sentry_lock);
2931 __allocate_new_section(sbi, type, force);
2932 up_write(&SIT_I(sbi)->sentry_lock);
2933 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2934 }
2935
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2936 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2937 {
2938 int i;
2939
2940 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2941 down_write(&SIT_I(sbi)->sentry_lock);
2942 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2943 __allocate_new_segment(sbi, i, false, false);
2944 up_write(&SIT_I(sbi)->sentry_lock);
2945 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2946 }
2947
2948 static const struct segment_allocation default_salloc_ops = {
2949 .allocate_segment = allocate_segment_by_default,
2950 };
2951
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2952 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2953 struct cp_control *cpc)
2954 {
2955 __u64 trim_start = cpc->trim_start;
2956 bool has_candidate = false;
2957
2958 down_write(&SIT_I(sbi)->sentry_lock);
2959 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2960 if (add_discard_addrs(sbi, cpc, true)) {
2961 has_candidate = true;
2962 break;
2963 }
2964 }
2965 up_write(&SIT_I(sbi)->sentry_lock);
2966
2967 cpc->trim_start = trim_start;
2968 return has_candidate;
2969 }
2970
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2971 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2972 struct discard_policy *dpolicy,
2973 unsigned int start, unsigned int end)
2974 {
2975 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2976 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2977 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2978 struct discard_cmd *dc;
2979 struct blk_plug plug;
2980 int issued;
2981 unsigned int trimmed = 0;
2982
2983 next:
2984 issued = 0;
2985
2986 mutex_lock(&dcc->cmd_lock);
2987 if (unlikely(dcc->rbtree_check))
2988 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2989 &dcc->root, false));
2990
2991 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2992 NULL, start,
2993 (struct rb_entry **)&prev_dc,
2994 (struct rb_entry **)&next_dc,
2995 &insert_p, &insert_parent, true, NULL);
2996 if (!dc)
2997 dc = next_dc;
2998
2999 blk_start_plug(&plug);
3000
3001 while (dc && dc->lstart <= end) {
3002 struct rb_node *node;
3003 int err = 0;
3004
3005 if (dc->len < dpolicy->granularity)
3006 goto skip;
3007
3008 if (dc->state != D_PREP) {
3009 list_move_tail(&dc->list, &dcc->fstrim_list);
3010 goto skip;
3011 }
3012
3013 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3014
3015 if (issued >= dpolicy->max_requests) {
3016 start = dc->lstart + dc->len;
3017
3018 if (err)
3019 __remove_discard_cmd(sbi, dc);
3020
3021 blk_finish_plug(&plug);
3022 mutex_unlock(&dcc->cmd_lock);
3023 trimmed += __wait_all_discard_cmd(sbi, NULL);
3024 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3025 goto next;
3026 }
3027 skip:
3028 node = rb_next(&dc->rb_node);
3029 if (err)
3030 __remove_discard_cmd(sbi, dc);
3031 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3032
3033 if (fatal_signal_pending(current))
3034 break;
3035 }
3036
3037 blk_finish_plug(&plug);
3038 mutex_unlock(&dcc->cmd_lock);
3039
3040 return trimmed;
3041 }
3042
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3043 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3044 {
3045 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3046 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3047 unsigned int start_segno, end_segno;
3048 block_t start_block, end_block;
3049 struct cp_control cpc;
3050 struct discard_policy dpolicy;
3051 unsigned long long trimmed = 0;
3052 int err = 0;
3053 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3054
3055 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3056 return -EINVAL;
3057
3058 if (end < MAIN_BLKADDR(sbi))
3059 goto out;
3060
3061 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3062 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3063 return -EFSCORRUPTED;
3064 }
3065
3066 /* start/end segment number in main_area */
3067 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3068 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3069 GET_SEGNO(sbi, end);
3070 if (need_align) {
3071 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3072 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3073 }
3074
3075 cpc.reason = CP_DISCARD;
3076 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3077 cpc.trim_start = start_segno;
3078 cpc.trim_end = end_segno;
3079
3080 if (sbi->discard_blks == 0)
3081 goto out;
3082
3083 f2fs_down_write(&sbi->gc_lock);
3084 err = f2fs_write_checkpoint(sbi, &cpc);
3085 f2fs_up_write(&sbi->gc_lock);
3086 if (err)
3087 goto out;
3088
3089 /*
3090 * We filed discard candidates, but actually we don't need to wait for
3091 * all of them, since they'll be issued in idle time along with runtime
3092 * discard option. User configuration looks like using runtime discard
3093 * or periodic fstrim instead of it.
3094 */
3095 if (f2fs_realtime_discard_enable(sbi))
3096 goto out;
3097
3098 start_block = START_BLOCK(sbi, start_segno);
3099 end_block = START_BLOCK(sbi, end_segno + 1);
3100
3101 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3102 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3103 start_block, end_block);
3104
3105 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3106 start_block, end_block);
3107 out:
3108 if (!err)
3109 range->len = F2FS_BLK_TO_BYTES(trimmed);
3110 return err;
3111 }
3112
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3113 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3114 struct curseg_info *curseg)
3115 {
3116 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3117 curseg->segno);
3118 }
3119
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3120 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3121 {
3122 switch (hint) {
3123 case WRITE_LIFE_SHORT:
3124 return CURSEG_HOT_DATA;
3125 case WRITE_LIFE_EXTREME:
3126 return CURSEG_COLD_DATA;
3127 default:
3128 return CURSEG_WARM_DATA;
3129 }
3130 }
3131
__get_segment_type_2(struct f2fs_io_info * fio)3132 static int __get_segment_type_2(struct f2fs_io_info *fio)
3133 {
3134 if (fio->type == DATA)
3135 return CURSEG_HOT_DATA;
3136 else
3137 return CURSEG_HOT_NODE;
3138 }
3139
__get_segment_type_4(struct f2fs_io_info * fio)3140 static int __get_segment_type_4(struct f2fs_io_info *fio)
3141 {
3142 if (fio->type == DATA) {
3143 struct inode *inode = fio->page->mapping->host;
3144
3145 if (S_ISDIR(inode->i_mode))
3146 return CURSEG_HOT_DATA;
3147 else
3148 return CURSEG_COLD_DATA;
3149 } else {
3150 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3151 return CURSEG_WARM_NODE;
3152 else
3153 return CURSEG_COLD_NODE;
3154 }
3155 }
3156
__get_segment_type_6(struct f2fs_io_info * fio)3157 static int __get_segment_type_6(struct f2fs_io_info *fio)
3158 {
3159 if (fio->type == DATA) {
3160 struct inode *inode = fio->page->mapping->host;
3161
3162 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3163 return CURSEG_COLD_DATA_PINNED;
3164
3165 if (page_private_gcing(fio->page)) {
3166 if (fio->sbi->am.atgc_enabled &&
3167 (fio->io_type == FS_DATA_IO) &&
3168 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3169 return CURSEG_ALL_DATA_ATGC;
3170 else
3171 return CURSEG_COLD_DATA;
3172 }
3173 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3174 return CURSEG_COLD_DATA;
3175 if (file_is_hot(inode) ||
3176 is_inode_flag_set(inode, FI_HOT_DATA) ||
3177 f2fs_is_cow_file(inode))
3178 return CURSEG_HOT_DATA;
3179 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3180 } else {
3181 if (IS_DNODE(fio->page))
3182 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3183 CURSEG_HOT_NODE;
3184 return CURSEG_COLD_NODE;
3185 }
3186 }
3187
__get_segment_type(struct f2fs_io_info * fio)3188 static int __get_segment_type(struct f2fs_io_info *fio)
3189 {
3190 int type = 0;
3191
3192 switch (F2FS_OPTION(fio->sbi).active_logs) {
3193 case 2:
3194 type = __get_segment_type_2(fio);
3195 break;
3196 case 4:
3197 type = __get_segment_type_4(fio);
3198 break;
3199 case 6:
3200 type = __get_segment_type_6(fio);
3201 break;
3202 default:
3203 f2fs_bug_on(fio->sbi, true);
3204 }
3205
3206 if (IS_HOT(type))
3207 fio->temp = HOT;
3208 else if (IS_WARM(type))
3209 fio->temp = WARM;
3210 else
3211 fio->temp = COLD;
3212 return type;
3213 }
3214
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3215 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3216 block_t old_blkaddr, block_t *new_blkaddr,
3217 struct f2fs_summary *sum, int type,
3218 struct f2fs_io_info *fio)
3219 {
3220 struct sit_info *sit_i = SIT_I(sbi);
3221 struct curseg_info *curseg = CURSEG_I(sbi, type);
3222 unsigned long long old_mtime;
3223 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3224 struct seg_entry *se = NULL;
3225
3226 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3227
3228 mutex_lock(&curseg->curseg_mutex);
3229 down_write(&sit_i->sentry_lock);
3230
3231 if (from_gc) {
3232 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3233 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3234 sanity_check_seg_type(sbi, se->type);
3235 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3236 }
3237 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3238
3239 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3240
3241 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3242
3243 /*
3244 * __add_sum_entry should be resided under the curseg_mutex
3245 * because, this function updates a summary entry in the
3246 * current summary block.
3247 */
3248 __add_sum_entry(sbi, type, sum);
3249
3250 __refresh_next_blkoff(sbi, curseg);
3251
3252 stat_inc_block_count(sbi, curseg);
3253
3254 if (from_gc) {
3255 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3256 } else {
3257 update_segment_mtime(sbi, old_blkaddr, 0);
3258 old_mtime = 0;
3259 }
3260 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3261
3262 /*
3263 * SIT information should be updated before segment allocation,
3264 * since SSR needs latest valid block information.
3265 */
3266 update_sit_entry(sbi, *new_blkaddr, 1);
3267 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3268 update_sit_entry(sbi, old_blkaddr, -1);
3269
3270 if (!__has_curseg_space(sbi, curseg)) {
3271 if (from_gc)
3272 get_atssr_segment(sbi, type, se->type,
3273 AT_SSR, se->mtime);
3274 else
3275 sit_i->s_ops->allocate_segment(sbi, type, false);
3276 }
3277 /*
3278 * segment dirty status should be updated after segment allocation,
3279 * so we just need to update status only one time after previous
3280 * segment being closed.
3281 */
3282 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3283 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3284
3285 up_write(&sit_i->sentry_lock);
3286
3287 if (page && IS_NODESEG(type)) {
3288 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3289
3290 f2fs_inode_chksum_set(sbi, page);
3291 }
3292
3293 if (fio) {
3294 struct f2fs_bio_info *io;
3295
3296 if (F2FS_IO_ALIGNED(sbi))
3297 fio->retry = false;
3298
3299 INIT_LIST_HEAD(&fio->list);
3300 fio->in_list = true;
3301 io = sbi->write_io[fio->type] + fio->temp;
3302 spin_lock(&io->io_lock);
3303 list_add_tail(&fio->list, &io->io_list);
3304 spin_unlock(&io->io_lock);
3305 }
3306
3307 mutex_unlock(&curseg->curseg_mutex);
3308
3309 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3310 }
3311
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3312 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3313 block_t blkaddr, unsigned int blkcnt)
3314 {
3315 if (!f2fs_is_multi_device(sbi))
3316 return;
3317
3318 while (1) {
3319 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3320 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3321
3322 /* update device state for fsync */
3323 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3324
3325 /* update device state for checkpoint */
3326 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3327 spin_lock(&sbi->dev_lock);
3328 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3329 spin_unlock(&sbi->dev_lock);
3330 }
3331
3332 if (blkcnt <= blks)
3333 break;
3334 blkcnt -= blks;
3335 blkaddr += blks;
3336 }
3337 }
3338
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3339 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3340 {
3341 int type = __get_segment_type(fio);
3342 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3343
3344 if (keep_order)
3345 f2fs_down_read(&fio->sbi->io_order_lock);
3346 reallocate:
3347 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3348 &fio->new_blkaddr, sum, type, fio);
3349 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3350 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3351 fio->old_blkaddr, fio->old_blkaddr);
3352 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3353 }
3354
3355 /* writeout dirty page into bdev */
3356 f2fs_submit_page_write(fio);
3357 if (fio->retry) {
3358 fio->old_blkaddr = fio->new_blkaddr;
3359 goto reallocate;
3360 }
3361
3362 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3363
3364 if (keep_order)
3365 f2fs_up_read(&fio->sbi->io_order_lock);
3366 }
3367
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3368 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3369 enum iostat_type io_type)
3370 {
3371 struct f2fs_io_info fio = {
3372 .sbi = sbi,
3373 .type = META,
3374 .temp = HOT,
3375 .op = REQ_OP_WRITE,
3376 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3377 .old_blkaddr = page->index,
3378 .new_blkaddr = page->index,
3379 .page = page,
3380 .encrypted_page = NULL,
3381 .in_list = false,
3382 };
3383
3384 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3385 fio.op_flags &= ~REQ_META;
3386
3387 set_page_writeback(page);
3388 ClearPageError(page);
3389 f2fs_submit_page_write(&fio);
3390
3391 stat_inc_meta_count(sbi, page->index);
3392 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3393 }
3394
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3395 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3396 {
3397 struct f2fs_summary sum;
3398
3399 set_summary(&sum, nid, 0, 0);
3400 do_write_page(&sum, fio);
3401
3402 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3403 }
3404
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3405 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3406 struct f2fs_io_info *fio)
3407 {
3408 struct f2fs_sb_info *sbi = fio->sbi;
3409 struct f2fs_summary sum;
3410
3411 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3412 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3413 do_write_page(&sum, fio);
3414 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3415
3416 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3417 }
3418
f2fs_inplace_write_data(struct f2fs_io_info * fio)3419 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3420 {
3421 int err;
3422 struct f2fs_sb_info *sbi = fio->sbi;
3423 unsigned int segno;
3424
3425 fio->new_blkaddr = fio->old_blkaddr;
3426 /* i/o temperature is needed for passing down write hints */
3427 __get_segment_type(fio);
3428
3429 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3430
3431 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3432 set_sbi_flag(sbi, SBI_NEED_FSCK);
3433 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3434 __func__, segno);
3435 err = -EFSCORRUPTED;
3436 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3437 goto drop_bio;
3438 }
3439
3440 if (f2fs_cp_error(sbi)) {
3441 err = -EIO;
3442 goto drop_bio;
3443 }
3444
3445 if (fio->post_read)
3446 invalidate_mapping_pages(META_MAPPING(sbi),
3447 fio->new_blkaddr, fio->new_blkaddr);
3448
3449 stat_inc_inplace_blocks(fio->sbi);
3450
3451 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3452 err = f2fs_merge_page_bio(fio);
3453 else
3454 err = f2fs_submit_page_bio(fio);
3455 if (!err) {
3456 f2fs_update_device_state(fio->sbi, fio->ino,
3457 fio->new_blkaddr, 1);
3458 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3459 fio->io_type, F2FS_BLKSIZE);
3460 }
3461
3462 return err;
3463 drop_bio:
3464 if (fio->bio && *(fio->bio)) {
3465 struct bio *bio = *(fio->bio);
3466
3467 bio->bi_status = BLK_STS_IOERR;
3468 bio_endio(bio);
3469 *(fio->bio) = NULL;
3470 }
3471 return err;
3472 }
3473
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3474 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3475 unsigned int segno)
3476 {
3477 int i;
3478
3479 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3480 if (CURSEG_I(sbi, i)->segno == segno)
3481 break;
3482 }
3483 return i;
3484 }
3485
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3486 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3487 block_t old_blkaddr, block_t new_blkaddr,
3488 bool recover_curseg, bool recover_newaddr,
3489 bool from_gc)
3490 {
3491 struct sit_info *sit_i = SIT_I(sbi);
3492 struct curseg_info *curseg;
3493 unsigned int segno, old_cursegno;
3494 struct seg_entry *se;
3495 int type;
3496 unsigned short old_blkoff;
3497 unsigned char old_alloc_type;
3498
3499 segno = GET_SEGNO(sbi, new_blkaddr);
3500 se = get_seg_entry(sbi, segno);
3501 type = se->type;
3502
3503 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3504
3505 if (!recover_curseg) {
3506 /* for recovery flow */
3507 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3508 if (old_blkaddr == NULL_ADDR)
3509 type = CURSEG_COLD_DATA;
3510 else
3511 type = CURSEG_WARM_DATA;
3512 }
3513 } else {
3514 if (IS_CURSEG(sbi, segno)) {
3515 /* se->type is volatile as SSR allocation */
3516 type = __f2fs_get_curseg(sbi, segno);
3517 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3518 } else {
3519 type = CURSEG_WARM_DATA;
3520 }
3521 }
3522
3523 f2fs_bug_on(sbi, !IS_DATASEG(type));
3524 curseg = CURSEG_I(sbi, type);
3525
3526 mutex_lock(&curseg->curseg_mutex);
3527 down_write(&sit_i->sentry_lock);
3528
3529 old_cursegno = curseg->segno;
3530 old_blkoff = curseg->next_blkoff;
3531 old_alloc_type = curseg->alloc_type;
3532
3533 /* change the current segment */
3534 if (segno != curseg->segno) {
3535 curseg->next_segno = segno;
3536 change_curseg(sbi, type, true);
3537 }
3538
3539 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3540 __add_sum_entry(sbi, type, sum);
3541
3542 if (!recover_curseg || recover_newaddr) {
3543 if (!from_gc)
3544 update_segment_mtime(sbi, new_blkaddr, 0);
3545 update_sit_entry(sbi, new_blkaddr, 1);
3546 }
3547 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3548 invalidate_mapping_pages(META_MAPPING(sbi),
3549 old_blkaddr, old_blkaddr);
3550 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3551 if (!from_gc)
3552 update_segment_mtime(sbi, old_blkaddr, 0);
3553 update_sit_entry(sbi, old_blkaddr, -1);
3554 }
3555
3556 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3557 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3558
3559 locate_dirty_segment(sbi, old_cursegno);
3560
3561 if (recover_curseg) {
3562 if (old_cursegno != curseg->segno) {
3563 curseg->next_segno = old_cursegno;
3564 change_curseg(sbi, type, true);
3565 }
3566 curseg->next_blkoff = old_blkoff;
3567 curseg->alloc_type = old_alloc_type;
3568 }
3569
3570 up_write(&sit_i->sentry_lock);
3571 mutex_unlock(&curseg->curseg_mutex);
3572 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3573 }
3574
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3575 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3576 block_t old_addr, block_t new_addr,
3577 unsigned char version, bool recover_curseg,
3578 bool recover_newaddr)
3579 {
3580 struct f2fs_summary sum;
3581
3582 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3583
3584 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3585 recover_curseg, recover_newaddr, false);
3586
3587 f2fs_update_data_blkaddr(dn, new_addr);
3588 }
3589
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3590 void f2fs_wait_on_page_writeback(struct page *page,
3591 enum page_type type, bool ordered, bool locked)
3592 {
3593 if (PageWriteback(page)) {
3594 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3595
3596 /* submit cached LFS IO */
3597 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3598 /* sbumit cached IPU IO */
3599 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3600 if (ordered) {
3601 wait_on_page_writeback(page);
3602 f2fs_bug_on(sbi, locked && PageWriteback(page));
3603 } else {
3604 wait_for_stable_page(page);
3605 }
3606 }
3607 }
3608
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3609 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3610 {
3611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3612 struct page *cpage;
3613
3614 if (!f2fs_post_read_required(inode))
3615 return;
3616
3617 if (!__is_valid_data_blkaddr(blkaddr))
3618 return;
3619
3620 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3621 if (cpage) {
3622 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3623 f2fs_put_page(cpage, 1);
3624 }
3625 }
3626
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3627 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3628 block_t len)
3629 {
3630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3631 block_t i;
3632
3633 if (!f2fs_post_read_required(inode))
3634 return;
3635
3636 for (i = 0; i < len; i++)
3637 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3638
3639 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3640 }
3641
read_compacted_summaries(struct f2fs_sb_info * sbi)3642 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3643 {
3644 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3645 struct curseg_info *seg_i;
3646 unsigned char *kaddr;
3647 struct page *page;
3648 block_t start;
3649 int i, j, offset;
3650
3651 start = start_sum_block(sbi);
3652
3653 page = f2fs_get_meta_page(sbi, start++);
3654 if (IS_ERR(page))
3655 return PTR_ERR(page);
3656 kaddr = (unsigned char *)page_address(page);
3657
3658 /* Step 1: restore nat cache */
3659 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3660 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3661
3662 /* Step 2: restore sit cache */
3663 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3664 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3665 offset = 2 * SUM_JOURNAL_SIZE;
3666
3667 /* Step 3: restore summary entries */
3668 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3669 unsigned short blk_off;
3670 unsigned int segno;
3671
3672 seg_i = CURSEG_I(sbi, i);
3673 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3674 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3675 seg_i->next_segno = segno;
3676 reset_curseg(sbi, i, 0);
3677 seg_i->alloc_type = ckpt->alloc_type[i];
3678 seg_i->next_blkoff = blk_off;
3679
3680 if (seg_i->alloc_type == SSR)
3681 blk_off = sbi->blocks_per_seg;
3682
3683 for (j = 0; j < blk_off; j++) {
3684 struct f2fs_summary *s;
3685
3686 s = (struct f2fs_summary *)(kaddr + offset);
3687 seg_i->sum_blk->entries[j] = *s;
3688 offset += SUMMARY_SIZE;
3689 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3690 SUM_FOOTER_SIZE)
3691 continue;
3692
3693 f2fs_put_page(page, 1);
3694 page = NULL;
3695
3696 page = f2fs_get_meta_page(sbi, start++);
3697 if (IS_ERR(page))
3698 return PTR_ERR(page);
3699 kaddr = (unsigned char *)page_address(page);
3700 offset = 0;
3701 }
3702 }
3703 f2fs_put_page(page, 1);
3704 return 0;
3705 }
3706
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3707 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3708 {
3709 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3710 struct f2fs_summary_block *sum;
3711 struct curseg_info *curseg;
3712 struct page *new;
3713 unsigned short blk_off;
3714 unsigned int segno = 0;
3715 block_t blk_addr = 0;
3716 int err = 0;
3717
3718 /* get segment number and block addr */
3719 if (IS_DATASEG(type)) {
3720 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3721 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3722 CURSEG_HOT_DATA]);
3723 if (__exist_node_summaries(sbi))
3724 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3725 else
3726 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3727 } else {
3728 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3729 CURSEG_HOT_NODE]);
3730 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3731 CURSEG_HOT_NODE]);
3732 if (__exist_node_summaries(sbi))
3733 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3734 type - CURSEG_HOT_NODE);
3735 else
3736 blk_addr = GET_SUM_BLOCK(sbi, segno);
3737 }
3738
3739 new = f2fs_get_meta_page(sbi, blk_addr);
3740 if (IS_ERR(new))
3741 return PTR_ERR(new);
3742 sum = (struct f2fs_summary_block *)page_address(new);
3743
3744 if (IS_NODESEG(type)) {
3745 if (__exist_node_summaries(sbi)) {
3746 struct f2fs_summary *ns = &sum->entries[0];
3747 int i;
3748
3749 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3750 ns->version = 0;
3751 ns->ofs_in_node = 0;
3752 }
3753 } else {
3754 err = f2fs_restore_node_summary(sbi, segno, sum);
3755 if (err)
3756 goto out;
3757 }
3758 }
3759
3760 /* set uncompleted segment to curseg */
3761 curseg = CURSEG_I(sbi, type);
3762 mutex_lock(&curseg->curseg_mutex);
3763
3764 /* update journal info */
3765 down_write(&curseg->journal_rwsem);
3766 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3767 up_write(&curseg->journal_rwsem);
3768
3769 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3770 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3771 curseg->next_segno = segno;
3772 reset_curseg(sbi, type, 0);
3773 curseg->alloc_type = ckpt->alloc_type[type];
3774 curseg->next_blkoff = blk_off;
3775 mutex_unlock(&curseg->curseg_mutex);
3776 out:
3777 f2fs_put_page(new, 1);
3778 return err;
3779 }
3780
restore_curseg_summaries(struct f2fs_sb_info * sbi)3781 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3782 {
3783 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3784 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3785 int type = CURSEG_HOT_DATA;
3786 int err;
3787
3788 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3789 int npages = f2fs_npages_for_summary_flush(sbi, true);
3790
3791 if (npages >= 2)
3792 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3793 META_CP, true);
3794
3795 /* restore for compacted data summary */
3796 err = read_compacted_summaries(sbi);
3797 if (err)
3798 return err;
3799 type = CURSEG_HOT_NODE;
3800 }
3801
3802 if (__exist_node_summaries(sbi))
3803 f2fs_ra_meta_pages(sbi,
3804 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3805 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3806
3807 for (; type <= CURSEG_COLD_NODE; type++) {
3808 err = read_normal_summaries(sbi, type);
3809 if (err)
3810 return err;
3811 }
3812
3813 /* sanity check for summary blocks */
3814 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3815 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3816 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3817 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3818 return -EINVAL;
3819 }
3820
3821 return 0;
3822 }
3823
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3824 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3825 {
3826 struct page *page;
3827 unsigned char *kaddr;
3828 struct f2fs_summary *summary;
3829 struct curseg_info *seg_i;
3830 int written_size = 0;
3831 int i, j;
3832
3833 page = f2fs_grab_meta_page(sbi, blkaddr++);
3834 kaddr = (unsigned char *)page_address(page);
3835 memset(kaddr, 0, PAGE_SIZE);
3836
3837 /* Step 1: write nat cache */
3838 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3839 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3840 written_size += SUM_JOURNAL_SIZE;
3841
3842 /* Step 2: write sit cache */
3843 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3844 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3845 written_size += SUM_JOURNAL_SIZE;
3846
3847 /* Step 3: write summary entries */
3848 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3849 unsigned short blkoff;
3850
3851 seg_i = CURSEG_I(sbi, i);
3852 if (sbi->ckpt->alloc_type[i] == SSR)
3853 blkoff = sbi->blocks_per_seg;
3854 else
3855 blkoff = curseg_blkoff(sbi, i);
3856
3857 for (j = 0; j < blkoff; j++) {
3858 if (!page) {
3859 page = f2fs_grab_meta_page(sbi, blkaddr++);
3860 kaddr = (unsigned char *)page_address(page);
3861 memset(kaddr, 0, PAGE_SIZE);
3862 written_size = 0;
3863 }
3864 summary = (struct f2fs_summary *)(kaddr + written_size);
3865 *summary = seg_i->sum_blk->entries[j];
3866 written_size += SUMMARY_SIZE;
3867
3868 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3869 SUM_FOOTER_SIZE)
3870 continue;
3871
3872 set_page_dirty(page);
3873 f2fs_put_page(page, 1);
3874 page = NULL;
3875 }
3876 }
3877 if (page) {
3878 set_page_dirty(page);
3879 f2fs_put_page(page, 1);
3880 }
3881 }
3882
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3883 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3884 block_t blkaddr, int type)
3885 {
3886 int i, end;
3887
3888 if (IS_DATASEG(type))
3889 end = type + NR_CURSEG_DATA_TYPE;
3890 else
3891 end = type + NR_CURSEG_NODE_TYPE;
3892
3893 for (i = type; i < end; i++)
3894 write_current_sum_page(sbi, i, blkaddr + (i - type));
3895 }
3896
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3897 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3898 {
3899 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3900 write_compacted_summaries(sbi, start_blk);
3901 else
3902 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3903 }
3904
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3905 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3906 {
3907 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3908 }
3909
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3910 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3911 unsigned int val, int alloc)
3912 {
3913 int i;
3914
3915 if (type == NAT_JOURNAL) {
3916 for (i = 0; i < nats_in_cursum(journal); i++) {
3917 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3918 return i;
3919 }
3920 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3921 return update_nats_in_cursum(journal, 1);
3922 } else if (type == SIT_JOURNAL) {
3923 for (i = 0; i < sits_in_cursum(journal); i++)
3924 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3925 return i;
3926 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3927 return update_sits_in_cursum(journal, 1);
3928 }
3929 return -1;
3930 }
3931
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3932 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3933 unsigned int segno)
3934 {
3935 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3936 }
3937
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3938 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3939 unsigned int start)
3940 {
3941 struct sit_info *sit_i = SIT_I(sbi);
3942 struct page *page;
3943 pgoff_t src_off, dst_off;
3944
3945 src_off = current_sit_addr(sbi, start);
3946 dst_off = next_sit_addr(sbi, src_off);
3947
3948 page = f2fs_grab_meta_page(sbi, dst_off);
3949 seg_info_to_sit_page(sbi, page, start);
3950
3951 set_page_dirty(page);
3952 set_to_next_sit(sit_i, start);
3953
3954 return page;
3955 }
3956
grab_sit_entry_set(void)3957 static struct sit_entry_set *grab_sit_entry_set(void)
3958 {
3959 struct sit_entry_set *ses =
3960 f2fs_kmem_cache_alloc(sit_entry_set_slab,
3961 GFP_NOFS, true, NULL);
3962
3963 ses->entry_cnt = 0;
3964 INIT_LIST_HEAD(&ses->set_list);
3965 return ses;
3966 }
3967
release_sit_entry_set(struct sit_entry_set * ses)3968 static void release_sit_entry_set(struct sit_entry_set *ses)
3969 {
3970 list_del(&ses->set_list);
3971 kmem_cache_free(sit_entry_set_slab, ses);
3972 }
3973
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3974 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3975 struct list_head *head)
3976 {
3977 struct sit_entry_set *next = ses;
3978
3979 if (list_is_last(&ses->set_list, head))
3980 return;
3981
3982 list_for_each_entry_continue(next, head, set_list)
3983 if (ses->entry_cnt <= next->entry_cnt) {
3984 list_move_tail(&ses->set_list, &next->set_list);
3985 return;
3986 }
3987
3988 list_move_tail(&ses->set_list, head);
3989 }
3990
add_sit_entry(unsigned int segno,struct list_head * head)3991 static void add_sit_entry(unsigned int segno, struct list_head *head)
3992 {
3993 struct sit_entry_set *ses;
3994 unsigned int start_segno = START_SEGNO(segno);
3995
3996 list_for_each_entry(ses, head, set_list) {
3997 if (ses->start_segno == start_segno) {
3998 ses->entry_cnt++;
3999 adjust_sit_entry_set(ses, head);
4000 return;
4001 }
4002 }
4003
4004 ses = grab_sit_entry_set();
4005
4006 ses->start_segno = start_segno;
4007 ses->entry_cnt++;
4008 list_add(&ses->set_list, head);
4009 }
4010
add_sits_in_set(struct f2fs_sb_info * sbi)4011 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4012 {
4013 struct f2fs_sm_info *sm_info = SM_I(sbi);
4014 struct list_head *set_list = &sm_info->sit_entry_set;
4015 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4016 unsigned int segno;
4017
4018 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4019 add_sit_entry(segno, set_list);
4020 }
4021
remove_sits_in_journal(struct f2fs_sb_info * sbi)4022 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4023 {
4024 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4025 struct f2fs_journal *journal = curseg->journal;
4026 int i;
4027
4028 down_write(&curseg->journal_rwsem);
4029 for (i = 0; i < sits_in_cursum(journal); i++) {
4030 unsigned int segno;
4031 bool dirtied;
4032
4033 segno = le32_to_cpu(segno_in_journal(journal, i));
4034 dirtied = __mark_sit_entry_dirty(sbi, segno);
4035
4036 if (!dirtied)
4037 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4038 }
4039 update_sits_in_cursum(journal, -i);
4040 up_write(&curseg->journal_rwsem);
4041 }
4042
4043 /*
4044 * CP calls this function, which flushes SIT entries including sit_journal,
4045 * and moves prefree segs to free segs.
4046 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4047 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4048 {
4049 struct sit_info *sit_i = SIT_I(sbi);
4050 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4051 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4052 struct f2fs_journal *journal = curseg->journal;
4053 struct sit_entry_set *ses, *tmp;
4054 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4055 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4056 struct seg_entry *se;
4057
4058 down_write(&sit_i->sentry_lock);
4059
4060 if (!sit_i->dirty_sentries)
4061 goto out;
4062
4063 /*
4064 * add and account sit entries of dirty bitmap in sit entry
4065 * set temporarily
4066 */
4067 add_sits_in_set(sbi);
4068
4069 /*
4070 * if there are no enough space in journal to store dirty sit
4071 * entries, remove all entries from journal and add and account
4072 * them in sit entry set.
4073 */
4074 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4075 !to_journal)
4076 remove_sits_in_journal(sbi);
4077
4078 /*
4079 * there are two steps to flush sit entries:
4080 * #1, flush sit entries to journal in current cold data summary block.
4081 * #2, flush sit entries to sit page.
4082 */
4083 list_for_each_entry_safe(ses, tmp, head, set_list) {
4084 struct page *page = NULL;
4085 struct f2fs_sit_block *raw_sit = NULL;
4086 unsigned int start_segno = ses->start_segno;
4087 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4088 (unsigned long)MAIN_SEGS(sbi));
4089 unsigned int segno = start_segno;
4090
4091 if (to_journal &&
4092 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4093 to_journal = false;
4094
4095 if (to_journal) {
4096 down_write(&curseg->journal_rwsem);
4097 } else {
4098 page = get_next_sit_page(sbi, start_segno);
4099 raw_sit = page_address(page);
4100 }
4101
4102 /* flush dirty sit entries in region of current sit set */
4103 for_each_set_bit_from(segno, bitmap, end) {
4104 int offset, sit_offset;
4105
4106 se = get_seg_entry(sbi, segno);
4107 #ifdef CONFIG_F2FS_CHECK_FS
4108 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4109 SIT_VBLOCK_MAP_SIZE))
4110 f2fs_bug_on(sbi, 1);
4111 #endif
4112
4113 /* add discard candidates */
4114 if (!(cpc->reason & CP_DISCARD)) {
4115 cpc->trim_start = segno;
4116 add_discard_addrs(sbi, cpc, false);
4117 }
4118
4119 if (to_journal) {
4120 offset = f2fs_lookup_journal_in_cursum(journal,
4121 SIT_JOURNAL, segno, 1);
4122 f2fs_bug_on(sbi, offset < 0);
4123 segno_in_journal(journal, offset) =
4124 cpu_to_le32(segno);
4125 seg_info_to_raw_sit(se,
4126 &sit_in_journal(journal, offset));
4127 check_block_count(sbi, segno,
4128 &sit_in_journal(journal, offset));
4129 } else {
4130 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4131 seg_info_to_raw_sit(se,
4132 &raw_sit->entries[sit_offset]);
4133 check_block_count(sbi, segno,
4134 &raw_sit->entries[sit_offset]);
4135 }
4136
4137 __clear_bit(segno, bitmap);
4138 sit_i->dirty_sentries--;
4139 ses->entry_cnt--;
4140 }
4141
4142 if (to_journal)
4143 up_write(&curseg->journal_rwsem);
4144 else
4145 f2fs_put_page(page, 1);
4146
4147 f2fs_bug_on(sbi, ses->entry_cnt);
4148 release_sit_entry_set(ses);
4149 }
4150
4151 f2fs_bug_on(sbi, !list_empty(head));
4152 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4153 out:
4154 if (cpc->reason & CP_DISCARD) {
4155 __u64 trim_start = cpc->trim_start;
4156
4157 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4158 add_discard_addrs(sbi, cpc, false);
4159
4160 cpc->trim_start = trim_start;
4161 }
4162 up_write(&sit_i->sentry_lock);
4163
4164 set_prefree_as_free_segments(sbi);
4165 }
4166
build_sit_info(struct f2fs_sb_info * sbi)4167 static int build_sit_info(struct f2fs_sb_info *sbi)
4168 {
4169 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4170 struct sit_info *sit_i;
4171 unsigned int sit_segs, start;
4172 char *src_bitmap, *bitmap;
4173 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4174 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4175
4176 /* allocate memory for SIT information */
4177 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4178 if (!sit_i)
4179 return -ENOMEM;
4180
4181 SM_I(sbi)->sit_info = sit_i;
4182
4183 sit_i->sentries =
4184 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4185 MAIN_SEGS(sbi)),
4186 GFP_KERNEL);
4187 if (!sit_i->sentries)
4188 return -ENOMEM;
4189
4190 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4191 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4192 GFP_KERNEL);
4193 if (!sit_i->dirty_sentries_bitmap)
4194 return -ENOMEM;
4195
4196 #ifdef CONFIG_F2FS_CHECK_FS
4197 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4198 #else
4199 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4200 #endif
4201 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4202 if (!sit_i->bitmap)
4203 return -ENOMEM;
4204
4205 bitmap = sit_i->bitmap;
4206
4207 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4208 sit_i->sentries[start].cur_valid_map = bitmap;
4209 bitmap += SIT_VBLOCK_MAP_SIZE;
4210
4211 sit_i->sentries[start].ckpt_valid_map = bitmap;
4212 bitmap += SIT_VBLOCK_MAP_SIZE;
4213
4214 #ifdef CONFIG_F2FS_CHECK_FS
4215 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4216 bitmap += SIT_VBLOCK_MAP_SIZE;
4217 #endif
4218
4219 if (discard_map) {
4220 sit_i->sentries[start].discard_map = bitmap;
4221 bitmap += SIT_VBLOCK_MAP_SIZE;
4222 }
4223 }
4224
4225 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4226 if (!sit_i->tmp_map)
4227 return -ENOMEM;
4228
4229 if (__is_large_section(sbi)) {
4230 sit_i->sec_entries =
4231 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4232 MAIN_SECS(sbi)),
4233 GFP_KERNEL);
4234 if (!sit_i->sec_entries)
4235 return -ENOMEM;
4236 }
4237
4238 /* get information related with SIT */
4239 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4240
4241 /* setup SIT bitmap from ckeckpoint pack */
4242 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4243 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4244
4245 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4246 if (!sit_i->sit_bitmap)
4247 return -ENOMEM;
4248
4249 #ifdef CONFIG_F2FS_CHECK_FS
4250 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4251 sit_bitmap_size, GFP_KERNEL);
4252 if (!sit_i->sit_bitmap_mir)
4253 return -ENOMEM;
4254
4255 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4256 main_bitmap_size, GFP_KERNEL);
4257 if (!sit_i->invalid_segmap)
4258 return -ENOMEM;
4259 #endif
4260
4261 /* init SIT information */
4262 sit_i->s_ops = &default_salloc_ops;
4263
4264 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4265 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4266 sit_i->written_valid_blocks = 0;
4267 sit_i->bitmap_size = sit_bitmap_size;
4268 sit_i->dirty_sentries = 0;
4269 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4270 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4271 sit_i->mounted_time = ktime_get_boottime_seconds();
4272 init_rwsem(&sit_i->sentry_lock);
4273 return 0;
4274 }
4275
build_free_segmap(struct f2fs_sb_info * sbi)4276 static int build_free_segmap(struct f2fs_sb_info *sbi)
4277 {
4278 struct free_segmap_info *free_i;
4279 unsigned int bitmap_size, sec_bitmap_size;
4280
4281 /* allocate memory for free segmap information */
4282 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4283 if (!free_i)
4284 return -ENOMEM;
4285
4286 SM_I(sbi)->free_info = free_i;
4287
4288 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4289 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4290 if (!free_i->free_segmap)
4291 return -ENOMEM;
4292
4293 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4294 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4295 if (!free_i->free_secmap)
4296 return -ENOMEM;
4297
4298 /* set all segments as dirty temporarily */
4299 memset(free_i->free_segmap, 0xff, bitmap_size);
4300 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4301
4302 /* init free segmap information */
4303 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4304 free_i->free_segments = 0;
4305 free_i->free_sections = 0;
4306 spin_lock_init(&free_i->segmap_lock);
4307 return 0;
4308 }
4309
build_curseg(struct f2fs_sb_info * sbi)4310 static int build_curseg(struct f2fs_sb_info *sbi)
4311 {
4312 struct curseg_info *array;
4313 int i;
4314
4315 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4316 sizeof(*array)), GFP_KERNEL);
4317 if (!array)
4318 return -ENOMEM;
4319
4320 SM_I(sbi)->curseg_array = array;
4321
4322 for (i = 0; i < NO_CHECK_TYPE; i++) {
4323 mutex_init(&array[i].curseg_mutex);
4324 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4325 if (!array[i].sum_blk)
4326 return -ENOMEM;
4327 init_rwsem(&array[i].journal_rwsem);
4328 array[i].journal = f2fs_kzalloc(sbi,
4329 sizeof(struct f2fs_journal), GFP_KERNEL);
4330 if (!array[i].journal)
4331 return -ENOMEM;
4332 if (i < NR_PERSISTENT_LOG)
4333 array[i].seg_type = CURSEG_HOT_DATA + i;
4334 else if (i == CURSEG_COLD_DATA_PINNED)
4335 array[i].seg_type = CURSEG_COLD_DATA;
4336 else if (i == CURSEG_ALL_DATA_ATGC)
4337 array[i].seg_type = CURSEG_COLD_DATA;
4338 array[i].segno = NULL_SEGNO;
4339 array[i].next_blkoff = 0;
4340 array[i].inited = false;
4341 }
4342 return restore_curseg_summaries(sbi);
4343 }
4344
build_sit_entries(struct f2fs_sb_info * sbi)4345 static int build_sit_entries(struct f2fs_sb_info *sbi)
4346 {
4347 struct sit_info *sit_i = SIT_I(sbi);
4348 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4349 struct f2fs_journal *journal = curseg->journal;
4350 struct seg_entry *se;
4351 struct f2fs_sit_entry sit;
4352 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4353 unsigned int i, start, end;
4354 unsigned int readed, start_blk = 0;
4355 int err = 0;
4356 block_t sit_valid_blocks[2] = {0, 0};
4357
4358 do {
4359 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4360 META_SIT, true);
4361
4362 start = start_blk * sit_i->sents_per_block;
4363 end = (start_blk + readed) * sit_i->sents_per_block;
4364
4365 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4366 struct f2fs_sit_block *sit_blk;
4367 struct page *page;
4368
4369 se = &sit_i->sentries[start];
4370 page = get_current_sit_page(sbi, start);
4371 if (IS_ERR(page))
4372 return PTR_ERR(page);
4373 sit_blk = (struct f2fs_sit_block *)page_address(page);
4374 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4375 f2fs_put_page(page, 1);
4376
4377 err = check_block_count(sbi, start, &sit);
4378 if (err)
4379 return err;
4380 seg_info_from_raw_sit(se, &sit);
4381
4382 if (se->type >= NR_PERSISTENT_LOG) {
4383 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4384 se->type, start);
4385 f2fs_handle_error(sbi,
4386 ERROR_INCONSISTENT_SUM_TYPE);
4387 return -EFSCORRUPTED;
4388 }
4389
4390 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4391
4392 if (f2fs_block_unit_discard(sbi)) {
4393 /* build discard map only one time */
4394 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4395 memset(se->discard_map, 0xff,
4396 SIT_VBLOCK_MAP_SIZE);
4397 } else {
4398 memcpy(se->discard_map,
4399 se->cur_valid_map,
4400 SIT_VBLOCK_MAP_SIZE);
4401 sbi->discard_blks +=
4402 sbi->blocks_per_seg -
4403 se->valid_blocks;
4404 }
4405 }
4406
4407 if (__is_large_section(sbi))
4408 get_sec_entry(sbi, start)->valid_blocks +=
4409 se->valid_blocks;
4410 }
4411 start_blk += readed;
4412 } while (start_blk < sit_blk_cnt);
4413
4414 down_read(&curseg->journal_rwsem);
4415 for (i = 0; i < sits_in_cursum(journal); i++) {
4416 unsigned int old_valid_blocks;
4417
4418 start = le32_to_cpu(segno_in_journal(journal, i));
4419 if (start >= MAIN_SEGS(sbi)) {
4420 f2fs_err(sbi, "Wrong journal entry on segno %u",
4421 start);
4422 err = -EFSCORRUPTED;
4423 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4424 break;
4425 }
4426
4427 se = &sit_i->sentries[start];
4428 sit = sit_in_journal(journal, i);
4429
4430 old_valid_blocks = se->valid_blocks;
4431
4432 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4433
4434 err = check_block_count(sbi, start, &sit);
4435 if (err)
4436 break;
4437 seg_info_from_raw_sit(se, &sit);
4438
4439 if (se->type >= NR_PERSISTENT_LOG) {
4440 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4441 se->type, start);
4442 err = -EFSCORRUPTED;
4443 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4444 break;
4445 }
4446
4447 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4448
4449 if (f2fs_block_unit_discard(sbi)) {
4450 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4451 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4452 } else {
4453 memcpy(se->discard_map, se->cur_valid_map,
4454 SIT_VBLOCK_MAP_SIZE);
4455 sbi->discard_blks += old_valid_blocks;
4456 sbi->discard_blks -= se->valid_blocks;
4457 }
4458 }
4459
4460 if (__is_large_section(sbi)) {
4461 get_sec_entry(sbi, start)->valid_blocks +=
4462 se->valid_blocks;
4463 get_sec_entry(sbi, start)->valid_blocks -=
4464 old_valid_blocks;
4465 }
4466 }
4467 up_read(&curseg->journal_rwsem);
4468
4469 if (err)
4470 return err;
4471
4472 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4473 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4474 sit_valid_blocks[NODE], valid_node_count(sbi));
4475 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4476 return -EFSCORRUPTED;
4477 }
4478
4479 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4480 valid_user_blocks(sbi)) {
4481 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4482 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4483 valid_user_blocks(sbi));
4484 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4485 return -EFSCORRUPTED;
4486 }
4487
4488 return 0;
4489 }
4490
init_free_segmap(struct f2fs_sb_info * sbi)4491 static void init_free_segmap(struct f2fs_sb_info *sbi)
4492 {
4493 unsigned int start;
4494 int type;
4495 struct seg_entry *sentry;
4496
4497 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4498 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4499 continue;
4500 sentry = get_seg_entry(sbi, start);
4501 if (!sentry->valid_blocks)
4502 __set_free(sbi, start);
4503 else
4504 SIT_I(sbi)->written_valid_blocks +=
4505 sentry->valid_blocks;
4506 }
4507
4508 /* set use the current segments */
4509 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4510 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4511
4512 __set_test_and_inuse(sbi, curseg_t->segno);
4513 }
4514 }
4515
init_dirty_segmap(struct f2fs_sb_info * sbi)4516 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4517 {
4518 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4519 struct free_segmap_info *free_i = FREE_I(sbi);
4520 unsigned int segno = 0, offset = 0, secno;
4521 block_t valid_blocks, usable_blks_in_seg;
4522
4523 while (1) {
4524 /* find dirty segment based on free segmap */
4525 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4526 if (segno >= MAIN_SEGS(sbi))
4527 break;
4528 offset = segno + 1;
4529 valid_blocks = get_valid_blocks(sbi, segno, false);
4530 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4531 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4532 continue;
4533 if (valid_blocks > usable_blks_in_seg) {
4534 f2fs_bug_on(sbi, 1);
4535 continue;
4536 }
4537 mutex_lock(&dirty_i->seglist_lock);
4538 __locate_dirty_segment(sbi, segno, DIRTY);
4539 mutex_unlock(&dirty_i->seglist_lock);
4540 }
4541
4542 if (!__is_large_section(sbi))
4543 return;
4544
4545 mutex_lock(&dirty_i->seglist_lock);
4546 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4547 valid_blocks = get_valid_blocks(sbi, segno, true);
4548 secno = GET_SEC_FROM_SEG(sbi, segno);
4549
4550 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4551 continue;
4552 if (IS_CURSEC(sbi, secno))
4553 continue;
4554 set_bit(secno, dirty_i->dirty_secmap);
4555 }
4556 mutex_unlock(&dirty_i->seglist_lock);
4557 }
4558
init_victim_secmap(struct f2fs_sb_info * sbi)4559 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4560 {
4561 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4562 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4563
4564 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4565 if (!dirty_i->victim_secmap)
4566 return -ENOMEM;
4567
4568 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4569 if (!dirty_i->pinned_secmap)
4570 return -ENOMEM;
4571
4572 dirty_i->pinned_secmap_cnt = 0;
4573 dirty_i->enable_pin_section = true;
4574 return 0;
4575 }
4576
build_dirty_segmap(struct f2fs_sb_info * sbi)4577 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4578 {
4579 struct dirty_seglist_info *dirty_i;
4580 unsigned int bitmap_size, i;
4581
4582 /* allocate memory for dirty segments list information */
4583 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4584 GFP_KERNEL);
4585 if (!dirty_i)
4586 return -ENOMEM;
4587
4588 SM_I(sbi)->dirty_info = dirty_i;
4589 mutex_init(&dirty_i->seglist_lock);
4590
4591 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4592
4593 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4594 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4595 GFP_KERNEL);
4596 if (!dirty_i->dirty_segmap[i])
4597 return -ENOMEM;
4598 }
4599
4600 if (__is_large_section(sbi)) {
4601 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4602 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4603 bitmap_size, GFP_KERNEL);
4604 if (!dirty_i->dirty_secmap)
4605 return -ENOMEM;
4606 }
4607
4608 init_dirty_segmap(sbi);
4609 return init_victim_secmap(sbi);
4610 }
4611
sanity_check_curseg(struct f2fs_sb_info * sbi)4612 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4613 {
4614 int i;
4615
4616 /*
4617 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4618 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4619 */
4620 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4621 struct curseg_info *curseg = CURSEG_I(sbi, i);
4622 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4623 unsigned int blkofs = curseg->next_blkoff;
4624
4625 if (f2fs_sb_has_readonly(sbi) &&
4626 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4627 continue;
4628
4629 sanity_check_seg_type(sbi, curseg->seg_type);
4630
4631 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4632 f2fs_err(sbi,
4633 "Current segment has invalid alloc_type:%d",
4634 curseg->alloc_type);
4635 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4636 return -EFSCORRUPTED;
4637 }
4638
4639 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4640 goto out;
4641
4642 if (curseg->alloc_type == SSR)
4643 continue;
4644
4645 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4646 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4647 continue;
4648 out:
4649 f2fs_err(sbi,
4650 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4651 i, curseg->segno, curseg->alloc_type,
4652 curseg->next_blkoff, blkofs);
4653 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4654 return -EFSCORRUPTED;
4655 }
4656 }
4657 return 0;
4658 }
4659
4660 #ifdef CONFIG_BLK_DEV_ZONED
4661
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4662 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4663 struct f2fs_dev_info *fdev,
4664 struct blk_zone *zone)
4665 {
4666 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4667 block_t zone_block, wp_block, last_valid_block;
4668 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4669 int i, s, b, ret;
4670 struct seg_entry *se;
4671
4672 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4673 return 0;
4674
4675 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4676 wp_segno = GET_SEGNO(sbi, wp_block);
4677 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4678 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4679 zone_segno = GET_SEGNO(sbi, zone_block);
4680 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4681
4682 if (zone_segno >= MAIN_SEGS(sbi))
4683 return 0;
4684
4685 /*
4686 * Skip check of zones cursegs point to, since
4687 * fix_curseg_write_pointer() checks them.
4688 */
4689 for (i = 0; i < NO_CHECK_TYPE; i++)
4690 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4691 CURSEG_I(sbi, i)->segno))
4692 return 0;
4693
4694 /*
4695 * Get last valid block of the zone.
4696 */
4697 last_valid_block = zone_block - 1;
4698 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4699 segno = zone_segno + s;
4700 se = get_seg_entry(sbi, segno);
4701 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4702 if (f2fs_test_bit(b, se->cur_valid_map)) {
4703 last_valid_block = START_BLOCK(sbi, segno) + b;
4704 break;
4705 }
4706 if (last_valid_block >= zone_block)
4707 break;
4708 }
4709
4710 /*
4711 * If last valid block is beyond the write pointer, report the
4712 * inconsistency. This inconsistency does not cause write error
4713 * because the zone will not be selected for write operation until
4714 * it get discarded. Just report it.
4715 */
4716 if (last_valid_block >= wp_block) {
4717 f2fs_notice(sbi, "Valid block beyond write pointer: "
4718 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4719 GET_SEGNO(sbi, last_valid_block),
4720 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4721 wp_segno, wp_blkoff);
4722 return 0;
4723 }
4724
4725 /*
4726 * If there is no valid block in the zone and if write pointer is
4727 * not at zone start, reset the write pointer.
4728 */
4729 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4730 f2fs_notice(sbi,
4731 "Zone without valid block has non-zero write "
4732 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4733 wp_segno, wp_blkoff);
4734 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4735 zone->len >> log_sectors_per_block);
4736 if (ret) {
4737 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4738 fdev->path, ret);
4739 return ret;
4740 }
4741 }
4742
4743 return 0;
4744 }
4745
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4746 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4747 block_t zone_blkaddr)
4748 {
4749 int i;
4750
4751 for (i = 0; i < sbi->s_ndevs; i++) {
4752 if (!bdev_is_zoned(FDEV(i).bdev))
4753 continue;
4754 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4755 zone_blkaddr <= FDEV(i).end_blk))
4756 return &FDEV(i);
4757 }
4758
4759 return NULL;
4760 }
4761
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4762 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4763 void *data)
4764 {
4765 memcpy(data, zone, sizeof(struct blk_zone));
4766 return 0;
4767 }
4768
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4769 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4770 {
4771 struct curseg_info *cs = CURSEG_I(sbi, type);
4772 struct f2fs_dev_info *zbd;
4773 struct blk_zone zone;
4774 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4775 block_t cs_zone_block, wp_block;
4776 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4777 sector_t zone_sector;
4778 int err;
4779
4780 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4781 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4782
4783 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4784 if (!zbd)
4785 return 0;
4786
4787 /* report zone for the sector the curseg points to */
4788 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4789 << log_sectors_per_block;
4790 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4791 report_one_zone_cb, &zone);
4792 if (err != 1) {
4793 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4794 zbd->path, err);
4795 return err;
4796 }
4797
4798 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4799 return 0;
4800
4801 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4802 wp_segno = GET_SEGNO(sbi, wp_block);
4803 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4804 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4805
4806 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4807 wp_sector_off == 0)
4808 return 0;
4809
4810 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4811 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4812 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4813
4814 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4815 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4816
4817 f2fs_allocate_new_section(sbi, type, true);
4818
4819 /* check consistency of the zone curseg pointed to */
4820 if (check_zone_write_pointer(sbi, zbd, &zone))
4821 return -EIO;
4822
4823 /* check newly assigned zone */
4824 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4825 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4826
4827 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4828 if (!zbd)
4829 return 0;
4830
4831 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4832 << log_sectors_per_block;
4833 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4834 report_one_zone_cb, &zone);
4835 if (err != 1) {
4836 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4837 zbd->path, err);
4838 return err;
4839 }
4840
4841 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4842 return 0;
4843
4844 if (zone.wp != zone.start) {
4845 f2fs_notice(sbi,
4846 "New zone for curseg[%d] is not yet discarded. "
4847 "Reset the zone: curseg[0x%x,0x%x]",
4848 type, cs->segno, cs->next_blkoff);
4849 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4850 zone_sector >> log_sectors_per_block,
4851 zone.len >> log_sectors_per_block);
4852 if (err) {
4853 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4854 zbd->path, err);
4855 return err;
4856 }
4857 }
4858
4859 return 0;
4860 }
4861
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4862 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4863 {
4864 int i, ret;
4865
4866 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4867 ret = fix_curseg_write_pointer(sbi, i);
4868 if (ret)
4869 return ret;
4870 }
4871
4872 return 0;
4873 }
4874
4875 struct check_zone_write_pointer_args {
4876 struct f2fs_sb_info *sbi;
4877 struct f2fs_dev_info *fdev;
4878 };
4879
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4880 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4881 void *data)
4882 {
4883 struct check_zone_write_pointer_args *args;
4884
4885 args = (struct check_zone_write_pointer_args *)data;
4886
4887 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4888 }
4889
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4890 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4891 {
4892 int i, ret;
4893 struct check_zone_write_pointer_args args;
4894
4895 for (i = 0; i < sbi->s_ndevs; i++) {
4896 if (!bdev_is_zoned(FDEV(i).bdev))
4897 continue;
4898
4899 args.sbi = sbi;
4900 args.fdev = &FDEV(i);
4901 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4902 check_zone_write_pointer_cb, &args);
4903 if (ret < 0)
4904 return ret;
4905 }
4906
4907 return 0;
4908 }
4909
is_conv_zone(struct f2fs_sb_info * sbi,unsigned int zone_idx,unsigned int dev_idx)4910 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4911 unsigned int dev_idx)
4912 {
4913 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4914 return true;
4915 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4916 }
4917
4918 /* Return the zone index in the given device */
get_zone_idx(struct f2fs_sb_info * sbi,unsigned int secno,int dev_idx)4919 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4920 int dev_idx)
4921 {
4922 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4923
4924 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4925 sbi->log_blocks_per_blkz;
4926 }
4927
4928 /*
4929 * Return the usable segments in a section based on the zone's
4930 * corresponding zone capacity. Zone is equal to a section.
4931 */
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)4932 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4933 struct f2fs_sb_info *sbi, unsigned int segno)
4934 {
4935 unsigned int dev_idx, zone_idx;
4936
4937 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4938 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4939
4940 /* Conventional zone's capacity is always equal to zone size */
4941 if (is_conv_zone(sbi, zone_idx, dev_idx))
4942 return sbi->segs_per_sec;
4943
4944 if (!sbi->unusable_blocks_per_sec)
4945 return sbi->segs_per_sec;
4946
4947 /* Get the segment count beyond zone capacity block */
4948 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4949 sbi->log_blocks_per_seg);
4950 }
4951
4952 /*
4953 * Return the number of usable blocks in a segment. The number of blocks
4954 * returned is always equal to the number of blocks in a segment for
4955 * segments fully contained within a sequential zone capacity or a
4956 * conventional zone. For segments partially contained in a sequential
4957 * zone capacity, the number of usable blocks up to the zone capacity
4958 * is returned. 0 is returned in all other cases.
4959 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)4960 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4961 struct f2fs_sb_info *sbi, unsigned int segno)
4962 {
4963 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4964 unsigned int zone_idx, dev_idx, secno;
4965
4966 secno = GET_SEC_FROM_SEG(sbi, segno);
4967 seg_start = START_BLOCK(sbi, segno);
4968 dev_idx = f2fs_target_device_index(sbi, seg_start);
4969 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4970
4971 /*
4972 * Conventional zone's capacity is always equal to zone size,
4973 * so, blocks per segment is unchanged.
4974 */
4975 if (is_conv_zone(sbi, zone_idx, dev_idx))
4976 return sbi->blocks_per_seg;
4977
4978 if (!sbi->unusable_blocks_per_sec)
4979 return sbi->blocks_per_seg;
4980
4981 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4983
4984 /*
4985 * If segment starts before zone capacity and spans beyond
4986 * zone capacity, then usable blocks are from seg start to
4987 * zone capacity. If the segment starts after the zone capacity,
4988 * then there are no usable blocks.
4989 */
4990 if (seg_start >= sec_cap_blkaddr)
4991 return 0;
4992 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4993 return sec_cap_blkaddr - seg_start;
4994
4995 return sbi->blocks_per_seg;
4996 }
4997 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4998 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4999 {
5000 return 0;
5001 }
5002
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5003 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5004 {
5005 return 0;
5006 }
5007
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5008 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5009 unsigned int segno)
5010 {
5011 return 0;
5012 }
5013
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5014 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5015 unsigned int segno)
5016 {
5017 return 0;
5018 }
5019 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5020 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5021 unsigned int segno)
5022 {
5023 if (f2fs_sb_has_blkzoned(sbi))
5024 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5025
5026 return sbi->blocks_per_seg;
5027 }
5028
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5029 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5030 unsigned int segno)
5031 {
5032 if (f2fs_sb_has_blkzoned(sbi))
5033 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5034
5035 return sbi->segs_per_sec;
5036 }
5037
5038 /*
5039 * Update min, max modified time for cost-benefit GC algorithm
5040 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5041 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5042 {
5043 struct sit_info *sit_i = SIT_I(sbi);
5044 unsigned int segno;
5045
5046 down_write(&sit_i->sentry_lock);
5047
5048 sit_i->min_mtime = ULLONG_MAX;
5049
5050 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5051 unsigned int i;
5052 unsigned long long mtime = 0;
5053
5054 for (i = 0; i < sbi->segs_per_sec; i++)
5055 mtime += get_seg_entry(sbi, segno + i)->mtime;
5056
5057 mtime = div_u64(mtime, sbi->segs_per_sec);
5058
5059 if (sit_i->min_mtime > mtime)
5060 sit_i->min_mtime = mtime;
5061 }
5062 sit_i->max_mtime = get_mtime(sbi, false);
5063 sit_i->dirty_max_mtime = 0;
5064 up_write(&sit_i->sentry_lock);
5065 }
5066
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5067 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5068 {
5069 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5070 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5071 struct f2fs_sm_info *sm_info;
5072 int err;
5073
5074 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5075 if (!sm_info)
5076 return -ENOMEM;
5077
5078 /* init sm info */
5079 sbi->sm_info = sm_info;
5080 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5081 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5082 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5083 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5084 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5085 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5086 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5087 sm_info->rec_prefree_segments = sm_info->main_segments *
5088 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5089 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5090 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5091
5092 if (!f2fs_lfs_mode(sbi))
5093 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5094 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5095 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5096 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5097 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5098 sm_info->min_ssr_sections = reserved_sections(sbi);
5099
5100 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5101
5102 init_f2fs_rwsem(&sm_info->curseg_lock);
5103
5104 if (!f2fs_readonly(sbi->sb)) {
5105 err = f2fs_create_flush_cmd_control(sbi);
5106 if (err)
5107 return err;
5108 }
5109
5110 err = create_discard_cmd_control(sbi);
5111 if (err)
5112 return err;
5113
5114 err = build_sit_info(sbi);
5115 if (err)
5116 return err;
5117 err = build_free_segmap(sbi);
5118 if (err)
5119 return err;
5120 err = build_curseg(sbi);
5121 if (err)
5122 return err;
5123
5124 /* reinit free segmap based on SIT */
5125 err = build_sit_entries(sbi);
5126 if (err)
5127 return err;
5128
5129 init_free_segmap(sbi);
5130 err = build_dirty_segmap(sbi);
5131 if (err)
5132 return err;
5133
5134 err = sanity_check_curseg(sbi);
5135 if (err)
5136 return err;
5137
5138 init_min_max_mtime(sbi);
5139 return 0;
5140 }
5141
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5142 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5143 enum dirty_type dirty_type)
5144 {
5145 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5146
5147 mutex_lock(&dirty_i->seglist_lock);
5148 kvfree(dirty_i->dirty_segmap[dirty_type]);
5149 dirty_i->nr_dirty[dirty_type] = 0;
5150 mutex_unlock(&dirty_i->seglist_lock);
5151 }
5152
destroy_victim_secmap(struct f2fs_sb_info * sbi)5153 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5154 {
5155 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5156
5157 kvfree(dirty_i->pinned_secmap);
5158 kvfree(dirty_i->victim_secmap);
5159 }
5160
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5161 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5162 {
5163 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5164 int i;
5165
5166 if (!dirty_i)
5167 return;
5168
5169 /* discard pre-free/dirty segments list */
5170 for (i = 0; i < NR_DIRTY_TYPE; i++)
5171 discard_dirty_segmap(sbi, i);
5172
5173 if (__is_large_section(sbi)) {
5174 mutex_lock(&dirty_i->seglist_lock);
5175 kvfree(dirty_i->dirty_secmap);
5176 mutex_unlock(&dirty_i->seglist_lock);
5177 }
5178
5179 destroy_victim_secmap(sbi);
5180 SM_I(sbi)->dirty_info = NULL;
5181 kfree(dirty_i);
5182 }
5183
destroy_curseg(struct f2fs_sb_info * sbi)5184 static void destroy_curseg(struct f2fs_sb_info *sbi)
5185 {
5186 struct curseg_info *array = SM_I(sbi)->curseg_array;
5187 int i;
5188
5189 if (!array)
5190 return;
5191 SM_I(sbi)->curseg_array = NULL;
5192 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5193 kfree(array[i].sum_blk);
5194 kfree(array[i].journal);
5195 }
5196 kfree(array);
5197 }
5198
destroy_free_segmap(struct f2fs_sb_info * sbi)5199 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5200 {
5201 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5202
5203 if (!free_i)
5204 return;
5205 SM_I(sbi)->free_info = NULL;
5206 kvfree(free_i->free_segmap);
5207 kvfree(free_i->free_secmap);
5208 kfree(free_i);
5209 }
5210
destroy_sit_info(struct f2fs_sb_info * sbi)5211 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5212 {
5213 struct sit_info *sit_i = SIT_I(sbi);
5214
5215 if (!sit_i)
5216 return;
5217
5218 if (sit_i->sentries)
5219 kvfree(sit_i->bitmap);
5220 kfree(sit_i->tmp_map);
5221
5222 kvfree(sit_i->sentries);
5223 kvfree(sit_i->sec_entries);
5224 kvfree(sit_i->dirty_sentries_bitmap);
5225
5226 SM_I(sbi)->sit_info = NULL;
5227 kvfree(sit_i->sit_bitmap);
5228 #ifdef CONFIG_F2FS_CHECK_FS
5229 kvfree(sit_i->sit_bitmap_mir);
5230 kvfree(sit_i->invalid_segmap);
5231 #endif
5232 kfree(sit_i);
5233 }
5234
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5235 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5236 {
5237 struct f2fs_sm_info *sm_info = SM_I(sbi);
5238
5239 if (!sm_info)
5240 return;
5241 f2fs_destroy_flush_cmd_control(sbi, true);
5242 destroy_discard_cmd_control(sbi);
5243 destroy_dirty_segmap(sbi);
5244 destroy_curseg(sbi);
5245 destroy_free_segmap(sbi);
5246 destroy_sit_info(sbi);
5247 sbi->sm_info = NULL;
5248 kfree(sm_info);
5249 }
5250
f2fs_create_segment_manager_caches(void)5251 int __init f2fs_create_segment_manager_caches(void)
5252 {
5253 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5254 sizeof(struct discard_entry));
5255 if (!discard_entry_slab)
5256 goto fail;
5257
5258 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5259 sizeof(struct discard_cmd));
5260 if (!discard_cmd_slab)
5261 goto destroy_discard_entry;
5262
5263 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5264 sizeof(struct sit_entry_set));
5265 if (!sit_entry_set_slab)
5266 goto destroy_discard_cmd;
5267
5268 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5269 sizeof(struct revoke_entry));
5270 if (!revoke_entry_slab)
5271 goto destroy_sit_entry_set;
5272 return 0;
5273
5274 destroy_sit_entry_set:
5275 kmem_cache_destroy(sit_entry_set_slab);
5276 destroy_discard_cmd:
5277 kmem_cache_destroy(discard_cmd_slab);
5278 destroy_discard_entry:
5279 kmem_cache_destroy(discard_entry_slab);
5280 fail:
5281 return -ENOMEM;
5282 }
5283
f2fs_destroy_segment_manager_caches(void)5284 void f2fs_destroy_segment_manager_caches(void)
5285 {
5286 kmem_cache_destroy(sit_entry_set_slab);
5287 kmem_cache_destroy(discard_cmd_slab);
5288 kmem_cache_destroy(discard_entry_slab);
5289 kmem_cache_destroy(revoke_entry_slab);
5290 }
5291