1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STRATO AG 2011.  All rights reserved.
4  */
5 
6 /*
7  * This module can be used to catch cases when the btrfs kernel
8  * code executes write requests to the disk that bring the file
9  * system in an inconsistent state. In such a state, a power-loss
10  * or kernel panic event would cause that the data on disk is
11  * lost or at least damaged.
12  *
13  * Code is added that examines all block write requests during
14  * runtime (including writes of the super block). Three rules
15  * are verified and an error is printed on violation of the
16  * rules:
17  * 1. It is not allowed to write a disk block which is
18  *    currently referenced by the super block (either directly
19  *    or indirectly).
20  * 2. When a super block is written, it is verified that all
21  *    referenced (directly or indirectly) blocks fulfill the
22  *    following requirements:
23  *    2a. All referenced blocks have either been present when
24  *        the file system was mounted, (i.e., they have been
25  *        referenced by the super block) or they have been
26  *        written since then and the write completion callback
27  *        was called and no write error was indicated and a
28  *        FLUSH request to the device where these blocks are
29  *        located was received and completed.
30  *    2b. All referenced blocks need to have a generation
31  *        number which is equal to the parent's number.
32  *
33  * One issue that was found using this module was that the log
34  * tree on disk became temporarily corrupted because disk blocks
35  * that had been in use for the log tree had been freed and
36  * reused too early, while being referenced by the written super
37  * block.
38  *
39  * The search term in the kernel log that can be used to filter
40  * on the existence of detected integrity issues is
41  * "btrfs: attempt".
42  *
43  * The integrity check is enabled via mount options. These
44  * mount options are only supported if the integrity check
45  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
46  *
47  * Example #1, apply integrity checks to all metadata:
48  * mount /dev/sdb1 /mnt -o check_int
49  *
50  * Example #2, apply integrity checks to all metadata and
51  * to data extents:
52  * mount /dev/sdb1 /mnt -o check_int_data
53  *
54  * Example #3, apply integrity checks to all metadata and dump
55  * the tree that the super block references to kernel messages
56  * each time after a super block was written:
57  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
58  *
59  * If the integrity check tool is included and activated in
60  * the mount options, plenty of kernel memory is used, and
61  * plenty of additional CPU cycles are spent. Enabling this
62  * functionality is not intended for normal use. In most
63  * cases, unless you are a btrfs developer who needs to verify
64  * the integrity of (super)-block write requests, do not
65  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
66  * include and compile the integrity check tool.
67  *
68  * Expect millions of lines of information in the kernel log with an
69  * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
70  * kernel config to at least 26 (which is 64MB). Usually the value is
71  * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
72  * changed like this before LOG_BUF_SHIFT can be set to a high value:
73  * config LOG_BUF_SHIFT
74  *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
75  *       range 12 30
76  */
77 
78 #include <linux/sched.h>
79 #include <linux/slab.h>
80 #include <linux/mutex.h>
81 #include <linux/blkdev.h>
82 #include <linux/mm.h>
83 #include <linux/string.h>
84 #include <crypto/hash.h>
85 #include "ctree.h"
86 #include "disk-io.h"
87 #include "transaction.h"
88 #include "extent_io.h"
89 #include "volumes.h"
90 #include "print-tree.h"
91 #include "locking.h"
92 #include "check-integrity.h"
93 #include "rcu-string.h"
94 #include "compression.h"
95 
96 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
97 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
98 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
99 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
100 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
101 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
102 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
103 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
104 							 * excluding " [...]" */
105 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
106 
107 /*
108  * The definition of the bitmask fields for the print_mask.
109  * They are specified with the mount option check_integrity_print_mask.
110  */
111 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
112 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
113 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
114 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
115 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
116 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
117 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
118 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
119 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
120 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
121 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
122 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
123 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
124 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
125 
126 struct btrfsic_dev_state;
127 struct btrfsic_state;
128 
129 struct btrfsic_block {
130 	u32 magic_num;		/* only used for debug purposes */
131 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
132 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
133 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
134 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
135 	unsigned int never_written:1;	/* block was added because it was
136 					 * referenced, not because it was
137 					 * written */
138 	unsigned int mirror_num;	/* large enough to hold
139 					 * BTRFS_SUPER_MIRROR_MAX */
140 	struct btrfsic_dev_state *dev_state;
141 	u64 dev_bytenr;		/* key, physical byte num on disk */
142 	u64 logical_bytenr;	/* logical byte num on disk */
143 	u64 generation;
144 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
145 					 * issues, will not always be correct */
146 	struct list_head collision_resolving_node;	/* list node */
147 	struct list_head all_blocks_node;	/* list node */
148 
149 	/* the following two lists contain block_link items */
150 	struct list_head ref_to_list;	/* list */
151 	struct list_head ref_from_list;	/* list */
152 	struct btrfsic_block *next_in_same_bio;
153 	void *orig_bio_private;
154 	bio_end_io_t *orig_bio_end_io;
155 	blk_opf_t submit_bio_bh_rw;
156 	u64 flush_gen; /* only valid if !never_written */
157 };
158 
159 /*
160  * Elements of this type are allocated dynamically and required because
161  * each block object can refer to and can be ref from multiple blocks.
162  * The key to lookup them in the hashtable is the dev_bytenr of
163  * the block ref to plus the one from the block referred from.
164  * The fact that they are searchable via a hashtable and that a
165  * ref_cnt is maintained is not required for the btrfs integrity
166  * check algorithm itself, it is only used to make the output more
167  * beautiful in case that an error is detected (an error is defined
168  * as a write operation to a block while that block is still referenced).
169  */
170 struct btrfsic_block_link {
171 	u32 magic_num;		/* only used for debug purposes */
172 	u32 ref_cnt;
173 	struct list_head node_ref_to;	/* list node */
174 	struct list_head node_ref_from;	/* list node */
175 	struct list_head collision_resolving_node;	/* list node */
176 	struct btrfsic_block *block_ref_to;
177 	struct btrfsic_block *block_ref_from;
178 	u64 parent_generation;
179 };
180 
181 struct btrfsic_dev_state {
182 	u32 magic_num;		/* only used for debug purposes */
183 	struct block_device *bdev;
184 	struct btrfsic_state *state;
185 	struct list_head collision_resolving_node;	/* list node */
186 	struct btrfsic_block dummy_block_for_bio_bh_flush;
187 	u64 last_flush_gen;
188 };
189 
190 struct btrfsic_block_hashtable {
191 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
192 };
193 
194 struct btrfsic_block_link_hashtable {
195 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
196 };
197 
198 struct btrfsic_dev_state_hashtable {
199 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
200 };
201 
202 struct btrfsic_block_data_ctx {
203 	u64 start;		/* virtual bytenr */
204 	u64 dev_bytenr;		/* physical bytenr on device */
205 	u32 len;
206 	struct btrfsic_dev_state *dev;
207 	char **datav;
208 	struct page **pagev;
209 	void *mem_to_free;
210 };
211 
212 /* This structure is used to implement recursion without occupying
213  * any stack space, refer to btrfsic_process_metablock() */
214 struct btrfsic_stack_frame {
215 	u32 magic;
216 	u32 nr;
217 	int error;
218 	int i;
219 	int limit_nesting;
220 	int num_copies;
221 	int mirror_num;
222 	struct btrfsic_block *block;
223 	struct btrfsic_block_data_ctx *block_ctx;
224 	struct btrfsic_block *next_block;
225 	struct btrfsic_block_data_ctx next_block_ctx;
226 	struct btrfs_header *hdr;
227 	struct btrfsic_stack_frame *prev;
228 };
229 
230 /* Some state per mounted filesystem */
231 struct btrfsic_state {
232 	u32 print_mask;
233 	int include_extent_data;
234 	struct list_head all_blocks_list;
235 	struct btrfsic_block_hashtable block_hashtable;
236 	struct btrfsic_block_link_hashtable block_link_hashtable;
237 	struct btrfs_fs_info *fs_info;
238 	u64 max_superblock_generation;
239 	struct btrfsic_block *latest_superblock;
240 	u32 metablock_size;
241 	u32 datablock_size;
242 };
243 
244 static int btrfsic_process_metablock(struct btrfsic_state *state,
245 				     struct btrfsic_block *block,
246 				     struct btrfsic_block_data_ctx *block_ctx,
247 				     int limit_nesting, int force_iodone_flag);
248 static void btrfsic_read_from_block_data(
249 	struct btrfsic_block_data_ctx *block_ctx,
250 	void *dst, u32 offset, size_t len);
251 static int btrfsic_create_link_to_next_block(
252 		struct btrfsic_state *state,
253 		struct btrfsic_block *block,
254 		struct btrfsic_block_data_ctx
255 		*block_ctx, u64 next_bytenr,
256 		int limit_nesting,
257 		struct btrfsic_block_data_ctx *next_block_ctx,
258 		struct btrfsic_block **next_blockp,
259 		int force_iodone_flag,
260 		int *num_copiesp, int *mirror_nump,
261 		struct btrfs_disk_key *disk_key,
262 		u64 parent_generation);
263 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
264 				      struct btrfsic_block *block,
265 				      struct btrfsic_block_data_ctx *block_ctx,
266 				      u32 item_offset, int force_iodone_flag);
267 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
268 			     struct btrfsic_block_data_ctx *block_ctx_out,
269 			     int mirror_num);
270 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
271 static int btrfsic_read_block(struct btrfsic_state *state,
272 			      struct btrfsic_block_data_ctx *block_ctx);
273 static int btrfsic_process_written_superblock(
274 		struct btrfsic_state *state,
275 		struct btrfsic_block *const block,
276 		struct btrfs_super_block *const super_hdr);
277 static void btrfsic_bio_end_io(struct bio *bp);
278 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
279 					      const struct btrfsic_block *block,
280 					      int recursion_level);
281 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
282 					struct btrfsic_block *const block,
283 					int recursion_level);
284 static void btrfsic_print_add_link(const struct btrfsic_state *state,
285 				   const struct btrfsic_block_link *l);
286 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
287 				   const struct btrfsic_block_link *l);
288 static char btrfsic_get_block_type(const struct btrfsic_state *state,
289 				   const struct btrfsic_block *block);
290 static void btrfsic_dump_tree(const struct btrfsic_state *state);
291 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
292 				  const struct btrfsic_block *block,
293 				  int indent_level);
294 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
295 		struct btrfsic_state *state,
296 		struct btrfsic_block_data_ctx *next_block_ctx,
297 		struct btrfsic_block *next_block,
298 		struct btrfsic_block *from_block,
299 		u64 parent_generation);
300 static struct btrfsic_block *btrfsic_block_lookup_or_add(
301 		struct btrfsic_state *state,
302 		struct btrfsic_block_data_ctx *block_ctx,
303 		const char *additional_string,
304 		int is_metadata,
305 		int is_iodone,
306 		int never_written,
307 		int mirror_num,
308 		int *was_created);
309 static int btrfsic_process_superblock_dev_mirror(
310 		struct btrfsic_state *state,
311 		struct btrfsic_dev_state *dev_state,
312 		struct btrfs_device *device,
313 		int superblock_mirror_num,
314 		struct btrfsic_dev_state **selected_dev_state,
315 		struct btrfs_super_block *selected_super);
316 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
317 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
318 					   u64 bytenr,
319 					   struct btrfsic_dev_state *dev_state,
320 					   u64 dev_bytenr);
321 
322 static struct mutex btrfsic_mutex;
323 static int btrfsic_is_initialized;
324 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
325 
326 
btrfsic_block_init(struct btrfsic_block * b)327 static void btrfsic_block_init(struct btrfsic_block *b)
328 {
329 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
330 	b->dev_state = NULL;
331 	b->dev_bytenr = 0;
332 	b->logical_bytenr = 0;
333 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
334 	b->disk_key.objectid = 0;
335 	b->disk_key.type = 0;
336 	b->disk_key.offset = 0;
337 	b->is_metadata = 0;
338 	b->is_superblock = 0;
339 	b->is_iodone = 0;
340 	b->iodone_w_error = 0;
341 	b->never_written = 0;
342 	b->mirror_num = 0;
343 	b->next_in_same_bio = NULL;
344 	b->orig_bio_private = NULL;
345 	b->orig_bio_end_io = NULL;
346 	INIT_LIST_HEAD(&b->collision_resolving_node);
347 	INIT_LIST_HEAD(&b->all_blocks_node);
348 	INIT_LIST_HEAD(&b->ref_to_list);
349 	INIT_LIST_HEAD(&b->ref_from_list);
350 	b->submit_bio_bh_rw = 0;
351 	b->flush_gen = 0;
352 }
353 
btrfsic_block_alloc(void)354 static struct btrfsic_block *btrfsic_block_alloc(void)
355 {
356 	struct btrfsic_block *b;
357 
358 	b = kzalloc(sizeof(*b), GFP_NOFS);
359 	if (NULL != b)
360 		btrfsic_block_init(b);
361 
362 	return b;
363 }
364 
btrfsic_block_free(struct btrfsic_block * b)365 static void btrfsic_block_free(struct btrfsic_block *b)
366 {
367 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
368 	kfree(b);
369 }
370 
btrfsic_block_link_init(struct btrfsic_block_link * l)371 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
372 {
373 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
374 	l->ref_cnt = 1;
375 	INIT_LIST_HEAD(&l->node_ref_to);
376 	INIT_LIST_HEAD(&l->node_ref_from);
377 	INIT_LIST_HEAD(&l->collision_resolving_node);
378 	l->block_ref_to = NULL;
379 	l->block_ref_from = NULL;
380 }
381 
btrfsic_block_link_alloc(void)382 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
383 {
384 	struct btrfsic_block_link *l;
385 
386 	l = kzalloc(sizeof(*l), GFP_NOFS);
387 	if (NULL != l)
388 		btrfsic_block_link_init(l);
389 
390 	return l;
391 }
392 
btrfsic_block_link_free(struct btrfsic_block_link * l)393 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
394 {
395 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
396 	kfree(l);
397 }
398 
btrfsic_dev_state_init(struct btrfsic_dev_state * ds)399 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
400 {
401 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
402 	ds->bdev = NULL;
403 	ds->state = NULL;
404 	INIT_LIST_HEAD(&ds->collision_resolving_node);
405 	ds->last_flush_gen = 0;
406 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
407 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
408 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
409 }
410 
btrfsic_dev_state_alloc(void)411 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
412 {
413 	struct btrfsic_dev_state *ds;
414 
415 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
416 	if (NULL != ds)
417 		btrfsic_dev_state_init(ds);
418 
419 	return ds;
420 }
421 
btrfsic_dev_state_free(struct btrfsic_dev_state * ds)422 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
423 {
424 	BUG_ON(!(NULL == ds ||
425 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
426 	kfree(ds);
427 }
428 
btrfsic_block_hashtable_init(struct btrfsic_block_hashtable * h)429 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
430 {
431 	int i;
432 
433 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
434 		INIT_LIST_HEAD(h->table + i);
435 }
436 
btrfsic_block_hashtable_add(struct btrfsic_block * b,struct btrfsic_block_hashtable * h)437 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
438 					struct btrfsic_block_hashtable *h)
439 {
440 	const unsigned int hashval =
441 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
442 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
443 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
444 
445 	list_add(&b->collision_resolving_node, h->table + hashval);
446 }
447 
btrfsic_block_hashtable_remove(struct btrfsic_block * b)448 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
449 {
450 	list_del(&b->collision_resolving_node);
451 }
452 
btrfsic_block_hashtable_lookup(struct block_device * bdev,u64 dev_bytenr,struct btrfsic_block_hashtable * h)453 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
454 		struct block_device *bdev,
455 		u64 dev_bytenr,
456 		struct btrfsic_block_hashtable *h)
457 {
458 	const unsigned int hashval =
459 	    (((unsigned int)(dev_bytenr >> 16)) ^
460 	     ((unsigned int)((uintptr_t)bdev))) &
461 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
462 	struct btrfsic_block *b;
463 
464 	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
465 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
466 			return b;
467 	}
468 
469 	return NULL;
470 }
471 
btrfsic_block_link_hashtable_init(struct btrfsic_block_link_hashtable * h)472 static void btrfsic_block_link_hashtable_init(
473 		struct btrfsic_block_link_hashtable *h)
474 {
475 	int i;
476 
477 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
478 		INIT_LIST_HEAD(h->table + i);
479 }
480 
btrfsic_block_link_hashtable_add(struct btrfsic_block_link * l,struct btrfsic_block_link_hashtable * h)481 static void btrfsic_block_link_hashtable_add(
482 		struct btrfsic_block_link *l,
483 		struct btrfsic_block_link_hashtable *h)
484 {
485 	const unsigned int hashval =
486 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
487 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
488 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
489 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
490 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
491 
492 	BUG_ON(NULL == l->block_ref_to);
493 	BUG_ON(NULL == l->block_ref_from);
494 	list_add(&l->collision_resolving_node, h->table + hashval);
495 }
496 
btrfsic_block_link_hashtable_remove(struct btrfsic_block_link * l)497 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
498 {
499 	list_del(&l->collision_resolving_node);
500 }
501 
btrfsic_block_link_hashtable_lookup(struct block_device * bdev_ref_to,u64 dev_bytenr_ref_to,struct block_device * bdev_ref_from,u64 dev_bytenr_ref_from,struct btrfsic_block_link_hashtable * h)502 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
503 		struct block_device *bdev_ref_to,
504 		u64 dev_bytenr_ref_to,
505 		struct block_device *bdev_ref_from,
506 		u64 dev_bytenr_ref_from,
507 		struct btrfsic_block_link_hashtable *h)
508 {
509 	const unsigned int hashval =
510 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
511 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
512 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
513 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
514 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
515 	struct btrfsic_block_link *l;
516 
517 	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
518 		BUG_ON(NULL == l->block_ref_to);
519 		BUG_ON(NULL == l->block_ref_from);
520 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
521 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
522 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
523 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
524 			return l;
525 	}
526 
527 	return NULL;
528 }
529 
btrfsic_dev_state_hashtable_init(struct btrfsic_dev_state_hashtable * h)530 static void btrfsic_dev_state_hashtable_init(
531 		struct btrfsic_dev_state_hashtable *h)
532 {
533 	int i;
534 
535 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
536 		INIT_LIST_HEAD(h->table + i);
537 }
538 
btrfsic_dev_state_hashtable_add(struct btrfsic_dev_state * ds,struct btrfsic_dev_state_hashtable * h)539 static void btrfsic_dev_state_hashtable_add(
540 		struct btrfsic_dev_state *ds,
541 		struct btrfsic_dev_state_hashtable *h)
542 {
543 	const unsigned int hashval =
544 	    (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
545 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
546 
547 	list_add(&ds->collision_resolving_node, h->table + hashval);
548 }
549 
btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state * ds)550 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
551 {
552 	list_del(&ds->collision_resolving_node);
553 }
554 
btrfsic_dev_state_hashtable_lookup(dev_t dev,struct btrfsic_dev_state_hashtable * h)555 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
556 		struct btrfsic_dev_state_hashtable *h)
557 {
558 	const unsigned int hashval =
559 		dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
560 	struct btrfsic_dev_state *ds;
561 
562 	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
563 		if (ds->bdev->bd_dev == dev)
564 			return ds;
565 	}
566 
567 	return NULL;
568 }
569 
btrfsic_process_superblock(struct btrfsic_state * state,struct btrfs_fs_devices * fs_devices)570 static int btrfsic_process_superblock(struct btrfsic_state *state,
571 				      struct btrfs_fs_devices *fs_devices)
572 {
573 	struct btrfs_super_block *selected_super;
574 	struct list_head *dev_head = &fs_devices->devices;
575 	struct btrfs_device *device;
576 	struct btrfsic_dev_state *selected_dev_state = NULL;
577 	int ret = 0;
578 	int pass;
579 
580 	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
581 	if (!selected_super)
582 		return -ENOMEM;
583 
584 	list_for_each_entry(device, dev_head, dev_list) {
585 		int i;
586 		struct btrfsic_dev_state *dev_state;
587 
588 		if (!device->bdev || !device->name)
589 			continue;
590 
591 		dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
592 		BUG_ON(NULL == dev_state);
593 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
594 			ret = btrfsic_process_superblock_dev_mirror(
595 					state, dev_state, device, i,
596 					&selected_dev_state, selected_super);
597 			if (0 != ret && 0 == i) {
598 				kfree(selected_super);
599 				return ret;
600 			}
601 		}
602 	}
603 
604 	if (NULL == state->latest_superblock) {
605 		pr_info("btrfsic: no superblock found!\n");
606 		kfree(selected_super);
607 		return -1;
608 	}
609 
610 	for (pass = 0; pass < 3; pass++) {
611 		int num_copies;
612 		int mirror_num;
613 		u64 next_bytenr;
614 
615 		switch (pass) {
616 		case 0:
617 			next_bytenr = btrfs_super_root(selected_super);
618 			if (state->print_mask &
619 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
620 				pr_info("root@%llu\n", next_bytenr);
621 			break;
622 		case 1:
623 			next_bytenr = btrfs_super_chunk_root(selected_super);
624 			if (state->print_mask &
625 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
626 				pr_info("chunk@%llu\n", next_bytenr);
627 			break;
628 		case 2:
629 			next_bytenr = btrfs_super_log_root(selected_super);
630 			if (0 == next_bytenr)
631 				continue;
632 			if (state->print_mask &
633 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
634 				pr_info("log@%llu\n", next_bytenr);
635 			break;
636 		}
637 
638 		num_copies = btrfs_num_copies(state->fs_info, next_bytenr,
639 					      state->metablock_size);
640 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
641 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
642 			       next_bytenr, num_copies);
643 
644 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
645 			struct btrfsic_block *next_block;
646 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
647 			struct btrfsic_block_link *l;
648 
649 			ret = btrfsic_map_block(state, next_bytenr,
650 						state->metablock_size,
651 						&tmp_next_block_ctx,
652 						mirror_num);
653 			if (ret) {
654 				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
655 				       next_bytenr, mirror_num);
656 				kfree(selected_super);
657 				return -1;
658 			}
659 
660 			next_block = btrfsic_block_hashtable_lookup(
661 					tmp_next_block_ctx.dev->bdev,
662 					tmp_next_block_ctx.dev_bytenr,
663 					&state->block_hashtable);
664 			BUG_ON(NULL == next_block);
665 
666 			l = btrfsic_block_link_hashtable_lookup(
667 					tmp_next_block_ctx.dev->bdev,
668 					tmp_next_block_ctx.dev_bytenr,
669 					state->latest_superblock->dev_state->
670 					bdev,
671 					state->latest_superblock->dev_bytenr,
672 					&state->block_link_hashtable);
673 			BUG_ON(NULL == l);
674 
675 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
676 			if (ret < (int)PAGE_SIZE) {
677 				pr_info("btrfsic: read @logical %llu failed!\n",
678 				       tmp_next_block_ctx.start);
679 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
680 				kfree(selected_super);
681 				return -1;
682 			}
683 
684 			ret = btrfsic_process_metablock(state,
685 							next_block,
686 							&tmp_next_block_ctx,
687 							BTRFS_MAX_LEVEL + 3, 1);
688 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
689 		}
690 	}
691 
692 	kfree(selected_super);
693 	return ret;
694 }
695 
btrfsic_process_superblock_dev_mirror(struct btrfsic_state * state,struct btrfsic_dev_state * dev_state,struct btrfs_device * device,int superblock_mirror_num,struct btrfsic_dev_state ** selected_dev_state,struct btrfs_super_block * selected_super)696 static int btrfsic_process_superblock_dev_mirror(
697 		struct btrfsic_state *state,
698 		struct btrfsic_dev_state *dev_state,
699 		struct btrfs_device *device,
700 		int superblock_mirror_num,
701 		struct btrfsic_dev_state **selected_dev_state,
702 		struct btrfs_super_block *selected_super)
703 {
704 	struct btrfs_fs_info *fs_info = state->fs_info;
705 	struct btrfs_super_block *super_tmp;
706 	u64 dev_bytenr;
707 	struct btrfsic_block *superblock_tmp;
708 	int pass;
709 	struct block_device *const superblock_bdev = device->bdev;
710 	struct page *page;
711 	struct address_space *mapping = superblock_bdev->bd_inode->i_mapping;
712 	int ret = 0;
713 
714 	/* super block bytenr is always the unmapped device bytenr */
715 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
716 	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
717 		return -1;
718 
719 	page = read_cache_page_gfp(mapping, dev_bytenr >> PAGE_SHIFT, GFP_NOFS);
720 	if (IS_ERR(page))
721 		return -1;
722 
723 	super_tmp = page_address(page);
724 
725 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
726 	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
727 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
728 	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
729 	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
730 		ret = 0;
731 		goto out;
732 	}
733 
734 	superblock_tmp =
735 	    btrfsic_block_hashtable_lookup(superblock_bdev,
736 					   dev_bytenr,
737 					   &state->block_hashtable);
738 	if (NULL == superblock_tmp) {
739 		superblock_tmp = btrfsic_block_alloc();
740 		if (NULL == superblock_tmp) {
741 			ret = -1;
742 			goto out;
743 		}
744 		/* for superblock, only the dev_bytenr makes sense */
745 		superblock_tmp->dev_bytenr = dev_bytenr;
746 		superblock_tmp->dev_state = dev_state;
747 		superblock_tmp->logical_bytenr = dev_bytenr;
748 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
749 		superblock_tmp->is_metadata = 1;
750 		superblock_tmp->is_superblock = 1;
751 		superblock_tmp->is_iodone = 1;
752 		superblock_tmp->never_written = 0;
753 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
754 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
755 			btrfs_info_in_rcu(fs_info,
756 			"new initial S-block (bdev %p, %s) @%llu (%pg/%llu/%d)",
757 				     superblock_bdev,
758 				     rcu_str_deref(device->name), dev_bytenr,
759 				     dev_state->bdev, dev_bytenr,
760 				     superblock_mirror_num);
761 		list_add(&superblock_tmp->all_blocks_node,
762 			 &state->all_blocks_list);
763 		btrfsic_block_hashtable_add(superblock_tmp,
764 					    &state->block_hashtable);
765 	}
766 
767 	/* select the one with the highest generation field */
768 	if (btrfs_super_generation(super_tmp) >
769 	    state->max_superblock_generation ||
770 	    0 == state->max_superblock_generation) {
771 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
772 		*selected_dev_state = dev_state;
773 		state->max_superblock_generation =
774 		    btrfs_super_generation(super_tmp);
775 		state->latest_superblock = superblock_tmp;
776 	}
777 
778 	for (pass = 0; pass < 3; pass++) {
779 		u64 next_bytenr;
780 		int num_copies;
781 		int mirror_num;
782 		const char *additional_string = NULL;
783 		struct btrfs_disk_key tmp_disk_key;
784 
785 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
786 		tmp_disk_key.offset = 0;
787 		switch (pass) {
788 		case 0:
789 			btrfs_set_disk_key_objectid(&tmp_disk_key,
790 						    BTRFS_ROOT_TREE_OBJECTID);
791 			additional_string = "initial root ";
792 			next_bytenr = btrfs_super_root(super_tmp);
793 			break;
794 		case 1:
795 			btrfs_set_disk_key_objectid(&tmp_disk_key,
796 						    BTRFS_CHUNK_TREE_OBJECTID);
797 			additional_string = "initial chunk ";
798 			next_bytenr = btrfs_super_chunk_root(super_tmp);
799 			break;
800 		case 2:
801 			btrfs_set_disk_key_objectid(&tmp_disk_key,
802 						    BTRFS_TREE_LOG_OBJECTID);
803 			additional_string = "initial log ";
804 			next_bytenr = btrfs_super_log_root(super_tmp);
805 			if (0 == next_bytenr)
806 				continue;
807 			break;
808 		}
809 
810 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
811 					      state->metablock_size);
812 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
813 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
814 			       next_bytenr, num_copies);
815 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
816 			struct btrfsic_block *next_block;
817 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
818 			struct btrfsic_block_link *l;
819 
820 			if (btrfsic_map_block(state, next_bytenr,
821 					      state->metablock_size,
822 					      &tmp_next_block_ctx,
823 					      mirror_num)) {
824 				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
825 				       next_bytenr, mirror_num);
826 				ret = -1;
827 				goto out;
828 			}
829 
830 			next_block = btrfsic_block_lookup_or_add(
831 					state, &tmp_next_block_ctx,
832 					additional_string, 1, 1, 0,
833 					mirror_num, NULL);
834 			if (NULL == next_block) {
835 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
836 				ret = -1;
837 				goto out;
838 			}
839 
840 			next_block->disk_key = tmp_disk_key;
841 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
842 			l = btrfsic_block_link_lookup_or_add(
843 					state, &tmp_next_block_ctx,
844 					next_block, superblock_tmp,
845 					BTRFSIC_GENERATION_UNKNOWN);
846 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
847 			if (NULL == l) {
848 				ret = -1;
849 				goto out;
850 			}
851 		}
852 	}
853 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
854 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
855 
856 out:
857 	put_page(page);
858 	return ret;
859 }
860 
btrfsic_stack_frame_alloc(void)861 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
862 {
863 	struct btrfsic_stack_frame *sf;
864 
865 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
866 	if (sf)
867 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
868 	return sf;
869 }
870 
btrfsic_stack_frame_free(struct btrfsic_stack_frame * sf)871 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
872 {
873 	BUG_ON(!(NULL == sf ||
874 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
875 	kfree(sf);
876 }
877 
btrfsic_process_metablock(struct btrfsic_state * state,struct btrfsic_block * const first_block,struct btrfsic_block_data_ctx * const first_block_ctx,int first_limit_nesting,int force_iodone_flag)878 static noinline_for_stack int btrfsic_process_metablock(
879 		struct btrfsic_state *state,
880 		struct btrfsic_block *const first_block,
881 		struct btrfsic_block_data_ctx *const first_block_ctx,
882 		int first_limit_nesting, int force_iodone_flag)
883 {
884 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
885 	struct btrfsic_stack_frame *sf;
886 	struct btrfsic_stack_frame *next_stack;
887 	struct btrfs_header *const first_hdr =
888 		(struct btrfs_header *)first_block_ctx->datav[0];
889 
890 	BUG_ON(!first_hdr);
891 	sf = &initial_stack_frame;
892 	sf->error = 0;
893 	sf->i = -1;
894 	sf->limit_nesting = first_limit_nesting;
895 	sf->block = first_block;
896 	sf->block_ctx = first_block_ctx;
897 	sf->next_block = NULL;
898 	sf->hdr = first_hdr;
899 	sf->prev = NULL;
900 
901 continue_with_new_stack_frame:
902 	sf->block->generation = btrfs_stack_header_generation(sf->hdr);
903 	if (0 == sf->hdr->level) {
904 		struct btrfs_leaf *const leafhdr =
905 		    (struct btrfs_leaf *)sf->hdr;
906 
907 		if (-1 == sf->i) {
908 			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
909 
910 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
911 				pr_info("leaf %llu items %d generation %llu owner %llu\n",
912 				       sf->block_ctx->start, sf->nr,
913 				       btrfs_stack_header_generation(
914 					       &leafhdr->header),
915 				       btrfs_stack_header_owner(
916 					       &leafhdr->header));
917 		}
918 
919 continue_with_current_leaf_stack_frame:
920 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
921 			sf->i++;
922 			sf->num_copies = 0;
923 		}
924 
925 		if (sf->i < sf->nr) {
926 			struct btrfs_item disk_item;
927 			u32 disk_item_offset =
928 				(uintptr_t)(leafhdr->items + sf->i) -
929 				(uintptr_t)leafhdr;
930 			struct btrfs_disk_key *disk_key;
931 			u8 type;
932 			u32 item_offset;
933 			u32 item_size;
934 
935 			if (disk_item_offset + sizeof(struct btrfs_item) >
936 			    sf->block_ctx->len) {
937 leaf_item_out_of_bounce_error:
938 				pr_info(
939 		"btrfsic: leaf item out of bounce at logical %llu, dev %pg\n",
940 				       sf->block_ctx->start,
941 				       sf->block_ctx->dev->bdev);
942 				goto one_stack_frame_backwards;
943 			}
944 			btrfsic_read_from_block_data(sf->block_ctx,
945 						     &disk_item,
946 						     disk_item_offset,
947 						     sizeof(struct btrfs_item));
948 			item_offset = btrfs_stack_item_offset(&disk_item);
949 			item_size = btrfs_stack_item_size(&disk_item);
950 			disk_key = &disk_item.key;
951 			type = btrfs_disk_key_type(disk_key);
952 
953 			if (BTRFS_ROOT_ITEM_KEY == type) {
954 				struct btrfs_root_item root_item;
955 				u32 root_item_offset;
956 				u64 next_bytenr;
957 
958 				root_item_offset = item_offset +
959 					offsetof(struct btrfs_leaf, items);
960 				if (root_item_offset + item_size >
961 				    sf->block_ctx->len)
962 					goto leaf_item_out_of_bounce_error;
963 				btrfsic_read_from_block_data(
964 					sf->block_ctx, &root_item,
965 					root_item_offset,
966 					item_size);
967 				next_bytenr = btrfs_root_bytenr(&root_item);
968 
969 				sf->error =
970 				    btrfsic_create_link_to_next_block(
971 						state,
972 						sf->block,
973 						sf->block_ctx,
974 						next_bytenr,
975 						sf->limit_nesting,
976 						&sf->next_block_ctx,
977 						&sf->next_block,
978 						force_iodone_flag,
979 						&sf->num_copies,
980 						&sf->mirror_num,
981 						disk_key,
982 						btrfs_root_generation(
983 						&root_item));
984 				if (sf->error)
985 					goto one_stack_frame_backwards;
986 
987 				if (NULL != sf->next_block) {
988 					struct btrfs_header *const next_hdr =
989 					    (struct btrfs_header *)
990 					    sf->next_block_ctx.datav[0];
991 
992 					next_stack =
993 					    btrfsic_stack_frame_alloc();
994 					if (NULL == next_stack) {
995 						sf->error = -1;
996 						btrfsic_release_block_ctx(
997 								&sf->
998 								next_block_ctx);
999 						goto one_stack_frame_backwards;
1000 					}
1001 
1002 					next_stack->i = -1;
1003 					next_stack->block = sf->next_block;
1004 					next_stack->block_ctx =
1005 					    &sf->next_block_ctx;
1006 					next_stack->next_block = NULL;
1007 					next_stack->hdr = next_hdr;
1008 					next_stack->limit_nesting =
1009 					    sf->limit_nesting - 1;
1010 					next_stack->prev = sf;
1011 					sf = next_stack;
1012 					goto continue_with_new_stack_frame;
1013 				}
1014 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1015 				   state->include_extent_data) {
1016 				sf->error = btrfsic_handle_extent_data(
1017 						state,
1018 						sf->block,
1019 						sf->block_ctx,
1020 						item_offset,
1021 						force_iodone_flag);
1022 				if (sf->error)
1023 					goto one_stack_frame_backwards;
1024 			}
1025 
1026 			goto continue_with_current_leaf_stack_frame;
1027 		}
1028 	} else {
1029 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1030 
1031 		if (-1 == sf->i) {
1032 			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1033 
1034 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1035 				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1036 				       sf->block_ctx->start,
1037 				       nodehdr->header.level, sf->nr,
1038 				       btrfs_stack_header_generation(
1039 				       &nodehdr->header),
1040 				       btrfs_stack_header_owner(
1041 				       &nodehdr->header));
1042 		}
1043 
1044 continue_with_current_node_stack_frame:
1045 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1046 			sf->i++;
1047 			sf->num_copies = 0;
1048 		}
1049 
1050 		if (sf->i < sf->nr) {
1051 			struct btrfs_key_ptr key_ptr;
1052 			u32 key_ptr_offset;
1053 			u64 next_bytenr;
1054 
1055 			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1056 					  (uintptr_t)nodehdr;
1057 			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1058 			    sf->block_ctx->len) {
1059 				pr_info(
1060 		"btrfsic: node item out of bounce at logical %llu, dev %pg\n",
1061 				       sf->block_ctx->start,
1062 				       sf->block_ctx->dev->bdev);
1063 				goto one_stack_frame_backwards;
1064 			}
1065 			btrfsic_read_from_block_data(
1066 				sf->block_ctx, &key_ptr, key_ptr_offset,
1067 				sizeof(struct btrfs_key_ptr));
1068 			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1069 
1070 			sf->error = btrfsic_create_link_to_next_block(
1071 					state,
1072 					sf->block,
1073 					sf->block_ctx,
1074 					next_bytenr,
1075 					sf->limit_nesting,
1076 					&sf->next_block_ctx,
1077 					&sf->next_block,
1078 					force_iodone_flag,
1079 					&sf->num_copies,
1080 					&sf->mirror_num,
1081 					&key_ptr.key,
1082 					btrfs_stack_key_generation(&key_ptr));
1083 			if (sf->error)
1084 				goto one_stack_frame_backwards;
1085 
1086 			if (NULL != sf->next_block) {
1087 				struct btrfs_header *const next_hdr =
1088 				    (struct btrfs_header *)
1089 				    sf->next_block_ctx.datav[0];
1090 
1091 				next_stack = btrfsic_stack_frame_alloc();
1092 				if (NULL == next_stack) {
1093 					sf->error = -1;
1094 					goto one_stack_frame_backwards;
1095 				}
1096 
1097 				next_stack->i = -1;
1098 				next_stack->block = sf->next_block;
1099 				next_stack->block_ctx = &sf->next_block_ctx;
1100 				next_stack->next_block = NULL;
1101 				next_stack->hdr = next_hdr;
1102 				next_stack->limit_nesting =
1103 				    sf->limit_nesting - 1;
1104 				next_stack->prev = sf;
1105 				sf = next_stack;
1106 				goto continue_with_new_stack_frame;
1107 			}
1108 
1109 			goto continue_with_current_node_stack_frame;
1110 		}
1111 	}
1112 
1113 one_stack_frame_backwards:
1114 	if (NULL != sf->prev) {
1115 		struct btrfsic_stack_frame *const prev = sf->prev;
1116 
1117 		/* the one for the initial block is freed in the caller */
1118 		btrfsic_release_block_ctx(sf->block_ctx);
1119 
1120 		if (sf->error) {
1121 			prev->error = sf->error;
1122 			btrfsic_stack_frame_free(sf);
1123 			sf = prev;
1124 			goto one_stack_frame_backwards;
1125 		}
1126 
1127 		btrfsic_stack_frame_free(sf);
1128 		sf = prev;
1129 		goto continue_with_new_stack_frame;
1130 	} else {
1131 		BUG_ON(&initial_stack_frame != sf);
1132 	}
1133 
1134 	return sf->error;
1135 }
1136 
btrfsic_read_from_block_data(struct btrfsic_block_data_ctx * block_ctx,void * dstv,u32 offset,size_t len)1137 static void btrfsic_read_from_block_data(
1138 	struct btrfsic_block_data_ctx *block_ctx,
1139 	void *dstv, u32 offset, size_t len)
1140 {
1141 	size_t cur;
1142 	size_t pgoff;
1143 	char *kaddr;
1144 	char *dst = (char *)dstv;
1145 	size_t start_offset = offset_in_page(block_ctx->start);
1146 	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1147 
1148 	WARN_ON(offset + len > block_ctx->len);
1149 	pgoff = offset_in_page(start_offset + offset);
1150 
1151 	while (len > 0) {
1152 		cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1153 		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1154 		kaddr = block_ctx->datav[i];
1155 		memcpy(dst, kaddr + pgoff, cur);
1156 
1157 		dst += cur;
1158 		len -= cur;
1159 		pgoff = 0;
1160 		i++;
1161 	}
1162 }
1163 
btrfsic_create_link_to_next_block(struct btrfsic_state * state,struct btrfsic_block * block,struct btrfsic_block_data_ctx * block_ctx,u64 next_bytenr,int limit_nesting,struct btrfsic_block_data_ctx * next_block_ctx,struct btrfsic_block ** next_blockp,int force_iodone_flag,int * num_copiesp,int * mirror_nump,struct btrfs_disk_key * disk_key,u64 parent_generation)1164 static int btrfsic_create_link_to_next_block(
1165 		struct btrfsic_state *state,
1166 		struct btrfsic_block *block,
1167 		struct btrfsic_block_data_ctx *block_ctx,
1168 		u64 next_bytenr,
1169 		int limit_nesting,
1170 		struct btrfsic_block_data_ctx *next_block_ctx,
1171 		struct btrfsic_block **next_blockp,
1172 		int force_iodone_flag,
1173 		int *num_copiesp, int *mirror_nump,
1174 		struct btrfs_disk_key *disk_key,
1175 		u64 parent_generation)
1176 {
1177 	struct btrfs_fs_info *fs_info = state->fs_info;
1178 	struct btrfsic_block *next_block = NULL;
1179 	int ret;
1180 	struct btrfsic_block_link *l;
1181 	int did_alloc_block_link;
1182 	int block_was_created;
1183 
1184 	*next_blockp = NULL;
1185 	if (0 == *num_copiesp) {
1186 		*num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1187 						state->metablock_size);
1188 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1189 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1190 			       next_bytenr, *num_copiesp);
1191 		*mirror_nump = 1;
1192 	}
1193 
1194 	if (*mirror_nump > *num_copiesp)
1195 		return 0;
1196 
1197 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1198 		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1199 		       *mirror_nump);
1200 	ret = btrfsic_map_block(state, next_bytenr,
1201 				state->metablock_size,
1202 				next_block_ctx, *mirror_nump);
1203 	if (ret) {
1204 		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1205 		       next_bytenr, *mirror_nump);
1206 		btrfsic_release_block_ctx(next_block_ctx);
1207 		*next_blockp = NULL;
1208 		return -1;
1209 	}
1210 
1211 	next_block = btrfsic_block_lookup_or_add(state,
1212 						 next_block_ctx, "referenced ",
1213 						 1, force_iodone_flag,
1214 						 !force_iodone_flag,
1215 						 *mirror_nump,
1216 						 &block_was_created);
1217 	if (NULL == next_block) {
1218 		btrfsic_release_block_ctx(next_block_ctx);
1219 		*next_blockp = NULL;
1220 		return -1;
1221 	}
1222 	if (block_was_created) {
1223 		l = NULL;
1224 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1225 	} else {
1226 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1227 			if (next_block->logical_bytenr != next_bytenr &&
1228 			    !(!next_block->is_metadata &&
1229 			      0 == next_block->logical_bytenr))
1230 				pr_info(
1231 "referenced block @%llu (%pg/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu)\n",
1232 				       next_bytenr, next_block_ctx->dev->bdev,
1233 				       next_block_ctx->dev_bytenr, *mirror_nump,
1234 				       btrfsic_get_block_type(state,
1235 							      next_block),
1236 				       next_block->logical_bytenr);
1237 			else
1238 				pr_info(
1239 		"referenced block @%llu (%pg/%llu/%d) found in hash table, %c\n",
1240 				       next_bytenr, next_block_ctx->dev->bdev,
1241 				       next_block_ctx->dev_bytenr, *mirror_nump,
1242 				       btrfsic_get_block_type(state,
1243 							      next_block));
1244 		}
1245 		next_block->logical_bytenr = next_bytenr;
1246 
1247 		next_block->mirror_num = *mirror_nump;
1248 		l = btrfsic_block_link_hashtable_lookup(
1249 				next_block_ctx->dev->bdev,
1250 				next_block_ctx->dev_bytenr,
1251 				block_ctx->dev->bdev,
1252 				block_ctx->dev_bytenr,
1253 				&state->block_link_hashtable);
1254 	}
1255 
1256 	next_block->disk_key = *disk_key;
1257 	if (NULL == l) {
1258 		l = btrfsic_block_link_alloc();
1259 		if (NULL == l) {
1260 			btrfsic_release_block_ctx(next_block_ctx);
1261 			*next_blockp = NULL;
1262 			return -1;
1263 		}
1264 
1265 		did_alloc_block_link = 1;
1266 		l->block_ref_to = next_block;
1267 		l->block_ref_from = block;
1268 		l->ref_cnt = 1;
1269 		l->parent_generation = parent_generation;
1270 
1271 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1272 			btrfsic_print_add_link(state, l);
1273 
1274 		list_add(&l->node_ref_to, &block->ref_to_list);
1275 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1276 
1277 		btrfsic_block_link_hashtable_add(l,
1278 						 &state->block_link_hashtable);
1279 	} else {
1280 		did_alloc_block_link = 0;
1281 		if (0 == limit_nesting) {
1282 			l->ref_cnt++;
1283 			l->parent_generation = parent_generation;
1284 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1285 				btrfsic_print_add_link(state, l);
1286 		}
1287 	}
1288 
1289 	if (limit_nesting > 0 && did_alloc_block_link) {
1290 		ret = btrfsic_read_block(state, next_block_ctx);
1291 		if (ret < (int)next_block_ctx->len) {
1292 			pr_info("btrfsic: read block @logical %llu failed!\n",
1293 			       next_bytenr);
1294 			btrfsic_release_block_ctx(next_block_ctx);
1295 			*next_blockp = NULL;
1296 			return -1;
1297 		}
1298 
1299 		*next_blockp = next_block;
1300 	} else {
1301 		*next_blockp = NULL;
1302 	}
1303 	(*mirror_nump)++;
1304 
1305 	return 0;
1306 }
1307 
btrfsic_handle_extent_data(struct btrfsic_state * state,struct btrfsic_block * block,struct btrfsic_block_data_ctx * block_ctx,u32 item_offset,int force_iodone_flag)1308 static int btrfsic_handle_extent_data(
1309 		struct btrfsic_state *state,
1310 		struct btrfsic_block *block,
1311 		struct btrfsic_block_data_ctx *block_ctx,
1312 		u32 item_offset, int force_iodone_flag)
1313 {
1314 	struct btrfs_fs_info *fs_info = state->fs_info;
1315 	struct btrfs_file_extent_item file_extent_item;
1316 	u64 file_extent_item_offset;
1317 	u64 next_bytenr;
1318 	u64 num_bytes;
1319 	u64 generation;
1320 	struct btrfsic_block_link *l;
1321 	int ret;
1322 
1323 	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1324 				  item_offset;
1325 	if (file_extent_item_offset +
1326 	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1327 	    block_ctx->len) {
1328 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %pg\n",
1329 		       block_ctx->start, block_ctx->dev->bdev);
1330 		return -1;
1331 	}
1332 
1333 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1334 		file_extent_item_offset,
1335 		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1336 	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1337 	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1338 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1339 			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1340 			       file_extent_item.type,
1341 			       btrfs_stack_file_extent_disk_bytenr(
1342 			       &file_extent_item));
1343 		return 0;
1344 	}
1345 
1346 	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1347 	    block_ctx->len) {
1348 		pr_info("btrfsic: file item out of bounce at logical %llu, dev %pg\n",
1349 		       block_ctx->start, block_ctx->dev->bdev);
1350 		return -1;
1351 	}
1352 	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1353 				     file_extent_item_offset,
1354 				     sizeof(struct btrfs_file_extent_item));
1355 	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1356 	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1357 	    BTRFS_COMPRESS_NONE) {
1358 		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1359 		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1360 	} else {
1361 		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1362 	}
1363 	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1364 
1365 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1366 		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1367 		       file_extent_item.type,
1368 		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1369 		       btrfs_stack_file_extent_offset(&file_extent_item),
1370 		       num_bytes);
1371 	while (num_bytes > 0) {
1372 		u32 chunk_len;
1373 		int num_copies;
1374 		int mirror_num;
1375 
1376 		if (num_bytes > state->datablock_size)
1377 			chunk_len = state->datablock_size;
1378 		else
1379 			chunk_len = num_bytes;
1380 
1381 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
1382 					      state->datablock_size);
1383 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1384 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1385 			       next_bytenr, num_copies);
1386 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1387 			struct btrfsic_block_data_ctx next_block_ctx;
1388 			struct btrfsic_block *next_block;
1389 			int block_was_created;
1390 
1391 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1392 				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1393 					mirror_num);
1394 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1395 				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1396 				       next_bytenr, chunk_len);
1397 			ret = btrfsic_map_block(state, next_bytenr,
1398 						chunk_len, &next_block_ctx,
1399 						mirror_num);
1400 			if (ret) {
1401 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1402 				       next_bytenr, mirror_num);
1403 				return -1;
1404 			}
1405 
1406 			next_block = btrfsic_block_lookup_or_add(
1407 					state,
1408 					&next_block_ctx,
1409 					"referenced ",
1410 					0,
1411 					force_iodone_flag,
1412 					!force_iodone_flag,
1413 					mirror_num,
1414 					&block_was_created);
1415 			if (NULL == next_block) {
1416 				btrfsic_release_block_ctx(&next_block_ctx);
1417 				return -1;
1418 			}
1419 			if (!block_was_created) {
1420 				if ((state->print_mask &
1421 				     BTRFSIC_PRINT_MASK_VERBOSE) &&
1422 				    next_block->logical_bytenr != next_bytenr &&
1423 				    !(!next_block->is_metadata &&
1424 				      0 == next_block->logical_bytenr)) {
1425 					pr_info(
1426 "referenced block @%llu (%pg/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu)\n",
1427 					       next_bytenr,
1428 					       next_block_ctx.dev->bdev,
1429 					       next_block_ctx.dev_bytenr,
1430 					       mirror_num,
1431 					       next_block->logical_bytenr);
1432 				}
1433 				next_block->logical_bytenr = next_bytenr;
1434 				next_block->mirror_num = mirror_num;
1435 			}
1436 
1437 			l = btrfsic_block_link_lookup_or_add(state,
1438 							     &next_block_ctx,
1439 							     next_block, block,
1440 							     generation);
1441 			btrfsic_release_block_ctx(&next_block_ctx);
1442 			if (NULL == l)
1443 				return -1;
1444 		}
1445 
1446 		next_bytenr += chunk_len;
1447 		num_bytes -= chunk_len;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
btrfsic_map_block(struct btrfsic_state * state,u64 bytenr,u32 len,struct btrfsic_block_data_ctx * block_ctx_out,int mirror_num)1453 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1454 			     struct btrfsic_block_data_ctx *block_ctx_out,
1455 			     int mirror_num)
1456 {
1457 	struct btrfs_fs_info *fs_info = state->fs_info;
1458 	int ret;
1459 	u64 length;
1460 	struct btrfs_io_context *multi = NULL;
1461 	struct btrfs_device *device;
1462 
1463 	length = len;
1464 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1465 			      bytenr, &length, &multi, mirror_num);
1466 
1467 	if (ret) {
1468 		block_ctx_out->start = 0;
1469 		block_ctx_out->dev_bytenr = 0;
1470 		block_ctx_out->len = 0;
1471 		block_ctx_out->dev = NULL;
1472 		block_ctx_out->datav = NULL;
1473 		block_ctx_out->pagev = NULL;
1474 		block_ctx_out->mem_to_free = NULL;
1475 
1476 		return ret;
1477 	}
1478 
1479 	device = multi->stripes[0].dev;
1480 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1481 	    !device->bdev || !device->name)
1482 		block_ctx_out->dev = NULL;
1483 	else
1484 		block_ctx_out->dev = btrfsic_dev_state_lookup(
1485 							device->bdev->bd_dev);
1486 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1487 	block_ctx_out->start = bytenr;
1488 	block_ctx_out->len = len;
1489 	block_ctx_out->datav = NULL;
1490 	block_ctx_out->pagev = NULL;
1491 	block_ctx_out->mem_to_free = NULL;
1492 
1493 	kfree(multi);
1494 	if (NULL == block_ctx_out->dev) {
1495 		ret = -ENXIO;
1496 		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1497 	}
1498 
1499 	return ret;
1500 }
1501 
btrfsic_release_block_ctx(struct btrfsic_block_data_ctx * block_ctx)1502 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1503 {
1504 	if (block_ctx->mem_to_free) {
1505 		unsigned int num_pages;
1506 
1507 		BUG_ON(!block_ctx->datav);
1508 		BUG_ON(!block_ctx->pagev);
1509 		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1510 			    PAGE_SHIFT;
1511 		/* Pages must be unmapped in reverse order */
1512 		while (num_pages > 0) {
1513 			num_pages--;
1514 			if (block_ctx->datav[num_pages])
1515 				block_ctx->datav[num_pages] = NULL;
1516 			if (block_ctx->pagev[num_pages]) {
1517 				__free_page(block_ctx->pagev[num_pages]);
1518 				block_ctx->pagev[num_pages] = NULL;
1519 			}
1520 		}
1521 
1522 		kfree(block_ctx->mem_to_free);
1523 		block_ctx->mem_to_free = NULL;
1524 		block_ctx->pagev = NULL;
1525 		block_ctx->datav = NULL;
1526 	}
1527 }
1528 
btrfsic_read_block(struct btrfsic_state * state,struct btrfsic_block_data_ctx * block_ctx)1529 static int btrfsic_read_block(struct btrfsic_state *state,
1530 			      struct btrfsic_block_data_ctx *block_ctx)
1531 {
1532 	unsigned int num_pages;
1533 	unsigned int i;
1534 	size_t size;
1535 	u64 dev_bytenr;
1536 	int ret;
1537 
1538 	BUG_ON(block_ctx->datav);
1539 	BUG_ON(block_ctx->pagev);
1540 	BUG_ON(block_ctx->mem_to_free);
1541 	if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1542 		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1543 		       block_ctx->dev_bytenr);
1544 		return -1;
1545 	}
1546 
1547 	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1548 		    PAGE_SHIFT;
1549 	size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1550 	block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
1551 	if (!block_ctx->mem_to_free)
1552 		return -ENOMEM;
1553 	block_ctx->datav = block_ctx->mem_to_free;
1554 	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1555 	ret = btrfs_alloc_page_array(num_pages, block_ctx->pagev);
1556 	if (ret)
1557 		return ret;
1558 
1559 	dev_bytenr = block_ctx->dev_bytenr;
1560 	for (i = 0; i < num_pages;) {
1561 		struct bio *bio;
1562 		unsigned int j;
1563 
1564 		bio = bio_alloc(block_ctx->dev->bdev, num_pages - i,
1565 				REQ_OP_READ, GFP_NOFS);
1566 		bio->bi_iter.bi_sector = dev_bytenr >> 9;
1567 
1568 		for (j = i; j < num_pages; j++) {
1569 			ret = bio_add_page(bio, block_ctx->pagev[j],
1570 					   PAGE_SIZE, 0);
1571 			if (PAGE_SIZE != ret)
1572 				break;
1573 		}
1574 		if (j == i) {
1575 			pr_info("btrfsic: error, failed to add a single page!\n");
1576 			return -1;
1577 		}
1578 		if (submit_bio_wait(bio)) {
1579 			pr_info("btrfsic: read error at logical %llu dev %pg!\n",
1580 			       block_ctx->start, block_ctx->dev->bdev);
1581 			bio_put(bio);
1582 			return -1;
1583 		}
1584 		bio_put(bio);
1585 		dev_bytenr += (j - i) * PAGE_SIZE;
1586 		i = j;
1587 	}
1588 	for (i = 0; i < num_pages; i++)
1589 		block_ctx->datav[i] = page_address(block_ctx->pagev[i]);
1590 
1591 	return block_ctx->len;
1592 }
1593 
btrfsic_dump_database(struct btrfsic_state * state)1594 static void btrfsic_dump_database(struct btrfsic_state *state)
1595 {
1596 	const struct btrfsic_block *b_all;
1597 
1598 	BUG_ON(NULL == state);
1599 
1600 	pr_info("all_blocks_list:\n");
1601 	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1602 		const struct btrfsic_block_link *l;
1603 
1604 		pr_info("%c-block @%llu (%pg/%llu/%d)\n",
1605 		       btrfsic_get_block_type(state, b_all),
1606 		       b_all->logical_bytenr, b_all->dev_state->bdev,
1607 		       b_all->dev_bytenr, b_all->mirror_num);
1608 
1609 		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1610 			pr_info(
1611 		" %c @%llu (%pg/%llu/%d) refers %u* to %c @%llu (%pg/%llu/%d)\n",
1612 			       btrfsic_get_block_type(state, b_all),
1613 			       b_all->logical_bytenr, b_all->dev_state->bdev,
1614 			       b_all->dev_bytenr, b_all->mirror_num,
1615 			       l->ref_cnt,
1616 			       btrfsic_get_block_type(state, l->block_ref_to),
1617 			       l->block_ref_to->logical_bytenr,
1618 			       l->block_ref_to->dev_state->bdev,
1619 			       l->block_ref_to->dev_bytenr,
1620 			       l->block_ref_to->mirror_num);
1621 		}
1622 
1623 		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1624 			pr_info(
1625 		" %c @%llu (%pg/%llu/%d) is ref %u* from %c @%llu (%pg/%llu/%d)\n",
1626 			       btrfsic_get_block_type(state, b_all),
1627 			       b_all->logical_bytenr, b_all->dev_state->bdev,
1628 			       b_all->dev_bytenr, b_all->mirror_num,
1629 			       l->ref_cnt,
1630 			       btrfsic_get_block_type(state, l->block_ref_from),
1631 			       l->block_ref_from->logical_bytenr,
1632 			       l->block_ref_from->dev_state->bdev,
1633 			       l->block_ref_from->dev_bytenr,
1634 			       l->block_ref_from->mirror_num);
1635 		}
1636 
1637 		pr_info("\n");
1638 	}
1639 }
1640 
1641 /*
1642  * Test whether the disk block contains a tree block (leaf or node)
1643  * (note that this test fails for the super block)
1644  */
btrfsic_test_for_metadata(struct btrfsic_state * state,char ** datav,unsigned int num_pages)1645 static noinline_for_stack int btrfsic_test_for_metadata(
1646 		struct btrfsic_state *state,
1647 		char **datav, unsigned int num_pages)
1648 {
1649 	struct btrfs_fs_info *fs_info = state->fs_info;
1650 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1651 	struct btrfs_header *h;
1652 	u8 csum[BTRFS_CSUM_SIZE];
1653 	unsigned int i;
1654 
1655 	if (num_pages * PAGE_SIZE < state->metablock_size)
1656 		return 1; /* not metadata */
1657 	num_pages = state->metablock_size >> PAGE_SHIFT;
1658 	h = (struct btrfs_header *)datav[0];
1659 
1660 	if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1661 		return 1;
1662 
1663 	shash->tfm = fs_info->csum_shash;
1664 	crypto_shash_init(shash);
1665 
1666 	for (i = 0; i < num_pages; i++) {
1667 		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1668 		size_t sublen = i ? PAGE_SIZE :
1669 				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1670 
1671 		crypto_shash_update(shash, data, sublen);
1672 	}
1673 	crypto_shash_final(shash, csum);
1674 	if (memcmp(csum, h->csum, fs_info->csum_size))
1675 		return 1;
1676 
1677 	return 0; /* is metadata */
1678 }
1679 
btrfsic_process_written_block(struct btrfsic_dev_state * dev_state,u64 dev_bytenr,char ** mapped_datav,unsigned int num_pages,struct bio * bio,int * bio_is_patched,blk_opf_t submit_bio_bh_rw)1680 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1681 					  u64 dev_bytenr, char **mapped_datav,
1682 					  unsigned int num_pages,
1683 					  struct bio *bio, int *bio_is_patched,
1684 					  blk_opf_t submit_bio_bh_rw)
1685 {
1686 	int is_metadata;
1687 	struct btrfsic_block *block;
1688 	struct btrfsic_block_data_ctx block_ctx;
1689 	int ret;
1690 	struct btrfsic_state *state = dev_state->state;
1691 	struct block_device *bdev = dev_state->bdev;
1692 	unsigned int processed_len;
1693 
1694 	if (NULL != bio_is_patched)
1695 		*bio_is_patched = 0;
1696 
1697 again:
1698 	if (num_pages == 0)
1699 		return;
1700 
1701 	processed_len = 0;
1702 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1703 						      num_pages));
1704 
1705 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1706 					       &state->block_hashtable);
1707 	if (NULL != block) {
1708 		u64 bytenr = 0;
1709 		struct btrfsic_block_link *l, *tmp;
1710 
1711 		if (block->is_superblock) {
1712 			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1713 						    mapped_datav[0]);
1714 			if (num_pages * PAGE_SIZE <
1715 			    BTRFS_SUPER_INFO_SIZE) {
1716 				pr_info("btrfsic: cannot work with too short bios!\n");
1717 				return;
1718 			}
1719 			is_metadata = 1;
1720 			BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1721 			processed_len = BTRFS_SUPER_INFO_SIZE;
1722 			if (state->print_mask &
1723 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1724 				pr_info("[before new superblock is written]:\n");
1725 				btrfsic_dump_tree_sub(state, block, 0);
1726 			}
1727 		}
1728 		if (is_metadata) {
1729 			if (!block->is_superblock) {
1730 				if (num_pages * PAGE_SIZE <
1731 				    state->metablock_size) {
1732 					pr_info("btrfsic: cannot work with too short bios!\n");
1733 					return;
1734 				}
1735 				processed_len = state->metablock_size;
1736 				bytenr = btrfs_stack_header_bytenr(
1737 						(struct btrfs_header *)
1738 						mapped_datav[0]);
1739 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1740 							       dev_state,
1741 							       dev_bytenr);
1742 			}
1743 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1744 				if (block->logical_bytenr != bytenr &&
1745 				    !(!block->is_metadata &&
1746 				      block->logical_bytenr == 0))
1747 					pr_info(
1748 "written block @%llu (%pg/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu)\n",
1749 					       bytenr, dev_state->bdev,
1750 					       dev_bytenr,
1751 					       block->mirror_num,
1752 					       btrfsic_get_block_type(state,
1753 								      block),
1754 					       block->logical_bytenr);
1755 				else
1756 					pr_info(
1757 		"written block @%llu (%pg/%llu/%d) found in hash table, %c\n",
1758 					       bytenr, dev_state->bdev,
1759 					       dev_bytenr, block->mirror_num,
1760 					       btrfsic_get_block_type(state,
1761 								      block));
1762 			}
1763 			block->logical_bytenr = bytenr;
1764 		} else {
1765 			if (num_pages * PAGE_SIZE <
1766 			    state->datablock_size) {
1767 				pr_info("btrfsic: cannot work with too short bios!\n");
1768 				return;
1769 			}
1770 			processed_len = state->datablock_size;
1771 			bytenr = block->logical_bytenr;
1772 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1773 				pr_info(
1774 		"written block @%llu (%pg/%llu/%d) found in hash table, %c\n",
1775 				       bytenr, dev_state->bdev, dev_bytenr,
1776 				       block->mirror_num,
1777 				       btrfsic_get_block_type(state, block));
1778 		}
1779 
1780 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1781 			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1782 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1783 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1784 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1785 			pr_info(
1786 "btrfs: attempt to overwrite %c-block @%llu (%pg/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1787 			       btrfsic_get_block_type(state, block), bytenr,
1788 			       dev_state->bdev, dev_bytenr, block->mirror_num,
1789 			       block->generation,
1790 			       btrfs_disk_key_objectid(&block->disk_key),
1791 			       block->disk_key.type,
1792 			       btrfs_disk_key_offset(&block->disk_key),
1793 			       btrfs_stack_header_generation(
1794 				       (struct btrfs_header *) mapped_datav[0]),
1795 			       state->max_superblock_generation);
1796 			btrfsic_dump_tree(state);
1797 		}
1798 
1799 		if (!block->is_iodone && !block->never_written) {
1800 			pr_info(
1801 "btrfs: attempt to overwrite %c-block @%llu (%pg/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1802 			       btrfsic_get_block_type(state, block), bytenr,
1803 			       dev_state->bdev, dev_bytenr, block->mirror_num,
1804 			       block->generation,
1805 			       btrfs_stack_header_generation(
1806 				       (struct btrfs_header *)
1807 				       mapped_datav[0]));
1808 			/* it would not be safe to go on */
1809 			btrfsic_dump_tree(state);
1810 			goto continue_loop;
1811 		}
1812 
1813 		/*
1814 		 * Clear all references of this block. Do not free
1815 		 * the block itself even if is not referenced anymore
1816 		 * because it still carries valuable information
1817 		 * like whether it was ever written and IO completed.
1818 		 */
1819 		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1820 					 node_ref_to) {
1821 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1822 				btrfsic_print_rem_link(state, l);
1823 			l->ref_cnt--;
1824 			if (0 == l->ref_cnt) {
1825 				list_del(&l->node_ref_to);
1826 				list_del(&l->node_ref_from);
1827 				btrfsic_block_link_hashtable_remove(l);
1828 				btrfsic_block_link_free(l);
1829 			}
1830 		}
1831 
1832 		block_ctx.dev = dev_state;
1833 		block_ctx.dev_bytenr = dev_bytenr;
1834 		block_ctx.start = bytenr;
1835 		block_ctx.len = processed_len;
1836 		block_ctx.pagev = NULL;
1837 		block_ctx.mem_to_free = NULL;
1838 		block_ctx.datav = mapped_datav;
1839 
1840 		if (is_metadata || state->include_extent_data) {
1841 			block->never_written = 0;
1842 			block->iodone_w_error = 0;
1843 			if (NULL != bio) {
1844 				block->is_iodone = 0;
1845 				BUG_ON(NULL == bio_is_patched);
1846 				if (!*bio_is_patched) {
1847 					block->orig_bio_private =
1848 					    bio->bi_private;
1849 					block->orig_bio_end_io =
1850 					    bio->bi_end_io;
1851 					block->next_in_same_bio = NULL;
1852 					bio->bi_private = block;
1853 					bio->bi_end_io = btrfsic_bio_end_io;
1854 					*bio_is_patched = 1;
1855 				} else {
1856 					struct btrfsic_block *chained_block =
1857 					    (struct btrfsic_block *)
1858 					    bio->bi_private;
1859 
1860 					BUG_ON(NULL == chained_block);
1861 					block->orig_bio_private =
1862 					    chained_block->orig_bio_private;
1863 					block->orig_bio_end_io =
1864 					    chained_block->orig_bio_end_io;
1865 					block->next_in_same_bio = chained_block;
1866 					bio->bi_private = block;
1867 				}
1868 			} else {
1869 				block->is_iodone = 1;
1870 				block->orig_bio_private = NULL;
1871 				block->orig_bio_end_io = NULL;
1872 				block->next_in_same_bio = NULL;
1873 			}
1874 		}
1875 
1876 		block->flush_gen = dev_state->last_flush_gen + 1;
1877 		block->submit_bio_bh_rw = submit_bio_bh_rw;
1878 		if (is_metadata) {
1879 			block->logical_bytenr = bytenr;
1880 			block->is_metadata = 1;
1881 			if (block->is_superblock) {
1882 				BUG_ON(PAGE_SIZE !=
1883 				       BTRFS_SUPER_INFO_SIZE);
1884 				ret = btrfsic_process_written_superblock(
1885 						state,
1886 						block,
1887 						(struct btrfs_super_block *)
1888 						mapped_datav[0]);
1889 				if (state->print_mask &
1890 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1891 					pr_info("[after new superblock is written]:\n");
1892 					btrfsic_dump_tree_sub(state, block, 0);
1893 				}
1894 			} else {
1895 				block->mirror_num = 0;	/* unknown */
1896 				ret = btrfsic_process_metablock(
1897 						state,
1898 						block,
1899 						&block_ctx,
1900 						0, 0);
1901 			}
1902 			if (ret)
1903 				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1904 				       dev_bytenr);
1905 		} else {
1906 			block->is_metadata = 0;
1907 			block->mirror_num = 0;	/* unknown */
1908 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1909 			if (!state->include_extent_data
1910 			    && list_empty(&block->ref_from_list)) {
1911 				/*
1912 				 * disk block is overwritten with extent
1913 				 * data (not meta data) and we are configured
1914 				 * to not include extent data: take the
1915 				 * chance and free the block's memory
1916 				 */
1917 				btrfsic_block_hashtable_remove(block);
1918 				list_del(&block->all_blocks_node);
1919 				btrfsic_block_free(block);
1920 			}
1921 		}
1922 		btrfsic_release_block_ctx(&block_ctx);
1923 	} else {
1924 		/* block has not been found in hash table */
1925 		u64 bytenr;
1926 
1927 		if (!is_metadata) {
1928 			processed_len = state->datablock_size;
1929 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1930 				pr_info(
1931 			"written block (%pg/%llu/?) !found in hash table, D\n",
1932 				       dev_state->bdev, dev_bytenr);
1933 			if (!state->include_extent_data) {
1934 				/* ignore that written D block */
1935 				goto continue_loop;
1936 			}
1937 
1938 			/* this is getting ugly for the
1939 			 * include_extent_data case... */
1940 			bytenr = 0;	/* unknown */
1941 		} else {
1942 			processed_len = state->metablock_size;
1943 			bytenr = btrfs_stack_header_bytenr(
1944 					(struct btrfs_header *)
1945 					mapped_datav[0]);
1946 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
1947 						       dev_bytenr);
1948 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1949 				pr_info(
1950 			"written block @%llu (%pg/%llu/?) !found in hash table, M\n",
1951 				       bytenr, dev_state->bdev, dev_bytenr);
1952 		}
1953 
1954 		block_ctx.dev = dev_state;
1955 		block_ctx.dev_bytenr = dev_bytenr;
1956 		block_ctx.start = bytenr;
1957 		block_ctx.len = processed_len;
1958 		block_ctx.pagev = NULL;
1959 		block_ctx.mem_to_free = NULL;
1960 		block_ctx.datav = mapped_datav;
1961 
1962 		block = btrfsic_block_alloc();
1963 		if (NULL == block) {
1964 			btrfsic_release_block_ctx(&block_ctx);
1965 			goto continue_loop;
1966 		}
1967 		block->dev_state = dev_state;
1968 		block->dev_bytenr = dev_bytenr;
1969 		block->logical_bytenr = bytenr;
1970 		block->is_metadata = is_metadata;
1971 		block->never_written = 0;
1972 		block->iodone_w_error = 0;
1973 		block->mirror_num = 0;	/* unknown */
1974 		block->flush_gen = dev_state->last_flush_gen + 1;
1975 		block->submit_bio_bh_rw = submit_bio_bh_rw;
1976 		if (NULL != bio) {
1977 			block->is_iodone = 0;
1978 			BUG_ON(NULL == bio_is_patched);
1979 			if (!*bio_is_patched) {
1980 				block->orig_bio_private = bio->bi_private;
1981 				block->orig_bio_end_io = bio->bi_end_io;
1982 				block->next_in_same_bio = NULL;
1983 				bio->bi_private = block;
1984 				bio->bi_end_io = btrfsic_bio_end_io;
1985 				*bio_is_patched = 1;
1986 			} else {
1987 				struct btrfsic_block *chained_block =
1988 				    (struct btrfsic_block *)
1989 				    bio->bi_private;
1990 
1991 				BUG_ON(NULL == chained_block);
1992 				block->orig_bio_private =
1993 				    chained_block->orig_bio_private;
1994 				block->orig_bio_end_io =
1995 				    chained_block->orig_bio_end_io;
1996 				block->next_in_same_bio = chained_block;
1997 				bio->bi_private = block;
1998 			}
1999 		} else {
2000 			block->is_iodone = 1;
2001 			block->orig_bio_private = NULL;
2002 			block->orig_bio_end_io = NULL;
2003 			block->next_in_same_bio = NULL;
2004 		}
2005 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2006 			pr_info("new written %c-block @%llu (%pg/%llu/%d)\n",
2007 			       is_metadata ? 'M' : 'D',
2008 			       block->logical_bytenr, block->dev_state->bdev,
2009 			       block->dev_bytenr, block->mirror_num);
2010 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2011 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2012 
2013 		if (is_metadata) {
2014 			ret = btrfsic_process_metablock(state, block,
2015 							&block_ctx, 0, 0);
2016 			if (ret)
2017 				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2018 				       dev_bytenr);
2019 		}
2020 		btrfsic_release_block_ctx(&block_ctx);
2021 	}
2022 
2023 continue_loop:
2024 	BUG_ON(!processed_len);
2025 	dev_bytenr += processed_len;
2026 	mapped_datav += processed_len >> PAGE_SHIFT;
2027 	num_pages -= processed_len >> PAGE_SHIFT;
2028 	goto again;
2029 }
2030 
btrfsic_bio_end_io(struct bio * bp)2031 static void btrfsic_bio_end_io(struct bio *bp)
2032 {
2033 	struct btrfsic_block *block = bp->bi_private;
2034 	int iodone_w_error;
2035 
2036 	/* mutex is not held! This is not save if IO is not yet completed
2037 	 * on umount */
2038 	iodone_w_error = 0;
2039 	if (bp->bi_status)
2040 		iodone_w_error = 1;
2041 
2042 	BUG_ON(NULL == block);
2043 	bp->bi_private = block->orig_bio_private;
2044 	bp->bi_end_io = block->orig_bio_end_io;
2045 
2046 	do {
2047 		struct btrfsic_block *next_block;
2048 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2049 
2050 		if ((dev_state->state->print_mask &
2051 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2052 			pr_info("bio_end_io(err=%d) for %c @%llu (%pg/%llu/%d)\n",
2053 			       bp->bi_status,
2054 			       btrfsic_get_block_type(dev_state->state, block),
2055 			       block->logical_bytenr, dev_state->bdev,
2056 			       block->dev_bytenr, block->mirror_num);
2057 		next_block = block->next_in_same_bio;
2058 		block->iodone_w_error = iodone_w_error;
2059 		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2060 			dev_state->last_flush_gen++;
2061 			if ((dev_state->state->print_mask &
2062 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2063 				pr_info("bio_end_io() new %pg flush_gen=%llu\n",
2064 				       dev_state->bdev,
2065 				       dev_state->last_flush_gen);
2066 		}
2067 		if (block->submit_bio_bh_rw & REQ_FUA)
2068 			block->flush_gen = 0; /* FUA completed means block is
2069 					       * on disk */
2070 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2071 		block = next_block;
2072 	} while (NULL != block);
2073 
2074 	bp->bi_end_io(bp);
2075 }
2076 
btrfsic_process_written_superblock(struct btrfsic_state * state,struct btrfsic_block * const superblock,struct btrfs_super_block * const super_hdr)2077 static int btrfsic_process_written_superblock(
2078 		struct btrfsic_state *state,
2079 		struct btrfsic_block *const superblock,
2080 		struct btrfs_super_block *const super_hdr)
2081 {
2082 	struct btrfs_fs_info *fs_info = state->fs_info;
2083 	int pass;
2084 
2085 	superblock->generation = btrfs_super_generation(super_hdr);
2086 	if (!(superblock->generation > state->max_superblock_generation ||
2087 	      0 == state->max_superblock_generation)) {
2088 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2089 			pr_info(
2090 	"btrfsic: superblock @%llu (%pg/%llu/%d) with old gen %llu <= %llu\n",
2091 			       superblock->logical_bytenr,
2092 			       superblock->dev_state->bdev,
2093 			       superblock->dev_bytenr, superblock->mirror_num,
2094 			       btrfs_super_generation(super_hdr),
2095 			       state->max_superblock_generation);
2096 	} else {
2097 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2098 			pr_info(
2099 	"btrfsic: got new superblock @%llu (%pg/%llu/%d) with new gen %llu > %llu\n",
2100 			       superblock->logical_bytenr,
2101 			       superblock->dev_state->bdev,
2102 			       superblock->dev_bytenr, superblock->mirror_num,
2103 			       btrfs_super_generation(super_hdr),
2104 			       state->max_superblock_generation);
2105 
2106 		state->max_superblock_generation =
2107 		    btrfs_super_generation(super_hdr);
2108 		state->latest_superblock = superblock;
2109 	}
2110 
2111 	for (pass = 0; pass < 3; pass++) {
2112 		int ret;
2113 		u64 next_bytenr;
2114 		struct btrfsic_block *next_block;
2115 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2116 		struct btrfsic_block_link *l;
2117 		int num_copies;
2118 		int mirror_num;
2119 		const char *additional_string = NULL;
2120 		struct btrfs_disk_key tmp_disk_key = {0};
2121 
2122 		btrfs_set_disk_key_objectid(&tmp_disk_key,
2123 					    BTRFS_ROOT_ITEM_KEY);
2124 		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2125 
2126 		switch (pass) {
2127 		case 0:
2128 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2129 						    BTRFS_ROOT_TREE_OBJECTID);
2130 			additional_string = "root ";
2131 			next_bytenr = btrfs_super_root(super_hdr);
2132 			if (state->print_mask &
2133 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2134 				pr_info("root@%llu\n", next_bytenr);
2135 			break;
2136 		case 1:
2137 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2138 						    BTRFS_CHUNK_TREE_OBJECTID);
2139 			additional_string = "chunk ";
2140 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2141 			if (state->print_mask &
2142 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2143 				pr_info("chunk@%llu\n", next_bytenr);
2144 			break;
2145 		case 2:
2146 			btrfs_set_disk_key_objectid(&tmp_disk_key,
2147 						    BTRFS_TREE_LOG_OBJECTID);
2148 			additional_string = "log ";
2149 			next_bytenr = btrfs_super_log_root(super_hdr);
2150 			if (0 == next_bytenr)
2151 				continue;
2152 			if (state->print_mask &
2153 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2154 				pr_info("log@%llu\n", next_bytenr);
2155 			break;
2156 		}
2157 
2158 		num_copies = btrfs_num_copies(fs_info, next_bytenr,
2159 					      BTRFS_SUPER_INFO_SIZE);
2160 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2161 			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2162 			       next_bytenr, num_copies);
2163 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2164 			int was_created;
2165 
2166 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2167 				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2168 			ret = btrfsic_map_block(state, next_bytenr,
2169 						BTRFS_SUPER_INFO_SIZE,
2170 						&tmp_next_block_ctx,
2171 						mirror_num);
2172 			if (ret) {
2173 				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2174 				       next_bytenr, mirror_num);
2175 				return -1;
2176 			}
2177 
2178 			next_block = btrfsic_block_lookup_or_add(
2179 					state,
2180 					&tmp_next_block_ctx,
2181 					additional_string,
2182 					1, 0, 1,
2183 					mirror_num,
2184 					&was_created);
2185 			if (NULL == next_block) {
2186 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2187 				return -1;
2188 			}
2189 
2190 			next_block->disk_key = tmp_disk_key;
2191 			if (was_created)
2192 				next_block->generation =
2193 				    BTRFSIC_GENERATION_UNKNOWN;
2194 			l = btrfsic_block_link_lookup_or_add(
2195 					state,
2196 					&tmp_next_block_ctx,
2197 					next_block,
2198 					superblock,
2199 					BTRFSIC_GENERATION_UNKNOWN);
2200 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2201 			if (NULL == l)
2202 				return -1;
2203 		}
2204 	}
2205 
2206 	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2207 		btrfsic_dump_tree(state);
2208 
2209 	return 0;
2210 }
2211 
btrfsic_check_all_ref_blocks(struct btrfsic_state * state,struct btrfsic_block * const block,int recursion_level)2212 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2213 					struct btrfsic_block *const block,
2214 					int recursion_level)
2215 {
2216 	const struct btrfsic_block_link *l;
2217 	int ret = 0;
2218 
2219 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2220 		/*
2221 		 * Note that this situation can happen and does not
2222 		 * indicate an error in regular cases. It happens
2223 		 * when disk blocks are freed and later reused.
2224 		 * The check-integrity module is not aware of any
2225 		 * block free operations, it just recognizes block
2226 		 * write operations. Therefore it keeps the linkage
2227 		 * information for a block until a block is
2228 		 * rewritten. This can temporarily cause incorrect
2229 		 * and even circular linkage information. This
2230 		 * causes no harm unless such blocks are referenced
2231 		 * by the most recent super block.
2232 		 */
2233 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2234 			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2235 
2236 		return ret;
2237 	}
2238 
2239 	/*
2240 	 * This algorithm is recursive because the amount of used stack
2241 	 * space is very small and the max recursion depth is limited.
2242 	 */
2243 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2244 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2245 			pr_info(
2246 		"rl=%d, %c @%llu (%pg/%llu/%d) %u* refers to %c @%llu (%pg/%llu/%d)\n",
2247 			       recursion_level,
2248 			       btrfsic_get_block_type(state, block),
2249 			       block->logical_bytenr, block->dev_state->bdev,
2250 			       block->dev_bytenr, block->mirror_num,
2251 			       l->ref_cnt,
2252 			       btrfsic_get_block_type(state, l->block_ref_to),
2253 			       l->block_ref_to->logical_bytenr,
2254 			       l->block_ref_to->dev_state->bdev,
2255 			       l->block_ref_to->dev_bytenr,
2256 			       l->block_ref_to->mirror_num);
2257 		if (l->block_ref_to->never_written) {
2258 			pr_info(
2259 "btrfs: attempt to write superblock which references block %c @%llu (%pg/%llu/%d) which is never written!\n",
2260 			       btrfsic_get_block_type(state, l->block_ref_to),
2261 			       l->block_ref_to->logical_bytenr,
2262 			       l->block_ref_to->dev_state->bdev,
2263 			       l->block_ref_to->dev_bytenr,
2264 			       l->block_ref_to->mirror_num);
2265 			ret = -1;
2266 		} else if (!l->block_ref_to->is_iodone) {
2267 			pr_info(
2268 "btrfs: attempt to write superblock which references block %c @%llu (%pg/%llu/%d) which is not yet iodone!\n",
2269 			       btrfsic_get_block_type(state, l->block_ref_to),
2270 			       l->block_ref_to->logical_bytenr,
2271 			       l->block_ref_to->dev_state->bdev,
2272 			       l->block_ref_to->dev_bytenr,
2273 			       l->block_ref_to->mirror_num);
2274 			ret = -1;
2275 		} else if (l->block_ref_to->iodone_w_error) {
2276 			pr_info(
2277 "btrfs: attempt to write superblock which references block %c @%llu (%pg/%llu/%d) which has write error!\n",
2278 			       btrfsic_get_block_type(state, l->block_ref_to),
2279 			       l->block_ref_to->logical_bytenr,
2280 			       l->block_ref_to->dev_state->bdev,
2281 			       l->block_ref_to->dev_bytenr,
2282 			       l->block_ref_to->mirror_num);
2283 			ret = -1;
2284 		} else if (l->parent_generation !=
2285 			   l->block_ref_to->generation &&
2286 			   BTRFSIC_GENERATION_UNKNOWN !=
2287 			   l->parent_generation &&
2288 			   BTRFSIC_GENERATION_UNKNOWN !=
2289 			   l->block_ref_to->generation) {
2290 			pr_info(
2291 "btrfs: attempt to write superblock which references block %c @%llu (%pg/%llu/%d) with generation %llu != parent generation %llu!\n",
2292 			       btrfsic_get_block_type(state, l->block_ref_to),
2293 			       l->block_ref_to->logical_bytenr,
2294 			       l->block_ref_to->dev_state->bdev,
2295 			       l->block_ref_to->dev_bytenr,
2296 			       l->block_ref_to->mirror_num,
2297 			       l->block_ref_to->generation,
2298 			       l->parent_generation);
2299 			ret = -1;
2300 		} else if (l->block_ref_to->flush_gen >
2301 			   l->block_ref_to->dev_state->last_flush_gen) {
2302 			pr_info(
2303 "btrfs: attempt to write superblock which references block %c @%llu (%pg/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2304 			       btrfsic_get_block_type(state, l->block_ref_to),
2305 			       l->block_ref_to->logical_bytenr,
2306 			       l->block_ref_to->dev_state->bdev,
2307 			       l->block_ref_to->dev_bytenr,
2308 			       l->block_ref_to->mirror_num, block->flush_gen,
2309 			       l->block_ref_to->dev_state->last_flush_gen);
2310 			ret = -1;
2311 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2312 							      l->block_ref_to,
2313 							      recursion_level +
2314 							      1)) {
2315 			ret = -1;
2316 		}
2317 	}
2318 
2319 	return ret;
2320 }
2321 
btrfsic_is_block_ref_by_superblock(const struct btrfsic_state * state,const struct btrfsic_block * block,int recursion_level)2322 static int btrfsic_is_block_ref_by_superblock(
2323 		const struct btrfsic_state *state,
2324 		const struct btrfsic_block *block,
2325 		int recursion_level)
2326 {
2327 	const struct btrfsic_block_link *l;
2328 
2329 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2330 		/* refer to comment at "abort cyclic linkage (case 1)" */
2331 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2332 			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2333 
2334 		return 0;
2335 	}
2336 
2337 	/*
2338 	 * This algorithm is recursive because the amount of used stack space
2339 	 * is very small and the max recursion depth is limited.
2340 	 */
2341 	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2342 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2343 			pr_info(
2344 	"rl=%d, %c @%llu (%pg/%llu/%d) is ref %u* from %c @%llu (%pg/%llu/%d)\n",
2345 			       recursion_level,
2346 			       btrfsic_get_block_type(state, block),
2347 			       block->logical_bytenr, block->dev_state->bdev,
2348 			       block->dev_bytenr, block->mirror_num,
2349 			       l->ref_cnt,
2350 			       btrfsic_get_block_type(state, l->block_ref_from),
2351 			       l->block_ref_from->logical_bytenr,
2352 			       l->block_ref_from->dev_state->bdev,
2353 			       l->block_ref_from->dev_bytenr,
2354 			       l->block_ref_from->mirror_num);
2355 		if (l->block_ref_from->is_superblock &&
2356 		    state->latest_superblock->dev_bytenr ==
2357 		    l->block_ref_from->dev_bytenr &&
2358 		    state->latest_superblock->dev_state->bdev ==
2359 		    l->block_ref_from->dev_state->bdev)
2360 			return 1;
2361 		else if (btrfsic_is_block_ref_by_superblock(state,
2362 							    l->block_ref_from,
2363 							    recursion_level +
2364 							    1))
2365 			return 1;
2366 	}
2367 
2368 	return 0;
2369 }
2370 
btrfsic_print_add_link(const struct btrfsic_state * state,const struct btrfsic_block_link * l)2371 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2372 				   const struct btrfsic_block_link *l)
2373 {
2374 	pr_info("add %u* link from %c @%llu (%pg/%llu/%d) to %c @%llu (%pg/%llu/%d)\n",
2375 	       l->ref_cnt,
2376 	       btrfsic_get_block_type(state, l->block_ref_from),
2377 	       l->block_ref_from->logical_bytenr,
2378 	       l->block_ref_from->dev_state->bdev,
2379 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2380 	       btrfsic_get_block_type(state, l->block_ref_to),
2381 	       l->block_ref_to->logical_bytenr,
2382 	       l->block_ref_to->dev_state->bdev, l->block_ref_to->dev_bytenr,
2383 	       l->block_ref_to->mirror_num);
2384 }
2385 
btrfsic_print_rem_link(const struct btrfsic_state * state,const struct btrfsic_block_link * l)2386 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2387 				   const struct btrfsic_block_link *l)
2388 {
2389 	pr_info("rem %u* link from %c @%llu (%pg/%llu/%d) to %c @%llu (%pg/%llu/%d)\n",
2390 	       l->ref_cnt,
2391 	       btrfsic_get_block_type(state, l->block_ref_from),
2392 	       l->block_ref_from->logical_bytenr,
2393 	       l->block_ref_from->dev_state->bdev,
2394 	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2395 	       btrfsic_get_block_type(state, l->block_ref_to),
2396 	       l->block_ref_to->logical_bytenr,
2397 	       l->block_ref_to->dev_state->bdev, l->block_ref_to->dev_bytenr,
2398 	       l->block_ref_to->mirror_num);
2399 }
2400 
btrfsic_get_block_type(const struct btrfsic_state * state,const struct btrfsic_block * block)2401 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2402 				   const struct btrfsic_block *block)
2403 {
2404 	if (block->is_superblock &&
2405 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2406 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2407 		return 'S';
2408 	else if (block->is_superblock)
2409 		return 's';
2410 	else if (block->is_metadata)
2411 		return 'M';
2412 	else
2413 		return 'D';
2414 }
2415 
btrfsic_dump_tree(const struct btrfsic_state * state)2416 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2417 {
2418 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2419 }
2420 
btrfsic_dump_tree_sub(const struct btrfsic_state * state,const struct btrfsic_block * block,int indent_level)2421 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2422 				  const struct btrfsic_block *block,
2423 				  int indent_level)
2424 {
2425 	const struct btrfsic_block_link *l;
2426 	int indent_add;
2427 	static char buf[80];
2428 	int cursor_position;
2429 
2430 	/*
2431 	 * Should better fill an on-stack buffer with a complete line and
2432 	 * dump it at once when it is time to print a newline character.
2433 	 */
2434 
2435 	/*
2436 	 * This algorithm is recursive because the amount of used stack space
2437 	 * is very small and the max recursion depth is limited.
2438 	 */
2439 	indent_add = sprintf(buf, "%c-%llu(%pg/%llu/%u)",
2440 			     btrfsic_get_block_type(state, block),
2441 			     block->logical_bytenr, block->dev_state->bdev,
2442 			     block->dev_bytenr, block->mirror_num);
2443 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2444 		printk("[...]\n");
2445 		return;
2446 	}
2447 	printk(buf);
2448 	indent_level += indent_add;
2449 	if (list_empty(&block->ref_to_list)) {
2450 		printk("\n");
2451 		return;
2452 	}
2453 	if (block->mirror_num > 1 &&
2454 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2455 		printk(" [...]\n");
2456 		return;
2457 	}
2458 
2459 	cursor_position = indent_level;
2460 	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2461 		while (cursor_position < indent_level) {
2462 			printk(" ");
2463 			cursor_position++;
2464 		}
2465 		if (l->ref_cnt > 1)
2466 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2467 		else
2468 			indent_add = sprintf(buf, " --> ");
2469 		if (indent_level + indent_add >
2470 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2471 			printk("[...]\n");
2472 			cursor_position = 0;
2473 			continue;
2474 		}
2475 
2476 		printk(buf);
2477 
2478 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2479 				      indent_level + indent_add);
2480 		cursor_position = 0;
2481 	}
2482 }
2483 
btrfsic_block_link_lookup_or_add(struct btrfsic_state * state,struct btrfsic_block_data_ctx * next_block_ctx,struct btrfsic_block * next_block,struct btrfsic_block * from_block,u64 parent_generation)2484 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2485 		struct btrfsic_state *state,
2486 		struct btrfsic_block_data_ctx *next_block_ctx,
2487 		struct btrfsic_block *next_block,
2488 		struct btrfsic_block *from_block,
2489 		u64 parent_generation)
2490 {
2491 	struct btrfsic_block_link *l;
2492 
2493 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2494 						next_block_ctx->dev_bytenr,
2495 						from_block->dev_state->bdev,
2496 						from_block->dev_bytenr,
2497 						&state->block_link_hashtable);
2498 	if (NULL == l) {
2499 		l = btrfsic_block_link_alloc();
2500 		if (!l)
2501 			return NULL;
2502 
2503 		l->block_ref_to = next_block;
2504 		l->block_ref_from = from_block;
2505 		l->ref_cnt = 1;
2506 		l->parent_generation = parent_generation;
2507 
2508 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2509 			btrfsic_print_add_link(state, l);
2510 
2511 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2512 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2513 
2514 		btrfsic_block_link_hashtable_add(l,
2515 						 &state->block_link_hashtable);
2516 	} else {
2517 		l->ref_cnt++;
2518 		l->parent_generation = parent_generation;
2519 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2520 			btrfsic_print_add_link(state, l);
2521 	}
2522 
2523 	return l;
2524 }
2525 
btrfsic_block_lookup_or_add(struct btrfsic_state * state,struct btrfsic_block_data_ctx * block_ctx,const char * additional_string,int is_metadata,int is_iodone,int never_written,int mirror_num,int * was_created)2526 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2527 		struct btrfsic_state *state,
2528 		struct btrfsic_block_data_ctx *block_ctx,
2529 		const char *additional_string,
2530 		int is_metadata,
2531 		int is_iodone,
2532 		int never_written,
2533 		int mirror_num,
2534 		int *was_created)
2535 {
2536 	struct btrfsic_block *block;
2537 
2538 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2539 					       block_ctx->dev_bytenr,
2540 					       &state->block_hashtable);
2541 	if (NULL == block) {
2542 		struct btrfsic_dev_state *dev_state;
2543 
2544 		block = btrfsic_block_alloc();
2545 		if (!block)
2546 			return NULL;
2547 
2548 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2549 		if (NULL == dev_state) {
2550 			pr_info("btrfsic: error, lookup dev_state failed!\n");
2551 			btrfsic_block_free(block);
2552 			return NULL;
2553 		}
2554 		block->dev_state = dev_state;
2555 		block->dev_bytenr = block_ctx->dev_bytenr;
2556 		block->logical_bytenr = block_ctx->start;
2557 		block->is_metadata = is_metadata;
2558 		block->is_iodone = is_iodone;
2559 		block->never_written = never_written;
2560 		block->mirror_num = mirror_num;
2561 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2562 			pr_info("New %s%c-block @%llu (%pg/%llu/%d)\n",
2563 			       additional_string,
2564 			       btrfsic_get_block_type(state, block),
2565 			       block->logical_bytenr, dev_state->bdev,
2566 			       block->dev_bytenr, mirror_num);
2567 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2568 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2569 		if (NULL != was_created)
2570 			*was_created = 1;
2571 	} else {
2572 		if (NULL != was_created)
2573 			*was_created = 0;
2574 	}
2575 
2576 	return block;
2577 }
2578 
btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state * state,u64 bytenr,struct btrfsic_dev_state * dev_state,u64 dev_bytenr)2579 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2580 					   u64 bytenr,
2581 					   struct btrfsic_dev_state *dev_state,
2582 					   u64 dev_bytenr)
2583 {
2584 	struct btrfs_fs_info *fs_info = state->fs_info;
2585 	struct btrfsic_block_data_ctx block_ctx;
2586 	int num_copies;
2587 	int mirror_num;
2588 	int match = 0;
2589 	int ret;
2590 
2591 	num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2592 
2593 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2594 		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2595 					&block_ctx, mirror_num);
2596 		if (ret) {
2597 			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2598 			       bytenr, mirror_num);
2599 			continue;
2600 		}
2601 
2602 		if (dev_state->bdev == block_ctx.dev->bdev &&
2603 		    dev_bytenr == block_ctx.dev_bytenr) {
2604 			match++;
2605 			btrfsic_release_block_ctx(&block_ctx);
2606 			break;
2607 		}
2608 		btrfsic_release_block_ctx(&block_ctx);
2609 	}
2610 
2611 	if (WARN_ON(!match)) {
2612 		pr_info(
2613 "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%pg, phys_bytenr=%llu)!\n",
2614 		       bytenr, dev_state->bdev, dev_bytenr);
2615 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2616 			ret = btrfsic_map_block(state, bytenr,
2617 						state->metablock_size,
2618 						&block_ctx, mirror_num);
2619 			if (ret)
2620 				continue;
2621 
2622 			pr_info("read logical bytenr @%llu maps to (%pg/%llu/%d)\n",
2623 			       bytenr, block_ctx.dev->bdev,
2624 			       block_ctx.dev_bytenr, mirror_num);
2625 		}
2626 	}
2627 }
2628 
btrfsic_dev_state_lookup(dev_t dev)2629 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
2630 {
2631 	return btrfsic_dev_state_hashtable_lookup(dev,
2632 						  &btrfsic_dev_state_hashtable);
2633 }
2634 
btrfsic_check_write_bio(struct bio * bio,struct btrfsic_dev_state * dev_state)2635 static void btrfsic_check_write_bio(struct bio *bio, struct btrfsic_dev_state *dev_state)
2636 {
2637 	unsigned int segs = bio_segments(bio);
2638 	u64 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2639 	u64 cur_bytenr = dev_bytenr;
2640 	struct bvec_iter iter;
2641 	struct bio_vec bvec;
2642 	char **mapped_datav;
2643 	int bio_is_patched = 0;
2644 	int i = 0;
2645 
2646 	if (dev_state->state->print_mask & BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2647 		pr_info(
2648 "submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2649 		       bio_op(bio), bio->bi_opf, segs,
2650 		       bio->bi_iter.bi_sector, dev_bytenr, bio->bi_bdev);
2651 
2652 	mapped_datav = kmalloc_array(segs, sizeof(*mapped_datav), GFP_NOFS);
2653 	if (!mapped_datav)
2654 		return;
2655 
2656 	bio_for_each_segment(bvec, bio, iter) {
2657 		BUG_ON(bvec.bv_len != PAGE_SIZE);
2658 		mapped_datav[i] = page_address(bvec.bv_page);
2659 		i++;
2660 
2661 		if (dev_state->state->print_mask &
2662 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2663 			pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2664 			       i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2665 		cur_bytenr += bvec.bv_len;
2666 	}
2667 
2668 	btrfsic_process_written_block(dev_state, dev_bytenr, mapped_datav, segs,
2669 				      bio, &bio_is_patched, bio->bi_opf);
2670 	kfree(mapped_datav);
2671 }
2672 
btrfsic_check_flush_bio(struct bio * bio,struct btrfsic_dev_state * dev_state)2673 static void btrfsic_check_flush_bio(struct bio *bio, struct btrfsic_dev_state *dev_state)
2674 {
2675 	if (dev_state->state->print_mask & BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2676 		pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2677 		       bio_op(bio), bio->bi_opf, bio->bi_bdev);
2678 
2679 	if (dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2680 		struct btrfsic_block *const block =
2681 			&dev_state->dummy_block_for_bio_bh_flush;
2682 
2683 		block->is_iodone = 0;
2684 		block->never_written = 0;
2685 		block->iodone_w_error = 0;
2686 		block->flush_gen = dev_state->last_flush_gen + 1;
2687 		block->submit_bio_bh_rw = bio->bi_opf;
2688 		block->orig_bio_private = bio->bi_private;
2689 		block->orig_bio_end_io = bio->bi_end_io;
2690 		block->next_in_same_bio = NULL;
2691 		bio->bi_private = block;
2692 		bio->bi_end_io = btrfsic_bio_end_io;
2693 	} else if ((dev_state->state->print_mask &
2694 		   (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2695 		    BTRFSIC_PRINT_MASK_VERBOSE))) {
2696 		pr_info(
2697 "btrfsic_submit_bio(%pg) with FLUSH but dummy block already in use (ignored)!\n",
2698 		       dev_state->bdev);
2699 	}
2700 }
2701 
btrfsic_check_bio(struct bio * bio)2702 void btrfsic_check_bio(struct bio *bio)
2703 {
2704 	struct btrfsic_dev_state *dev_state;
2705 
2706 	if (!btrfsic_is_initialized)
2707 		return;
2708 
2709 	/*
2710 	 * We can be called before btrfsic_mount, so there might not be a
2711 	 * dev_state.
2712 	 */
2713 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev->bd_dev);
2714 	mutex_lock(&btrfsic_mutex);
2715 	if (dev_state) {
2716 		if (bio_op(bio) == REQ_OP_WRITE && bio_has_data(bio))
2717 			btrfsic_check_write_bio(bio, dev_state);
2718 		else if (bio->bi_opf & REQ_PREFLUSH)
2719 			btrfsic_check_flush_bio(bio, dev_state);
2720 	}
2721 	mutex_unlock(&btrfsic_mutex);
2722 }
2723 
btrfsic_mount(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices,int including_extent_data,u32 print_mask)2724 int btrfsic_mount(struct btrfs_fs_info *fs_info,
2725 		  struct btrfs_fs_devices *fs_devices,
2726 		  int including_extent_data, u32 print_mask)
2727 {
2728 	int ret;
2729 	struct btrfsic_state *state;
2730 	struct list_head *dev_head = &fs_devices->devices;
2731 	struct btrfs_device *device;
2732 
2733 	if (!PAGE_ALIGNED(fs_info->nodesize)) {
2734 		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2735 		       fs_info->nodesize, PAGE_SIZE);
2736 		return -1;
2737 	}
2738 	if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2739 		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2740 		       fs_info->sectorsize, PAGE_SIZE);
2741 		return -1;
2742 	}
2743 	state = kvzalloc(sizeof(*state), GFP_KERNEL);
2744 	if (!state)
2745 		return -ENOMEM;
2746 
2747 	if (!btrfsic_is_initialized) {
2748 		mutex_init(&btrfsic_mutex);
2749 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2750 		btrfsic_is_initialized = 1;
2751 	}
2752 	mutex_lock(&btrfsic_mutex);
2753 	state->fs_info = fs_info;
2754 	state->print_mask = print_mask;
2755 	state->include_extent_data = including_extent_data;
2756 	state->metablock_size = fs_info->nodesize;
2757 	state->datablock_size = fs_info->sectorsize;
2758 	INIT_LIST_HEAD(&state->all_blocks_list);
2759 	btrfsic_block_hashtable_init(&state->block_hashtable);
2760 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2761 	state->max_superblock_generation = 0;
2762 	state->latest_superblock = NULL;
2763 
2764 	list_for_each_entry(device, dev_head, dev_list) {
2765 		struct btrfsic_dev_state *ds;
2766 
2767 		if (!device->bdev || !device->name)
2768 			continue;
2769 
2770 		ds = btrfsic_dev_state_alloc();
2771 		if (NULL == ds) {
2772 			mutex_unlock(&btrfsic_mutex);
2773 			return -ENOMEM;
2774 		}
2775 		ds->bdev = device->bdev;
2776 		ds->state = state;
2777 		btrfsic_dev_state_hashtable_add(ds,
2778 						&btrfsic_dev_state_hashtable);
2779 	}
2780 
2781 	ret = btrfsic_process_superblock(state, fs_devices);
2782 	if (0 != ret) {
2783 		mutex_unlock(&btrfsic_mutex);
2784 		btrfsic_unmount(fs_devices);
2785 		return ret;
2786 	}
2787 
2788 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2789 		btrfsic_dump_database(state);
2790 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2791 		btrfsic_dump_tree(state);
2792 
2793 	mutex_unlock(&btrfsic_mutex);
2794 	return 0;
2795 }
2796 
btrfsic_unmount(struct btrfs_fs_devices * fs_devices)2797 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2798 {
2799 	struct btrfsic_block *b_all, *tmp_all;
2800 	struct btrfsic_state *state;
2801 	struct list_head *dev_head = &fs_devices->devices;
2802 	struct btrfs_device *device;
2803 
2804 	if (!btrfsic_is_initialized)
2805 		return;
2806 
2807 	mutex_lock(&btrfsic_mutex);
2808 
2809 	state = NULL;
2810 	list_for_each_entry(device, dev_head, dev_list) {
2811 		struct btrfsic_dev_state *ds;
2812 
2813 		if (!device->bdev || !device->name)
2814 			continue;
2815 
2816 		ds = btrfsic_dev_state_hashtable_lookup(
2817 				device->bdev->bd_dev,
2818 				&btrfsic_dev_state_hashtable);
2819 		if (NULL != ds) {
2820 			state = ds->state;
2821 			btrfsic_dev_state_hashtable_remove(ds);
2822 			btrfsic_dev_state_free(ds);
2823 		}
2824 	}
2825 
2826 	if (NULL == state) {
2827 		pr_info("btrfsic: error, cannot find state information on umount!\n");
2828 		mutex_unlock(&btrfsic_mutex);
2829 		return;
2830 	}
2831 
2832 	/*
2833 	 * Don't care about keeping the lists' state up to date,
2834 	 * just free all memory that was allocated dynamically.
2835 	 * Free the blocks and the block_links.
2836 	 */
2837 	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
2838 				 all_blocks_node) {
2839 		struct btrfsic_block_link *l, *tmp;
2840 
2841 		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
2842 					 node_ref_to) {
2843 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2844 				btrfsic_print_rem_link(state, l);
2845 
2846 			l->ref_cnt--;
2847 			if (0 == l->ref_cnt)
2848 				btrfsic_block_link_free(l);
2849 		}
2850 
2851 		if (b_all->is_iodone || b_all->never_written)
2852 			btrfsic_block_free(b_all);
2853 		else
2854 			pr_info(
2855 "btrfs: attempt to free %c-block @%llu (%pg/%llu/%d) on umount which is not yet iodone!\n",
2856 			       btrfsic_get_block_type(state, b_all),
2857 			       b_all->logical_bytenr, b_all->dev_state->bdev,
2858 			       b_all->dev_bytenr, b_all->mirror_num);
2859 	}
2860 
2861 	mutex_unlock(&btrfsic_mutex);
2862 
2863 	kvfree(state);
2864 }
2865