1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Keystone Queue Manager subsystem driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23
24 #include "knav_qmss.h"
25
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 #define knav_dev_lock_held() \
29 lockdep_is_held(&knav_dev_lock)
30
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX 0
33 #define KNAV_QUEUE_STATUS_REG_INDEX 1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
35 #define KNAV_QUEUE_REGION_REG_INDEX 3
36 #define KNAV_QUEUE_PUSH_REG_INDEX 4
37 #define KNAV_QUEUE_POP_REG_INDEX 5
38
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40 * There are no status and vbusm push registers on this version
41 * of QMSS. Push registers are same as pop, So all indices above 1
42 * are to be re-defined
43 */
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
47
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
53
54 #define knav_queue_idx_to_inst(kdev, idx) \
55 (kdev->instances + (idx << kdev->inst_shift))
56
57 #define for_each_handle_rcu(qh, inst) \
58 list_for_each_entry_rcu(qh, &inst->handles, list, \
59 knav_dev_lock_held())
60
61 #define for_each_instance(idx, inst, kdev) \
62 for (idx = 0, inst = kdev->instances; \
63 idx < (kdev)->num_queues_in_use; \
64 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
65
66 /* All firmware file names end up here. List the firmware file names below.
67 * Newest followed by older ones. Search is done from start of the array
68 * until a firmware file is found.
69 */
70 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
71
72 static bool device_ready;
knav_qmss_device_ready(void)73 bool knav_qmss_device_ready(void)
74 {
75 return device_ready;
76 }
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
78
79 /**
80 * knav_queue_notify: qmss queue notfier call
81 *
82 * @inst: - qmss queue instance like accumulator
83 */
knav_queue_notify(struct knav_queue_inst * inst)84 void knav_queue_notify(struct knav_queue_inst *inst)
85 {
86 struct knav_queue *qh;
87
88 if (!inst)
89 return;
90
91 rcu_read_lock();
92 for_each_handle_rcu(qh, inst) {
93 if (atomic_read(&qh->notifier_enabled) <= 0)
94 continue;
95 if (WARN_ON(!qh->notifier_fn))
96 continue;
97 this_cpu_inc(qh->stats->notifies);
98 qh->notifier_fn(qh->notifier_fn_arg);
99 }
100 rcu_read_unlock();
101 }
102 EXPORT_SYMBOL_GPL(knav_queue_notify);
103
knav_queue_int_handler(int irq,void * _instdata)104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
105 {
106 struct knav_queue_inst *inst = _instdata;
107
108 knav_queue_notify(inst);
109 return IRQ_HANDLED;
110 }
111
knav_queue_setup_irq(struct knav_range_info * range,struct knav_queue_inst * inst)112 static int knav_queue_setup_irq(struct knav_range_info *range,
113 struct knav_queue_inst *inst)
114 {
115 unsigned queue = inst->id - range->queue_base;
116 int ret = 0, irq;
117
118 if (range->flags & RANGE_HAS_IRQ) {
119 irq = range->irqs[queue].irq;
120 ret = request_irq(irq, knav_queue_int_handler, 0,
121 inst->irq_name, inst);
122 if (ret)
123 return ret;
124 disable_irq(irq);
125 if (range->irqs[queue].cpu_mask) {
126 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127 if (ret) {
128 dev_warn(range->kdev->dev,
129 "Failed to set IRQ affinity\n");
130 return ret;
131 }
132 }
133 }
134 return ret;
135 }
136
knav_queue_free_irq(struct knav_queue_inst * inst)137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139 struct knav_range_info *range = inst->range;
140 unsigned queue = inst->id - inst->range->queue_base;
141 int irq;
142
143 if (range->flags & RANGE_HAS_IRQ) {
144 irq = range->irqs[queue].irq;
145 irq_set_affinity_hint(irq, NULL);
146 free_irq(irq, inst);
147 }
148 }
149
knav_queue_is_busy(struct knav_queue_inst * inst)150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152 return !list_empty(&inst->handles);
153 }
154
knav_queue_is_reserved(struct knav_queue_inst * inst)155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157 return inst->range->flags & RANGE_RESERVED;
158 }
159
knav_queue_is_shared(struct knav_queue_inst * inst)160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162 struct knav_queue *tmp;
163
164 rcu_read_lock();
165 for_each_handle_rcu(tmp, inst) {
166 if (tmp->flags & KNAV_QUEUE_SHARED) {
167 rcu_read_unlock();
168 return true;
169 }
170 }
171 rcu_read_unlock();
172 return false;
173 }
174
knav_queue_match_type(struct knav_queue_inst * inst,unsigned type)175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176 unsigned type)
177 {
178 if ((type == KNAV_QUEUE_QPEND) &&
179 (inst->range->flags & RANGE_HAS_IRQ)) {
180 return true;
181 } else if ((type == KNAV_QUEUE_ACC) &&
182 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183 return true;
184 } else if ((type == KNAV_QUEUE_GP) &&
185 !(inst->range->flags &
186 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187 return true;
188 }
189 return false;
190 }
191
192 static inline struct knav_queue_inst *
knav_queue_match_id_to_inst(struct knav_device * kdev,unsigned id)193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195 struct knav_queue_inst *inst;
196 int idx;
197
198 for_each_instance(idx, inst, kdev) {
199 if (inst->id == id)
200 return inst;
201 }
202 return NULL;
203 }
204
knav_queue_find_by_id(int id)205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207 if (kdev->base_id <= id &&
208 kdev->base_id + kdev->num_queues > id) {
209 id -= kdev->base_id;
210 return knav_queue_match_id_to_inst(kdev, id);
211 }
212 return NULL;
213 }
214
__knav_queue_open(struct knav_queue_inst * inst,const char * name,unsigned flags)215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216 const char *name, unsigned flags)
217 {
218 struct knav_queue *qh;
219 unsigned id;
220 int ret = 0;
221
222 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223 if (!qh)
224 return ERR_PTR(-ENOMEM);
225
226 qh->stats = alloc_percpu(struct knav_queue_stats);
227 if (!qh->stats) {
228 ret = -ENOMEM;
229 goto err;
230 }
231
232 qh->flags = flags;
233 qh->inst = inst;
234 id = inst->id - inst->qmgr->start_queue;
235 qh->reg_push = &inst->qmgr->reg_push[id];
236 qh->reg_pop = &inst->qmgr->reg_pop[id];
237 qh->reg_peek = &inst->qmgr->reg_peek[id];
238
239 /* first opener? */
240 if (!knav_queue_is_busy(inst)) {
241 struct knav_range_info *range = inst->range;
242
243 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244 if (range->ops && range->ops->open_queue)
245 ret = range->ops->open_queue(range, inst, flags);
246
247 if (ret)
248 goto err;
249 }
250 list_add_tail_rcu(&qh->list, &inst->handles);
251 return qh;
252
253 err:
254 if (qh->stats)
255 free_percpu(qh->stats);
256 devm_kfree(inst->kdev->dev, qh);
257 return ERR_PTR(ret);
258 }
259
260 static struct knav_queue *
knav_queue_open_by_id(const char * name,unsigned id,unsigned flags)261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262 {
263 struct knav_queue_inst *inst;
264 struct knav_queue *qh;
265
266 mutex_lock(&knav_dev_lock);
267
268 qh = ERR_PTR(-ENODEV);
269 inst = knav_queue_find_by_id(id);
270 if (!inst)
271 goto unlock_ret;
272
273 qh = ERR_PTR(-EEXIST);
274 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275 goto unlock_ret;
276
277 qh = ERR_PTR(-EBUSY);
278 if ((flags & KNAV_QUEUE_SHARED) &&
279 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280 goto unlock_ret;
281
282 qh = __knav_queue_open(inst, name, flags);
283
284 unlock_ret:
285 mutex_unlock(&knav_dev_lock);
286
287 return qh;
288 }
289
knav_queue_open_by_type(const char * name,unsigned type,unsigned flags)290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291 unsigned type, unsigned flags)
292 {
293 struct knav_queue_inst *inst;
294 struct knav_queue *qh = ERR_PTR(-EINVAL);
295 int idx;
296
297 mutex_lock(&knav_dev_lock);
298
299 for_each_instance(idx, inst, kdev) {
300 if (knav_queue_is_reserved(inst))
301 continue;
302 if (!knav_queue_match_type(inst, type))
303 continue;
304 if (knav_queue_is_busy(inst))
305 continue;
306 qh = __knav_queue_open(inst, name, flags);
307 goto unlock_ret;
308 }
309
310 unlock_ret:
311 mutex_unlock(&knav_dev_lock);
312 return qh;
313 }
314
knav_queue_set_notify(struct knav_queue_inst * inst,bool enabled)315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316 {
317 struct knav_range_info *range = inst->range;
318
319 if (range->ops && range->ops->set_notify)
320 range->ops->set_notify(range, inst, enabled);
321 }
322
knav_queue_enable_notifier(struct knav_queue * qh)323 static int knav_queue_enable_notifier(struct knav_queue *qh)
324 {
325 struct knav_queue_inst *inst = qh->inst;
326 bool first;
327
328 if (WARN_ON(!qh->notifier_fn))
329 return -EINVAL;
330
331 /* Adjust the per handle notifier count */
332 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333 if (!first)
334 return 0; /* nothing to do */
335
336 /* Now adjust the per instance notifier count */
337 first = (atomic_inc_return(&inst->num_notifiers) == 1);
338 if (first)
339 knav_queue_set_notify(inst, true);
340
341 return 0;
342 }
343
knav_queue_disable_notifier(struct knav_queue * qh)344 static int knav_queue_disable_notifier(struct knav_queue *qh)
345 {
346 struct knav_queue_inst *inst = qh->inst;
347 bool last;
348
349 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350 if (!last)
351 return 0; /* nothing to do */
352
353 last = (atomic_dec_return(&inst->num_notifiers) == 0);
354 if (last)
355 knav_queue_set_notify(inst, false);
356
357 return 0;
358 }
359
knav_queue_set_notifier(struct knav_queue * qh,struct knav_queue_notify_config * cfg)360 static int knav_queue_set_notifier(struct knav_queue *qh,
361 struct knav_queue_notify_config *cfg)
362 {
363 knav_queue_notify_fn old_fn = qh->notifier_fn;
364
365 if (!cfg)
366 return -EINVAL;
367
368 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369 return -ENOTSUPP;
370
371 if (!cfg->fn && old_fn)
372 knav_queue_disable_notifier(qh);
373
374 qh->notifier_fn = cfg->fn;
375 qh->notifier_fn_arg = cfg->fn_arg;
376
377 if (cfg->fn && !old_fn)
378 knav_queue_enable_notifier(qh);
379
380 return 0;
381 }
382
knav_gp_set_notify(struct knav_range_info * range,struct knav_queue_inst * inst,bool enabled)383 static int knav_gp_set_notify(struct knav_range_info *range,
384 struct knav_queue_inst *inst,
385 bool enabled)
386 {
387 unsigned queue;
388
389 if (range->flags & RANGE_HAS_IRQ) {
390 queue = inst->id - range->queue_base;
391 if (enabled)
392 enable_irq(range->irqs[queue].irq);
393 else
394 disable_irq_nosync(range->irqs[queue].irq);
395 }
396 return 0;
397 }
398
knav_gp_open_queue(struct knav_range_info * range,struct knav_queue_inst * inst,unsigned flags)399 static int knav_gp_open_queue(struct knav_range_info *range,
400 struct knav_queue_inst *inst, unsigned flags)
401 {
402 return knav_queue_setup_irq(range, inst);
403 }
404
knav_gp_close_queue(struct knav_range_info * range,struct knav_queue_inst * inst)405 static int knav_gp_close_queue(struct knav_range_info *range,
406 struct knav_queue_inst *inst)
407 {
408 knav_queue_free_irq(inst);
409 return 0;
410 }
411
412 static struct knav_range_ops knav_gp_range_ops = {
413 .set_notify = knav_gp_set_notify,
414 .open_queue = knav_gp_open_queue,
415 .close_queue = knav_gp_close_queue,
416 };
417
418
knav_queue_get_count(void * qhandle)419 static int knav_queue_get_count(void *qhandle)
420 {
421 struct knav_queue *qh = qhandle;
422 struct knav_queue_inst *inst = qh->inst;
423
424 return readl_relaxed(&qh->reg_peek[0].entry_count) +
425 atomic_read(&inst->desc_count);
426 }
427
knav_queue_debug_show_instance(struct seq_file * s,struct knav_queue_inst * inst)428 static void knav_queue_debug_show_instance(struct seq_file *s,
429 struct knav_queue_inst *inst)
430 {
431 struct knav_device *kdev = inst->kdev;
432 struct knav_queue *qh;
433 int cpu = 0;
434 int pushes = 0;
435 int pops = 0;
436 int push_errors = 0;
437 int pop_errors = 0;
438 int notifies = 0;
439
440 if (!knav_queue_is_busy(inst))
441 return;
442
443 seq_printf(s, "\tqueue id %d (%s)\n",
444 kdev->base_id + inst->id, inst->name);
445 for_each_handle_rcu(qh, inst) {
446 for_each_possible_cpu(cpu) {
447 pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448 pops += per_cpu_ptr(qh->stats, cpu)->pops;
449 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451 notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452 }
453
454 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455 qh,
456 pushes,
457 pops,
458 knav_queue_get_count(qh),
459 notifies,
460 push_errors,
461 pop_errors);
462 }
463 }
464
knav_queue_debug_show(struct seq_file * s,void * v)465 static int knav_queue_debug_show(struct seq_file *s, void *v)
466 {
467 struct knav_queue_inst *inst;
468 int idx;
469
470 mutex_lock(&knav_dev_lock);
471 seq_printf(s, "%s: %u-%u\n",
472 dev_name(kdev->dev), kdev->base_id,
473 kdev->base_id + kdev->num_queues - 1);
474 for_each_instance(idx, inst, kdev)
475 knav_queue_debug_show_instance(s, inst);
476 mutex_unlock(&knav_dev_lock);
477
478 return 0;
479 }
480
481 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
482
knav_queue_pdsp_wait(u32 * __iomem addr,unsigned timeout,u32 flags)483 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
484 u32 flags)
485 {
486 unsigned long end;
487 u32 val = 0;
488
489 end = jiffies + msecs_to_jiffies(timeout);
490 while (time_after(end, jiffies)) {
491 val = readl_relaxed(addr);
492 if (flags)
493 val &= flags;
494 if (!val)
495 break;
496 cpu_relax();
497 }
498 return val ? -ETIMEDOUT : 0;
499 }
500
501
knav_queue_flush(struct knav_queue * qh)502 static int knav_queue_flush(struct knav_queue *qh)
503 {
504 struct knav_queue_inst *inst = qh->inst;
505 unsigned id = inst->id - inst->qmgr->start_queue;
506
507 atomic_set(&inst->desc_count, 0);
508 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
509 return 0;
510 }
511
512 /**
513 * knav_queue_open() - open a hardware queue
514 * @name: - name to give the queue handle
515 * @id: - desired queue number if any or specifes the type
516 * of queue
517 * @flags: - the following flags are applicable to queues:
518 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
519 * exclusive by default.
520 * Subsequent attempts to open a shared queue should
521 * also have this flag.
522 *
523 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
524 * to check the returned value for error codes.
525 */
knav_queue_open(const char * name,unsigned id,unsigned flags)526 void *knav_queue_open(const char *name, unsigned id,
527 unsigned flags)
528 {
529 struct knav_queue *qh = ERR_PTR(-EINVAL);
530
531 switch (id) {
532 case KNAV_QUEUE_QPEND:
533 case KNAV_QUEUE_ACC:
534 case KNAV_QUEUE_GP:
535 qh = knav_queue_open_by_type(name, id, flags);
536 break;
537
538 default:
539 qh = knav_queue_open_by_id(name, id, flags);
540 break;
541 }
542 return qh;
543 }
544 EXPORT_SYMBOL_GPL(knav_queue_open);
545
546 /**
547 * knav_queue_close() - close a hardware queue handle
548 * @qhandle: - handle to close
549 */
knav_queue_close(void * qhandle)550 void knav_queue_close(void *qhandle)
551 {
552 struct knav_queue *qh = qhandle;
553 struct knav_queue_inst *inst = qh->inst;
554
555 while (atomic_read(&qh->notifier_enabled) > 0)
556 knav_queue_disable_notifier(qh);
557
558 mutex_lock(&knav_dev_lock);
559 list_del_rcu(&qh->list);
560 mutex_unlock(&knav_dev_lock);
561 synchronize_rcu();
562 if (!knav_queue_is_busy(inst)) {
563 struct knav_range_info *range = inst->range;
564
565 if (range->ops && range->ops->close_queue)
566 range->ops->close_queue(range, inst);
567 }
568 free_percpu(qh->stats);
569 devm_kfree(inst->kdev->dev, qh);
570 }
571 EXPORT_SYMBOL_GPL(knav_queue_close);
572
573 /**
574 * knav_queue_device_control() - Perform control operations on a queue
575 * @qhandle: - queue handle
576 * @cmd: - control commands
577 * @arg: - command argument
578 *
579 * Returns 0 on success, errno otherwise.
580 */
knav_queue_device_control(void * qhandle,enum knav_queue_ctrl_cmd cmd,unsigned long arg)581 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
582 unsigned long arg)
583 {
584 struct knav_queue *qh = qhandle;
585 struct knav_queue_notify_config *cfg;
586 int ret;
587
588 switch ((int)cmd) {
589 case KNAV_QUEUE_GET_ID:
590 ret = qh->inst->kdev->base_id + qh->inst->id;
591 break;
592
593 case KNAV_QUEUE_FLUSH:
594 ret = knav_queue_flush(qh);
595 break;
596
597 case KNAV_QUEUE_SET_NOTIFIER:
598 cfg = (void *)arg;
599 ret = knav_queue_set_notifier(qh, cfg);
600 break;
601
602 case KNAV_QUEUE_ENABLE_NOTIFY:
603 ret = knav_queue_enable_notifier(qh);
604 break;
605
606 case KNAV_QUEUE_DISABLE_NOTIFY:
607 ret = knav_queue_disable_notifier(qh);
608 break;
609
610 case KNAV_QUEUE_GET_COUNT:
611 ret = knav_queue_get_count(qh);
612 break;
613
614 default:
615 ret = -ENOTSUPP;
616 break;
617 }
618 return ret;
619 }
620 EXPORT_SYMBOL_GPL(knav_queue_device_control);
621
622
623
624 /**
625 * knav_queue_push() - push data (or descriptor) to the tail of a queue
626 * @qhandle: - hardware queue handle
627 * @dma: - DMA data to push
628 * @size: - size of data to push
629 * @flags: - can be used to pass additional information
630 *
631 * Returns 0 on success, errno otherwise.
632 */
knav_queue_push(void * qhandle,dma_addr_t dma,unsigned size,unsigned flags)633 int knav_queue_push(void *qhandle, dma_addr_t dma,
634 unsigned size, unsigned flags)
635 {
636 struct knav_queue *qh = qhandle;
637 u32 val;
638
639 val = (u32)dma | ((size / 16) - 1);
640 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
641
642 this_cpu_inc(qh->stats->pushes);
643 return 0;
644 }
645 EXPORT_SYMBOL_GPL(knav_queue_push);
646
647 /**
648 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
649 * @qhandle: - hardware queue handle
650 * @size: - (optional) size of the data pop'ed.
651 *
652 * Returns a DMA address on success, 0 on failure.
653 */
knav_queue_pop(void * qhandle,unsigned * size)654 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
655 {
656 struct knav_queue *qh = qhandle;
657 struct knav_queue_inst *inst = qh->inst;
658 dma_addr_t dma;
659 u32 val, idx;
660
661 /* are we accumulated? */
662 if (inst->descs) {
663 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
664 atomic_inc(&inst->desc_count);
665 return 0;
666 }
667 idx = atomic_inc_return(&inst->desc_head);
668 idx &= ACC_DESCS_MASK;
669 val = inst->descs[idx];
670 } else {
671 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
672 if (unlikely(!val))
673 return 0;
674 }
675
676 dma = val & DESC_PTR_MASK;
677 if (size)
678 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
679
680 this_cpu_inc(qh->stats->pops);
681 return dma;
682 }
683 EXPORT_SYMBOL_GPL(knav_queue_pop);
684
685 /* carve out descriptors and push into queue */
kdesc_fill_pool(struct knav_pool * pool)686 static void kdesc_fill_pool(struct knav_pool *pool)
687 {
688 struct knav_region *region;
689 int i;
690
691 region = pool->region;
692 pool->desc_size = region->desc_size;
693 for (i = 0; i < pool->num_desc; i++) {
694 int index = pool->region_offset + i;
695 dma_addr_t dma_addr;
696 unsigned dma_size;
697 dma_addr = region->dma_start + (region->desc_size * index);
698 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
699 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
700 DMA_TO_DEVICE);
701 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
702 }
703 }
704
705 /* pop out descriptors and close the queue */
kdesc_empty_pool(struct knav_pool * pool)706 static void kdesc_empty_pool(struct knav_pool *pool)
707 {
708 dma_addr_t dma;
709 unsigned size;
710 void *desc;
711 int i;
712
713 if (!pool->queue)
714 return;
715
716 for (i = 0;; i++) {
717 dma = knav_queue_pop(pool->queue, &size);
718 if (!dma)
719 break;
720 desc = knav_pool_desc_dma_to_virt(pool, dma);
721 if (!desc) {
722 dev_dbg(pool->kdev->dev,
723 "couldn't unmap desc, continuing\n");
724 continue;
725 }
726 }
727 WARN_ON(i != pool->num_desc);
728 knav_queue_close(pool->queue);
729 }
730
731
732 /* Get the DMA address of a descriptor */
knav_pool_desc_virt_to_dma(void * ph,void * virt)733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734 {
735 struct knav_pool *pool = ph;
736 return pool->region->dma_start + (virt - pool->region->virt_start);
737 }
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739
knav_pool_desc_dma_to_virt(void * ph,dma_addr_t dma)740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741 {
742 struct knav_pool *pool = ph;
743 return pool->region->virt_start + (dma - pool->region->dma_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746
747 /**
748 * knav_pool_create() - Create a pool of descriptors
749 * @name: - name to give the pool handle
750 * @num_desc: - numbers of descriptors in the pool
751 * @region_id: - QMSS region id from which the descriptors are to be
752 * allocated.
753 *
754 * Returns a pool handle on success.
755 * Use IS_ERR_OR_NULL() to identify error values on return.
756 */
knav_pool_create(const char * name,int num_desc,int region_id)757 void *knav_pool_create(const char *name,
758 int num_desc, int region_id)
759 {
760 struct knav_region *reg_itr, *region = NULL;
761 struct knav_pool *pool, *pi = NULL, *iter;
762 struct list_head *node;
763 unsigned last_offset;
764 int ret;
765
766 if (!kdev)
767 return ERR_PTR(-EPROBE_DEFER);
768
769 if (!kdev->dev)
770 return ERR_PTR(-ENODEV);
771
772 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
773 if (!pool) {
774 dev_err(kdev->dev, "out of memory allocating pool\n");
775 return ERR_PTR(-ENOMEM);
776 }
777
778 for_each_region(kdev, reg_itr) {
779 if (reg_itr->id != region_id)
780 continue;
781 region = reg_itr;
782 break;
783 }
784
785 if (!region) {
786 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
787 ret = -EINVAL;
788 goto err;
789 }
790
791 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
792 if (IS_ERR(pool->queue)) {
793 dev_err(kdev->dev,
794 "failed to open queue for pool(%s), error %ld\n",
795 name, PTR_ERR(pool->queue));
796 ret = PTR_ERR(pool->queue);
797 goto err;
798 }
799
800 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
801 pool->kdev = kdev;
802 pool->dev = kdev->dev;
803
804 mutex_lock(&knav_dev_lock);
805
806 if (num_desc > (region->num_desc - region->used_desc)) {
807 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
808 region_id, name);
809 ret = -ENOMEM;
810 goto err_unlock;
811 }
812
813 /* Region maintains a sorted (by region offset) list of pools
814 * use the first free slot which is large enough to accomodate
815 * the request
816 */
817 last_offset = 0;
818 node = ®ion->pools;
819 list_for_each_entry(iter, ®ion->pools, region_inst) {
820 if ((iter->region_offset - last_offset) >= num_desc) {
821 pi = iter;
822 break;
823 }
824 last_offset = iter->region_offset + iter->num_desc;
825 }
826
827 if (pi) {
828 node = &pi->region_inst;
829 pool->region = region;
830 pool->num_desc = num_desc;
831 pool->region_offset = last_offset;
832 region->used_desc += num_desc;
833 list_add_tail(&pool->list, &kdev->pools);
834 list_add_tail(&pool->region_inst, node);
835 } else {
836 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
837 name, region_id);
838 ret = -ENOMEM;
839 goto err_unlock;
840 }
841
842 mutex_unlock(&knav_dev_lock);
843 kdesc_fill_pool(pool);
844 return pool;
845
846 err_unlock:
847 mutex_unlock(&knav_dev_lock);
848 err:
849 kfree(pool->name);
850 devm_kfree(kdev->dev, pool);
851 return ERR_PTR(ret);
852 }
853 EXPORT_SYMBOL_GPL(knav_pool_create);
854
855 /**
856 * knav_pool_destroy() - Free a pool of descriptors
857 * @ph: - pool handle
858 */
knav_pool_destroy(void * ph)859 void knav_pool_destroy(void *ph)
860 {
861 struct knav_pool *pool = ph;
862
863 if (!pool)
864 return;
865
866 if (!pool->region)
867 return;
868
869 kdesc_empty_pool(pool);
870 mutex_lock(&knav_dev_lock);
871
872 pool->region->used_desc -= pool->num_desc;
873 list_del(&pool->region_inst);
874 list_del(&pool->list);
875
876 mutex_unlock(&knav_dev_lock);
877 kfree(pool->name);
878 devm_kfree(kdev->dev, pool);
879 }
880 EXPORT_SYMBOL_GPL(knav_pool_destroy);
881
882
883 /**
884 * knav_pool_desc_get() - Get a descriptor from the pool
885 * @ph: - pool handle
886 *
887 * Returns descriptor from the pool.
888 */
knav_pool_desc_get(void * ph)889 void *knav_pool_desc_get(void *ph)
890 {
891 struct knav_pool *pool = ph;
892 dma_addr_t dma;
893 unsigned size;
894 void *data;
895
896 dma = knav_queue_pop(pool->queue, &size);
897 if (unlikely(!dma))
898 return ERR_PTR(-ENOMEM);
899 data = knav_pool_desc_dma_to_virt(pool, dma);
900 return data;
901 }
902 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
903
904 /**
905 * knav_pool_desc_put() - return a descriptor to the pool
906 * @ph: - pool handle
907 * @desc: - virtual address
908 */
knav_pool_desc_put(void * ph,void * desc)909 void knav_pool_desc_put(void *ph, void *desc)
910 {
911 struct knav_pool *pool = ph;
912 dma_addr_t dma;
913 dma = knav_pool_desc_virt_to_dma(pool, desc);
914 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
915 }
916 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
917
918 /**
919 * knav_pool_desc_map() - Map descriptor for DMA transfer
920 * @ph: - pool handle
921 * @desc: - address of descriptor to map
922 * @size: - size of descriptor to map
923 * @dma: - DMA address return pointer
924 * @dma_sz: - adjusted return pointer
925 *
926 * Returns 0 on success, errno otherwise.
927 */
knav_pool_desc_map(void * ph,void * desc,unsigned size,dma_addr_t * dma,unsigned * dma_sz)928 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
929 dma_addr_t *dma, unsigned *dma_sz)
930 {
931 struct knav_pool *pool = ph;
932 *dma = knav_pool_desc_virt_to_dma(pool, desc);
933 size = min(size, pool->region->desc_size);
934 size = ALIGN(size, SMP_CACHE_BYTES);
935 *dma_sz = size;
936 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
937
938 /* Ensure the descriptor reaches to the memory */
939 __iowmb();
940
941 return 0;
942 }
943 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
944
945 /**
946 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
947 * @ph: - pool handle
948 * @dma: - DMA address of descriptor to unmap
949 * @dma_sz: - size of descriptor to unmap
950 *
951 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
952 * error values on return.
953 */
knav_pool_desc_unmap(void * ph,dma_addr_t dma,unsigned dma_sz)954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
955 {
956 struct knav_pool *pool = ph;
957 unsigned desc_sz;
958 void *desc;
959
960 desc_sz = min(dma_sz, pool->region->desc_size);
961 desc = knav_pool_desc_dma_to_virt(pool, dma);
962 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
963 prefetch(desc);
964 return desc;
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
967
968 /**
969 * knav_pool_count() - Get the number of descriptors in pool.
970 * @ph: - pool handle
971 * Returns number of elements in the pool.
972 */
knav_pool_count(void * ph)973 int knav_pool_count(void *ph)
974 {
975 struct knav_pool *pool = ph;
976 return knav_queue_get_count(pool->queue);
977 }
978 EXPORT_SYMBOL_GPL(knav_pool_count);
979
knav_queue_setup_region(struct knav_device * kdev,struct knav_region * region)980 static void knav_queue_setup_region(struct knav_device *kdev,
981 struct knav_region *region)
982 {
983 unsigned hw_num_desc, hw_desc_size, size;
984 struct knav_reg_region __iomem *regs;
985 struct knav_qmgr_info *qmgr;
986 struct knav_pool *pool;
987 int id = region->id;
988 struct page *page;
989
990 /* unused region? */
991 if (!region->num_desc) {
992 dev_warn(kdev->dev, "unused region %s\n", region->name);
993 return;
994 }
995
996 /* get hardware descriptor value */
997 hw_num_desc = ilog2(region->num_desc - 1) + 1;
998
999 /* did we force fit ourselves into nothingness? */
1000 if (region->num_desc < 32) {
1001 region->num_desc = 0;
1002 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1003 region->name);
1004 return;
1005 }
1006
1007 size = region->num_desc * region->desc_size;
1008 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1009 GFP_DMA32);
1010 if (!region->virt_start) {
1011 region->num_desc = 0;
1012 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1013 region->name);
1014 return;
1015 }
1016 region->virt_end = region->virt_start + size;
1017 page = virt_to_page(region->virt_start);
1018
1019 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1020 DMA_BIDIRECTIONAL);
1021 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1022 dev_err(kdev->dev, "dma map failed for region %s\n",
1023 region->name);
1024 goto fail;
1025 }
1026 region->dma_end = region->dma_start + size;
1027
1028 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1029 if (!pool) {
1030 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1031 goto fail;
1032 }
1033 pool->num_desc = 0;
1034 pool->region_offset = region->num_desc;
1035 list_add(&pool->region_inst, ®ion->pools);
1036
1037 dev_dbg(kdev->dev,
1038 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1039 region->name, id, region->desc_size, region->num_desc,
1040 region->link_index, ®ion->dma_start, ®ion->dma_end,
1041 region->virt_start, region->virt_end);
1042
1043 hw_desc_size = (region->desc_size / 16) - 1;
1044 hw_num_desc -= 5;
1045
1046 for_each_qmgr(kdev, qmgr) {
1047 regs = qmgr->reg_region + id;
1048 writel_relaxed((u32)region->dma_start, ®s->base);
1049 writel_relaxed(region->link_index, ®s->start_index);
1050 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1051 ®s->size_count);
1052 }
1053 return;
1054
1055 fail:
1056 if (region->dma_start)
1057 dma_unmap_page(kdev->dev, region->dma_start, size,
1058 DMA_BIDIRECTIONAL);
1059 if (region->virt_start)
1060 free_pages_exact(region->virt_start, size);
1061 region->num_desc = 0;
1062 return;
1063 }
1064
knav_queue_find_name(struct device_node * node)1065 static const char *knav_queue_find_name(struct device_node *node)
1066 {
1067 const char *name;
1068
1069 if (of_property_read_string(node, "label", &name) < 0)
1070 name = node->name;
1071 if (!name)
1072 name = "unknown";
1073 return name;
1074 }
1075
knav_queue_setup_regions(struct knav_device * kdev,struct device_node * regions)1076 static int knav_queue_setup_regions(struct knav_device *kdev,
1077 struct device_node *regions)
1078 {
1079 struct device *dev = kdev->dev;
1080 struct knav_region *region;
1081 struct device_node *child;
1082 u32 temp[2];
1083 int ret;
1084
1085 for_each_child_of_node(regions, child) {
1086 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1087 if (!region) {
1088 of_node_put(child);
1089 dev_err(dev, "out of memory allocating region\n");
1090 return -ENOMEM;
1091 }
1092
1093 region->name = knav_queue_find_name(child);
1094 of_property_read_u32(child, "id", ®ion->id);
1095 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1096 if (!ret) {
1097 region->num_desc = temp[0];
1098 region->desc_size = temp[1];
1099 } else {
1100 dev_err(dev, "invalid region info %s\n", region->name);
1101 devm_kfree(dev, region);
1102 continue;
1103 }
1104
1105 if (!of_get_property(child, "link-index", NULL)) {
1106 dev_err(dev, "No link info for %s\n", region->name);
1107 devm_kfree(dev, region);
1108 continue;
1109 }
1110 ret = of_property_read_u32(child, "link-index",
1111 ®ion->link_index);
1112 if (ret) {
1113 dev_err(dev, "link index not found for %s\n",
1114 region->name);
1115 devm_kfree(dev, region);
1116 continue;
1117 }
1118
1119 INIT_LIST_HEAD(®ion->pools);
1120 list_add_tail(®ion->list, &kdev->regions);
1121 }
1122 if (list_empty(&kdev->regions)) {
1123 dev_err(dev, "no valid region information found\n");
1124 return -ENODEV;
1125 }
1126
1127 /* Next, we run through the regions and set things up */
1128 for_each_region(kdev, region)
1129 knav_queue_setup_region(kdev, region);
1130
1131 return 0;
1132 }
1133
knav_get_link_ram(struct knav_device * kdev,const char * name,struct knav_link_ram_block * block)1134 static int knav_get_link_ram(struct knav_device *kdev,
1135 const char *name,
1136 struct knav_link_ram_block *block)
1137 {
1138 struct platform_device *pdev = to_platform_device(kdev->dev);
1139 struct device_node *node = pdev->dev.of_node;
1140 u32 temp[2];
1141
1142 /*
1143 * Note: link ram resources are specified in "entry" sized units. In
1144 * reality, although entries are ~40bits in hardware, we treat them as
1145 * 64-bit entities here.
1146 *
1147 * For example, to specify the internal link ram for Keystone-I class
1148 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149 *
1150 * This gets a bit weird when other link rams are used. For example,
1151 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153 * which accounts for 64-bits per entry, for 16K entries.
1154 */
1155 if (!of_property_read_u32_array(node, name , temp, 2)) {
1156 if (temp[0]) {
1157 /*
1158 * queue_base specified => using internal or onchip
1159 * link ram WARNING - we do not "reserve" this block
1160 */
1161 block->dma = (dma_addr_t)temp[0];
1162 block->virt = NULL;
1163 block->size = temp[1];
1164 } else {
1165 block->size = temp[1];
1166 /* queue_base not specific => allocate requested size */
1167 block->virt = dmam_alloc_coherent(kdev->dev,
1168 8 * block->size, &block->dma,
1169 GFP_KERNEL);
1170 if (!block->virt) {
1171 dev_err(kdev->dev, "failed to alloc linkram\n");
1172 return -ENOMEM;
1173 }
1174 }
1175 } else {
1176 return -ENODEV;
1177 }
1178 return 0;
1179 }
1180
knav_queue_setup_link_ram(struct knav_device * kdev)1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182 {
1183 struct knav_link_ram_block *block;
1184 struct knav_qmgr_info *qmgr;
1185
1186 for_each_qmgr(kdev, qmgr) {
1187 block = &kdev->link_rams[0];
1188 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189 &block->dma, block->virt, block->size);
1190 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191 if (kdev->version == QMSS_66AK2G)
1192 writel_relaxed(block->size,
1193 &qmgr->reg_config->link_ram_size0);
1194 else
1195 writel_relaxed(block->size - 1,
1196 &qmgr->reg_config->link_ram_size0);
1197 block++;
1198 if (!block->size)
1199 continue;
1200
1201 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202 &block->dma, block->virt, block->size);
1203 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204 }
1205
1206 return 0;
1207 }
1208
knav_setup_queue_range(struct knav_device * kdev,struct device_node * node)1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210 struct device_node *node)
1211 {
1212 struct device *dev = kdev->dev;
1213 struct knav_range_info *range;
1214 struct knav_qmgr_info *qmgr;
1215 u32 temp[2], start, end, id, index;
1216 int ret, i;
1217
1218 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219 if (!range) {
1220 dev_err(dev, "out of memory allocating range\n");
1221 return -ENOMEM;
1222 }
1223
1224 range->kdev = kdev;
1225 range->name = knav_queue_find_name(node);
1226 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227 if (!ret) {
1228 range->queue_base = temp[0] - kdev->base_id;
1229 range->num_queues = temp[1];
1230 } else {
1231 dev_err(dev, "invalid queue range %s\n", range->name);
1232 devm_kfree(dev, range);
1233 return -EINVAL;
1234 }
1235
1236 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237 struct of_phandle_args oirq;
1238
1239 if (of_irq_parse_one(node, i, &oirq))
1240 break;
1241
1242 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243 if (range->irqs[i].irq == IRQ_NONE)
1244 break;
1245
1246 range->num_irqs++;
1247
1248 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249 unsigned long mask;
1250 int bit;
1251
1252 range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253 cpumask_size(), GFP_KERNEL);
1254 if (!range->irqs[i].cpu_mask)
1255 return -ENOMEM;
1256
1257 mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258 for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260 }
1261 }
1262
1263 range->num_irqs = min(range->num_irqs, range->num_queues);
1264 if (range->num_irqs)
1265 range->flags |= RANGE_HAS_IRQ;
1266
1267 if (of_get_property(node, "qalloc-by-id", NULL))
1268 range->flags |= RANGE_RESERVED;
1269
1270 if (of_get_property(node, "accumulator", NULL)) {
1271 ret = knav_init_acc_range(kdev, node, range);
1272 if (ret < 0) {
1273 devm_kfree(dev, range);
1274 return ret;
1275 }
1276 } else {
1277 range->ops = &knav_gp_range_ops;
1278 }
1279
1280 /* set threshold to 1, and flush out the queues */
1281 for_each_qmgr(kdev, qmgr) {
1282 start = max(qmgr->start_queue, range->queue_base);
1283 end = min(qmgr->start_queue + qmgr->num_queues,
1284 range->queue_base + range->num_queues);
1285 for (id = start; id < end; id++) {
1286 index = id - qmgr->start_queue;
1287 writel_relaxed(THRESH_GTE | 1,
1288 &qmgr->reg_peek[index].ptr_size_thresh);
1289 writel_relaxed(0,
1290 &qmgr->reg_push[index].ptr_size_thresh);
1291 }
1292 }
1293
1294 list_add_tail(&range->list, &kdev->queue_ranges);
1295 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296 range->name, range->queue_base,
1297 range->queue_base + range->num_queues - 1,
1298 range->num_irqs,
1299 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302 kdev->num_queues_in_use += range->num_queues;
1303 return 0;
1304 }
1305
knav_setup_queue_pools(struct knav_device * kdev,struct device_node * queue_pools)1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307 struct device_node *queue_pools)
1308 {
1309 struct device_node *type, *range;
1310
1311 for_each_child_of_node(queue_pools, type) {
1312 for_each_child_of_node(type, range) {
1313 /* return value ignored, we init the rest... */
1314 knav_setup_queue_range(kdev, range);
1315 }
1316 }
1317
1318 /* ... and barf if they all failed! */
1319 if (list_empty(&kdev->queue_ranges)) {
1320 dev_err(kdev->dev, "no valid queue range found\n");
1321 return -ENODEV;
1322 }
1323 return 0;
1324 }
1325
knav_free_queue_range(struct knav_device * kdev,struct knav_range_info * range)1326 static void knav_free_queue_range(struct knav_device *kdev,
1327 struct knav_range_info *range)
1328 {
1329 if (range->ops && range->ops->free_range)
1330 range->ops->free_range(range);
1331 list_del(&range->list);
1332 devm_kfree(kdev->dev, range);
1333 }
1334
knav_free_queue_ranges(struct knav_device * kdev)1335 static void knav_free_queue_ranges(struct knav_device *kdev)
1336 {
1337 struct knav_range_info *range;
1338
1339 for (;;) {
1340 range = first_queue_range(kdev);
1341 if (!range)
1342 break;
1343 knav_free_queue_range(kdev, range);
1344 }
1345 }
1346
knav_queue_free_regions(struct knav_device * kdev)1347 static void knav_queue_free_regions(struct knav_device *kdev)
1348 {
1349 struct knav_region *region;
1350 struct knav_pool *pool, *tmp;
1351 unsigned size;
1352
1353 for (;;) {
1354 region = first_region(kdev);
1355 if (!region)
1356 break;
1357 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst)
1358 knav_pool_destroy(pool);
1359
1360 size = region->virt_end - region->virt_start;
1361 if (size)
1362 free_pages_exact(region->virt_start, size);
1363 list_del(®ion->list);
1364 devm_kfree(kdev->dev, region);
1365 }
1366 }
1367
knav_queue_map_reg(struct knav_device * kdev,struct device_node * node,int index)1368 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1369 struct device_node *node, int index)
1370 {
1371 struct resource res;
1372 void __iomem *regs;
1373 int ret;
1374
1375 ret = of_address_to_resource(node, index, &res);
1376 if (ret) {
1377 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1378 node, index);
1379 return ERR_PTR(ret);
1380 }
1381
1382 regs = devm_ioremap_resource(kdev->dev, &res);
1383 if (IS_ERR(regs))
1384 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1385 index, node);
1386 return regs;
1387 }
1388
knav_queue_init_qmgrs(struct knav_device * kdev,struct device_node * qmgrs)1389 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1390 struct device_node *qmgrs)
1391 {
1392 struct device *dev = kdev->dev;
1393 struct knav_qmgr_info *qmgr;
1394 struct device_node *child;
1395 u32 temp[2];
1396 int ret;
1397
1398 for_each_child_of_node(qmgrs, child) {
1399 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1400 if (!qmgr) {
1401 of_node_put(child);
1402 dev_err(dev, "out of memory allocating qmgr\n");
1403 return -ENOMEM;
1404 }
1405
1406 ret = of_property_read_u32_array(child, "managed-queues",
1407 temp, 2);
1408 if (!ret) {
1409 qmgr->start_queue = temp[0];
1410 qmgr->num_queues = temp[1];
1411 } else {
1412 dev_err(dev, "invalid qmgr queue range\n");
1413 devm_kfree(dev, qmgr);
1414 continue;
1415 }
1416
1417 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1418 qmgr->start_queue, qmgr->num_queues);
1419
1420 qmgr->reg_peek =
1421 knav_queue_map_reg(kdev, child,
1422 KNAV_QUEUE_PEEK_REG_INDEX);
1423
1424 if (kdev->version == QMSS) {
1425 qmgr->reg_status =
1426 knav_queue_map_reg(kdev, child,
1427 KNAV_QUEUE_STATUS_REG_INDEX);
1428 }
1429
1430 qmgr->reg_config =
1431 knav_queue_map_reg(kdev, child,
1432 (kdev->version == QMSS_66AK2G) ?
1433 KNAV_L_QUEUE_CONFIG_REG_INDEX :
1434 KNAV_QUEUE_CONFIG_REG_INDEX);
1435 qmgr->reg_region =
1436 knav_queue_map_reg(kdev, child,
1437 (kdev->version == QMSS_66AK2G) ?
1438 KNAV_L_QUEUE_REGION_REG_INDEX :
1439 KNAV_QUEUE_REGION_REG_INDEX);
1440
1441 qmgr->reg_push =
1442 knav_queue_map_reg(kdev, child,
1443 (kdev->version == QMSS_66AK2G) ?
1444 KNAV_L_QUEUE_PUSH_REG_INDEX :
1445 KNAV_QUEUE_PUSH_REG_INDEX);
1446
1447 if (kdev->version == QMSS) {
1448 qmgr->reg_pop =
1449 knav_queue_map_reg(kdev, child,
1450 KNAV_QUEUE_POP_REG_INDEX);
1451 }
1452
1453 if (IS_ERR(qmgr->reg_peek) ||
1454 ((kdev->version == QMSS) &&
1455 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1456 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1457 IS_ERR(qmgr->reg_push)) {
1458 dev_err(dev, "failed to map qmgr regs\n");
1459 if (kdev->version == QMSS) {
1460 if (!IS_ERR(qmgr->reg_status))
1461 devm_iounmap(dev, qmgr->reg_status);
1462 if (!IS_ERR(qmgr->reg_pop))
1463 devm_iounmap(dev, qmgr->reg_pop);
1464 }
1465 if (!IS_ERR(qmgr->reg_peek))
1466 devm_iounmap(dev, qmgr->reg_peek);
1467 if (!IS_ERR(qmgr->reg_config))
1468 devm_iounmap(dev, qmgr->reg_config);
1469 if (!IS_ERR(qmgr->reg_region))
1470 devm_iounmap(dev, qmgr->reg_region);
1471 if (!IS_ERR(qmgr->reg_push))
1472 devm_iounmap(dev, qmgr->reg_push);
1473 devm_kfree(dev, qmgr);
1474 continue;
1475 }
1476
1477 /* Use same push register for pop as well */
1478 if (kdev->version == QMSS_66AK2G)
1479 qmgr->reg_pop = qmgr->reg_push;
1480
1481 list_add_tail(&qmgr->list, &kdev->qmgrs);
1482 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1483 qmgr->start_queue, qmgr->num_queues,
1484 qmgr->reg_peek, qmgr->reg_status,
1485 qmgr->reg_config, qmgr->reg_region,
1486 qmgr->reg_push, qmgr->reg_pop);
1487 }
1488 return 0;
1489 }
1490
knav_queue_init_pdsps(struct knav_device * kdev,struct device_node * pdsps)1491 static int knav_queue_init_pdsps(struct knav_device *kdev,
1492 struct device_node *pdsps)
1493 {
1494 struct device *dev = kdev->dev;
1495 struct knav_pdsp_info *pdsp;
1496 struct device_node *child;
1497
1498 for_each_child_of_node(pdsps, child) {
1499 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1500 if (!pdsp) {
1501 of_node_put(child);
1502 dev_err(dev, "out of memory allocating pdsp\n");
1503 return -ENOMEM;
1504 }
1505 pdsp->name = knav_queue_find_name(child);
1506 pdsp->iram =
1507 knav_queue_map_reg(kdev, child,
1508 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1509 pdsp->regs =
1510 knav_queue_map_reg(kdev, child,
1511 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1512 pdsp->intd =
1513 knav_queue_map_reg(kdev, child,
1514 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1515 pdsp->command =
1516 knav_queue_map_reg(kdev, child,
1517 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1518
1519 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1520 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1521 dev_err(dev, "failed to map pdsp %s regs\n",
1522 pdsp->name);
1523 if (!IS_ERR(pdsp->command))
1524 devm_iounmap(dev, pdsp->command);
1525 if (!IS_ERR(pdsp->iram))
1526 devm_iounmap(dev, pdsp->iram);
1527 if (!IS_ERR(pdsp->regs))
1528 devm_iounmap(dev, pdsp->regs);
1529 if (!IS_ERR(pdsp->intd))
1530 devm_iounmap(dev, pdsp->intd);
1531 devm_kfree(dev, pdsp);
1532 continue;
1533 }
1534 of_property_read_u32(child, "id", &pdsp->id);
1535 list_add_tail(&pdsp->list, &kdev->pdsps);
1536 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1537 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1538 pdsp->intd);
1539 }
1540 return 0;
1541 }
1542
knav_queue_stop_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1543 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1544 struct knav_pdsp_info *pdsp)
1545 {
1546 u32 val, timeout = 1000;
1547 int ret;
1548
1549 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1550 writel_relaxed(val, &pdsp->regs->control);
1551 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1552 PDSP_CTRL_RUNNING);
1553 if (ret < 0) {
1554 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1555 return ret;
1556 }
1557 pdsp->loaded = false;
1558 pdsp->started = false;
1559 return 0;
1560 }
1561
knav_queue_load_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1562 static int knav_queue_load_pdsp(struct knav_device *kdev,
1563 struct knav_pdsp_info *pdsp)
1564 {
1565 int i, ret, fwlen;
1566 const struct firmware *fw;
1567 bool found = false;
1568 u32 *fwdata;
1569
1570 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1571 if (knav_acc_firmwares[i]) {
1572 ret = request_firmware_direct(&fw,
1573 knav_acc_firmwares[i],
1574 kdev->dev);
1575 if (!ret) {
1576 found = true;
1577 break;
1578 }
1579 }
1580 }
1581
1582 if (!found) {
1583 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1584 return -ENODEV;
1585 }
1586
1587 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1588 knav_acc_firmwares[i]);
1589
1590 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1591 /* download the firmware */
1592 fwdata = (u32 *)fw->data;
1593 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1594 for (i = 0; i < fwlen; i++)
1595 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1596
1597 release_firmware(fw);
1598 return 0;
1599 }
1600
knav_queue_start_pdsp(struct knav_device * kdev,struct knav_pdsp_info * pdsp)1601 static int knav_queue_start_pdsp(struct knav_device *kdev,
1602 struct knav_pdsp_info *pdsp)
1603 {
1604 u32 val, timeout = 1000;
1605 int ret;
1606
1607 /* write a command for sync */
1608 writel_relaxed(0xffffffff, pdsp->command);
1609 while (readl_relaxed(pdsp->command) != 0xffffffff)
1610 cpu_relax();
1611
1612 /* soft reset the PDSP */
1613 val = readl_relaxed(&pdsp->regs->control);
1614 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1615 writel_relaxed(val, &pdsp->regs->control);
1616
1617 /* enable pdsp */
1618 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1619 writel_relaxed(val, &pdsp->regs->control);
1620
1621 /* wait for command register to clear */
1622 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1623 if (ret < 0) {
1624 dev_err(kdev->dev,
1625 "timed out on pdsp %s command register wait\n",
1626 pdsp->name);
1627 return ret;
1628 }
1629 return 0;
1630 }
1631
knav_queue_stop_pdsps(struct knav_device * kdev)1632 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1633 {
1634 struct knav_pdsp_info *pdsp;
1635
1636 /* disable all pdsps */
1637 for_each_pdsp(kdev, pdsp)
1638 knav_queue_stop_pdsp(kdev, pdsp);
1639 }
1640
knav_queue_start_pdsps(struct knav_device * kdev)1641 static int knav_queue_start_pdsps(struct knav_device *kdev)
1642 {
1643 struct knav_pdsp_info *pdsp;
1644 int ret;
1645
1646 knav_queue_stop_pdsps(kdev);
1647 /* now load them all. We return success even if pdsp
1648 * is not loaded as acc channels are optional on having
1649 * firmware availability in the system. We set the loaded
1650 * and stated flag and when initialize the acc range, check
1651 * it and init the range only if pdsp is started.
1652 */
1653 for_each_pdsp(kdev, pdsp) {
1654 ret = knav_queue_load_pdsp(kdev, pdsp);
1655 if (!ret)
1656 pdsp->loaded = true;
1657 }
1658
1659 for_each_pdsp(kdev, pdsp) {
1660 if (pdsp->loaded) {
1661 ret = knav_queue_start_pdsp(kdev, pdsp);
1662 if (!ret)
1663 pdsp->started = true;
1664 }
1665 }
1666 return 0;
1667 }
1668
knav_find_qmgr(unsigned id)1669 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1670 {
1671 struct knav_qmgr_info *qmgr;
1672
1673 for_each_qmgr(kdev, qmgr) {
1674 if ((id >= qmgr->start_queue) &&
1675 (id < qmgr->start_queue + qmgr->num_queues))
1676 return qmgr;
1677 }
1678 return NULL;
1679 }
1680
knav_queue_init_queue(struct knav_device * kdev,struct knav_range_info * range,struct knav_queue_inst * inst,unsigned id)1681 static int knav_queue_init_queue(struct knav_device *kdev,
1682 struct knav_range_info *range,
1683 struct knav_queue_inst *inst,
1684 unsigned id)
1685 {
1686 char irq_name[KNAV_NAME_SIZE];
1687 inst->qmgr = knav_find_qmgr(id);
1688 if (!inst->qmgr)
1689 return -1;
1690
1691 INIT_LIST_HEAD(&inst->handles);
1692 inst->kdev = kdev;
1693 inst->range = range;
1694 inst->irq_num = -1;
1695 inst->id = id;
1696 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1697 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1698
1699 if (range->ops && range->ops->init_queue)
1700 return range->ops->init_queue(range, inst);
1701 else
1702 return 0;
1703 }
1704
knav_queue_init_queues(struct knav_device * kdev)1705 static int knav_queue_init_queues(struct knav_device *kdev)
1706 {
1707 struct knav_range_info *range;
1708 int size, id, base_idx;
1709 int idx = 0, ret = 0;
1710
1711 /* how much do we need for instance data? */
1712 size = sizeof(struct knav_queue_inst);
1713
1714 /* round this up to a power of 2, keep the index to instance
1715 * arithmetic fast.
1716 * */
1717 kdev->inst_shift = order_base_2(size);
1718 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1719 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1720 if (!kdev->instances)
1721 return -ENOMEM;
1722
1723 for_each_queue_range(kdev, range) {
1724 if (range->ops && range->ops->init_range)
1725 range->ops->init_range(range);
1726 base_idx = idx;
1727 for (id = range->queue_base;
1728 id < range->queue_base + range->num_queues; id++, idx++) {
1729 ret = knav_queue_init_queue(kdev, range,
1730 knav_queue_idx_to_inst(kdev, idx), id);
1731 if (ret < 0)
1732 return ret;
1733 }
1734 range->queue_base_inst =
1735 knav_queue_idx_to_inst(kdev, base_idx);
1736 }
1737 return 0;
1738 }
1739
1740 /* Match table for of_platform binding */
1741 static const struct of_device_id keystone_qmss_of_match[] = {
1742 {
1743 .compatible = "ti,keystone-navigator-qmss",
1744 },
1745 {
1746 .compatible = "ti,66ak2g-navss-qm",
1747 .data = (void *)QMSS_66AK2G,
1748 },
1749 {},
1750 };
1751 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1752
knav_queue_probe(struct platform_device * pdev)1753 static int knav_queue_probe(struct platform_device *pdev)
1754 {
1755 struct device_node *node = pdev->dev.of_node;
1756 struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1757 const struct of_device_id *match;
1758 struct device *dev = &pdev->dev;
1759 u32 temp[2];
1760 int ret;
1761
1762 if (!node) {
1763 dev_err(dev, "device tree info unavailable\n");
1764 return -ENODEV;
1765 }
1766
1767 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1768 if (!kdev) {
1769 dev_err(dev, "memory allocation failed\n");
1770 return -ENOMEM;
1771 }
1772
1773 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1774 if (match && match->data)
1775 kdev->version = QMSS_66AK2G;
1776
1777 platform_set_drvdata(pdev, kdev);
1778 kdev->dev = dev;
1779 INIT_LIST_HEAD(&kdev->queue_ranges);
1780 INIT_LIST_HEAD(&kdev->qmgrs);
1781 INIT_LIST_HEAD(&kdev->pools);
1782 INIT_LIST_HEAD(&kdev->regions);
1783 INIT_LIST_HEAD(&kdev->pdsps);
1784
1785 pm_runtime_enable(&pdev->dev);
1786 ret = pm_runtime_resume_and_get(&pdev->dev);
1787 if (ret < 0) {
1788 pm_runtime_disable(&pdev->dev);
1789 dev_err(dev, "Failed to enable QMSS\n");
1790 return ret;
1791 }
1792
1793 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1794 dev_err(dev, "queue-range not specified\n");
1795 ret = -ENODEV;
1796 goto err;
1797 }
1798 kdev->base_id = temp[0];
1799 kdev->num_queues = temp[1];
1800
1801 /* Initialize queue managers using device tree configuration */
1802 qmgrs = of_get_child_by_name(node, "qmgrs");
1803 if (!qmgrs) {
1804 dev_err(dev, "queue manager info not specified\n");
1805 ret = -ENODEV;
1806 goto err;
1807 }
1808 ret = knav_queue_init_qmgrs(kdev, qmgrs);
1809 of_node_put(qmgrs);
1810 if (ret)
1811 goto err;
1812
1813 /* get pdsp configuration values from device tree */
1814 pdsps = of_get_child_by_name(node, "pdsps");
1815 if (pdsps) {
1816 ret = knav_queue_init_pdsps(kdev, pdsps);
1817 if (ret)
1818 goto err;
1819
1820 ret = knav_queue_start_pdsps(kdev);
1821 if (ret)
1822 goto err;
1823 }
1824 of_node_put(pdsps);
1825
1826 /* get usable queue range values from device tree */
1827 queue_pools = of_get_child_by_name(node, "queue-pools");
1828 if (!queue_pools) {
1829 dev_err(dev, "queue-pools not specified\n");
1830 ret = -ENODEV;
1831 goto err;
1832 }
1833 ret = knav_setup_queue_pools(kdev, queue_pools);
1834 of_node_put(queue_pools);
1835 if (ret)
1836 goto err;
1837
1838 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1839 if (ret) {
1840 dev_err(kdev->dev, "could not setup linking ram\n");
1841 goto err;
1842 }
1843
1844 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1845 if (ret) {
1846 /*
1847 * nothing really, we have one linking ram already, so we just
1848 * live within our means
1849 */
1850 }
1851
1852 ret = knav_queue_setup_link_ram(kdev);
1853 if (ret)
1854 goto err;
1855
1856 regions = of_get_child_by_name(node, "descriptor-regions");
1857 if (!regions) {
1858 dev_err(dev, "descriptor-regions not specified\n");
1859 ret = -ENODEV;
1860 goto err;
1861 }
1862 ret = knav_queue_setup_regions(kdev, regions);
1863 of_node_put(regions);
1864 if (ret)
1865 goto err;
1866
1867 ret = knav_queue_init_queues(kdev);
1868 if (ret < 0) {
1869 dev_err(dev, "hwqueue initialization failed\n");
1870 goto err;
1871 }
1872
1873 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1874 &knav_queue_debug_fops);
1875 device_ready = true;
1876 return 0;
1877
1878 err:
1879 knav_queue_stop_pdsps(kdev);
1880 knav_queue_free_regions(kdev);
1881 knav_free_queue_ranges(kdev);
1882 pm_runtime_put_sync(&pdev->dev);
1883 pm_runtime_disable(&pdev->dev);
1884 return ret;
1885 }
1886
knav_queue_remove(struct platform_device * pdev)1887 static int knav_queue_remove(struct platform_device *pdev)
1888 {
1889 /* TODO: Free resources */
1890 pm_runtime_put_sync(&pdev->dev);
1891 pm_runtime_disable(&pdev->dev);
1892 return 0;
1893 }
1894
1895 static struct platform_driver keystone_qmss_driver = {
1896 .probe = knav_queue_probe,
1897 .remove = knav_queue_remove,
1898 .driver = {
1899 .name = "keystone-navigator-qmss",
1900 .of_match_table = keystone_qmss_of_match,
1901 },
1902 };
1903 module_platform_driver(keystone_qmss_driver);
1904
1905 MODULE_LICENSE("GPL v2");
1906 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1907 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1908 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1909