1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Real Time Clock interface for Linux on Atmel AT91RM9200
4 *
5 * Copyright (C) 2002 Rick Bronson
6 *
7 * Converted to RTC class model by Andrew Victor
8 *
9 * Ported to Linux 2.6 by Steven Scholz
10 * Based on s3c2410-rtc.c Simtec Electronics
11 *
12 * Based on sa1100-rtc.c by Nils Faerber
13 * Based on rtc.c by Paul Gortmaker
14 */
15
16 #include <linux/bcd.h>
17 #include <linux/bitfield.h>
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioctl.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/spinlock.h>
30 #include <linux/suspend.h>
31 #include <linux/time.h>
32 #include <linux/uaccess.h>
33
34 #define AT91_RTC_CR 0x00 /* Control Register */
35 #define AT91_RTC_UPDTIM BIT(0) /* Update Request Time Register */
36 #define AT91_RTC_UPDCAL BIT(1) /* Update Request Calendar Register */
37
38 #define AT91_RTC_MR 0x04 /* Mode Register */
39 #define AT91_RTC_HRMOD BIT(0) /* 12/24 hour mode */
40 #define AT91_RTC_NEGPPM BIT(4) /* Negative PPM correction */
41 #define AT91_RTC_CORRECTION GENMASK(14, 8) /* Slow clock correction */
42 #define AT91_RTC_HIGHPPM BIT(15) /* High PPM correction */
43
44 #define AT91_RTC_TIMR 0x08 /* Time Register */
45 #define AT91_RTC_SEC GENMASK(6, 0) /* Current Second */
46 #define AT91_RTC_MIN GENMASK(14, 8) /* Current Minute */
47 #define AT91_RTC_HOUR GENMASK(21, 16) /* Current Hour */
48 #define AT91_RTC_AMPM BIT(22) /* Ante Meridiem Post Meridiem Indicator */
49
50 #define AT91_RTC_CALR 0x0c /* Calendar Register */
51 #define AT91_RTC_CENT GENMASK(6, 0) /* Current Century */
52 #define AT91_RTC_YEAR GENMASK(15, 8) /* Current Year */
53 #define AT91_RTC_MONTH GENMASK(20, 16) /* Current Month */
54 #define AT91_RTC_DAY GENMASK(23, 21) /* Current Day */
55 #define AT91_RTC_DATE GENMASK(29, 24) /* Current Date */
56
57 #define AT91_RTC_TIMALR 0x10 /* Time Alarm Register */
58 #define AT91_RTC_SECEN BIT(7) /* Second Alarm Enable */
59 #define AT91_RTC_MINEN BIT(15) /* Minute Alarm Enable */
60 #define AT91_RTC_HOUREN BIT(23) /* Hour Alarm Enable */
61
62 #define AT91_RTC_CALALR 0x14 /* Calendar Alarm Register */
63 #define AT91_RTC_MTHEN BIT(23) /* Month Alarm Enable */
64 #define AT91_RTC_DATEEN BIT(31) /* Date Alarm Enable */
65
66 #define AT91_RTC_SR 0x18 /* Status Register */
67 #define AT91_RTC_ACKUPD BIT(0) /* Acknowledge for Update */
68 #define AT91_RTC_ALARM BIT(1) /* Alarm Flag */
69 #define AT91_RTC_SECEV BIT(2) /* Second Event */
70 #define AT91_RTC_TIMEV BIT(3) /* Time Event */
71 #define AT91_RTC_CALEV BIT(4) /* Calendar Event */
72
73 #define AT91_RTC_SCCR 0x1c /* Status Clear Command Register */
74 #define AT91_RTC_IER 0x20 /* Interrupt Enable Register */
75 #define AT91_RTC_IDR 0x24 /* Interrupt Disable Register */
76 #define AT91_RTC_IMR 0x28 /* Interrupt Mask Register */
77
78 #define AT91_RTC_VER 0x2c /* Valid Entry Register */
79 #define AT91_RTC_NVTIM BIT(0) /* Non valid Time */
80 #define AT91_RTC_NVCAL BIT(1) /* Non valid Calendar */
81 #define AT91_RTC_NVTIMALR BIT(2) /* Non valid Time Alarm */
82 #define AT91_RTC_NVCALALR BIT(3) /* Non valid Calendar Alarm */
83
84 #define AT91_RTC_CORR_DIVIDEND 3906000
85 #define AT91_RTC_CORR_LOW_RATIO 20
86
87 #define at91_rtc_read(field) \
88 readl_relaxed(at91_rtc_regs + field)
89 #define at91_rtc_write(field, val) \
90 writel_relaxed((val), at91_rtc_regs + field)
91
92 struct at91_rtc_config {
93 bool use_shadow_imr;
94 bool has_correction;
95 };
96
97 static const struct at91_rtc_config *at91_rtc_config;
98 static DECLARE_COMPLETION(at91_rtc_updated);
99 static DECLARE_COMPLETION(at91_rtc_upd_rdy);
100 static void __iomem *at91_rtc_regs;
101 static int irq;
102 static DEFINE_SPINLOCK(at91_rtc_lock);
103 static u32 at91_rtc_shadow_imr;
104 static bool suspended;
105 static DEFINE_SPINLOCK(suspended_lock);
106 static unsigned long cached_events;
107 static u32 at91_rtc_imr;
108 static struct clk *sclk;
109
at91_rtc_write_ier(u32 mask)110 static void at91_rtc_write_ier(u32 mask)
111 {
112 unsigned long flags;
113
114 spin_lock_irqsave(&at91_rtc_lock, flags);
115 at91_rtc_shadow_imr |= mask;
116 at91_rtc_write(AT91_RTC_IER, mask);
117 spin_unlock_irqrestore(&at91_rtc_lock, flags);
118 }
119
at91_rtc_write_idr(u32 mask)120 static void at91_rtc_write_idr(u32 mask)
121 {
122 unsigned long flags;
123
124 spin_lock_irqsave(&at91_rtc_lock, flags);
125 at91_rtc_write(AT91_RTC_IDR, mask);
126 /*
127 * Register read back (of any RTC-register) needed to make sure
128 * IDR-register write has reached the peripheral before updating
129 * shadow mask.
130 *
131 * Note that there is still a possibility that the mask is updated
132 * before interrupts have actually been disabled in hardware. The only
133 * way to be certain would be to poll the IMR-register, which is is
134 * the very register we are trying to emulate. The register read back
135 * is a reasonable heuristic.
136 */
137 at91_rtc_read(AT91_RTC_SR);
138 at91_rtc_shadow_imr &= ~mask;
139 spin_unlock_irqrestore(&at91_rtc_lock, flags);
140 }
141
at91_rtc_read_imr(void)142 static u32 at91_rtc_read_imr(void)
143 {
144 unsigned long flags;
145 u32 mask;
146
147 if (at91_rtc_config->use_shadow_imr) {
148 spin_lock_irqsave(&at91_rtc_lock, flags);
149 mask = at91_rtc_shadow_imr;
150 spin_unlock_irqrestore(&at91_rtc_lock, flags);
151 } else {
152 mask = at91_rtc_read(AT91_RTC_IMR);
153 }
154
155 return mask;
156 }
157
158 /*
159 * Decode time/date into rtc_time structure
160 */
at91_rtc_decodetime(unsigned int timereg,unsigned int calreg,struct rtc_time * tm)161 static void at91_rtc_decodetime(unsigned int timereg, unsigned int calreg,
162 struct rtc_time *tm)
163 {
164 unsigned int time, date;
165
166 /* must read twice in case it changes */
167 do {
168 time = at91_rtc_read(timereg);
169 date = at91_rtc_read(calreg);
170 } while ((time != at91_rtc_read(timereg)) ||
171 (date != at91_rtc_read(calreg)));
172
173 tm->tm_sec = bcd2bin(FIELD_GET(AT91_RTC_SEC, time));
174 tm->tm_min = bcd2bin(FIELD_GET(AT91_RTC_MIN, time));
175 tm->tm_hour = bcd2bin(FIELD_GET(AT91_RTC_HOUR, time));
176
177 /*
178 * The Calendar Alarm register does not have a field for
179 * the year - so these will return an invalid value.
180 */
181 tm->tm_year = bcd2bin(date & AT91_RTC_CENT) * 100; /* century */
182 tm->tm_year += bcd2bin(FIELD_GET(AT91_RTC_YEAR, date)); /* year */
183
184 tm->tm_wday = bcd2bin(FIELD_GET(AT91_RTC_DAY, date)) - 1; /* day of the week [0-6], Sunday=0 */
185 tm->tm_mon = bcd2bin(FIELD_GET(AT91_RTC_MONTH, date)) - 1;
186 tm->tm_mday = bcd2bin(FIELD_GET(AT91_RTC_DATE, date));
187 }
188
189 /*
190 * Read current time and date in RTC
191 */
at91_rtc_readtime(struct device * dev,struct rtc_time * tm)192 static int at91_rtc_readtime(struct device *dev, struct rtc_time *tm)
193 {
194 at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, tm);
195 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
196 tm->tm_year = tm->tm_year - 1900;
197
198 dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
199
200 return 0;
201 }
202
203 /*
204 * Set current time and date in RTC
205 */
at91_rtc_settime(struct device * dev,struct rtc_time * tm)206 static int at91_rtc_settime(struct device *dev, struct rtc_time *tm)
207 {
208 unsigned long cr;
209
210 dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
211
212 wait_for_completion(&at91_rtc_upd_rdy);
213
214 /* Stop Time/Calendar from counting */
215 cr = at91_rtc_read(AT91_RTC_CR);
216 at91_rtc_write(AT91_RTC_CR, cr | AT91_RTC_UPDCAL | AT91_RTC_UPDTIM);
217
218 at91_rtc_write_ier(AT91_RTC_ACKUPD);
219 wait_for_completion(&at91_rtc_updated); /* wait for ACKUPD interrupt */
220 at91_rtc_write_idr(AT91_RTC_ACKUPD);
221
222 at91_rtc_write(AT91_RTC_TIMR,
223 FIELD_PREP(AT91_RTC_SEC, bin2bcd(tm->tm_sec))
224 | FIELD_PREP(AT91_RTC_MIN, bin2bcd(tm->tm_min))
225 | FIELD_PREP(AT91_RTC_HOUR, bin2bcd(tm->tm_hour)));
226
227 at91_rtc_write(AT91_RTC_CALR,
228 FIELD_PREP(AT91_RTC_CENT,
229 bin2bcd((tm->tm_year + 1900) / 100))
230 | FIELD_PREP(AT91_RTC_YEAR, bin2bcd(tm->tm_year % 100))
231 | FIELD_PREP(AT91_RTC_MONTH, bin2bcd(tm->tm_mon + 1))
232 | FIELD_PREP(AT91_RTC_DAY, bin2bcd(tm->tm_wday + 1))
233 | FIELD_PREP(AT91_RTC_DATE, bin2bcd(tm->tm_mday)));
234
235 /* Restart Time/Calendar */
236 cr = at91_rtc_read(AT91_RTC_CR);
237 at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_SECEV);
238 at91_rtc_write(AT91_RTC_CR, cr & ~(AT91_RTC_UPDCAL | AT91_RTC_UPDTIM));
239 at91_rtc_write_ier(AT91_RTC_SECEV);
240
241 return 0;
242 }
243
244 /*
245 * Read alarm time and date in RTC
246 */
at91_rtc_readalarm(struct device * dev,struct rtc_wkalrm * alrm)247 static int at91_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
248 {
249 struct rtc_time *tm = &alrm->time;
250
251 at91_rtc_decodetime(AT91_RTC_TIMALR, AT91_RTC_CALALR, tm);
252 tm->tm_year = -1;
253
254 alrm->enabled = (at91_rtc_read_imr() & AT91_RTC_ALARM)
255 ? 1 : 0;
256
257 dev_dbg(dev, "%s(): %ptR %sabled\n", __func__, tm,
258 alrm->enabled ? "en" : "dis");
259
260 return 0;
261 }
262
263 /*
264 * Set alarm time and date in RTC
265 */
at91_rtc_setalarm(struct device * dev,struct rtc_wkalrm * alrm)266 static int at91_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
267 {
268 struct rtc_time tm = alrm->time;
269
270 at91_rtc_write_idr(AT91_RTC_ALARM);
271 at91_rtc_write(AT91_RTC_TIMALR,
272 FIELD_PREP(AT91_RTC_SEC, bin2bcd(alrm->time.tm_sec))
273 | FIELD_PREP(AT91_RTC_MIN, bin2bcd(alrm->time.tm_min))
274 | FIELD_PREP(AT91_RTC_HOUR, bin2bcd(alrm->time.tm_hour))
275 | AT91_RTC_HOUREN | AT91_RTC_MINEN | AT91_RTC_SECEN);
276 at91_rtc_write(AT91_RTC_CALALR,
277 FIELD_PREP(AT91_RTC_MONTH, bin2bcd(alrm->time.tm_mon + 1))
278 | FIELD_PREP(AT91_RTC_DATE, bin2bcd(alrm->time.tm_mday))
279 | AT91_RTC_DATEEN | AT91_RTC_MTHEN);
280
281 if (alrm->enabled) {
282 at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
283 at91_rtc_write_ier(AT91_RTC_ALARM);
284 }
285
286 dev_dbg(dev, "%s(): %ptR\n", __func__, &tm);
287
288 return 0;
289 }
290
at91_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)291 static int at91_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
292 {
293 dev_dbg(dev, "%s(): cmd=%08x\n", __func__, enabled);
294
295 if (enabled) {
296 at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
297 at91_rtc_write_ier(AT91_RTC_ALARM);
298 } else
299 at91_rtc_write_idr(AT91_RTC_ALARM);
300
301 return 0;
302 }
303
at91_rtc_readoffset(struct device * dev,long * offset)304 static int at91_rtc_readoffset(struct device *dev, long *offset)
305 {
306 u32 mr = at91_rtc_read(AT91_RTC_MR);
307 long val = FIELD_GET(AT91_RTC_CORRECTION, mr);
308
309 if (!val) {
310 *offset = 0;
311 return 0;
312 }
313
314 val++;
315
316 if (!(mr & AT91_RTC_NEGPPM))
317 val = -val;
318
319 if (!(mr & AT91_RTC_HIGHPPM))
320 val *= AT91_RTC_CORR_LOW_RATIO;
321
322 *offset = DIV_ROUND_CLOSEST(AT91_RTC_CORR_DIVIDEND, val);
323
324 return 0;
325 }
326
at91_rtc_setoffset(struct device * dev,long offset)327 static int at91_rtc_setoffset(struct device *dev, long offset)
328 {
329 long corr;
330 u32 mr;
331
332 if (offset > AT91_RTC_CORR_DIVIDEND / 2)
333 return -ERANGE;
334 if (offset < -AT91_RTC_CORR_DIVIDEND / 2)
335 return -ERANGE;
336
337 mr = at91_rtc_read(AT91_RTC_MR);
338 mr &= ~(AT91_RTC_NEGPPM | AT91_RTC_CORRECTION | AT91_RTC_HIGHPPM);
339
340 if (offset > 0)
341 mr |= AT91_RTC_NEGPPM;
342 else
343 offset = -offset;
344
345 /* offset less than 764 ppb, disable correction*/
346 if (offset < 764) {
347 at91_rtc_write(AT91_RTC_MR, mr & ~AT91_RTC_NEGPPM);
348
349 return 0;
350 }
351
352 /*
353 * 29208 ppb is the perfect cutoff between low range and high range
354 * low range values are never better than high range value after that.
355 */
356 if (offset < 29208) {
357 corr = DIV_ROUND_CLOSEST(AT91_RTC_CORR_DIVIDEND, offset * AT91_RTC_CORR_LOW_RATIO);
358 } else {
359 corr = DIV_ROUND_CLOSEST(AT91_RTC_CORR_DIVIDEND, offset);
360 mr |= AT91_RTC_HIGHPPM;
361 }
362
363 if (corr > 128)
364 corr = 128;
365
366 mr |= FIELD_PREP(AT91_RTC_CORRECTION, corr - 1);
367
368 at91_rtc_write(AT91_RTC_MR, mr);
369
370 return 0;
371 }
372
373 /*
374 * IRQ handler for the RTC
375 */
at91_rtc_interrupt(int irq,void * dev_id)376 static irqreturn_t at91_rtc_interrupt(int irq, void *dev_id)
377 {
378 struct platform_device *pdev = dev_id;
379 struct rtc_device *rtc = platform_get_drvdata(pdev);
380 unsigned int rtsr;
381 unsigned long events = 0;
382 int ret = IRQ_NONE;
383
384 spin_lock(&suspended_lock);
385 rtsr = at91_rtc_read(AT91_RTC_SR) & at91_rtc_read_imr();
386 if (rtsr) { /* this interrupt is shared! Is it ours? */
387 if (rtsr & AT91_RTC_ALARM)
388 events |= (RTC_AF | RTC_IRQF);
389 if (rtsr & AT91_RTC_SECEV) {
390 complete(&at91_rtc_upd_rdy);
391 at91_rtc_write_idr(AT91_RTC_SECEV);
392 }
393 if (rtsr & AT91_RTC_ACKUPD)
394 complete(&at91_rtc_updated);
395
396 at91_rtc_write(AT91_RTC_SCCR, rtsr); /* clear status reg */
397
398 if (!suspended) {
399 rtc_update_irq(rtc, 1, events);
400
401 dev_dbg(&pdev->dev, "%s(): num=%ld, events=0x%02lx\n",
402 __func__, events >> 8, events & 0x000000FF);
403 } else {
404 cached_events |= events;
405 at91_rtc_write_idr(at91_rtc_imr);
406 pm_system_wakeup();
407 }
408
409 ret = IRQ_HANDLED;
410 }
411 spin_unlock(&suspended_lock);
412
413 return ret;
414 }
415
416 static const struct at91_rtc_config at91rm9200_config = {
417 };
418
419 static const struct at91_rtc_config at91sam9x5_config = {
420 .use_shadow_imr = true,
421 };
422
423 static const struct at91_rtc_config sama5d4_config = {
424 .has_correction = true,
425 };
426
427 static const struct of_device_id at91_rtc_dt_ids[] = {
428 {
429 .compatible = "atmel,at91rm9200-rtc",
430 .data = &at91rm9200_config,
431 }, {
432 .compatible = "atmel,at91sam9x5-rtc",
433 .data = &at91sam9x5_config,
434 }, {
435 .compatible = "atmel,sama5d4-rtc",
436 .data = &sama5d4_config,
437 }, {
438 .compatible = "atmel,sama5d2-rtc",
439 .data = &sama5d4_config,
440 }, {
441 .compatible = "microchip,sam9x60-rtc",
442 .data = &sama5d4_config,
443 }, {
444 /* sentinel */
445 }
446 };
447 MODULE_DEVICE_TABLE(of, at91_rtc_dt_ids);
448
449 static const struct rtc_class_ops at91_rtc_ops = {
450 .read_time = at91_rtc_readtime,
451 .set_time = at91_rtc_settime,
452 .read_alarm = at91_rtc_readalarm,
453 .set_alarm = at91_rtc_setalarm,
454 .alarm_irq_enable = at91_rtc_alarm_irq_enable,
455 };
456
457 static const struct rtc_class_ops sama5d4_rtc_ops = {
458 .read_time = at91_rtc_readtime,
459 .set_time = at91_rtc_settime,
460 .read_alarm = at91_rtc_readalarm,
461 .set_alarm = at91_rtc_setalarm,
462 .alarm_irq_enable = at91_rtc_alarm_irq_enable,
463 .set_offset = at91_rtc_setoffset,
464 .read_offset = at91_rtc_readoffset,
465 };
466
467 /*
468 * Initialize and install RTC driver
469 */
at91_rtc_probe(struct platform_device * pdev)470 static int __init at91_rtc_probe(struct platform_device *pdev)
471 {
472 struct rtc_device *rtc;
473 struct resource *regs;
474 int ret = 0;
475
476 at91_rtc_config = of_device_get_match_data(&pdev->dev);
477 if (!at91_rtc_config)
478 return -ENODEV;
479
480 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
481 if (!regs) {
482 dev_err(&pdev->dev, "no mmio resource defined\n");
483 return -ENXIO;
484 }
485
486 irq = platform_get_irq(pdev, 0);
487 if (irq < 0)
488 return -ENXIO;
489
490 at91_rtc_regs = devm_ioremap(&pdev->dev, regs->start,
491 resource_size(regs));
492 if (!at91_rtc_regs) {
493 dev_err(&pdev->dev, "failed to map registers, aborting.\n");
494 return -ENOMEM;
495 }
496
497 rtc = devm_rtc_allocate_device(&pdev->dev);
498 if (IS_ERR(rtc))
499 return PTR_ERR(rtc);
500 platform_set_drvdata(pdev, rtc);
501
502 sclk = devm_clk_get(&pdev->dev, NULL);
503 if (IS_ERR(sclk))
504 return PTR_ERR(sclk);
505
506 ret = clk_prepare_enable(sclk);
507 if (ret) {
508 dev_err(&pdev->dev, "Could not enable slow clock\n");
509 return ret;
510 }
511
512 at91_rtc_write(AT91_RTC_CR, 0);
513 at91_rtc_write(AT91_RTC_MR, at91_rtc_read(AT91_RTC_MR) & ~AT91_RTC_HRMOD);
514
515 /* Disable all interrupts */
516 at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
517 AT91_RTC_SECEV | AT91_RTC_TIMEV |
518 AT91_RTC_CALEV);
519
520 ret = devm_request_irq(&pdev->dev, irq, at91_rtc_interrupt,
521 IRQF_SHARED | IRQF_COND_SUSPEND,
522 "at91_rtc", pdev);
523 if (ret) {
524 dev_err(&pdev->dev, "IRQ %d already in use.\n", irq);
525 goto err_clk;
526 }
527
528 /* cpu init code should really have flagged this device as
529 * being wake-capable; if it didn't, do that here.
530 */
531 if (!device_can_wakeup(&pdev->dev))
532 device_init_wakeup(&pdev->dev, 1);
533
534 if (at91_rtc_config->has_correction)
535 rtc->ops = &sama5d4_rtc_ops;
536 else
537 rtc->ops = &at91_rtc_ops;
538
539 rtc->range_min = RTC_TIMESTAMP_BEGIN_1900;
540 rtc->range_max = RTC_TIMESTAMP_END_2099;
541 ret = devm_rtc_register_device(rtc);
542 if (ret)
543 goto err_clk;
544
545 /* enable SECEV interrupt in order to initialize at91_rtc_upd_rdy
546 * completion.
547 */
548 at91_rtc_write_ier(AT91_RTC_SECEV);
549
550 dev_info(&pdev->dev, "AT91 Real Time Clock driver.\n");
551 return 0;
552
553 err_clk:
554 clk_disable_unprepare(sclk);
555
556 return ret;
557 }
558
559 /*
560 * Disable and remove the RTC driver
561 */
at91_rtc_remove(struct platform_device * pdev)562 static int __exit at91_rtc_remove(struct platform_device *pdev)
563 {
564 /* Disable all interrupts */
565 at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
566 AT91_RTC_SECEV | AT91_RTC_TIMEV |
567 AT91_RTC_CALEV);
568
569 clk_disable_unprepare(sclk);
570
571 return 0;
572 }
573
at91_rtc_shutdown(struct platform_device * pdev)574 static void at91_rtc_shutdown(struct platform_device *pdev)
575 {
576 /* Disable all interrupts */
577 at91_rtc_write(AT91_RTC_IDR, AT91_RTC_ACKUPD | AT91_RTC_ALARM |
578 AT91_RTC_SECEV | AT91_RTC_TIMEV |
579 AT91_RTC_CALEV);
580 }
581
582 #ifdef CONFIG_PM_SLEEP
583
584 /* AT91RM9200 RTC Power management control */
585
at91_rtc_suspend(struct device * dev)586 static int at91_rtc_suspend(struct device *dev)
587 {
588 /* this IRQ is shared with DBGU and other hardware which isn't
589 * necessarily doing PM like we are...
590 */
591 at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
592
593 at91_rtc_imr = at91_rtc_read_imr()
594 & (AT91_RTC_ALARM|AT91_RTC_SECEV);
595 if (at91_rtc_imr) {
596 if (device_may_wakeup(dev)) {
597 unsigned long flags;
598
599 enable_irq_wake(irq);
600
601 spin_lock_irqsave(&suspended_lock, flags);
602 suspended = true;
603 spin_unlock_irqrestore(&suspended_lock, flags);
604 } else {
605 at91_rtc_write_idr(at91_rtc_imr);
606 }
607 }
608 return 0;
609 }
610
at91_rtc_resume(struct device * dev)611 static int at91_rtc_resume(struct device *dev)
612 {
613 struct rtc_device *rtc = dev_get_drvdata(dev);
614
615 if (at91_rtc_imr) {
616 if (device_may_wakeup(dev)) {
617 unsigned long flags;
618
619 spin_lock_irqsave(&suspended_lock, flags);
620
621 if (cached_events) {
622 rtc_update_irq(rtc, 1, cached_events);
623 cached_events = 0;
624 }
625
626 suspended = false;
627 spin_unlock_irqrestore(&suspended_lock, flags);
628
629 disable_irq_wake(irq);
630 }
631 at91_rtc_write_ier(at91_rtc_imr);
632 }
633 return 0;
634 }
635 #endif
636
637 static SIMPLE_DEV_PM_OPS(at91_rtc_pm_ops, at91_rtc_suspend, at91_rtc_resume);
638
639 static struct platform_driver at91_rtc_driver = {
640 .remove = __exit_p(at91_rtc_remove),
641 .shutdown = at91_rtc_shutdown,
642 .driver = {
643 .name = "at91_rtc",
644 .pm = &at91_rtc_pm_ops,
645 .of_match_table = of_match_ptr(at91_rtc_dt_ids),
646 },
647 };
648
649 module_platform_driver_probe(at91_rtc_driver, at91_rtc_probe);
650
651 MODULE_AUTHOR("Rick Bronson");
652 MODULE_DESCRIPTION("RTC driver for Atmel AT91RM9200");
653 MODULE_LICENSE("GPL");
654 MODULE_ALIAS("platform:at91_rtc");
655