1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21 
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG		0x0
24 #define PWM_SIFIVE_PWMCOUNT		0x8
25 #define PWM_SIFIVE_PWMS			0x10
26 #define PWM_SIFIVE_PWMCMP(i)		(0x20 + 4 * (i))
27 
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP		BIT(28)
38 
39 #define PWM_SIFIVE_CMPWIDTH		16
40 #define PWM_SIFIVE_DEFAULT_PERIOD	10000000
41 
42 struct pwm_sifive_ddata {
43 	struct pwm_chip	chip;
44 	struct mutex lock; /* lock to protect user_count and approx_period */
45 	struct notifier_block notifier;
46 	struct clk *clk;
47 	void __iomem *regs;
48 	unsigned int real_period;
49 	unsigned int approx_period;
50 	int user_count;
51 };
52 
53 static inline
pwm_sifive_chip_to_ddata(struct pwm_chip * c)54 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
55 {
56 	return container_of(c, struct pwm_sifive_ddata, chip);
57 }
58 
pwm_sifive_request(struct pwm_chip * chip,struct pwm_device * pwm)59 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
60 {
61 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
62 
63 	mutex_lock(&ddata->lock);
64 	ddata->user_count++;
65 	mutex_unlock(&ddata->lock);
66 
67 	return 0;
68 }
69 
pwm_sifive_free(struct pwm_chip * chip,struct pwm_device * pwm)70 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
71 {
72 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
73 
74 	mutex_lock(&ddata->lock);
75 	ddata->user_count--;
76 	mutex_unlock(&ddata->lock);
77 }
78 
79 /* Called holding ddata->lock */
pwm_sifive_update_clock(struct pwm_sifive_ddata * ddata,unsigned long rate)80 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
81 				    unsigned long rate)
82 {
83 	unsigned long long num;
84 	unsigned long scale_pow;
85 	int scale;
86 	u32 val;
87 	/*
88 	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
89 	 * period length is using pwmscale which provides the number of bits the
90 	 * counter is shifted before being feed to the comparators. A period
91 	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
92 	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
93 	 */
94 	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
95 	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
96 
97 	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
98 	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
99 	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
100 
101 	/* As scale <= 15 the shift operation cannot overflow. */
102 	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
103 	ddata->real_period = div64_ul(num, rate);
104 	dev_dbg(ddata->chip.dev,
105 		"New real_period = %u ns\n", ddata->real_period);
106 }
107 
pwm_sifive_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)108 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
109 				 struct pwm_state *state)
110 {
111 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
112 	u32 duty, val;
113 
114 	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
115 
116 	state->enabled = duty > 0;
117 
118 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
119 	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
120 		state->enabled = false;
121 
122 	state->period = ddata->real_period;
123 	state->duty_cycle =
124 		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
125 	state->polarity = PWM_POLARITY_INVERSED;
126 }
127 
pwm_sifive_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)128 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
129 			    const struct pwm_state *state)
130 {
131 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
132 	struct pwm_state cur_state;
133 	unsigned int duty_cycle;
134 	unsigned long long num;
135 	bool enabled;
136 	int ret = 0;
137 	u32 frac;
138 
139 	if (state->polarity != PWM_POLARITY_INVERSED)
140 		return -EINVAL;
141 
142 	cur_state = pwm->state;
143 	enabled = cur_state.enabled;
144 
145 	duty_cycle = state->duty_cycle;
146 	if (!state->enabled)
147 		duty_cycle = 0;
148 
149 	/*
150 	 * The problem of output producing mixed setting as mentioned at top,
151 	 * occurs here. To minimize the window for this problem, we are
152 	 * calculating the register values first and then writing them
153 	 * consecutively
154 	 */
155 	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
156 	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
157 	/* The hardware cannot generate a 100% duty cycle */
158 	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
159 
160 	mutex_lock(&ddata->lock);
161 	if (state->period != ddata->approx_period) {
162 		if (ddata->user_count != 1) {
163 			mutex_unlock(&ddata->lock);
164 			return -EBUSY;
165 		}
166 		ddata->approx_period = state->period;
167 		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
168 	}
169 	mutex_unlock(&ddata->lock);
170 
171 	/*
172 	 * If the PWM is enabled the clk is already on. So only enable it
173 	 * conditionally to have it on exactly once afterwards independent of
174 	 * the PWM state.
175 	 */
176 	if (!enabled) {
177 		ret = clk_enable(ddata->clk);
178 		if (ret) {
179 			dev_err(ddata->chip.dev, "Enable clk failed\n");
180 			return ret;
181 		}
182 	}
183 
184 	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
185 
186 	if (!state->enabled)
187 		clk_disable(ddata->clk);
188 
189 	return 0;
190 }
191 
192 static const struct pwm_ops pwm_sifive_ops = {
193 	.request = pwm_sifive_request,
194 	.free = pwm_sifive_free,
195 	.get_state = pwm_sifive_get_state,
196 	.apply = pwm_sifive_apply,
197 	.owner = THIS_MODULE,
198 };
199 
pwm_sifive_clock_notifier(struct notifier_block * nb,unsigned long event,void * data)200 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
201 				     unsigned long event, void *data)
202 {
203 	struct clk_notifier_data *ndata = data;
204 	struct pwm_sifive_ddata *ddata =
205 		container_of(nb, struct pwm_sifive_ddata, notifier);
206 
207 	if (event == POST_RATE_CHANGE) {
208 		mutex_lock(&ddata->lock);
209 		pwm_sifive_update_clock(ddata, ndata->new_rate);
210 		mutex_unlock(&ddata->lock);
211 	}
212 
213 	return NOTIFY_OK;
214 }
215 
pwm_sifive_probe(struct platform_device * pdev)216 static int pwm_sifive_probe(struct platform_device *pdev)
217 {
218 	struct device *dev = &pdev->dev;
219 	struct pwm_sifive_ddata *ddata;
220 	struct pwm_chip *chip;
221 	int ret;
222 	u32 val;
223 	unsigned int enabled_pwms = 0, enabled_clks = 1;
224 
225 	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
226 	if (!ddata)
227 		return -ENOMEM;
228 
229 	mutex_init(&ddata->lock);
230 	chip = &ddata->chip;
231 	chip->dev = dev;
232 	chip->ops = &pwm_sifive_ops;
233 	chip->npwm = 4;
234 
235 	ddata->regs = devm_platform_ioremap_resource(pdev, 0);
236 	if (IS_ERR(ddata->regs))
237 		return PTR_ERR(ddata->regs);
238 
239 	ddata->clk = devm_clk_get(dev, NULL);
240 	if (IS_ERR(ddata->clk))
241 		return dev_err_probe(dev, PTR_ERR(ddata->clk),
242 				     "Unable to find controller clock\n");
243 
244 	ret = clk_prepare_enable(ddata->clk);
245 	if (ret) {
246 		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
247 		return ret;
248 	}
249 
250 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
251 	if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
252 		unsigned int i;
253 
254 		for (i = 0; i < chip->npwm; ++i) {
255 			val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
256 			if (val > 0)
257 				++enabled_pwms;
258 		}
259 	}
260 
261 	/* The clk should be on once for each running PWM. */
262 	if (enabled_pwms) {
263 		while (enabled_clks < enabled_pwms) {
264 			/* This is not expected to fail as the clk is already on */
265 			ret = clk_enable(ddata->clk);
266 			if (unlikely(ret)) {
267 				dev_err_probe(dev, ret, "Failed to enable clk\n");
268 				goto disable_clk;
269 			}
270 			++enabled_clks;
271 		}
272 	} else {
273 		clk_disable(ddata->clk);
274 		enabled_clks = 0;
275 	}
276 
277 	/* Watch for changes to underlying clock frequency */
278 	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
279 	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
280 	if (ret) {
281 		dev_err(dev, "failed to register clock notifier: %d\n", ret);
282 		goto disable_clk;
283 	}
284 
285 	ret = pwmchip_add(chip);
286 	if (ret < 0) {
287 		dev_err(dev, "cannot register PWM: %d\n", ret);
288 		goto unregister_clk;
289 	}
290 
291 	platform_set_drvdata(pdev, ddata);
292 	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
293 
294 	return 0;
295 
296 unregister_clk:
297 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
298 disable_clk:
299 	while (enabled_clks) {
300 		clk_disable(ddata->clk);
301 		--enabled_clks;
302 	}
303 	clk_unprepare(ddata->clk);
304 
305 	return ret;
306 }
307 
pwm_sifive_remove(struct platform_device * dev)308 static int pwm_sifive_remove(struct platform_device *dev)
309 {
310 	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
311 	struct pwm_device *pwm;
312 	int ch;
313 
314 	pwmchip_remove(&ddata->chip);
315 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
316 
317 	for (ch = 0; ch < ddata->chip.npwm; ch++) {
318 		pwm = &ddata->chip.pwms[ch];
319 		if (pwm->state.enabled)
320 			clk_disable(ddata->clk);
321 	}
322 
323 	clk_unprepare(ddata->clk);
324 
325 	return 0;
326 }
327 
328 static const struct of_device_id pwm_sifive_of_match[] = {
329 	{ .compatible = "sifive,pwm0" },
330 	{},
331 };
332 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
333 
334 static struct platform_driver pwm_sifive_driver = {
335 	.probe = pwm_sifive_probe,
336 	.remove = pwm_sifive_remove,
337 	.driver = {
338 		.name = "pwm-sifive",
339 		.of_match_table = pwm_sifive_of_match,
340 	},
341 };
342 module_platform_driver(pwm_sifive_driver);
343 
344 MODULE_DESCRIPTION("SiFive PWM driver");
345 MODULE_LICENSE("GPL v2");
346