1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DesignWare PWM Controller driver
4 *
5 * Copyright (C) 2018-2020 Intel Corporation
6 *
7 * Author: Felipe Balbi (Intel)
8 * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9 * Author: Raymond Tan <raymond.tan@intel.com>
10 *
11 * Limitations:
12 * - The hardware cannot generate a 0 % or 100 % duty cycle. Both high and low
13 * periods are one or more input clock periods long.
14 */
15
16 #include <linux/bitops.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23
24 #define DWC_TIM_LD_CNT(n) ((n) * 0x14)
25 #define DWC_TIM_LD_CNT2(n) (((n) * 4) + 0xb0)
26 #define DWC_TIM_CUR_VAL(n) (((n) * 0x14) + 0x04)
27 #define DWC_TIM_CTRL(n) (((n) * 0x14) + 0x08)
28 #define DWC_TIM_EOI(n) (((n) * 0x14) + 0x0c)
29 #define DWC_TIM_INT_STS(n) (((n) * 0x14) + 0x10)
30
31 #define DWC_TIMERS_INT_STS 0xa0
32 #define DWC_TIMERS_EOI 0xa4
33 #define DWC_TIMERS_RAW_INT_STS 0xa8
34 #define DWC_TIMERS_COMP_VERSION 0xac
35
36 #define DWC_TIMERS_TOTAL 8
37 #define DWC_CLK_PERIOD_NS 10
38
39 /* Timer Control Register */
40 #define DWC_TIM_CTRL_EN BIT(0)
41 #define DWC_TIM_CTRL_MODE BIT(1)
42 #define DWC_TIM_CTRL_MODE_FREE (0 << 1)
43 #define DWC_TIM_CTRL_MODE_USER (1 << 1)
44 #define DWC_TIM_CTRL_INT_MASK BIT(2)
45 #define DWC_TIM_CTRL_PWM BIT(3)
46
47 struct dwc_pwm_ctx {
48 u32 cnt;
49 u32 cnt2;
50 u32 ctrl;
51 };
52
53 struct dwc_pwm {
54 struct pwm_chip chip;
55 void __iomem *base;
56 struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
57 };
58 #define to_dwc_pwm(p) (container_of((p), struct dwc_pwm, chip))
59
dwc_pwm_readl(struct dwc_pwm * dwc,u32 offset)60 static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
61 {
62 return readl(dwc->base + offset);
63 }
64
dwc_pwm_writel(struct dwc_pwm * dwc,u32 value,u32 offset)65 static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
66 {
67 writel(value, dwc->base + offset);
68 }
69
__dwc_pwm_set_enable(struct dwc_pwm * dwc,int pwm,int enabled)70 static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
71 {
72 u32 reg;
73
74 reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
75
76 if (enabled)
77 reg |= DWC_TIM_CTRL_EN;
78 else
79 reg &= ~DWC_TIM_CTRL_EN;
80
81 dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
82 }
83
__dwc_pwm_configure_timer(struct dwc_pwm * dwc,struct pwm_device * pwm,const struct pwm_state * state)84 static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
85 struct pwm_device *pwm,
86 const struct pwm_state *state)
87 {
88 u64 tmp;
89 u32 ctrl;
90 u32 high;
91 u32 low;
92
93 /*
94 * Calculate width of low and high period in terms of input clock
95 * periods and check are the result within HW limits between 1 and
96 * 2^32 periods.
97 */
98 tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
99 if (tmp < 1 || tmp > (1ULL << 32))
100 return -ERANGE;
101 low = tmp - 1;
102
103 tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
104 DWC_CLK_PERIOD_NS);
105 if (tmp < 1 || tmp > (1ULL << 32))
106 return -ERANGE;
107 high = tmp - 1;
108
109 /*
110 * Specification says timer usage flow is to disable timer, then
111 * program it followed by enable. It also says Load Count is loaded
112 * into timer after it is enabled - either after a disable or
113 * a reset. Based on measurements it happens also without disable
114 * whenever Load Count is updated. But follow the specification.
115 */
116 __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
117
118 /*
119 * Write Load Count and Load Count 2 registers. Former defines the
120 * width of low period and latter the width of high period in terms
121 * multiple of input clock periods:
122 * Width = ((Count + 1) * input clock period).
123 */
124 dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
125 dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
126
127 /*
128 * Set user-defined mode, timer reloads from Load Count registers
129 * when it counts down to 0.
130 * Set PWM mode, it makes output to toggle and width of low and high
131 * periods are set by Load Count registers.
132 */
133 ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
134 dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
135
136 /*
137 * Enable timer. Output starts from low period.
138 */
139 __dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
140
141 return 0;
142 }
143
dwc_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)144 static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
145 const struct pwm_state *state)
146 {
147 struct dwc_pwm *dwc = to_dwc_pwm(chip);
148
149 if (state->polarity != PWM_POLARITY_INVERSED)
150 return -EINVAL;
151
152 if (state->enabled) {
153 if (!pwm->state.enabled)
154 pm_runtime_get_sync(chip->dev);
155 return __dwc_pwm_configure_timer(dwc, pwm, state);
156 } else {
157 if (pwm->state.enabled) {
158 __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
159 pm_runtime_put_sync(chip->dev);
160 }
161 }
162
163 return 0;
164 }
165
dwc_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)166 static void dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
167 struct pwm_state *state)
168 {
169 struct dwc_pwm *dwc = to_dwc_pwm(chip);
170 u64 duty, period;
171
172 pm_runtime_get_sync(chip->dev);
173
174 state->enabled = !!(dwc_pwm_readl(dwc,
175 DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
176
177 duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
178 duty += 1;
179 duty *= DWC_CLK_PERIOD_NS;
180 state->duty_cycle = duty;
181
182 period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
183 period += 1;
184 period *= DWC_CLK_PERIOD_NS;
185 period += duty;
186 state->period = period;
187
188 state->polarity = PWM_POLARITY_INVERSED;
189
190 pm_runtime_put_sync(chip->dev);
191 }
192
193 static const struct pwm_ops dwc_pwm_ops = {
194 .apply = dwc_pwm_apply,
195 .get_state = dwc_pwm_get_state,
196 .owner = THIS_MODULE,
197 };
198
dwc_pwm_probe(struct pci_dev * pci,const struct pci_device_id * id)199 static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
200 {
201 struct device *dev = &pci->dev;
202 struct dwc_pwm *dwc;
203 int ret;
204
205 dwc = devm_kzalloc(&pci->dev, sizeof(*dwc), GFP_KERNEL);
206 if (!dwc)
207 return -ENOMEM;
208
209 ret = pcim_enable_device(pci);
210 if (ret) {
211 dev_err(&pci->dev,
212 "Failed to enable device (%pe)\n", ERR_PTR(ret));
213 return ret;
214 }
215
216 pci_set_master(pci);
217
218 ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
219 if (ret) {
220 dev_err(&pci->dev,
221 "Failed to iomap PCI BAR (%pe)\n", ERR_PTR(ret));
222 return ret;
223 }
224
225 dwc->base = pcim_iomap_table(pci)[0];
226 if (!dwc->base) {
227 dev_err(&pci->dev, "Base address missing\n");
228 return -ENOMEM;
229 }
230
231 pci_set_drvdata(pci, dwc);
232
233 dwc->chip.dev = dev;
234 dwc->chip.ops = &dwc_pwm_ops;
235 dwc->chip.npwm = DWC_TIMERS_TOTAL;
236
237 ret = pwmchip_add(&dwc->chip);
238 if (ret)
239 return ret;
240
241 pm_runtime_put(dev);
242 pm_runtime_allow(dev);
243
244 return 0;
245 }
246
dwc_pwm_remove(struct pci_dev * pci)247 static void dwc_pwm_remove(struct pci_dev *pci)
248 {
249 struct dwc_pwm *dwc = pci_get_drvdata(pci);
250
251 pm_runtime_forbid(&pci->dev);
252 pm_runtime_get_noresume(&pci->dev);
253
254 pwmchip_remove(&dwc->chip);
255 }
256
257 #ifdef CONFIG_PM_SLEEP
dwc_pwm_suspend(struct device * dev)258 static int dwc_pwm_suspend(struct device *dev)
259 {
260 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
261 struct dwc_pwm *dwc = pci_get_drvdata(pdev);
262 int i;
263
264 for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
265 if (dwc->chip.pwms[i].state.enabled) {
266 dev_err(dev, "PWM %u in use by consumer (%s)\n",
267 i, dwc->chip.pwms[i].label);
268 return -EBUSY;
269 }
270 dwc->ctx[i].cnt = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(i));
271 dwc->ctx[i].cnt2 = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(i));
272 dwc->ctx[i].ctrl = dwc_pwm_readl(dwc, DWC_TIM_CTRL(i));
273 }
274
275 return 0;
276 }
277
dwc_pwm_resume(struct device * dev)278 static int dwc_pwm_resume(struct device *dev)
279 {
280 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
281 struct dwc_pwm *dwc = pci_get_drvdata(pdev);
282 int i;
283
284 for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
285 dwc_pwm_writel(dwc, dwc->ctx[i].cnt, DWC_TIM_LD_CNT(i));
286 dwc_pwm_writel(dwc, dwc->ctx[i].cnt2, DWC_TIM_LD_CNT2(i));
287 dwc_pwm_writel(dwc, dwc->ctx[i].ctrl, DWC_TIM_CTRL(i));
288 }
289
290 return 0;
291 }
292 #endif
293
294 static SIMPLE_DEV_PM_OPS(dwc_pwm_pm_ops, dwc_pwm_suspend, dwc_pwm_resume);
295
296 static const struct pci_device_id dwc_pwm_id_table[] = {
297 { PCI_VDEVICE(INTEL, 0x4bb7) }, /* Elkhart Lake */
298 { } /* Terminating Entry */
299 };
300 MODULE_DEVICE_TABLE(pci, dwc_pwm_id_table);
301
302 static struct pci_driver dwc_pwm_driver = {
303 .name = "pwm-dwc",
304 .probe = dwc_pwm_probe,
305 .remove = dwc_pwm_remove,
306 .id_table = dwc_pwm_id_table,
307 .driver = {
308 .pm = &dwc_pwm_pm_ops,
309 },
310 };
311
312 module_pci_driver(dwc_pwm_driver);
313
314 MODULE_AUTHOR("Felipe Balbi (Intel)");
315 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
316 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
317 MODULE_DESCRIPTION("DesignWare PWM Controller");
318 MODULE_LICENSE("GPL");
319