1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4 * All rights reserved.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/spi/spi.h>
9 #include <linux/crc7.h>
10 #include <linux/crc-itu-t.h>
11 #include <linux/gpio/consumer.h>
12
13 #include "netdev.h"
14 #include "cfg80211.h"
15
16 #define SPI_MODALIAS "wilc1000_spi"
17
18 static bool enable_crc7; /* protect SPI commands with CRC7 */
19 module_param(enable_crc7, bool, 0644);
20 MODULE_PARM_DESC(enable_crc7,
21 "Enable CRC7 checksum to protect command transfers\n"
22 "\t\t\tagainst corruption during the SPI transfer.\n"
23 "\t\t\tCommand transfers are short and the CPU-cycle cost\n"
24 "\t\t\tof enabling this is small.");
25
26 static bool enable_crc16; /* protect SPI data with CRC16 */
27 module_param(enable_crc16, bool, 0644);
28 MODULE_PARM_DESC(enable_crc16,
29 "Enable CRC16 checksum to protect data transfers\n"
30 "\t\t\tagainst corruption during the SPI transfer.\n"
31 "\t\t\tData transfers can be large and the CPU-cycle cost\n"
32 "\t\t\tof enabling this may be substantial.");
33
34 /*
35 * For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or
36 * more zero bytes between the command response and the DATA Start tag
37 * (0xf3). This behavior appears to be undocumented in "ATWILC1000
38 * USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4
39 * zero bytes when the SPI bus operates at 48MHz and none when it
40 * operates at 1MHz.
41 */
42 #define WILC_SPI_RSP_HDR_EXTRA_DATA 8
43
44 struct wilc_spi {
45 bool isinit; /* true if SPI protocol has been configured */
46 bool probing_crc; /* true if we're probing chip's CRC config */
47 bool crc7_enabled; /* true if crc7 is currently enabled */
48 bool crc16_enabled; /* true if crc16 is currently enabled */
49 struct wilc_gpios {
50 struct gpio_desc *enable; /* ENABLE GPIO or NULL */
51 struct gpio_desc *reset; /* RESET GPIO or NULL */
52 } gpios;
53 };
54
55 static const struct wilc_hif_func wilc_hif_spi;
56
57 static int wilc_spi_reset(struct wilc *wilc);
58
59 /********************************************
60 *
61 * Spi protocol Function
62 *
63 ********************************************/
64
65 #define CMD_DMA_WRITE 0xc1
66 #define CMD_DMA_READ 0xc2
67 #define CMD_INTERNAL_WRITE 0xc3
68 #define CMD_INTERNAL_READ 0xc4
69 #define CMD_TERMINATE 0xc5
70 #define CMD_REPEAT 0xc6
71 #define CMD_DMA_EXT_WRITE 0xc7
72 #define CMD_DMA_EXT_READ 0xc8
73 #define CMD_SINGLE_WRITE 0xc9
74 #define CMD_SINGLE_READ 0xca
75 #define CMD_RESET 0xcf
76
77 #define SPI_ENABLE_VMM_RETRY_LIMIT 2
78
79 /* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */
80 #define RSP_START_FIELD GENMASK(7, 4)
81 #define RSP_TYPE_FIELD GENMASK(3, 0)
82
83 /* SPI response values for the response fields: */
84 #define RSP_START_TAG 0xc
85 #define RSP_TYPE_FIRST_PACKET 0x1
86 #define RSP_TYPE_INNER_PACKET 0x2
87 #define RSP_TYPE_LAST_PACKET 0x3
88 #define RSP_STATE_NO_ERROR 0x00
89
90 #define PROTOCOL_REG_PKT_SZ_MASK GENMASK(6, 4)
91 #define PROTOCOL_REG_CRC16_MASK GENMASK(3, 3)
92 #define PROTOCOL_REG_CRC7_MASK GENMASK(2, 2)
93
94 /*
95 * The SPI data packet size may be any integer power of two in the
96 * range from 256 to 8192 bytes.
97 */
98 #define DATA_PKT_LOG_SZ_MIN 8 /* 256 B */
99 #define DATA_PKT_LOG_SZ_MAX 13 /* 8 KiB */
100
101 /*
102 * Select the data packet size (log2 of number of bytes): Use the
103 * maximum data packet size. We only retransmit complete packets, so
104 * there is no benefit from using smaller data packets.
105 */
106 #define DATA_PKT_LOG_SZ DATA_PKT_LOG_SZ_MAX
107 #define DATA_PKT_SZ (1 << DATA_PKT_LOG_SZ)
108
109 #define WILC_SPI_COMMAND_STAT_SUCCESS 0
110 #define WILC_GET_RESP_HDR_START(h) (((h) >> 4) & 0xf)
111
112 struct wilc_spi_cmd {
113 u8 cmd_type;
114 union {
115 struct {
116 u8 addr[3];
117 u8 crc[];
118 } __packed simple_cmd;
119 struct {
120 u8 addr[3];
121 u8 size[2];
122 u8 crc[];
123 } __packed dma_cmd;
124 struct {
125 u8 addr[3];
126 u8 size[3];
127 u8 crc[];
128 } __packed dma_cmd_ext;
129 struct {
130 u8 addr[2];
131 __be32 data;
132 u8 crc[];
133 } __packed internal_w_cmd;
134 struct {
135 u8 addr[3];
136 __be32 data;
137 u8 crc[];
138 } __packed w_cmd;
139 } u;
140 } __packed;
141
142 struct wilc_spi_read_rsp_data {
143 u8 header;
144 u8 data[4];
145 u8 crc[];
146 } __packed;
147
148 struct wilc_spi_rsp_data {
149 u8 rsp_cmd_type;
150 u8 status;
151 u8 data[];
152 } __packed;
153
154 struct wilc_spi_special_cmd_rsp {
155 u8 skip_byte;
156 u8 rsp_cmd_type;
157 u8 status;
158 } __packed;
159
wilc_parse_gpios(struct wilc * wilc)160 static int wilc_parse_gpios(struct wilc *wilc)
161 {
162 struct spi_device *spi = to_spi_device(wilc->dev);
163 struct wilc_spi *spi_priv = wilc->bus_data;
164 struct wilc_gpios *gpios = &spi_priv->gpios;
165
166 /* get ENABLE pin and deassert it (if it is defined): */
167 gpios->enable = devm_gpiod_get_optional(&spi->dev,
168 "enable", GPIOD_OUT_LOW);
169 /* get RESET pin and assert it (if it is defined): */
170 if (gpios->enable) {
171 /* if enable pin exists, reset must exist as well */
172 gpios->reset = devm_gpiod_get(&spi->dev,
173 "reset", GPIOD_OUT_HIGH);
174 if (IS_ERR(gpios->reset)) {
175 dev_err(&spi->dev, "missing reset gpio.\n");
176 return PTR_ERR(gpios->reset);
177 }
178 } else {
179 gpios->reset = devm_gpiod_get_optional(&spi->dev,
180 "reset", GPIOD_OUT_HIGH);
181 }
182 return 0;
183 }
184
wilc_wlan_power(struct wilc * wilc,bool on)185 static void wilc_wlan_power(struct wilc *wilc, bool on)
186 {
187 struct wilc_spi *spi_priv = wilc->bus_data;
188 struct wilc_gpios *gpios = &spi_priv->gpios;
189
190 if (on) {
191 /* assert ENABLE: */
192 gpiod_set_value(gpios->enable, 1);
193 mdelay(5);
194 /* assert RESET: */
195 gpiod_set_value(gpios->reset, 1);
196 } else {
197 /* deassert RESET: */
198 gpiod_set_value(gpios->reset, 0);
199 /* deassert ENABLE: */
200 gpiod_set_value(gpios->enable, 0);
201 }
202 }
203
wilc_bus_probe(struct spi_device * spi)204 static int wilc_bus_probe(struct spi_device *spi)
205 {
206 int ret;
207 struct wilc *wilc;
208 struct wilc_spi *spi_priv;
209
210 spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
211 if (!spi_priv)
212 return -ENOMEM;
213
214 ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
215 if (ret)
216 goto free;
217
218 spi_set_drvdata(spi, wilc);
219 wilc->dev = &spi->dev;
220 wilc->bus_data = spi_priv;
221 wilc->dev_irq_num = spi->irq;
222
223 ret = wilc_parse_gpios(wilc);
224 if (ret < 0)
225 goto netdev_cleanup;
226
227 wilc->rtc_clk = devm_clk_get_optional(&spi->dev, "rtc");
228 if (IS_ERR(wilc->rtc_clk)) {
229 ret = PTR_ERR(wilc->rtc_clk);
230 goto netdev_cleanup;
231 }
232 clk_prepare_enable(wilc->rtc_clk);
233
234 return 0;
235
236 netdev_cleanup:
237 wilc_netdev_cleanup(wilc);
238 free:
239 kfree(spi_priv);
240 return ret;
241 }
242
wilc_bus_remove(struct spi_device * spi)243 static void wilc_bus_remove(struct spi_device *spi)
244 {
245 struct wilc *wilc = spi_get_drvdata(spi);
246 struct wilc_spi *spi_priv = wilc->bus_data;
247
248 clk_disable_unprepare(wilc->rtc_clk);
249 wilc_netdev_cleanup(wilc);
250 kfree(spi_priv);
251 }
252
253 static const struct of_device_id wilc_of_match[] = {
254 { .compatible = "microchip,wilc1000", },
255 { /* sentinel */ }
256 };
257 MODULE_DEVICE_TABLE(of, wilc_of_match);
258
259 static const struct spi_device_id wilc_spi_id[] = {
260 { "wilc1000", 0 },
261 { /* sentinel */ }
262 };
263 MODULE_DEVICE_TABLE(spi, wilc_spi_id);
264
265 static struct spi_driver wilc_spi_driver = {
266 .driver = {
267 .name = SPI_MODALIAS,
268 .of_match_table = wilc_of_match,
269 },
270 .id_table = wilc_spi_id,
271 .probe = wilc_bus_probe,
272 .remove = wilc_bus_remove,
273 };
274 module_spi_driver(wilc_spi_driver);
275 MODULE_LICENSE("GPL");
276
wilc_spi_tx(struct wilc * wilc,u8 * b,u32 len)277 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
278 {
279 struct spi_device *spi = to_spi_device(wilc->dev);
280 int ret;
281 struct spi_message msg;
282
283 if (len > 0 && b) {
284 struct spi_transfer tr = {
285 .tx_buf = b,
286 .len = len,
287 .delay = {
288 .value = 0,
289 .unit = SPI_DELAY_UNIT_USECS
290 },
291 };
292 char *r_buffer = kzalloc(len, GFP_KERNEL);
293
294 if (!r_buffer)
295 return -ENOMEM;
296
297 tr.rx_buf = r_buffer;
298 dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
299
300 memset(&msg, 0, sizeof(msg));
301 spi_message_init(&msg);
302 msg.spi = spi;
303 spi_message_add_tail(&tr, &msg);
304
305 ret = spi_sync(spi, &msg);
306 if (ret < 0)
307 dev_err(&spi->dev, "SPI transaction failed\n");
308
309 kfree(r_buffer);
310 } else {
311 dev_err(&spi->dev,
312 "can't write data with the following length: %d\n",
313 len);
314 ret = -EINVAL;
315 }
316
317 return ret;
318 }
319
wilc_spi_rx(struct wilc * wilc,u8 * rb,u32 rlen)320 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
321 {
322 struct spi_device *spi = to_spi_device(wilc->dev);
323 int ret;
324
325 if (rlen > 0) {
326 struct spi_message msg;
327 struct spi_transfer tr = {
328 .rx_buf = rb,
329 .len = rlen,
330 .delay = {
331 .value = 0,
332 .unit = SPI_DELAY_UNIT_USECS
333 },
334
335 };
336 char *t_buffer = kzalloc(rlen, GFP_KERNEL);
337
338 if (!t_buffer)
339 return -ENOMEM;
340
341 tr.tx_buf = t_buffer;
342
343 memset(&msg, 0, sizeof(msg));
344 spi_message_init(&msg);
345 msg.spi = spi;
346 spi_message_add_tail(&tr, &msg);
347
348 ret = spi_sync(spi, &msg);
349 if (ret < 0)
350 dev_err(&spi->dev, "SPI transaction failed\n");
351 kfree(t_buffer);
352 } else {
353 dev_err(&spi->dev,
354 "can't read data with the following length: %u\n",
355 rlen);
356 ret = -EINVAL;
357 }
358
359 return ret;
360 }
361
wilc_spi_tx_rx(struct wilc * wilc,u8 * wb,u8 * rb,u32 rlen)362 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
363 {
364 struct spi_device *spi = to_spi_device(wilc->dev);
365 int ret;
366
367 if (rlen > 0) {
368 struct spi_message msg;
369 struct spi_transfer tr = {
370 .rx_buf = rb,
371 .tx_buf = wb,
372 .len = rlen,
373 .bits_per_word = 8,
374 .delay = {
375 .value = 0,
376 .unit = SPI_DELAY_UNIT_USECS
377 },
378
379 };
380
381 memset(&msg, 0, sizeof(msg));
382 spi_message_init(&msg);
383 msg.spi = spi;
384
385 spi_message_add_tail(&tr, &msg);
386 ret = spi_sync(spi, &msg);
387 if (ret < 0)
388 dev_err(&spi->dev, "SPI transaction failed\n");
389 } else {
390 dev_err(&spi->dev,
391 "can't read data with the following length: %u\n",
392 rlen);
393 ret = -EINVAL;
394 }
395
396 return ret;
397 }
398
spi_data_write(struct wilc * wilc,u8 * b,u32 sz)399 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
400 {
401 struct spi_device *spi = to_spi_device(wilc->dev);
402 struct wilc_spi *spi_priv = wilc->bus_data;
403 int ix, nbytes;
404 int result = 0;
405 u8 cmd, order, crc[2];
406 u16 crc_calc;
407
408 /*
409 * Data
410 */
411 ix = 0;
412 do {
413 if (sz <= DATA_PKT_SZ) {
414 nbytes = sz;
415 order = 0x3;
416 } else {
417 nbytes = DATA_PKT_SZ;
418 if (ix == 0)
419 order = 0x1;
420 else
421 order = 0x02;
422 }
423
424 /*
425 * Write command
426 */
427 cmd = 0xf0;
428 cmd |= order;
429
430 if (wilc_spi_tx(wilc, &cmd, 1)) {
431 dev_err(&spi->dev,
432 "Failed data block cmd write, bus error...\n");
433 result = -EINVAL;
434 break;
435 }
436
437 /*
438 * Write data
439 */
440 if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
441 dev_err(&spi->dev,
442 "Failed data block write, bus error...\n");
443 result = -EINVAL;
444 break;
445 }
446
447 /*
448 * Write CRC
449 */
450 if (spi_priv->crc16_enabled) {
451 crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
452 crc[0] = crc_calc >> 8;
453 crc[1] = crc_calc;
454 if (wilc_spi_tx(wilc, crc, 2)) {
455 dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
456 result = -EINVAL;
457 break;
458 }
459 }
460
461 /*
462 * No need to wait for response
463 */
464 ix += nbytes;
465 sz -= nbytes;
466 } while (sz);
467
468 return result;
469 }
470
471 /********************************************
472 *
473 * Spi Internal Read/Write Function
474 *
475 ********************************************/
wilc_get_crc7(u8 * buffer,u32 len)476 static u8 wilc_get_crc7(u8 *buffer, u32 len)
477 {
478 return crc7_be(0xfe, buffer, len);
479 }
480
wilc_spi_single_read(struct wilc * wilc,u8 cmd,u32 adr,void * b,u8 clockless)481 static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b,
482 u8 clockless)
483 {
484 struct spi_device *spi = to_spi_device(wilc->dev);
485 struct wilc_spi *spi_priv = wilc->bus_data;
486 u8 wb[32], rb[32];
487 int cmd_len, resp_len, i;
488 u16 crc_calc, crc_recv;
489 struct wilc_spi_cmd *c;
490 struct wilc_spi_rsp_data *r;
491 struct wilc_spi_read_rsp_data *r_data;
492
493 memset(wb, 0x0, sizeof(wb));
494 memset(rb, 0x0, sizeof(rb));
495 c = (struct wilc_spi_cmd *)wb;
496 c->cmd_type = cmd;
497 if (cmd == CMD_SINGLE_READ) {
498 c->u.simple_cmd.addr[0] = adr >> 16;
499 c->u.simple_cmd.addr[1] = adr >> 8;
500 c->u.simple_cmd.addr[2] = adr;
501 } else if (cmd == CMD_INTERNAL_READ) {
502 c->u.simple_cmd.addr[0] = adr >> 8;
503 if (clockless == 1)
504 c->u.simple_cmd.addr[0] |= BIT(7);
505 c->u.simple_cmd.addr[1] = adr;
506 c->u.simple_cmd.addr[2] = 0x0;
507 } else {
508 dev_err(&spi->dev, "cmd [%x] not supported\n", cmd);
509 return -EINVAL;
510 }
511
512 cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
513 resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA;
514
515 if (spi_priv->crc7_enabled) {
516 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
517 cmd_len += 1;
518 resp_len += 2;
519 }
520
521 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
522 dev_err(&spi->dev,
523 "spi buffer size too small (%d) (%d) (%zu)\n",
524 cmd_len, resp_len, ARRAY_SIZE(wb));
525 return -EINVAL;
526 }
527
528 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
529 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
530 return -EINVAL;
531 }
532
533 r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
534 if (r->rsp_cmd_type != cmd && !clockless) {
535 if (!spi_priv->probing_crc)
536 dev_err(&spi->dev,
537 "Failed cmd, cmd (%02x), resp (%02x)\n",
538 cmd, r->rsp_cmd_type);
539 return -EINVAL;
540 }
541
542 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
543 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
544 r->status);
545 return -EINVAL;
546 }
547
548 for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i)
549 if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf)
550 break;
551
552 if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) {
553 dev_err(&spi->dev, "Error, data start missing\n");
554 return -EINVAL;
555 }
556
557 r_data = (struct wilc_spi_read_rsp_data *)&r->data[i];
558
559 if (b)
560 memcpy(b, r_data->data, 4);
561
562 if (!clockless && spi_priv->crc16_enabled) {
563 crc_recv = (r_data->crc[0] << 8) | r_data->crc[1];
564 crc_calc = crc_itu_t(0xffff, r_data->data, 4);
565 if (crc_recv != crc_calc) {
566 dev_err(&spi->dev, "%s: bad CRC 0x%04x "
567 "(calculated 0x%04x)\n", __func__,
568 crc_recv, crc_calc);
569 return -EINVAL;
570 }
571 }
572
573 return 0;
574 }
575
wilc_spi_write_cmd(struct wilc * wilc,u8 cmd,u32 adr,u32 data,u8 clockless)576 static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data,
577 u8 clockless)
578 {
579 struct spi_device *spi = to_spi_device(wilc->dev);
580 struct wilc_spi *spi_priv = wilc->bus_data;
581 u8 wb[32], rb[32];
582 int cmd_len, resp_len;
583 struct wilc_spi_cmd *c;
584 struct wilc_spi_rsp_data *r;
585
586 memset(wb, 0x0, sizeof(wb));
587 memset(rb, 0x0, sizeof(rb));
588 c = (struct wilc_spi_cmd *)wb;
589 c->cmd_type = cmd;
590 if (cmd == CMD_INTERNAL_WRITE) {
591 c->u.internal_w_cmd.addr[0] = adr >> 8;
592 if (clockless == 1)
593 c->u.internal_w_cmd.addr[0] |= BIT(7);
594
595 c->u.internal_w_cmd.addr[1] = adr;
596 c->u.internal_w_cmd.data = cpu_to_be32(data);
597 cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc);
598 if (spi_priv->crc7_enabled)
599 c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
600 } else if (cmd == CMD_SINGLE_WRITE) {
601 c->u.w_cmd.addr[0] = adr >> 16;
602 c->u.w_cmd.addr[1] = adr >> 8;
603 c->u.w_cmd.addr[2] = adr;
604 c->u.w_cmd.data = cpu_to_be32(data);
605 cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc);
606 if (spi_priv->crc7_enabled)
607 c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
608 } else {
609 dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd);
610 return -EINVAL;
611 }
612
613 if (spi_priv->crc7_enabled)
614 cmd_len += 1;
615
616 resp_len = sizeof(*r);
617
618 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
619 dev_err(&spi->dev,
620 "spi buffer size too small (%d) (%d) (%zu)\n",
621 cmd_len, resp_len, ARRAY_SIZE(wb));
622 return -EINVAL;
623 }
624
625 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
626 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
627 return -EINVAL;
628 }
629
630 r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
631 /*
632 * Clockless registers operations might return unexptected responses,
633 * even if successful.
634 */
635 if (r->rsp_cmd_type != cmd && !clockless) {
636 dev_err(&spi->dev,
637 "Failed cmd response, cmd (%02x), resp (%02x)\n",
638 cmd, r->rsp_cmd_type);
639 return -EINVAL;
640 }
641
642 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
643 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
644 r->status);
645 return -EINVAL;
646 }
647
648 return 0;
649 }
650
wilc_spi_dma_rw(struct wilc * wilc,u8 cmd,u32 adr,u8 * b,u32 sz)651 static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz)
652 {
653 struct spi_device *spi = to_spi_device(wilc->dev);
654 struct wilc_spi *spi_priv = wilc->bus_data;
655 u16 crc_recv, crc_calc;
656 u8 wb[32], rb[32];
657 int cmd_len, resp_len;
658 int retry, ix = 0;
659 u8 crc[2];
660 struct wilc_spi_cmd *c;
661 struct wilc_spi_rsp_data *r;
662
663 memset(wb, 0x0, sizeof(wb));
664 memset(rb, 0x0, sizeof(rb));
665 c = (struct wilc_spi_cmd *)wb;
666 c->cmd_type = cmd;
667 if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) {
668 c->u.dma_cmd.addr[0] = adr >> 16;
669 c->u.dma_cmd.addr[1] = adr >> 8;
670 c->u.dma_cmd.addr[2] = adr;
671 c->u.dma_cmd.size[0] = sz >> 8;
672 c->u.dma_cmd.size[1] = sz;
673 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc);
674 if (spi_priv->crc7_enabled)
675 c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
676 } else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) {
677 c->u.dma_cmd_ext.addr[0] = adr >> 16;
678 c->u.dma_cmd_ext.addr[1] = adr >> 8;
679 c->u.dma_cmd_ext.addr[2] = adr;
680 c->u.dma_cmd_ext.size[0] = sz >> 16;
681 c->u.dma_cmd_ext.size[1] = sz >> 8;
682 c->u.dma_cmd_ext.size[2] = sz;
683 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc);
684 if (spi_priv->crc7_enabled)
685 c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len);
686 } else {
687 dev_err(&spi->dev, "dma read write cmd [%x] not supported\n",
688 cmd);
689 return -EINVAL;
690 }
691 if (spi_priv->crc7_enabled)
692 cmd_len += 1;
693
694 resp_len = sizeof(*r);
695
696 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
697 dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n",
698 cmd_len, resp_len, ARRAY_SIZE(wb));
699 return -EINVAL;
700 }
701
702 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
703 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
704 return -EINVAL;
705 }
706
707 r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
708 if (r->rsp_cmd_type != cmd) {
709 dev_err(&spi->dev,
710 "Failed cmd response, cmd (%02x), resp (%02x)\n",
711 cmd, r->rsp_cmd_type);
712 return -EINVAL;
713 }
714
715 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
716 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
717 r->status);
718 return -EINVAL;
719 }
720
721 if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE)
722 return 0;
723
724 while (sz > 0) {
725 int nbytes;
726 u8 rsp;
727
728 nbytes = min_t(u32, sz, DATA_PKT_SZ);
729
730 /*
731 * Data Response header
732 */
733 retry = 100;
734 do {
735 if (wilc_spi_rx(wilc, &rsp, 1)) {
736 dev_err(&spi->dev,
737 "Failed resp read, bus err\n");
738 return -EINVAL;
739 }
740 if (WILC_GET_RESP_HDR_START(rsp) == 0xf)
741 break;
742 } while (retry--);
743
744 /*
745 * Read bytes
746 */
747 if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
748 dev_err(&spi->dev,
749 "Failed block read, bus err\n");
750 return -EINVAL;
751 }
752
753 /*
754 * Read CRC
755 */
756 if (spi_priv->crc16_enabled) {
757 if (wilc_spi_rx(wilc, crc, 2)) {
758 dev_err(&spi->dev,
759 "Failed block CRC read, bus err\n");
760 return -EINVAL;
761 }
762 crc_recv = (crc[0] << 8) | crc[1];
763 crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
764 if (crc_recv != crc_calc) {
765 dev_err(&spi->dev, "%s: bad CRC 0x%04x "
766 "(calculated 0x%04x)\n", __func__,
767 crc_recv, crc_calc);
768 return -EINVAL;
769 }
770 }
771
772 ix += nbytes;
773 sz -= nbytes;
774 }
775 return 0;
776 }
777
wilc_spi_special_cmd(struct wilc * wilc,u8 cmd)778 static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd)
779 {
780 struct spi_device *spi = to_spi_device(wilc->dev);
781 struct wilc_spi *spi_priv = wilc->bus_data;
782 u8 wb[32], rb[32];
783 int cmd_len, resp_len = 0;
784 struct wilc_spi_cmd *c;
785 struct wilc_spi_special_cmd_rsp *r;
786
787 if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET)
788 return -EINVAL;
789
790 memset(wb, 0x0, sizeof(wb));
791 memset(rb, 0x0, sizeof(rb));
792 c = (struct wilc_spi_cmd *)wb;
793 c->cmd_type = cmd;
794
795 if (cmd == CMD_RESET)
796 memset(c->u.simple_cmd.addr, 0xFF, 3);
797
798 cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
799 resp_len = sizeof(*r);
800
801 if (spi_priv->crc7_enabled) {
802 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
803 cmd_len += 1;
804 }
805 if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
806 dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n",
807 cmd_len, resp_len, ARRAY_SIZE(wb));
808 return -EINVAL;
809 }
810
811 if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
812 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
813 return -EINVAL;
814 }
815
816 r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len];
817 if (r->rsp_cmd_type != cmd) {
818 if (!spi_priv->probing_crc)
819 dev_err(&spi->dev,
820 "Failed cmd response, cmd (%02x), resp (%02x)\n",
821 cmd, r->rsp_cmd_type);
822 return -EINVAL;
823 }
824
825 if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
826 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
827 r->status);
828 return -EINVAL;
829 }
830 return 0;
831 }
832
wilc_spi_read_reg(struct wilc * wilc,u32 addr,u32 * data)833 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
834 {
835 struct spi_device *spi = to_spi_device(wilc->dev);
836 int result;
837 u8 cmd = CMD_SINGLE_READ;
838 u8 clockless = 0;
839
840 if (addr < WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
841 /* Clockless register */
842 cmd = CMD_INTERNAL_READ;
843 clockless = 1;
844 }
845
846 result = wilc_spi_single_read(wilc, cmd, addr, data, clockless);
847 if (result) {
848 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
849 return result;
850 }
851
852 le32_to_cpus(data);
853
854 return 0;
855 }
856
wilc_spi_read(struct wilc * wilc,u32 addr,u8 * buf,u32 size)857 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
858 {
859 struct spi_device *spi = to_spi_device(wilc->dev);
860 int result;
861
862 if (size <= 4)
863 return -EINVAL;
864
865 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr, buf, size);
866 if (result) {
867 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
868 return result;
869 }
870
871 return 0;
872 }
873
spi_internal_write(struct wilc * wilc,u32 adr,u32 dat)874 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
875 {
876 struct spi_device *spi = to_spi_device(wilc->dev);
877 int result;
878
879 result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr, dat, 0);
880 if (result) {
881 dev_err(&spi->dev, "Failed internal write cmd...\n");
882 return result;
883 }
884
885 return 0;
886 }
887
spi_internal_read(struct wilc * wilc,u32 adr,u32 * data)888 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
889 {
890 struct spi_device *spi = to_spi_device(wilc->dev);
891 struct wilc_spi *spi_priv = wilc->bus_data;
892 int result;
893
894 result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr, data, 0);
895 if (result) {
896 if (!spi_priv->probing_crc)
897 dev_err(&spi->dev, "Failed internal read cmd...\n");
898 return result;
899 }
900
901 le32_to_cpus(data);
902
903 return 0;
904 }
905
906 /********************************************
907 *
908 * Spi interfaces
909 *
910 ********************************************/
911
wilc_spi_write_reg(struct wilc * wilc,u32 addr,u32 data)912 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
913 {
914 struct spi_device *spi = to_spi_device(wilc->dev);
915 int result;
916 u8 cmd = CMD_SINGLE_WRITE;
917 u8 clockless = 0;
918
919 if (addr < WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
920 /* Clockless register */
921 cmd = CMD_INTERNAL_WRITE;
922 clockless = 1;
923 }
924
925 result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless);
926 if (result) {
927 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
928 return result;
929 }
930
931 return 0;
932 }
933
spi_data_rsp(struct wilc * wilc,u8 cmd)934 static int spi_data_rsp(struct wilc *wilc, u8 cmd)
935 {
936 struct spi_device *spi = to_spi_device(wilc->dev);
937 int result, i;
938 u8 rsp[4];
939
940 /*
941 * The response to data packets is two bytes long. For
942 * efficiency's sake, wilc_spi_write() wisely ignores the
943 * responses for all packets but the final one. The downside
944 * of that optimization is that when the final data packet is
945 * short, we may receive (part of) the response to the
946 * second-to-last packet before the one for the final packet.
947 * To handle this, we always read 4 bytes and then search for
948 * the last byte that contains the "Response Start" code (0xc
949 * in the top 4 bits). We then know that this byte is the
950 * first response byte of the final data packet.
951 */
952 result = wilc_spi_rx(wilc, rsp, sizeof(rsp));
953 if (result) {
954 dev_err(&spi->dev, "Failed bus error...\n");
955 return result;
956 }
957
958 for (i = sizeof(rsp) - 2; i >= 0; --i)
959 if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG)
960 break;
961
962 if (i < 0) {
963 dev_err(&spi->dev,
964 "Data packet response missing (%02x %02x %02x %02x)\n",
965 rsp[0], rsp[1], rsp[2], rsp[3]);
966 return -1;
967 }
968
969 /* rsp[i] is the last response start byte */
970
971 if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET
972 || rsp[i + 1] != RSP_STATE_NO_ERROR) {
973 dev_err(&spi->dev, "Data response error (%02x %02x)\n",
974 rsp[i], rsp[i + 1]);
975 return -1;
976 }
977 return 0;
978 }
979
wilc_spi_write(struct wilc * wilc,u32 addr,u8 * buf,u32 size)980 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
981 {
982 struct spi_device *spi = to_spi_device(wilc->dev);
983 int result;
984
985 /*
986 * has to be greated than 4
987 */
988 if (size <= 4)
989 return -EINVAL;
990
991 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size);
992 if (result) {
993 dev_err(&spi->dev,
994 "Failed cmd, write block (%08x)...\n", addr);
995 return result;
996 }
997
998 /*
999 * Data
1000 */
1001 result = spi_data_write(wilc, buf, size);
1002 if (result) {
1003 dev_err(&spi->dev, "Failed block data write...\n");
1004 return result;
1005 }
1006
1007 /*
1008 * Data response
1009 */
1010 return spi_data_rsp(wilc, CMD_DMA_EXT_WRITE);
1011 }
1012
1013 /********************************************
1014 *
1015 * Bus interfaces
1016 *
1017 ********************************************/
1018
wilc_spi_reset(struct wilc * wilc)1019 static int wilc_spi_reset(struct wilc *wilc)
1020 {
1021 struct spi_device *spi = to_spi_device(wilc->dev);
1022 struct wilc_spi *spi_priv = wilc->bus_data;
1023 int result;
1024
1025 result = wilc_spi_special_cmd(wilc, CMD_RESET);
1026 if (result && !spi_priv->probing_crc)
1027 dev_err(&spi->dev, "Failed cmd reset\n");
1028
1029 return result;
1030 }
1031
wilc_spi_is_init(struct wilc * wilc)1032 static bool wilc_spi_is_init(struct wilc *wilc)
1033 {
1034 struct wilc_spi *spi_priv = wilc->bus_data;
1035
1036 return spi_priv->isinit;
1037 }
1038
wilc_spi_deinit(struct wilc * wilc)1039 static int wilc_spi_deinit(struct wilc *wilc)
1040 {
1041 struct wilc_spi *spi_priv = wilc->bus_data;
1042
1043 spi_priv->isinit = false;
1044 wilc_wlan_power(wilc, false);
1045 return 0;
1046 }
1047
wilc_spi_init(struct wilc * wilc,bool resume)1048 static int wilc_spi_init(struct wilc *wilc, bool resume)
1049 {
1050 struct spi_device *spi = to_spi_device(wilc->dev);
1051 struct wilc_spi *spi_priv = wilc->bus_data;
1052 u32 reg;
1053 u32 chipid;
1054 int ret, i;
1055
1056 if (spi_priv->isinit) {
1057 /* Confirm we can read chipid register without error: */
1058 ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1059 if (ret == 0)
1060 return 0;
1061
1062 dev_err(&spi->dev, "Fail cmd read chip id...\n");
1063 }
1064
1065 wilc_wlan_power(wilc, true);
1066
1067 /*
1068 * configure protocol
1069 */
1070
1071 /*
1072 * Infer the CRC settings that are currently in effect. This
1073 * is necessary because we can't be sure that the chip has
1074 * been RESET (e.g, after module unload and reload).
1075 */
1076 spi_priv->probing_crc = true;
1077 spi_priv->crc7_enabled = enable_crc7;
1078 spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */
1079 for (i = 0; i < 2; ++i) {
1080 ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®);
1081 if (ret == 0)
1082 break;
1083 spi_priv->crc7_enabled = !enable_crc7;
1084 }
1085 if (ret) {
1086 dev_err(&spi->dev, "Failed with CRC7 on and off.\n");
1087 return ret;
1088 }
1089
1090 /* set up the desired CRC configuration: */
1091 reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK);
1092 if (enable_crc7)
1093 reg |= PROTOCOL_REG_CRC7_MASK;
1094 if (enable_crc16)
1095 reg |= PROTOCOL_REG_CRC16_MASK;
1096
1097 /* set up the data packet size: */
1098 BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN
1099 || DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX);
1100 reg &= ~PROTOCOL_REG_PKT_SZ_MASK;
1101 reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK,
1102 DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN);
1103
1104 /* establish the new setup: */
1105 ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg);
1106 if (ret) {
1107 dev_err(&spi->dev,
1108 "[wilc spi %d]: Failed internal write reg\n",
1109 __LINE__);
1110 return ret;
1111 }
1112 /* update our state to match new protocol settings: */
1113 spi_priv->crc7_enabled = enable_crc7;
1114 spi_priv->crc16_enabled = enable_crc16;
1115
1116 /* re-read to make sure new settings are in effect: */
1117 spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®);
1118
1119 spi_priv->probing_crc = false;
1120
1121 /*
1122 * make sure can read chip id without protocol error
1123 */
1124 ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1125 if (ret) {
1126 dev_err(&spi->dev, "Fail cmd read chip id...\n");
1127 return ret;
1128 }
1129
1130 spi_priv->isinit = true;
1131
1132 return 0;
1133 }
1134
wilc_spi_read_size(struct wilc * wilc,u32 * size)1135 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
1136 {
1137 int ret;
1138
1139 ret = spi_internal_read(wilc,
1140 WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size);
1141 *size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size);
1142
1143 return ret;
1144 }
1145
wilc_spi_read_int(struct wilc * wilc,u32 * int_status)1146 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
1147 {
1148 return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE,
1149 int_status);
1150 }
1151
wilc_spi_clear_int_ext(struct wilc * wilc,u32 val)1152 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
1153 {
1154 int ret;
1155 int retry = SPI_ENABLE_VMM_RETRY_LIMIT;
1156 u32 check;
1157
1158 while (retry) {
1159 ret = spi_internal_write(wilc,
1160 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1161 val);
1162 if (ret)
1163 break;
1164
1165 ret = spi_internal_read(wilc,
1166 WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1167 &check);
1168 if (ret || ((check & EN_VMM) == (val & EN_VMM)))
1169 break;
1170
1171 retry--;
1172 }
1173 return ret;
1174 }
1175
wilc_spi_sync_ext(struct wilc * wilc,int nint)1176 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1177 {
1178 struct spi_device *spi = to_spi_device(wilc->dev);
1179 u32 reg;
1180 int ret, i;
1181
1182 if (nint > MAX_NUM_INT) {
1183 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1184 return -EINVAL;
1185 }
1186
1187 /*
1188 * interrupt pin mux select
1189 */
1190 ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, ®);
1191 if (ret) {
1192 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1193 WILC_PIN_MUX_0);
1194 return ret;
1195 }
1196 reg |= BIT(8);
1197 ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1198 if (ret) {
1199 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1200 WILC_PIN_MUX_0);
1201 return ret;
1202 }
1203
1204 /*
1205 * interrupt enable
1206 */
1207 ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, ®);
1208 if (ret) {
1209 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1210 WILC_INTR_ENABLE);
1211 return ret;
1212 }
1213
1214 for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1215 reg |= (BIT((27 + i)));
1216
1217 ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1218 if (ret) {
1219 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1220 WILC_INTR_ENABLE);
1221 return ret;
1222 }
1223 if (nint) {
1224 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®);
1225 if (ret) {
1226 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1227 WILC_INTR2_ENABLE);
1228 return ret;
1229 }
1230
1231 for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1232 reg |= BIT(i);
1233
1234 ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg);
1235 if (ret) {
1236 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1237 WILC_INTR2_ENABLE);
1238 return ret;
1239 }
1240 }
1241
1242 return 0;
1243 }
1244
1245 /* Global spi HIF function table */
1246 static const struct wilc_hif_func wilc_hif_spi = {
1247 .hif_init = wilc_spi_init,
1248 .hif_deinit = wilc_spi_deinit,
1249 .hif_read_reg = wilc_spi_read_reg,
1250 .hif_write_reg = wilc_spi_write_reg,
1251 .hif_block_rx = wilc_spi_read,
1252 .hif_block_tx = wilc_spi_write,
1253 .hif_read_int = wilc_spi_read_int,
1254 .hif_clear_int_ext = wilc_spi_clear_int_ext,
1255 .hif_read_size = wilc_spi_read_size,
1256 .hif_block_tx_ext = wilc_spi_write,
1257 .hif_block_rx_ext = wilc_spi_read,
1258 .hif_sync_ext = wilc_spi_sync_ext,
1259 .hif_reset = wilc_spi_reset,
1260 .hif_is_init = wilc_spi_is_init,
1261 };
1262