1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12
iwl_mvm_skb_get_hdr(struct sk_buff * skb)13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
14 {
15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
16 u8 *data = skb->data;
17
18 /* Alignment concerns */
19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
23
24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
25 data += sizeof(struct ieee80211_radiotap_he);
26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
27 data += sizeof(struct ieee80211_radiotap_he_mu);
28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
29 data += sizeof(struct ieee80211_radiotap_lsig);
30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
31 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
32
33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
34 }
35
36 return data;
37 }
38
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
40 int queue, struct ieee80211_sta *sta)
41 {
42 struct iwl_mvm_sta *mvmsta;
43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
45 struct iwl_mvm_key_pn *ptk_pn;
46 int res;
47 u8 tid, keyidx;
48 u8 pn[IEEE80211_CCMP_PN_LEN];
49 u8 *extiv;
50
51 /* do PN checking */
52
53 /* multicast and non-data only arrives on default queue */
54 if (!ieee80211_is_data(hdr->frame_control) ||
55 is_multicast_ether_addr(hdr->addr1))
56 return 0;
57
58 /* do not check PN for open AP */
59 if (!(stats->flag & RX_FLAG_DECRYPTED))
60 return 0;
61
62 /*
63 * avoid checking for default queue - we don't want to replicate
64 * all the logic that's necessary for checking the PN on fragmented
65 * frames, leave that to mac80211
66 */
67 if (queue == 0)
68 return 0;
69
70 /* if we are here - this for sure is either CCMP or GCMP */
71 if (IS_ERR_OR_NULL(sta)) {
72 IWL_DEBUG_DROP(mvm,
73 "expected hw-decrypted unicast frame for station\n");
74 return -1;
75 }
76
77 mvmsta = iwl_mvm_sta_from_mac80211(sta);
78
79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
80 keyidx = extiv[3] >> 6;
81
82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
83 if (!ptk_pn)
84 return -1;
85
86 if (ieee80211_is_data_qos(hdr->frame_control))
87 tid = ieee80211_get_tid(hdr);
88 else
89 tid = 0;
90
91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
92 if (tid >= IWL_MAX_TID_COUNT)
93 return -1;
94
95 /* load pn */
96 pn[0] = extiv[7];
97 pn[1] = extiv[6];
98 pn[2] = extiv[5];
99 pn[3] = extiv[4];
100 pn[4] = extiv[1];
101 pn[5] = extiv[0];
102
103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
104 if (res < 0)
105 return -1;
106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
107 return -1;
108
109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
110 stats->flag |= RX_FLAG_PN_VALIDATED;
111
112 return 0;
113 }
114
115 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
118 struct iwl_rx_cmd_buffer *rxb)
119 {
120 struct iwl_rx_packet *pkt = rxb_addr(rxb);
121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
122 unsigned int headlen, fraglen, pad_len = 0;
123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
124 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
125 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
126
127 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
128 len -= 2;
129 pad_len = 2;
130 }
131
132 /*
133 * For non monitor interface strip the bytes the RADA might not have
134 * removed. As monitor interface cannot exist with other interfaces
135 * this removal is safe.
136 */
137 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
138 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
139
140 /*
141 * If RADA was not enabled then decryption was not performed so
142 * the MIC cannot be removed.
143 */
144 if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
145 if (WARN_ON(crypt_len > mic_crc_len))
146 return -EINVAL;
147
148 mic_crc_len -= crypt_len;
149 }
150
151 if (WARN_ON(mic_crc_len > len))
152 return -EINVAL;
153
154 len -= mic_crc_len;
155 }
156
157 /* If frame is small enough to fit in skb->head, pull it completely.
158 * If not, only pull ieee80211_hdr (including crypto if present, and
159 * an additional 8 bytes for SNAP/ethertype, see below) so that
160 * splice() or TCP coalesce are more efficient.
161 *
162 * Since, in addition, ieee80211_data_to_8023() always pull in at
163 * least 8 bytes (possibly more for mesh) we can do the same here
164 * to save the cost of doing it later. That still doesn't pull in
165 * the actual IP header since the typical case has a SNAP header.
166 * If the latter changes (there are efforts in the standards group
167 * to do so) we should revisit this and ieee80211_data_to_8023().
168 */
169 headlen = (len <= skb_tailroom(skb)) ? len :
170 hdrlen + crypt_len + 8;
171
172 /* The firmware may align the packet to DWORD.
173 * The padding is inserted after the IV.
174 * After copying the header + IV skip the padding if
175 * present before copying packet data.
176 */
177 hdrlen += crypt_len;
178
179 if (unlikely(headlen < hdrlen))
180 return -EINVAL;
181
182 skb_put_data(skb, hdr, hdrlen);
183 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
184
185 /*
186 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
187 * certain cases and starts the checksum after the SNAP. Check if
188 * this is the case - it's easier to just bail out to CHECKSUM_NONE
189 * in the cases the hardware didn't handle, since it's rare to see
190 * such packets, even though the hardware did calculate the checksum
191 * in this case, just starting after the MAC header instead.
192 *
193 * Starting from Bz hardware, it calculates starting directly after
194 * the MAC header, so that matches mac80211's expectation.
195 */
196 if (skb->ip_summed == CHECKSUM_COMPLETE &&
197 mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) {
198 struct {
199 u8 hdr[6];
200 __be16 type;
201 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
202
203 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
204 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
205 (shdr->type != htons(ETH_P_IP) &&
206 shdr->type != htons(ETH_P_ARP) &&
207 shdr->type != htons(ETH_P_IPV6) &&
208 shdr->type != htons(ETH_P_8021Q) &&
209 shdr->type != htons(ETH_P_PAE) &&
210 shdr->type != htons(ETH_P_TDLS))))
211 skb->ip_summed = CHECKSUM_NONE;
212 else
213 /* mac80211 assumes full CSUM including SNAP header */
214 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
215 }
216
217 fraglen = len - headlen;
218
219 if (fraglen) {
220 int offset = (u8 *)hdr + headlen + pad_len -
221 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
222
223 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
224 fraglen, rxb->truesize);
225 }
226
227 return 0;
228 }
229
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)230 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
231 struct sk_buff *skb)
232 {
233 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
234 struct ieee80211_vendor_radiotap *radiotap;
235 const int size = sizeof(*radiotap) + sizeof(__le16);
236
237 if (!mvm->cur_aid)
238 return;
239
240 /* ensure alignment */
241 BUILD_BUG_ON((size + 2) % 4);
242
243 radiotap = skb_put(skb, size + 2);
244 radiotap->align = 1;
245 /* Intel OUI */
246 radiotap->oui[0] = 0xf6;
247 radiotap->oui[1] = 0x54;
248 radiotap->oui[2] = 0x25;
249 /* radiotap sniffer config sub-namespace */
250 radiotap->subns = 1;
251 radiotap->present = 0x1;
252 radiotap->len = size - sizeof(*radiotap);
253 radiotap->pad = 2;
254
255 /* fill the data now */
256 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
257 /* and clear the padding */
258 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
259
260 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
261 }
262
263 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)264 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
265 struct napi_struct *napi,
266 struct sk_buff *skb, int queue,
267 struct ieee80211_sta *sta)
268 {
269 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
270 kfree_skb(skb);
271 else
272 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
273 }
274
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)275 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
276 struct ieee80211_rx_status *rx_status,
277 u32 rate_n_flags, int energy_a,
278 int energy_b)
279 {
280 int max_energy;
281 u32 rate_flags = rate_n_flags;
282
283 energy_a = energy_a ? -energy_a : S8_MIN;
284 energy_b = energy_b ? -energy_b : S8_MIN;
285 max_energy = max(energy_a, energy_b);
286
287 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
288 energy_a, energy_b, max_energy);
289
290 rx_status->signal = max_energy;
291 rx_status->chains =
292 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
293 rx_status->chain_signal[0] = energy_a;
294 rx_status->chain_signal[1] = energy_b;
295 }
296
iwl_mvm_rx_mgmt_prot(struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc,u32 status)297 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
298 struct ieee80211_hdr *hdr,
299 struct iwl_rx_mpdu_desc *desc,
300 u32 status)
301 {
302 struct iwl_mvm_sta *mvmsta;
303 struct iwl_mvm_vif *mvmvif;
304 u8 keyid;
305 struct ieee80211_key_conf *key;
306 u32 len = le16_to_cpu(desc->mpdu_len);
307 const u8 *frame = (void *)hdr;
308
309 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
310 return 0;
311
312 /*
313 * For non-beacon, we don't really care. But beacons may
314 * be filtered out, and we thus need the firmware's replay
315 * detection, otherwise beacons the firmware previously
316 * filtered could be replayed, or something like that, and
317 * it can filter a lot - though usually only if nothing has
318 * changed.
319 */
320 if (!ieee80211_is_beacon(hdr->frame_control))
321 return 0;
322
323 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
324 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
325 return -1;
326
327 /* good cases */
328 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
329 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
330 return 0;
331
332 if (!sta)
333 return -1;
334
335 mvmsta = iwl_mvm_sta_from_mac80211(sta);
336
337 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
338
339 /*
340 * both keys will have the same cipher and MIC length, use
341 * whichever one is available
342 */
343 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
344 if (!key) {
345 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
346 if (!key)
347 return -1;
348 }
349
350 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
351 return -1;
352
353 /* get the real key ID */
354 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
355 /* and if that's the other key, look it up */
356 if (keyid != key->keyidx) {
357 /*
358 * shouldn't happen since firmware checked, but be safe
359 * in case the MIC length is wrong too, for example
360 */
361 if (keyid != 6 && keyid != 7)
362 return -1;
363 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
364 if (!key)
365 return -1;
366 }
367
368 /* Report status to mac80211 */
369 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
370 ieee80211_key_mic_failure(key);
371 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
372 ieee80211_key_replay(key);
373
374 return -1;
375 }
376
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)377 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
378 struct ieee80211_hdr *hdr,
379 struct ieee80211_rx_status *stats, u16 phy_info,
380 struct iwl_rx_mpdu_desc *desc,
381 u32 pkt_flags, int queue, u8 *crypt_len)
382 {
383 u32 status = le32_to_cpu(desc->status);
384
385 /*
386 * Drop UNKNOWN frames in aggregation, unless in monitor mode
387 * (where we don't have the keys).
388 * We limit this to aggregation because in TKIP this is a valid
389 * scenario, since we may not have the (correct) TTAK (phase 1
390 * key) in the firmware.
391 */
392 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
393 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
394 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
395 return -1;
396
397 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
398 !ieee80211_has_protected(hdr->frame_control)))
399 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
400
401 if (!ieee80211_has_protected(hdr->frame_control) ||
402 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
403 IWL_RX_MPDU_STATUS_SEC_NONE)
404 return 0;
405
406 /* TODO: handle packets encrypted with unknown alg */
407
408 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
409 case IWL_RX_MPDU_STATUS_SEC_CCM:
410 case IWL_RX_MPDU_STATUS_SEC_GCM:
411 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
412 /* alg is CCM: check MIC only */
413 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
414 return -1;
415
416 stats->flag |= RX_FLAG_DECRYPTED;
417 if (pkt_flags & FH_RSCSR_RADA_EN)
418 stats->flag |= RX_FLAG_MIC_STRIPPED;
419 *crypt_len = IEEE80211_CCMP_HDR_LEN;
420 return 0;
421 case IWL_RX_MPDU_STATUS_SEC_TKIP:
422 /* Don't drop the frame and decrypt it in SW */
423 if (!fw_has_api(&mvm->fw->ucode_capa,
424 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
425 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
426 return 0;
427
428 if (mvm->trans->trans_cfg->gen2 &&
429 !(status & RX_MPDU_RES_STATUS_MIC_OK))
430 stats->flag |= RX_FLAG_MMIC_ERROR;
431
432 *crypt_len = IEEE80211_TKIP_IV_LEN;
433 fallthrough;
434 case IWL_RX_MPDU_STATUS_SEC_WEP:
435 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
436 return -1;
437
438 stats->flag |= RX_FLAG_DECRYPTED;
439 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
440 IWL_RX_MPDU_STATUS_SEC_WEP)
441 *crypt_len = IEEE80211_WEP_IV_LEN;
442
443 if (pkt_flags & FH_RSCSR_RADA_EN) {
444 stats->flag |= RX_FLAG_ICV_STRIPPED;
445 if (mvm->trans->trans_cfg->gen2)
446 stats->flag |= RX_FLAG_MMIC_STRIPPED;
447 }
448
449 return 0;
450 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
451 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
452 return -1;
453 stats->flag |= RX_FLAG_DECRYPTED;
454 return 0;
455 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
456 break;
457 default:
458 /*
459 * Sometimes we can get frames that were not decrypted
460 * because the firmware didn't have the keys yet. This can
461 * happen after connection where we can get multicast frames
462 * before the GTK is installed.
463 * Silently drop those frames.
464 * Also drop un-decrypted frames in monitor mode.
465 */
466 if (!is_multicast_ether_addr(hdr->addr1) &&
467 !mvm->monitor_on && net_ratelimit())
468 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
469 }
470
471 return 0;
472 }
473
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)474 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
475 struct ieee80211_sta *sta,
476 struct sk_buff *skb,
477 struct iwl_rx_packet *pkt)
478 {
479 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
480
481 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
482 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
483 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
484
485 skb->ip_summed = CHECKSUM_COMPLETE;
486 skb->csum = csum_unfold(~(__force __sum16)hwsum);
487 }
488 } else {
489 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
490 struct iwl_mvm_vif *mvmvif;
491 u16 flags = le16_to_cpu(desc->l3l4_flags);
492 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
493 IWL_RX_L3_PROTO_POS);
494
495 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
496
497 if (mvmvif->features & NETIF_F_RXCSUM &&
498 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
499 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
500 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
501 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
502 skb->ip_summed = CHECKSUM_UNNECESSARY;
503 }
504 }
505
506 /*
507 * returns true if a packet is a duplicate and should be dropped.
508 * Updates AMSDU PN tracking info
509 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)510 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
511 struct ieee80211_rx_status *rx_status,
512 struct ieee80211_hdr *hdr,
513 struct iwl_rx_mpdu_desc *desc)
514 {
515 struct iwl_mvm_sta *mvm_sta;
516 struct iwl_mvm_rxq_dup_data *dup_data;
517 u8 tid, sub_frame_idx;
518
519 if (WARN_ON(IS_ERR_OR_NULL(sta)))
520 return false;
521
522 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
523 dup_data = &mvm_sta->dup_data[queue];
524
525 /*
526 * Drop duplicate 802.11 retransmissions
527 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
528 */
529 if (ieee80211_is_ctl(hdr->frame_control) ||
530 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
531 is_multicast_ether_addr(hdr->addr1)) {
532 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
533 return false;
534 }
535
536 if (ieee80211_is_data_qos(hdr->frame_control))
537 /* frame has qos control */
538 tid = ieee80211_get_tid(hdr);
539 else
540 tid = IWL_MAX_TID_COUNT;
541
542 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
543 sub_frame_idx = desc->amsdu_info &
544 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
545
546 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
547 dup_data->last_seq[tid] == hdr->seq_ctrl &&
548 dup_data->last_sub_frame[tid] >= sub_frame_idx))
549 return true;
550
551 /* Allow same PN as the first subframe for following sub frames */
552 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
553 sub_frame_idx > dup_data->last_sub_frame[tid] &&
554 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
555 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
556
557 dup_data->last_seq[tid] = hdr->seq_ctrl;
558 dup_data->last_sub_frame[tid] = sub_frame_idx;
559
560 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
561
562 return false;
563 }
564
565 /*
566 * Returns true if sn2 - buffer_size < sn1 < sn2.
567 * To be used only in order to compare reorder buffer head with NSSN.
568 * We fully trust NSSN unless it is behind us due to reorder timeout.
569 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
570 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)571 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
572 {
573 return ieee80211_sn_less(sn1, sn2) &&
574 !ieee80211_sn_less(sn1, sn2 - buffer_size);
575 }
576
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)577 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
578 {
579 if (IWL_MVM_USE_NSSN_SYNC) {
580 struct iwl_mvm_nssn_sync_data notif = {
581 .baid = baid,
582 .nssn = nssn,
583 };
584
585 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
586 ¬if, sizeof(notif));
587 }
588 }
589
590 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
591
592 enum iwl_mvm_release_flags {
593 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
594 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
595 };
596
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)597 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
598 struct ieee80211_sta *sta,
599 struct napi_struct *napi,
600 struct iwl_mvm_baid_data *baid_data,
601 struct iwl_mvm_reorder_buffer *reorder_buf,
602 u16 nssn, u32 flags)
603 {
604 struct iwl_mvm_reorder_buf_entry *entries =
605 &baid_data->entries[reorder_buf->queue *
606 baid_data->entries_per_queue];
607 u16 ssn = reorder_buf->head_sn;
608
609 lockdep_assert_held(&reorder_buf->lock);
610
611 /*
612 * We keep the NSSN not too far behind, if we are sync'ing it and it
613 * is more than 2048 ahead of us, it must be behind us. Discard it.
614 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
615 * behind and this queue already processed packets. The next if
616 * would have caught cases where this queue would have processed less
617 * than 64 packets, but it may have processed more than 64 packets.
618 */
619 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
620 ieee80211_sn_less(nssn, ssn))
621 goto set_timer;
622
623 /* ignore nssn smaller than head sn - this can happen due to timeout */
624 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
625 goto set_timer;
626
627 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
628 int index = ssn % reorder_buf->buf_size;
629 struct sk_buff_head *skb_list = &entries[index].e.frames;
630 struct sk_buff *skb;
631
632 ssn = ieee80211_sn_inc(ssn);
633 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
634 (ssn == 2048 || ssn == 0))
635 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
636
637 /*
638 * Empty the list. Will have more than one frame for A-MSDU.
639 * Empty list is valid as well since nssn indicates frames were
640 * received.
641 */
642 while ((skb = __skb_dequeue(skb_list))) {
643 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
644 reorder_buf->queue,
645 sta);
646 reorder_buf->num_stored--;
647 }
648 }
649 reorder_buf->head_sn = nssn;
650
651 set_timer:
652 if (reorder_buf->num_stored && !reorder_buf->removed) {
653 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
654
655 while (skb_queue_empty(&entries[index].e.frames))
656 index = (index + 1) % reorder_buf->buf_size;
657 /* modify timer to match next frame's expiration time */
658 mod_timer(&reorder_buf->reorder_timer,
659 entries[index].e.reorder_time + 1 +
660 RX_REORDER_BUF_TIMEOUT_MQ);
661 } else {
662 del_timer(&reorder_buf->reorder_timer);
663 }
664 }
665
iwl_mvm_reorder_timer_expired(struct timer_list * t)666 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
667 {
668 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
669 struct iwl_mvm_baid_data *baid_data =
670 iwl_mvm_baid_data_from_reorder_buf(buf);
671 struct iwl_mvm_reorder_buf_entry *entries =
672 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
673 int i;
674 u16 sn = 0, index = 0;
675 bool expired = false;
676 bool cont = false;
677
678 spin_lock(&buf->lock);
679
680 if (!buf->num_stored || buf->removed) {
681 spin_unlock(&buf->lock);
682 return;
683 }
684
685 for (i = 0; i < buf->buf_size ; i++) {
686 index = (buf->head_sn + i) % buf->buf_size;
687
688 if (skb_queue_empty(&entries[index].e.frames)) {
689 /*
690 * If there is a hole and the next frame didn't expire
691 * we want to break and not advance SN
692 */
693 cont = false;
694 continue;
695 }
696 if (!cont &&
697 !time_after(jiffies, entries[index].e.reorder_time +
698 RX_REORDER_BUF_TIMEOUT_MQ))
699 break;
700
701 expired = true;
702 /* continue until next hole after this expired frames */
703 cont = true;
704 sn = ieee80211_sn_add(buf->head_sn, i + 1);
705 }
706
707 if (expired) {
708 struct ieee80211_sta *sta;
709 struct iwl_mvm_sta *mvmsta;
710 u8 sta_id = baid_data->sta_id;
711
712 rcu_read_lock();
713 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
714 mvmsta = iwl_mvm_sta_from_mac80211(sta);
715
716 /* SN is set to the last expired frame + 1 */
717 IWL_DEBUG_HT(buf->mvm,
718 "Releasing expired frames for sta %u, sn %d\n",
719 sta_id, sn);
720 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
721 sta, baid_data->tid);
722 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
723 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
724 rcu_read_unlock();
725 } else {
726 /*
727 * If no frame expired and there are stored frames, index is now
728 * pointing to the first unexpired frame - modify timer
729 * accordingly to this frame.
730 */
731 mod_timer(&buf->reorder_timer,
732 entries[index].e.reorder_time +
733 1 + RX_REORDER_BUF_TIMEOUT_MQ);
734 }
735 spin_unlock(&buf->lock);
736 }
737
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)738 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
739 struct iwl_mvm_delba_data *data)
740 {
741 struct iwl_mvm_baid_data *ba_data;
742 struct ieee80211_sta *sta;
743 struct iwl_mvm_reorder_buffer *reorder_buf;
744 u8 baid = data->baid;
745
746 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
747 return;
748
749 rcu_read_lock();
750
751 ba_data = rcu_dereference(mvm->baid_map[baid]);
752 if (WARN_ON_ONCE(!ba_data))
753 goto out;
754
755 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
756 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
757 goto out;
758
759 reorder_buf = &ba_data->reorder_buf[queue];
760
761 /* release all frames that are in the reorder buffer to the stack */
762 spin_lock_bh(&reorder_buf->lock);
763 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
764 ieee80211_sn_add(reorder_buf->head_sn,
765 reorder_buf->buf_size),
766 0);
767 spin_unlock_bh(&reorder_buf->lock);
768 del_timer_sync(&reorder_buf->reorder_timer);
769
770 out:
771 rcu_read_unlock();
772 }
773
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)774 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
775 struct napi_struct *napi,
776 u8 baid, u16 nssn, int queue,
777 u32 flags)
778 {
779 struct ieee80211_sta *sta;
780 struct iwl_mvm_reorder_buffer *reorder_buf;
781 struct iwl_mvm_baid_data *ba_data;
782
783 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
784 baid, nssn);
785
786 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
787 baid >= ARRAY_SIZE(mvm->baid_map)))
788 return;
789
790 rcu_read_lock();
791
792 ba_data = rcu_dereference(mvm->baid_map[baid]);
793 if (!ba_data) {
794 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
795 "BAID %d not found in map\n", baid);
796 goto out;
797 }
798
799 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
800 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
801 goto out;
802
803 reorder_buf = &ba_data->reorder_buf[queue];
804
805 spin_lock_bh(&reorder_buf->lock);
806 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
807 reorder_buf, nssn, flags);
808 spin_unlock_bh(&reorder_buf->lock);
809
810 out:
811 rcu_read_unlock();
812 }
813
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)814 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
815 struct napi_struct *napi, int queue,
816 const struct iwl_mvm_nssn_sync_data *data)
817 {
818 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
819 data->nssn, queue,
820 IWL_MVM_RELEASE_FROM_RSS_SYNC);
821 }
822
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)823 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
824 struct iwl_rx_cmd_buffer *rxb, int queue)
825 {
826 struct iwl_rx_packet *pkt = rxb_addr(rxb);
827 struct iwl_rxq_sync_notification *notif;
828 struct iwl_mvm_internal_rxq_notif *internal_notif;
829 u32 len = iwl_rx_packet_payload_len(pkt);
830
831 notif = (void *)pkt->data;
832 internal_notif = (void *)notif->payload;
833
834 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
835 "invalid notification size %d (%d)",
836 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
837 return;
838 len -= sizeof(*notif) + sizeof(*internal_notif);
839
840 if (internal_notif->sync &&
841 mvm->queue_sync_cookie != internal_notif->cookie) {
842 WARN_ONCE(1, "Received expired RX queue sync message\n");
843 return;
844 }
845
846 switch (internal_notif->type) {
847 case IWL_MVM_RXQ_EMPTY:
848 WARN_ONCE(len, "invalid empty notification size %d", len);
849 break;
850 case IWL_MVM_RXQ_NOTIF_DEL_BA:
851 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
852 "invalid delba notification size %d (%d)",
853 len, (int)sizeof(struct iwl_mvm_delba_data)))
854 break;
855 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
856 break;
857 case IWL_MVM_RXQ_NSSN_SYNC:
858 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
859 "invalid nssn sync notification size %d (%d)",
860 len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
861 break;
862 iwl_mvm_nssn_sync(mvm, napi, queue,
863 (void *)internal_notif->data);
864 break;
865 default:
866 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
867 }
868
869 if (internal_notif->sync) {
870 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
871 "queue sync: queue %d responded a second time!\n",
872 queue);
873 if (READ_ONCE(mvm->queue_sync_state) == 0)
874 wake_up(&mvm->rx_sync_waitq);
875 }
876 }
877
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)878 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
879 struct ieee80211_sta *sta, int tid,
880 struct iwl_mvm_reorder_buffer *buffer,
881 u32 reorder, u32 gp2, int queue)
882 {
883 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
884
885 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
886 /* we have a new (A-)MPDU ... */
887
888 /*
889 * reset counter to 0 if we didn't have any oldsn in
890 * the last A-MPDU (as detected by GP2 being identical)
891 */
892 if (!buffer->consec_oldsn_prev_drop)
893 buffer->consec_oldsn_drops = 0;
894
895 /* either way, update our tracking state */
896 buffer->consec_oldsn_ampdu_gp2 = gp2;
897 } else if (buffer->consec_oldsn_prev_drop) {
898 /*
899 * tracking state didn't change, and we had an old SN
900 * indication before - do nothing in this case, we
901 * already noted this one down and are waiting for the
902 * next A-MPDU (by GP2)
903 */
904 return;
905 }
906
907 /* return unless this MPDU has old SN */
908 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
909 return;
910
911 /* update state */
912 buffer->consec_oldsn_prev_drop = 1;
913 buffer->consec_oldsn_drops++;
914
915 /* if limit is reached, send del BA and reset state */
916 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
917 IWL_WARN(mvm,
918 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
919 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
920 sta->addr, queue, tid);
921 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
922 buffer->consec_oldsn_prev_drop = 0;
923 buffer->consec_oldsn_drops = 0;
924 }
925 }
926
927 /*
928 * Returns true if the MPDU was buffered\dropped, false if it should be passed
929 * to upper layer.
930 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)931 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
932 struct napi_struct *napi,
933 int queue,
934 struct ieee80211_sta *sta,
935 struct sk_buff *skb,
936 struct iwl_rx_mpdu_desc *desc)
937 {
938 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
939 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
940 struct iwl_mvm_sta *mvm_sta;
941 struct iwl_mvm_baid_data *baid_data;
942 struct iwl_mvm_reorder_buffer *buffer;
943 struct sk_buff *tail;
944 u32 reorder = le32_to_cpu(desc->reorder_data);
945 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
946 bool last_subframe =
947 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
948 u8 tid = ieee80211_get_tid(hdr);
949 u8 sub_frame_idx = desc->amsdu_info &
950 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
951 struct iwl_mvm_reorder_buf_entry *entries;
952 int index;
953 u16 nssn, sn;
954 u8 baid;
955
956 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
957 IWL_RX_MPDU_REORDER_BAID_SHIFT;
958
959 /*
960 * This also covers the case of receiving a Block Ack Request
961 * outside a BA session; we'll pass it to mac80211 and that
962 * then sends a delBA action frame.
963 * This also covers pure monitor mode, in which case we won't
964 * have any BA sessions.
965 */
966 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
967 return false;
968
969 /* no sta yet */
970 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
971 "Got valid BAID without a valid station assigned\n"))
972 return false;
973
974 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
975
976 /* not a data packet or a bar */
977 if (!ieee80211_is_back_req(hdr->frame_control) &&
978 (!ieee80211_is_data_qos(hdr->frame_control) ||
979 is_multicast_ether_addr(hdr->addr1)))
980 return false;
981
982 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
983 return false;
984
985 baid_data = rcu_dereference(mvm->baid_map[baid]);
986 if (!baid_data) {
987 IWL_DEBUG_RX(mvm,
988 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
989 baid, reorder);
990 return false;
991 }
992
993 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
994 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
995 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
996 tid))
997 return false;
998
999 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1000 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1001 IWL_RX_MPDU_REORDER_SN_SHIFT;
1002
1003 buffer = &baid_data->reorder_buf[queue];
1004 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1005
1006 spin_lock_bh(&buffer->lock);
1007
1008 if (!buffer->valid) {
1009 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1010 spin_unlock_bh(&buffer->lock);
1011 return false;
1012 }
1013 buffer->valid = true;
1014 }
1015
1016 if (ieee80211_is_back_req(hdr->frame_control)) {
1017 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1018 buffer, nssn, 0);
1019 goto drop;
1020 }
1021
1022 /*
1023 * If there was a significant jump in the nssn - adjust.
1024 * If the SN is smaller than the NSSN it might need to first go into
1025 * the reorder buffer, in which case we just release up to it and the
1026 * rest of the function will take care of storing it and releasing up to
1027 * the nssn.
1028 * This should not happen. This queue has been lagging and it should
1029 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1030 * and update the other queues.
1031 */
1032 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1033 buffer->buf_size) ||
1034 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1035 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1036
1037 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1038 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1039 }
1040
1041 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1042 rx_status->device_timestamp, queue);
1043
1044 /* drop any oudated packets */
1045 if (ieee80211_sn_less(sn, buffer->head_sn))
1046 goto drop;
1047
1048 /* release immediately if allowed by nssn and no stored frames */
1049 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1050 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1051 buffer->buf_size) &&
1052 (!amsdu || last_subframe)) {
1053 /*
1054 * If we crossed the 2048 or 0 SN, notify all the
1055 * queues. This is done in order to avoid having a
1056 * head_sn that lags behind for too long. When that
1057 * happens, we can get to a situation where the head_sn
1058 * is within the interval [nssn - buf_size : nssn]
1059 * which will make us think that the nssn is a packet
1060 * that we already freed because of the reordering
1061 * buffer and we will ignore it. So maintain the
1062 * head_sn somewhat updated across all the queues:
1063 * when it crosses 0 and 2048.
1064 */
1065 if (sn == 2048 || sn == 0)
1066 iwl_mvm_sync_nssn(mvm, baid, sn);
1067 buffer->head_sn = nssn;
1068 }
1069 /* No need to update AMSDU last SN - we are moving the head */
1070 spin_unlock_bh(&buffer->lock);
1071 return false;
1072 }
1073
1074 /*
1075 * release immediately if there are no stored frames, and the sn is
1076 * equal to the head.
1077 * This can happen due to reorder timer, where NSSN is behind head_sn.
1078 * When we released everything, and we got the next frame in the
1079 * sequence, according to the NSSN we can't release immediately,
1080 * while technically there is no hole and we can move forward.
1081 */
1082 if (!buffer->num_stored && sn == buffer->head_sn) {
1083 if (!amsdu || last_subframe) {
1084 if (sn == 2048 || sn == 0)
1085 iwl_mvm_sync_nssn(mvm, baid, sn);
1086 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1087 }
1088 /* No need to update AMSDU last SN - we are moving the head */
1089 spin_unlock_bh(&buffer->lock);
1090 return false;
1091 }
1092
1093 index = sn % buffer->buf_size;
1094
1095 /*
1096 * Check if we already stored this frame
1097 * As AMSDU is either received or not as whole, logic is simple:
1098 * If we have frames in that position in the buffer and the last frame
1099 * originated from AMSDU had a different SN then it is a retransmission.
1100 * If it is the same SN then if the subframe index is incrementing it
1101 * is the same AMSDU - otherwise it is a retransmission.
1102 */
1103 tail = skb_peek_tail(&entries[index].e.frames);
1104 if (tail && !amsdu)
1105 goto drop;
1106 else if (tail && (sn != buffer->last_amsdu ||
1107 buffer->last_sub_index >= sub_frame_idx))
1108 goto drop;
1109
1110 /* put in reorder buffer */
1111 __skb_queue_tail(&entries[index].e.frames, skb);
1112 buffer->num_stored++;
1113 entries[index].e.reorder_time = jiffies;
1114
1115 if (amsdu) {
1116 buffer->last_amsdu = sn;
1117 buffer->last_sub_index = sub_frame_idx;
1118 }
1119
1120 /*
1121 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1122 * The reason is that NSSN advances on the first sub-frame, and may
1123 * cause the reorder buffer to advance before all the sub-frames arrive.
1124 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1125 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1126 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1127 * already ahead and it will be dropped.
1128 * If the last sub-frame is not on this queue - we will get frame
1129 * release notification with up to date NSSN.
1130 */
1131 if (!amsdu || last_subframe)
1132 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1133 buffer, nssn,
1134 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1135
1136 spin_unlock_bh(&buffer->lock);
1137 return true;
1138
1139 drop:
1140 kfree_skb(skb);
1141 spin_unlock_bh(&buffer->lock);
1142 return true;
1143 }
1144
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1145 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1146 u32 reorder_data, u8 baid)
1147 {
1148 unsigned long now = jiffies;
1149 unsigned long timeout;
1150 struct iwl_mvm_baid_data *data;
1151
1152 rcu_read_lock();
1153
1154 data = rcu_dereference(mvm->baid_map[baid]);
1155 if (!data) {
1156 IWL_DEBUG_RX(mvm,
1157 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1158 baid, reorder_data);
1159 goto out;
1160 }
1161
1162 if (!data->timeout)
1163 goto out;
1164
1165 timeout = data->timeout;
1166 /*
1167 * Do not update last rx all the time to avoid cache bouncing
1168 * between the rx queues.
1169 * Update it every timeout. Worst case is the session will
1170 * expire after ~ 2 * timeout, which doesn't matter that much.
1171 */
1172 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1173 /* Update is atomic */
1174 data->last_rx = now;
1175
1176 out:
1177 rcu_read_unlock();
1178 }
1179
iwl_mvm_flip_address(u8 * addr)1180 static void iwl_mvm_flip_address(u8 *addr)
1181 {
1182 int i;
1183 u8 mac_addr[ETH_ALEN];
1184
1185 for (i = 0; i < ETH_ALEN; i++)
1186 mac_addr[i] = addr[ETH_ALEN - i - 1];
1187 ether_addr_copy(addr, mac_addr);
1188 }
1189
1190 struct iwl_mvm_rx_phy_data {
1191 enum iwl_rx_phy_info_type info_type;
1192 __le32 d0, d1, d2, d3;
1193 __le16 d4;
1194
1195 u32 rate_n_flags;
1196 u32 gp2_on_air_rise;
1197 u16 phy_info;
1198 u8 energy_a, energy_b;
1199 u8 channel;
1200 };
1201
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he_mu * he_mu)1202 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1203 struct iwl_mvm_rx_phy_data *phy_data,
1204 struct ieee80211_radiotap_he_mu *he_mu)
1205 {
1206 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1207 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1208 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1209 u32 rate_n_flags = phy_data->rate_n_flags;
1210
1211 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1212 he_mu->flags1 |=
1213 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1214 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1215
1216 he_mu->flags1 |=
1217 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1218 phy_data4),
1219 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1220
1221 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1222 phy_data2);
1223 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1224 phy_data3);
1225 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1226 phy_data2);
1227 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1228 phy_data3);
1229 }
1230
1231 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1232 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1233 he_mu->flags1 |=
1234 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1235 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1236
1237 he_mu->flags2 |=
1238 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1239 phy_data4),
1240 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1241
1242 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1243 phy_data2);
1244 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1245 phy_data3);
1246 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1247 phy_data2);
1248 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1249 phy_data3);
1250 }
1251 }
1252
1253 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1254 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1255 struct ieee80211_radiotap_he *he,
1256 struct ieee80211_radiotap_he_mu *he_mu,
1257 struct ieee80211_rx_status *rx_status)
1258 {
1259 /*
1260 * Unfortunately, we have to leave the mac80211 data
1261 * incorrect for the case that we receive an HE-MU
1262 * transmission and *don't* have the HE phy data (due
1263 * to the bits being used for TSF). This shouldn't
1264 * happen though as management frames where we need
1265 * the TSF/timers are not be transmitted in HE-MU.
1266 */
1267 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1268 u32 rate_n_flags = phy_data->rate_n_flags;
1269 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1270 u8 offs = 0;
1271
1272 rx_status->bw = RATE_INFO_BW_HE_RU;
1273
1274 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1275
1276 switch (ru) {
1277 case 0 ... 36:
1278 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1279 offs = ru;
1280 break;
1281 case 37 ... 52:
1282 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1283 offs = ru - 37;
1284 break;
1285 case 53 ... 60:
1286 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1287 offs = ru - 53;
1288 break;
1289 case 61 ... 64:
1290 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1291 offs = ru - 61;
1292 break;
1293 case 65 ... 66:
1294 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1295 offs = ru - 65;
1296 break;
1297 case 67:
1298 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1299 break;
1300 case 68:
1301 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1302 break;
1303 }
1304 he->data2 |= le16_encode_bits(offs,
1305 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1306 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1307 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1308 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1309 he->data2 |=
1310 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1311
1312 #define CHECK_BW(bw) \
1313 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1314 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1315 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1316 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1317 CHECK_BW(20);
1318 CHECK_BW(40);
1319 CHECK_BW(80);
1320 CHECK_BW(160);
1321
1322 if (he_mu)
1323 he_mu->flags2 |=
1324 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1325 rate_n_flags),
1326 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1327 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1328 he->data6 |=
1329 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1330 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1331 rate_n_flags),
1332 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1333 }
1334
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,int queue)1335 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1336 struct iwl_mvm_rx_phy_data *phy_data,
1337 struct ieee80211_radiotap_he *he,
1338 struct ieee80211_radiotap_he_mu *he_mu,
1339 struct ieee80211_rx_status *rx_status,
1340 int queue)
1341 {
1342 switch (phy_data->info_type) {
1343 case IWL_RX_PHY_INFO_TYPE_NONE:
1344 case IWL_RX_PHY_INFO_TYPE_CCK:
1345 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1346 case IWL_RX_PHY_INFO_TYPE_HT:
1347 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1348 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1349 return;
1350 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1351 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1352 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1353 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1354 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1355 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1356 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1357 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1358 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1359 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1360 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1361 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1362 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1363 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1364 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1365 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1366 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1367 fallthrough;
1368 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1369 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1370 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1371 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1372 /* HE common */
1373 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1374 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1375 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1376 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1377 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1378 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1379 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1380 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1381 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1382 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1383 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1384 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1385 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1386 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1387 IWL_RX_PHY_DATA0_HE_UPLINK),
1388 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1389 }
1390 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1391 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1392 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1393 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1394 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1395 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1396 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1397 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1398 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1399 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1400 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1401 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1402 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1403 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1404 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1405 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1406 IWL_RX_PHY_DATA0_HE_DOPPLER),
1407 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1408 break;
1409 }
1410
1411 switch (phy_data->info_type) {
1412 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1413 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1414 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1415 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1416 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1417 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1418 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1419 break;
1420 default:
1421 /* nothing here */
1422 break;
1423 }
1424
1425 switch (phy_data->info_type) {
1426 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1427 he_mu->flags1 |=
1428 le16_encode_bits(le16_get_bits(phy_data->d4,
1429 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1430 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1431 he_mu->flags1 |=
1432 le16_encode_bits(le16_get_bits(phy_data->d4,
1433 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1434 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1435 he_mu->flags2 |=
1436 le16_encode_bits(le16_get_bits(phy_data->d4,
1437 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1438 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1439 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1440 fallthrough;
1441 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1442 he_mu->flags2 |=
1443 le16_encode_bits(le32_get_bits(phy_data->d1,
1444 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1445 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1446 he_mu->flags2 |=
1447 le16_encode_bits(le32_get_bits(phy_data->d1,
1448 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1449 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1450 fallthrough;
1451 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1452 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1453 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1454 break;
1455 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1456 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1457 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1458 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1459 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1460 break;
1461 default:
1462 /* nothing */
1463 break;
1464 }
1465 }
1466
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)1467 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1468 struct iwl_mvm_rx_phy_data *phy_data,
1469 int queue)
1470 {
1471 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1472 struct ieee80211_radiotap_he *he = NULL;
1473 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1474 u32 rate_n_flags = phy_data->rate_n_flags;
1475 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1476 u8 ltf;
1477 static const struct ieee80211_radiotap_he known = {
1478 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1479 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1480 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1481 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1482 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1483 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1484 };
1485 static const struct ieee80211_radiotap_he_mu mu_known = {
1486 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1487 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1488 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1489 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1490 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1491 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1492 };
1493 u16 phy_info = phy_data->phy_info;
1494
1495 he = skb_put_data(skb, &known, sizeof(known));
1496 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1497
1498 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1499 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1500 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1501 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1502 }
1503
1504 /* report the AMPDU-EOF bit on single frames */
1505 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1506 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1507 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1508 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1509 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1510 }
1511
1512 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1513 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1514 queue);
1515
1516 /* update aggregation data for monitor sake on default queue */
1517 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1518 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1519 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1520
1521 /* toggle is switched whenever new aggregation starts */
1522 if (toggle_bit != mvm->ampdu_toggle) {
1523 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1524 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1525 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1526 }
1527 }
1528
1529 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1530 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1531 rx_status->bw = RATE_INFO_BW_HE_RU;
1532 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1533 }
1534
1535 /* actually data is filled in mac80211 */
1536 if (he_type == RATE_MCS_HE_TYPE_SU ||
1537 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1538 he->data1 |=
1539 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1540
1541 #define CHECK_TYPE(F) \
1542 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1543 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1544
1545 CHECK_TYPE(SU);
1546 CHECK_TYPE(EXT_SU);
1547 CHECK_TYPE(MU);
1548 CHECK_TYPE(TRIG);
1549
1550 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1551
1552 if (rate_n_flags & RATE_MCS_BF_MSK)
1553 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1554
1555 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1556 RATE_MCS_HE_GI_LTF_POS) {
1557 case 0:
1558 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1559 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1560 else
1561 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1562 if (he_type == RATE_MCS_HE_TYPE_MU)
1563 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1564 else
1565 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1566 break;
1567 case 1:
1568 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1569 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1570 else
1571 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1572 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1573 break;
1574 case 2:
1575 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1576 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1577 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1578 } else {
1579 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1580 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1581 }
1582 break;
1583 case 3:
1584 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1585 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1586 break;
1587 case 4:
1588 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1589 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1590 break;
1591 default:
1592 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1593 }
1594
1595 he->data5 |= le16_encode_bits(ltf,
1596 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1597 }
1598
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)1599 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1600 struct iwl_mvm_rx_phy_data *phy_data)
1601 {
1602 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1603 struct ieee80211_radiotap_lsig *lsig;
1604
1605 switch (phy_data->info_type) {
1606 case IWL_RX_PHY_INFO_TYPE_HT:
1607 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1608 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1609 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1610 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1611 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1612 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1613 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1614 lsig = skb_put(skb, sizeof(*lsig));
1615 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1616 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1617 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1618 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1619 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1620 break;
1621 default:
1622 break;
1623 }
1624 }
1625
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)1626 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1627 {
1628 switch (phy_band) {
1629 case PHY_BAND_24:
1630 return NL80211_BAND_2GHZ;
1631 case PHY_BAND_5:
1632 return NL80211_BAND_5GHZ;
1633 case PHY_BAND_6:
1634 return NL80211_BAND_6GHZ;
1635 default:
1636 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1637 return NL80211_BAND_5GHZ;
1638 }
1639 }
1640
1641 struct iwl_rx_sta_csa {
1642 bool all_sta_unblocked;
1643 struct ieee80211_vif *vif;
1644 };
1645
iwl_mvm_rx_get_sta_block_tx(void * data,struct ieee80211_sta * sta)1646 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1647 {
1648 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1649 struct iwl_rx_sta_csa *rx_sta_csa = data;
1650
1651 if (mvmsta->vif != rx_sta_csa->vif)
1652 return;
1653
1654 if (mvmsta->disable_tx)
1655 rx_sta_csa->all_sta_unblocked = false;
1656 }
1657
1658 /*
1659 * Note: requires also rx_status->band to be prefilled, as well
1660 * as phy_data (apart from phy_data->info_type)
1661 */
iwl_mvm_rx_fill_status(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)1662 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1663 struct sk_buff *skb,
1664 struct iwl_mvm_rx_phy_data *phy_data,
1665 int queue)
1666 {
1667 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1668 u32 rate_n_flags = phy_data->rate_n_flags;
1669 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1670 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1671 bool is_sgi;
1672
1673 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1674
1675 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1676 phy_data->info_type =
1677 le32_get_bits(phy_data->d1,
1678 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1679
1680 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1681 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1682 case RATE_MCS_CHAN_WIDTH_20:
1683 break;
1684 case RATE_MCS_CHAN_WIDTH_40:
1685 rx_status->bw = RATE_INFO_BW_40;
1686 break;
1687 case RATE_MCS_CHAN_WIDTH_80:
1688 rx_status->bw = RATE_INFO_BW_80;
1689 break;
1690 case RATE_MCS_CHAN_WIDTH_160:
1691 rx_status->bw = RATE_INFO_BW_160;
1692 break;
1693 }
1694
1695 /* must be before L-SIG data */
1696 if (format == RATE_MCS_HE_MSK)
1697 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1698
1699 iwl_mvm_decode_lsig(skb, phy_data);
1700
1701 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1702 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1703 rx_status->band);
1704 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1705 phy_data->energy_a, phy_data->energy_b);
1706
1707 if (unlikely(mvm->monitor_on))
1708 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1709
1710 is_sgi = format == RATE_MCS_HE_MSK ?
1711 iwl_he_is_sgi(rate_n_flags) :
1712 rate_n_flags & RATE_MCS_SGI_MSK;
1713
1714 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1715 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1716
1717 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1718 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1719
1720 switch (format) {
1721 case RATE_MCS_VHT_MSK:
1722 rx_status->encoding = RX_ENC_VHT;
1723 break;
1724 case RATE_MCS_HE_MSK:
1725 rx_status->encoding = RX_ENC_HE;
1726 rx_status->he_dcm =
1727 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1728 break;
1729 }
1730
1731 switch (format) {
1732 case RATE_MCS_HT_MSK:
1733 rx_status->encoding = RX_ENC_HT;
1734 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
1735 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1736 break;
1737 case RATE_MCS_VHT_MSK:
1738 case RATE_MCS_HE_MSK:
1739 rx_status->nss =
1740 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
1741 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
1742 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1743 break;
1744 default: {
1745 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
1746 rx_status->band);
1747
1748 rx_status->rate_idx = rate;
1749
1750 if (WARN_ONCE(rate < 0 || rate > 0xFF,
1751 "Invalid rate flags 0x%x, band %d,\n",
1752 rate_n_flags, rx_status->band))
1753 rx_status->rate_idx = 0;
1754 break;
1755 }
1756 }
1757 }
1758
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1759 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1760 struct iwl_rx_cmd_buffer *rxb, int queue)
1761 {
1762 struct ieee80211_rx_status *rx_status;
1763 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1764 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1765 struct ieee80211_hdr *hdr;
1766 u32 len;
1767 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1768 struct ieee80211_sta *sta = NULL;
1769 struct sk_buff *skb;
1770 u8 crypt_len = 0;
1771 size_t desc_size;
1772 struct iwl_mvm_rx_phy_data phy_data = {};
1773 u32 format;
1774
1775 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1776 return;
1777
1778 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1779 desc_size = sizeof(*desc);
1780 else
1781 desc_size = IWL_RX_DESC_SIZE_V1;
1782
1783 if (unlikely(pkt_len < desc_size)) {
1784 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1785 return;
1786 }
1787
1788 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1789 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1790 phy_data.channel = desc->v3.channel;
1791 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1792 phy_data.energy_a = desc->v3.energy_a;
1793 phy_data.energy_b = desc->v3.energy_b;
1794
1795 phy_data.d0 = desc->v3.phy_data0;
1796 phy_data.d1 = desc->v3.phy_data1;
1797 phy_data.d2 = desc->v3.phy_data2;
1798 phy_data.d3 = desc->v3.phy_data3;
1799 } else {
1800 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1801 phy_data.channel = desc->v1.channel;
1802 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1803 phy_data.energy_a = desc->v1.energy_a;
1804 phy_data.energy_b = desc->v1.energy_b;
1805
1806 phy_data.d0 = desc->v1.phy_data0;
1807 phy_data.d1 = desc->v1.phy_data1;
1808 phy_data.d2 = desc->v1.phy_data2;
1809 phy_data.d3 = desc->v1.phy_data3;
1810 }
1811
1812 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
1813 REPLY_RX_MPDU_CMD, 0) < 4) {
1814 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
1815 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
1816 phy_data.rate_n_flags);
1817 }
1818
1819 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1820
1821 len = le16_to_cpu(desc->mpdu_len);
1822
1823 if (unlikely(len + desc_size > pkt_len)) {
1824 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1825 return;
1826 }
1827
1828 phy_data.phy_info = le16_to_cpu(desc->phy_info);
1829 phy_data.d4 = desc->phy_data4;
1830
1831 hdr = (void *)(pkt->data + desc_size);
1832 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1833 * ieee80211_hdr pulled.
1834 */
1835 skb = alloc_skb(128, GFP_ATOMIC);
1836 if (!skb) {
1837 IWL_ERR(mvm, "alloc_skb failed\n");
1838 return;
1839 }
1840
1841 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1842 /*
1843 * If the device inserted padding it means that (it thought)
1844 * the 802.11 header wasn't a multiple of 4 bytes long. In
1845 * this case, reserve two bytes at the start of the SKB to
1846 * align the payload properly in case we end up copying it.
1847 */
1848 skb_reserve(skb, 2);
1849 }
1850
1851 rx_status = IEEE80211_SKB_RXCB(skb);
1852
1853 /*
1854 * Keep packets with CRC errors (and with overrun) for monitor mode
1855 * (otherwise the firmware discards them) but mark them as bad.
1856 */
1857 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1858 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1859 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1860 le32_to_cpu(desc->status));
1861 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1862 }
1863
1864 /* set the preamble flag if appropriate */
1865 if (format == RATE_MCS_CCK_MSK &&
1866 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1867 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1868
1869 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1870 u64 tsf_on_air_rise;
1871
1872 if (mvm->trans->trans_cfg->device_family >=
1873 IWL_DEVICE_FAMILY_AX210)
1874 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1875 else
1876 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1877
1878 rx_status->mactime = tsf_on_air_rise;
1879 /* TSF as indicated by the firmware is at INA time */
1880 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1881 }
1882
1883 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1884 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1885
1886 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1887 } else {
1888 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
1889 NL80211_BAND_2GHZ;
1890 }
1891
1892 /* update aggregation data for monitor sake on default queue */
1893 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1894 bool toggle_bit;
1895
1896 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1897 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1898 /*
1899 * Toggle is switched whenever new aggregation starts. Make
1900 * sure ampdu_reference is never 0 so we can later use it to
1901 * see if the frame was really part of an A-MPDU or not.
1902 */
1903 if (toggle_bit != mvm->ampdu_toggle) {
1904 mvm->ampdu_ref++;
1905 if (mvm->ampdu_ref == 0)
1906 mvm->ampdu_ref++;
1907 mvm->ampdu_toggle = toggle_bit;
1908 }
1909 rx_status->ampdu_reference = mvm->ampdu_ref;
1910 }
1911
1912 rcu_read_lock();
1913
1914 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1915 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1916
1917 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1918 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1919 if (IS_ERR(sta))
1920 sta = NULL;
1921 }
1922 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1923 /*
1924 * This is fine since we prevent two stations with the same
1925 * address from being added.
1926 */
1927 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1928 }
1929
1930 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
1931 le32_to_cpu(pkt->len_n_flags), queue,
1932 &crypt_len)) {
1933 kfree_skb(skb);
1934 goto out;
1935 }
1936
1937 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
1938
1939 if (sta) {
1940 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1941 struct ieee80211_vif *tx_blocked_vif =
1942 rcu_dereference(mvm->csa_tx_blocked_vif);
1943 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1944 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1945 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1946 struct iwl_fw_dbg_trigger_tlv *trig;
1947 struct ieee80211_vif *vif = mvmsta->vif;
1948
1949 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1950 !is_multicast_ether_addr(hdr->addr1) &&
1951 ieee80211_is_data(hdr->frame_control) &&
1952 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1953 schedule_delayed_work(&mvm->tcm.work, 0);
1954
1955 /*
1956 * We have tx blocked stations (with CS bit). If we heard
1957 * frames from a blocked station on a new channel we can
1958 * TX to it again.
1959 */
1960 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1961 struct iwl_mvm_vif *mvmvif =
1962 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1963 struct iwl_rx_sta_csa rx_sta_csa = {
1964 .all_sta_unblocked = true,
1965 .vif = tx_blocked_vif,
1966 };
1967
1968 if (mvmvif->csa_target_freq == rx_status->freq)
1969 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1970 false);
1971 ieee80211_iterate_stations_atomic(mvm->hw,
1972 iwl_mvm_rx_get_sta_block_tx,
1973 &rx_sta_csa);
1974
1975 if (rx_sta_csa.all_sta_unblocked) {
1976 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1977 /* Unblock BCAST / MCAST station */
1978 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1979 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
1980 }
1981 }
1982
1983 rs_update_last_rssi(mvm, mvmsta, rx_status);
1984
1985 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1986 ieee80211_vif_to_wdev(vif),
1987 FW_DBG_TRIGGER_RSSI);
1988
1989 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1990 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1991 s32 rssi;
1992
1993 rssi_trig = (void *)trig->data;
1994 rssi = le32_to_cpu(rssi_trig->rssi);
1995
1996 if (rx_status->signal < rssi)
1997 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1998 NULL);
1999 }
2000
2001 if (ieee80211_is_data(hdr->frame_control))
2002 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2003
2004 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2005 kfree_skb(skb);
2006 goto out;
2007 }
2008
2009 /*
2010 * Our hardware de-aggregates AMSDUs but copies the mac header
2011 * as it to the de-aggregated MPDUs. We need to turn off the
2012 * AMSDU bit in the QoS control ourselves.
2013 * In addition, HW reverses addr3 and addr4 - reverse it back.
2014 */
2015 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2016 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2017 u8 *qc = ieee80211_get_qos_ctl(hdr);
2018
2019 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2020
2021 if (mvm->trans->trans_cfg->device_family ==
2022 IWL_DEVICE_FAMILY_9000) {
2023 iwl_mvm_flip_address(hdr->addr3);
2024
2025 if (ieee80211_has_a4(hdr->frame_control))
2026 iwl_mvm_flip_address(hdr->addr4);
2027 }
2028 }
2029 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2030 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2031
2032 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2033 }
2034 }
2035
2036 /* management stuff on default queue */
2037 if (!queue) {
2038 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2039 ieee80211_is_probe_resp(hdr->frame_control)) &&
2040 mvm->sched_scan_pass_all ==
2041 SCHED_SCAN_PASS_ALL_ENABLED))
2042 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2043
2044 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2045 ieee80211_is_probe_resp(hdr->frame_control)))
2046 rx_status->boottime_ns = ktime_get_boottime_ns();
2047 }
2048
2049 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2050 kfree_skb(skb);
2051 goto out;
2052 }
2053
2054 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
2055 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
2056 sta);
2057 out:
2058 rcu_read_unlock();
2059 }
2060
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2061 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2062 struct iwl_rx_cmd_buffer *rxb, int queue)
2063 {
2064 struct ieee80211_rx_status *rx_status;
2065 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2066 struct iwl_rx_no_data *desc = (void *)pkt->data;
2067 u32 rssi = le32_to_cpu(desc->rssi);
2068 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2069 struct ieee80211_sta *sta = NULL;
2070 struct sk_buff *skb;
2071 struct iwl_mvm_rx_phy_data phy_data = {
2072 .d0 = desc->phy_info[0],
2073 .d1 = desc->phy_info[1],
2074 .phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD,
2075 .gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time),
2076 .rate_n_flags = le32_to_cpu(desc->rate),
2077 .energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK),
2078 .energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK),
2079 .channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK),
2080 };
2081 u32 format;
2082
2083 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2084 RX_NO_DATA_NOTIF, 0) < 2) {
2085 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2086 phy_data.rate_n_flags);
2087 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2088 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2089 phy_data.rate_n_flags);
2090 }
2091
2092 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2093
2094 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc)))
2095 return;
2096
2097 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2098 return;
2099
2100 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2101 * ieee80211_hdr pulled.
2102 */
2103 skb = alloc_skb(128, GFP_ATOMIC);
2104 if (!skb) {
2105 IWL_ERR(mvm, "alloc_skb failed\n");
2106 return;
2107 }
2108
2109 rx_status = IEEE80211_SKB_RXCB(skb);
2110
2111 /* 0-length PSDU */
2112 rx_status->flag |= RX_FLAG_NO_PSDU;
2113
2114 switch (info_type) {
2115 case RX_NO_DATA_INFO_TYPE_NDP:
2116 rx_status->zero_length_psdu_type =
2117 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2118 break;
2119 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2120 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2121 rx_status->zero_length_psdu_type =
2122 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2123 break;
2124 default:
2125 rx_status->zero_length_psdu_type =
2126 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2127 break;
2128 }
2129
2130 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2131 NL80211_BAND_2GHZ;
2132
2133 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2134
2135 /*
2136 * Override the nss from the rx_vec since the rate_n_flags has
2137 * only 2 bits for the nss which gives a max of 4 ss but there
2138 * may be up to 8 spatial streams.
2139 */
2140 switch (format) {
2141 case RATE_MCS_VHT_MSK:
2142 rx_status->nss =
2143 le32_get_bits(desc->rx_vec[0],
2144 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2145 break;
2146 case RATE_MCS_HE_MSK:
2147 rx_status->nss =
2148 le32_get_bits(desc->rx_vec[0],
2149 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2150 break;
2151 }
2152
2153 rcu_read_lock();
2154 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2155 rcu_read_unlock();
2156 }
2157
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2158 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2159 struct iwl_rx_cmd_buffer *rxb, int queue)
2160 {
2161 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2162 struct iwl_frame_release *release = (void *)pkt->data;
2163
2164 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2165 return;
2166
2167 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2168 le16_to_cpu(release->nssn),
2169 queue, 0);
2170 }
2171
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2172 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2173 struct iwl_rx_cmd_buffer *rxb, int queue)
2174 {
2175 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2176 struct iwl_bar_frame_release *release = (void *)pkt->data;
2177 unsigned int baid = le32_get_bits(release->ba_info,
2178 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2179 unsigned int nssn = le32_get_bits(release->ba_info,
2180 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2181 unsigned int sta_id = le32_get_bits(release->sta_tid,
2182 IWL_BAR_FRAME_RELEASE_STA_MASK);
2183 unsigned int tid = le32_get_bits(release->sta_tid,
2184 IWL_BAR_FRAME_RELEASE_TID_MASK);
2185 struct iwl_mvm_baid_data *baid_data;
2186
2187 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2188 return;
2189
2190 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2191 baid >= ARRAY_SIZE(mvm->baid_map)))
2192 return;
2193
2194 rcu_read_lock();
2195 baid_data = rcu_dereference(mvm->baid_map[baid]);
2196 if (!baid_data) {
2197 IWL_DEBUG_RX(mvm,
2198 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2199 baid);
2200 goto out;
2201 }
2202
2203 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2204 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2205 baid, baid_data->sta_id, baid_data->tid, sta_id,
2206 tid))
2207 goto out;
2208
2209 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2210 out:
2211 rcu_read_unlock();
2212 }
2213