1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.1"
43
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45
46 #define HT_MAP_BITS 4
47 #define HASH_INITVAL ((u32)0xcafef00d)
48
49 struct vrf_map {
50 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 spinlock_t vmap_lock;
52
53 /* shared_tables:
54 * count how many distinct tables do not comply with the strict mode
55 * requirement.
56 * shared_tables value must be 0 in order to enable the strict mode.
57 *
58 * example of the evolution of shared_tables:
59 * | time
60 * add vrf0 --> table 100 shared_tables = 0 | t0
61 * add vrf1 --> table 101 shared_tables = 0 | t1
62 * add vrf2 --> table 100 shared_tables = 1 | t2
63 * add vrf3 --> table 100 shared_tables = 1 | t3
64 * add vrf4 --> table 101 shared_tables = 2 v t4
65 *
66 * shared_tables is a "step function" (or "staircase function")
67 * and it is increased by one when the second vrf is associated to a
68 * table.
69 *
70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 *
72 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 * value of shared_tables is still 1.
74 * This means that no matter how many new vrfs will register on the
75 * table 100, the shared_tables will not increase (considering only
76 * table 100).
77 *
78 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 *
80 * Looking at the value of shared_tables we can immediately know if
81 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 * can be enforced iff shared_tables = 0.
83 *
84 * Conversely, shared_tables is decreased when a vrf is de-associated
85 * from a table with exactly two associated vrfs.
86 */
87 u32 shared_tables;
88
89 bool strict_mode;
90 };
91
92 struct vrf_map_elem {
93 struct hlist_node hnode;
94 struct list_head vrf_list; /* VRFs registered to this table */
95
96 u32 table_id;
97 int users;
98 int ifindex;
99 };
100
101 static unsigned int vrf_net_id;
102
103 /* per netns vrf data */
104 struct netns_vrf {
105 /* protected by rtnl lock */
106 bool add_fib_rules;
107
108 struct vrf_map vmap;
109 struct ctl_table_header *ctl_hdr;
110 };
111
112 struct net_vrf {
113 struct rtable __rcu *rth;
114 struct rt6_info __rcu *rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 struct fib6_table *fib6_table;
117 #endif
118 u32 tb_id;
119
120 struct list_head me_list; /* entry in vrf_map_elem */
121 int ifindex;
122 };
123
124 struct pcpu_dstats {
125 u64 tx_pkts;
126 u64 tx_bytes;
127 u64 tx_drps;
128 u64 rx_pkts;
129 u64 rx_bytes;
130 u64 rx_drps;
131 struct u64_stats_sync syncp;
132 };
133
vrf_rx_stats(struct net_device * dev,int len)134 static void vrf_rx_stats(struct net_device *dev, int len)
135 {
136 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
137
138 u64_stats_update_begin(&dstats->syncp);
139 dstats->rx_pkts++;
140 dstats->rx_bytes += len;
141 u64_stats_update_end(&dstats->syncp);
142 }
143
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)144 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
145 {
146 vrf_dev->stats.tx_errors++;
147 kfree_skb(skb);
148 }
149
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)150 static void vrf_get_stats64(struct net_device *dev,
151 struct rtnl_link_stats64 *stats)
152 {
153 int i;
154
155 for_each_possible_cpu(i) {
156 const struct pcpu_dstats *dstats;
157 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
158 unsigned int start;
159
160 dstats = per_cpu_ptr(dev->dstats, i);
161 do {
162 start = u64_stats_fetch_begin_irq(&dstats->syncp);
163 tbytes = dstats->tx_bytes;
164 tpkts = dstats->tx_pkts;
165 tdrops = dstats->tx_drps;
166 rbytes = dstats->rx_bytes;
167 rpkts = dstats->rx_pkts;
168 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
169 stats->tx_bytes += tbytes;
170 stats->tx_packets += tpkts;
171 stats->tx_dropped += tdrops;
172 stats->rx_bytes += rbytes;
173 stats->rx_packets += rpkts;
174 }
175 }
176
netns_vrf_map(struct net * net)177 static struct vrf_map *netns_vrf_map(struct net *net)
178 {
179 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
180
181 return &nn_vrf->vmap;
182 }
183
netns_vrf_map_by_dev(struct net_device * dev)184 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
185 {
186 return netns_vrf_map(dev_net(dev));
187 }
188
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)189 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
190 {
191 struct list_head *me_head = &me->vrf_list;
192 struct net_vrf *vrf;
193
194 if (list_empty(me_head))
195 return -ENODEV;
196
197 vrf = list_first_entry(me_head, struct net_vrf, me_list);
198
199 return vrf->ifindex;
200 }
201
vrf_map_elem_alloc(gfp_t flags)202 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
203 {
204 struct vrf_map_elem *me;
205
206 me = kmalloc(sizeof(*me), flags);
207 if (!me)
208 return NULL;
209
210 return me;
211 }
212
vrf_map_elem_free(struct vrf_map_elem * me)213 static void vrf_map_elem_free(struct vrf_map_elem *me)
214 {
215 kfree(me);
216 }
217
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)218 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
219 int ifindex, int users)
220 {
221 me->table_id = table_id;
222 me->ifindex = ifindex;
223 me->users = users;
224 INIT_LIST_HEAD(&me->vrf_list);
225 }
226
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)227 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
228 u32 table_id)
229 {
230 struct vrf_map_elem *me;
231 u32 key;
232
233 key = jhash_1word(table_id, HASH_INITVAL);
234 hash_for_each_possible(vmap->ht, me, hnode, key) {
235 if (me->table_id == table_id)
236 return me;
237 }
238
239 return NULL;
240 }
241
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)242 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
243 {
244 u32 table_id = me->table_id;
245 u32 key;
246
247 key = jhash_1word(table_id, HASH_INITVAL);
248 hash_add(vmap->ht, &me->hnode, key);
249 }
250
vrf_map_del_elem(struct vrf_map_elem * me)251 static void vrf_map_del_elem(struct vrf_map_elem *me)
252 {
253 hash_del(&me->hnode);
254 }
255
vrf_map_lock(struct vrf_map * vmap)256 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
257 {
258 spin_lock(&vmap->vmap_lock);
259 }
260
vrf_map_unlock(struct vrf_map * vmap)261 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
262 {
263 spin_unlock(&vmap->vmap_lock);
264 }
265
266 /* called with rtnl lock held */
267 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)268 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
269 {
270 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
271 struct net_vrf *vrf = netdev_priv(dev);
272 struct vrf_map_elem *new_me, *me;
273 u32 table_id = vrf->tb_id;
274 bool free_new_me = false;
275 int users;
276 int res;
277
278 /* we pre-allocate elements used in the spin-locked section (so that we
279 * keep the spinlock as short as possible).
280 */
281 new_me = vrf_map_elem_alloc(GFP_KERNEL);
282 if (!new_me)
283 return -ENOMEM;
284
285 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
286
287 vrf_map_lock(vmap);
288
289 me = vrf_map_lookup_elem(vmap, table_id);
290 if (!me) {
291 me = new_me;
292 vrf_map_add_elem(vmap, me);
293 goto link_vrf;
294 }
295
296 /* we already have an entry in the vrf_map, so it means there is (at
297 * least) a vrf registered on the specific table.
298 */
299 free_new_me = true;
300 if (vmap->strict_mode) {
301 /* vrfs cannot share the same table */
302 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
303 res = -EBUSY;
304 goto unlock;
305 }
306
307 link_vrf:
308 users = ++me->users;
309 if (users == 2)
310 ++vmap->shared_tables;
311
312 list_add(&vrf->me_list, &me->vrf_list);
313
314 res = 0;
315
316 unlock:
317 vrf_map_unlock(vmap);
318
319 /* clean-up, if needed */
320 if (free_new_me)
321 vrf_map_elem_free(new_me);
322
323 return res;
324 }
325
326 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)327 static void vrf_map_unregister_dev(struct net_device *dev)
328 {
329 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
330 struct net_vrf *vrf = netdev_priv(dev);
331 u32 table_id = vrf->tb_id;
332 struct vrf_map_elem *me;
333 int users;
334
335 vrf_map_lock(vmap);
336
337 me = vrf_map_lookup_elem(vmap, table_id);
338 if (!me)
339 goto unlock;
340
341 list_del(&vrf->me_list);
342
343 users = --me->users;
344 if (users == 1) {
345 --vmap->shared_tables;
346 } else if (users == 0) {
347 vrf_map_del_elem(me);
348
349 /* no one will refer to this element anymore */
350 vrf_map_elem_free(me);
351 }
352
353 unlock:
354 vrf_map_unlock(vmap);
355 }
356
357 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)358 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
359 {
360 struct vrf_map *vmap = netns_vrf_map(net);
361 struct vrf_map_elem *me;
362 int ifindex;
363
364 vrf_map_lock(vmap);
365
366 if (!vmap->strict_mode) {
367 ifindex = -EPERM;
368 goto unlock;
369 }
370
371 me = vrf_map_lookup_elem(vmap, table_id);
372 if (!me) {
373 ifindex = -ENODEV;
374 goto unlock;
375 }
376
377 ifindex = vrf_map_elem_get_vrf_ifindex(me);
378
379 unlock:
380 vrf_map_unlock(vmap);
381
382 return ifindex;
383 }
384
385 /* by default VRF devices do not have a qdisc and are expected
386 * to be created with only a single queue.
387 */
qdisc_tx_is_default(const struct net_device * dev)388 static bool qdisc_tx_is_default(const struct net_device *dev)
389 {
390 struct netdev_queue *txq;
391 struct Qdisc *qdisc;
392
393 if (dev->num_tx_queues > 1)
394 return false;
395
396 txq = netdev_get_tx_queue(dev, 0);
397 qdisc = rcu_access_pointer(txq->qdisc);
398
399 return !qdisc->enqueue;
400 }
401
402 /* Local traffic destined to local address. Reinsert the packet to rx
403 * path, similar to loopback handling.
404 */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)405 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
406 struct dst_entry *dst)
407 {
408 int len = skb->len;
409
410 skb_orphan(skb);
411
412 skb_dst_set(skb, dst);
413
414 /* set pkt_type to avoid skb hitting packet taps twice -
415 * once on Tx and again in Rx processing
416 */
417 skb->pkt_type = PACKET_LOOPBACK;
418
419 skb->protocol = eth_type_trans(skb, dev);
420
421 if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
422 vrf_rx_stats(dev, len);
423 else
424 this_cpu_inc(dev->dstats->rx_drps);
425
426 return NETDEV_TX_OK;
427 }
428
vrf_nf_set_untracked(struct sk_buff * skb)429 static void vrf_nf_set_untracked(struct sk_buff *skb)
430 {
431 if (skb_get_nfct(skb) == 0)
432 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
433 }
434
vrf_nf_reset_ct(struct sk_buff * skb)435 static void vrf_nf_reset_ct(struct sk_buff *skb)
436 {
437 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
438 nf_reset_ct(skb);
439 }
440
441 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)442 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
443 struct sk_buff *skb)
444 {
445 int err;
446
447 vrf_nf_reset_ct(skb);
448
449 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
450 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
451
452 if (likely(err == 1))
453 err = dst_output(net, sk, skb);
454
455 return err;
456 }
457
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)458 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
459 struct net_device *dev)
460 {
461 const struct ipv6hdr *iph;
462 struct net *net = dev_net(skb->dev);
463 struct flowi6 fl6;
464 int ret = NET_XMIT_DROP;
465 struct dst_entry *dst;
466 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
467
468 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
469 goto err;
470
471 iph = ipv6_hdr(skb);
472
473 memset(&fl6, 0, sizeof(fl6));
474 /* needed to match OIF rule */
475 fl6.flowi6_l3mdev = dev->ifindex;
476 fl6.flowi6_iif = LOOPBACK_IFINDEX;
477 fl6.daddr = iph->daddr;
478 fl6.saddr = iph->saddr;
479 fl6.flowlabel = ip6_flowinfo(iph);
480 fl6.flowi6_mark = skb->mark;
481 fl6.flowi6_proto = iph->nexthdr;
482
483 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
484 if (IS_ERR(dst) || dst == dst_null)
485 goto err;
486
487 skb_dst_drop(skb);
488
489 /* if dst.dev is the VRF device again this is locally originated traffic
490 * destined to a local address. Short circuit to Rx path.
491 */
492 if (dst->dev == dev)
493 return vrf_local_xmit(skb, dev, dst);
494
495 skb_dst_set(skb, dst);
496
497 /* strip the ethernet header added for pass through VRF device */
498 __skb_pull(skb, skb_network_offset(skb));
499
500 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
501 ret = vrf_ip6_local_out(net, skb->sk, skb);
502 if (unlikely(net_xmit_eval(ret)))
503 dev->stats.tx_errors++;
504 else
505 ret = NET_XMIT_SUCCESS;
506
507 return ret;
508 err:
509 vrf_tx_error(dev, skb);
510 return NET_XMIT_DROP;
511 }
512 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)513 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
514 struct net_device *dev)
515 {
516 vrf_tx_error(dev, skb);
517 return NET_XMIT_DROP;
518 }
519 #endif
520
521 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)522 static int vrf_ip_local_out(struct net *net, struct sock *sk,
523 struct sk_buff *skb)
524 {
525 int err;
526
527 vrf_nf_reset_ct(skb);
528
529 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
530 skb, NULL, skb_dst(skb)->dev, dst_output);
531 if (likely(err == 1))
532 err = dst_output(net, sk, skb);
533
534 return err;
535 }
536
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)537 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
538 struct net_device *vrf_dev)
539 {
540 struct iphdr *ip4h;
541 int ret = NET_XMIT_DROP;
542 struct flowi4 fl4;
543 struct net *net = dev_net(vrf_dev);
544 struct rtable *rt;
545
546 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
547 goto err;
548
549 ip4h = ip_hdr(skb);
550
551 memset(&fl4, 0, sizeof(fl4));
552 /* needed to match OIF rule */
553 fl4.flowi4_l3mdev = vrf_dev->ifindex;
554 fl4.flowi4_iif = LOOPBACK_IFINDEX;
555 fl4.flowi4_tos = RT_TOS(ip4h->tos);
556 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
557 fl4.flowi4_proto = ip4h->protocol;
558 fl4.daddr = ip4h->daddr;
559 fl4.saddr = ip4h->saddr;
560
561 rt = ip_route_output_flow(net, &fl4, NULL);
562 if (IS_ERR(rt))
563 goto err;
564
565 skb_dst_drop(skb);
566
567 /* if dst.dev is the VRF device again this is locally originated traffic
568 * destined to a local address. Short circuit to Rx path.
569 */
570 if (rt->dst.dev == vrf_dev)
571 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
572
573 skb_dst_set(skb, &rt->dst);
574
575 /* strip the ethernet header added for pass through VRF device */
576 __skb_pull(skb, skb_network_offset(skb));
577
578 if (!ip4h->saddr) {
579 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
580 RT_SCOPE_LINK);
581 }
582
583 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
584 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
585 if (unlikely(net_xmit_eval(ret)))
586 vrf_dev->stats.tx_errors++;
587 else
588 ret = NET_XMIT_SUCCESS;
589
590 out:
591 return ret;
592 err:
593 vrf_tx_error(vrf_dev, skb);
594 goto out;
595 }
596
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)597 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
598 {
599 switch (skb->protocol) {
600 case htons(ETH_P_IP):
601 return vrf_process_v4_outbound(skb, dev);
602 case htons(ETH_P_IPV6):
603 return vrf_process_v6_outbound(skb, dev);
604 default:
605 vrf_tx_error(dev, skb);
606 return NET_XMIT_DROP;
607 }
608 }
609
vrf_xmit(struct sk_buff * skb,struct net_device * dev)610 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
611 {
612 int len = skb->len;
613 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
614
615 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
616 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
617
618 u64_stats_update_begin(&dstats->syncp);
619 dstats->tx_pkts++;
620 dstats->tx_bytes += len;
621 u64_stats_update_end(&dstats->syncp);
622 } else {
623 this_cpu_inc(dev->dstats->tx_drps);
624 }
625
626 return ret;
627 }
628
vrf_finish_direct(struct sk_buff * skb)629 static void vrf_finish_direct(struct sk_buff *skb)
630 {
631 struct net_device *vrf_dev = skb->dev;
632
633 if (!list_empty(&vrf_dev->ptype_all) &&
634 likely(skb_headroom(skb) >= ETH_HLEN)) {
635 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
636
637 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
638 eth_zero_addr(eth->h_dest);
639 eth->h_proto = skb->protocol;
640
641 rcu_read_lock_bh();
642 dev_queue_xmit_nit(skb, vrf_dev);
643 rcu_read_unlock_bh();
644
645 skb_pull(skb, ETH_HLEN);
646 }
647
648 vrf_nf_reset_ct(skb);
649 }
650
651 #if IS_ENABLED(CONFIG_IPV6)
652 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)653 static int vrf_finish_output6(struct net *net, struct sock *sk,
654 struct sk_buff *skb)
655 {
656 struct dst_entry *dst = skb_dst(skb);
657 struct net_device *dev = dst->dev;
658 const struct in6_addr *nexthop;
659 struct neighbour *neigh;
660 int ret;
661
662 vrf_nf_reset_ct(skb);
663
664 skb->protocol = htons(ETH_P_IPV6);
665 skb->dev = dev;
666
667 rcu_read_lock_bh();
668 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
669 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
670 if (unlikely(!neigh))
671 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
672 if (!IS_ERR(neigh)) {
673 sock_confirm_neigh(skb, neigh);
674 ret = neigh_output(neigh, skb, false);
675 rcu_read_unlock_bh();
676 return ret;
677 }
678 rcu_read_unlock_bh();
679
680 IP6_INC_STATS(dev_net(dst->dev),
681 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
682 kfree_skb(skb);
683 return -EINVAL;
684 }
685
686 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)687 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
688 {
689 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
690 net, sk, skb, NULL, skb_dst(skb)->dev,
691 vrf_finish_output6,
692 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
693 }
694
695 /* set dst on skb to send packet to us via dev_xmit path. Allows
696 * packet to go through device based features such as qdisc, netfilter
697 * hooks and packet sockets with skb->dev set to vrf device.
698 */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)699 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
700 struct sk_buff *skb)
701 {
702 struct net_vrf *vrf = netdev_priv(vrf_dev);
703 struct dst_entry *dst = NULL;
704 struct rt6_info *rt6;
705
706 rcu_read_lock();
707
708 rt6 = rcu_dereference(vrf->rt6);
709 if (likely(rt6)) {
710 dst = &rt6->dst;
711 dst_hold(dst);
712 }
713
714 rcu_read_unlock();
715
716 if (unlikely(!dst)) {
717 vrf_tx_error(vrf_dev, skb);
718 return NULL;
719 }
720
721 skb_dst_drop(skb);
722 skb_dst_set(skb, dst);
723
724 return skb;
725 }
726
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)727 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
728 struct sk_buff *skb)
729 {
730 vrf_finish_direct(skb);
731
732 return vrf_ip6_local_out(net, sk, skb);
733 }
734
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)735 static int vrf_output6_direct(struct net *net, struct sock *sk,
736 struct sk_buff *skb)
737 {
738 int err = 1;
739
740 skb->protocol = htons(ETH_P_IPV6);
741
742 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
743 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
744 NULL, skb->dev, vrf_output6_direct_finish);
745
746 if (likely(err == 1))
747 vrf_finish_direct(skb);
748
749 return err;
750 }
751
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)752 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
753 struct sk_buff *skb)
754 {
755 int err;
756
757 err = vrf_output6_direct(net, sk, skb);
758 if (likely(err == 1))
759 err = vrf_ip6_local_out(net, sk, skb);
760
761 return err;
762 }
763
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)764 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
765 struct sock *sk,
766 struct sk_buff *skb)
767 {
768 struct net *net = dev_net(vrf_dev);
769 int err;
770
771 skb->dev = vrf_dev;
772
773 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
774 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
775
776 if (likely(err == 1))
777 err = vrf_output6_direct(net, sk, skb);
778
779 if (likely(err == 1))
780 return skb;
781
782 return NULL;
783 }
784
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)785 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
786 struct sock *sk,
787 struct sk_buff *skb)
788 {
789 /* don't divert link scope packets */
790 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
791 return skb;
792
793 vrf_nf_set_untracked(skb);
794
795 if (qdisc_tx_is_default(vrf_dev) ||
796 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
797 return vrf_ip6_out_direct(vrf_dev, sk, skb);
798
799 return vrf_ip6_out_redirect(vrf_dev, skb);
800 }
801
802 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)803 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
804 {
805 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
806 struct net *net = dev_net(dev);
807 struct dst_entry *dst;
808
809 RCU_INIT_POINTER(vrf->rt6, NULL);
810 synchronize_rcu();
811
812 /* move dev in dst's to loopback so this VRF device can be deleted
813 * - based on dst_ifdown
814 */
815 if (rt6) {
816 dst = &rt6->dst;
817 netdev_ref_replace(dst->dev, net->loopback_dev,
818 &dst->dev_tracker, GFP_KERNEL);
819 dst->dev = net->loopback_dev;
820 dst_release(dst);
821 }
822 }
823
vrf_rt6_create(struct net_device * dev)824 static int vrf_rt6_create(struct net_device *dev)
825 {
826 int flags = DST_NOPOLICY | DST_NOXFRM;
827 struct net_vrf *vrf = netdev_priv(dev);
828 struct net *net = dev_net(dev);
829 struct rt6_info *rt6;
830 int rc = -ENOMEM;
831
832 /* IPv6 can be CONFIG enabled and then disabled runtime */
833 if (!ipv6_mod_enabled())
834 return 0;
835
836 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
837 if (!vrf->fib6_table)
838 goto out;
839
840 /* create a dst for routing packets out a VRF device */
841 rt6 = ip6_dst_alloc(net, dev, flags);
842 if (!rt6)
843 goto out;
844
845 rt6->dst.output = vrf_output6;
846
847 rcu_assign_pointer(vrf->rt6, rt6);
848
849 rc = 0;
850 out:
851 return rc;
852 }
853 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)854 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
855 struct sock *sk,
856 struct sk_buff *skb)
857 {
858 return skb;
859 }
860
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)861 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
862 {
863 }
864
vrf_rt6_create(struct net_device * dev)865 static int vrf_rt6_create(struct net_device *dev)
866 {
867 return 0;
868 }
869 #endif
870
871 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)872 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
873 {
874 struct dst_entry *dst = skb_dst(skb);
875 struct rtable *rt = (struct rtable *)dst;
876 struct net_device *dev = dst->dev;
877 unsigned int hh_len = LL_RESERVED_SPACE(dev);
878 struct neighbour *neigh;
879 bool is_v6gw = false;
880
881 vrf_nf_reset_ct(skb);
882
883 /* Be paranoid, rather than too clever. */
884 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
885 skb = skb_expand_head(skb, hh_len);
886 if (!skb) {
887 dev->stats.tx_errors++;
888 return -ENOMEM;
889 }
890 }
891
892 rcu_read_lock_bh();
893
894 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
895 if (!IS_ERR(neigh)) {
896 int ret;
897
898 sock_confirm_neigh(skb, neigh);
899 /* if crossing protocols, can not use the cached header */
900 ret = neigh_output(neigh, skb, is_v6gw);
901 rcu_read_unlock_bh();
902 return ret;
903 }
904
905 rcu_read_unlock_bh();
906 vrf_tx_error(skb->dev, skb);
907 return -EINVAL;
908 }
909
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)910 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
911 {
912 struct net_device *dev = skb_dst(skb)->dev;
913
914 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
915
916 skb->dev = dev;
917 skb->protocol = htons(ETH_P_IP);
918
919 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
920 net, sk, skb, NULL, dev,
921 vrf_finish_output,
922 !(IPCB(skb)->flags & IPSKB_REROUTED));
923 }
924
925 /* set dst on skb to send packet to us via dev_xmit path. Allows
926 * packet to go through device based features such as qdisc, netfilter
927 * hooks and packet sockets with skb->dev set to vrf device.
928 */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)929 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
930 struct sk_buff *skb)
931 {
932 struct net_vrf *vrf = netdev_priv(vrf_dev);
933 struct dst_entry *dst = NULL;
934 struct rtable *rth;
935
936 rcu_read_lock();
937
938 rth = rcu_dereference(vrf->rth);
939 if (likely(rth)) {
940 dst = &rth->dst;
941 dst_hold(dst);
942 }
943
944 rcu_read_unlock();
945
946 if (unlikely(!dst)) {
947 vrf_tx_error(vrf_dev, skb);
948 return NULL;
949 }
950
951 skb_dst_drop(skb);
952 skb_dst_set(skb, dst);
953
954 return skb;
955 }
956
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)957 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
958 struct sk_buff *skb)
959 {
960 vrf_finish_direct(skb);
961
962 return vrf_ip_local_out(net, sk, skb);
963 }
964
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)965 static int vrf_output_direct(struct net *net, struct sock *sk,
966 struct sk_buff *skb)
967 {
968 int err = 1;
969
970 skb->protocol = htons(ETH_P_IP);
971
972 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
973 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
974 NULL, skb->dev, vrf_output_direct_finish);
975
976 if (likely(err == 1))
977 vrf_finish_direct(skb);
978
979 return err;
980 }
981
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)982 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
983 struct sk_buff *skb)
984 {
985 int err;
986
987 err = vrf_output_direct(net, sk, skb);
988 if (likely(err == 1))
989 err = vrf_ip_local_out(net, sk, skb);
990
991 return err;
992 }
993
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)994 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
995 struct sock *sk,
996 struct sk_buff *skb)
997 {
998 struct net *net = dev_net(vrf_dev);
999 int err;
1000
1001 skb->dev = vrf_dev;
1002
1003 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1004 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1005
1006 if (likely(err == 1))
1007 err = vrf_output_direct(net, sk, skb);
1008
1009 if (likely(err == 1))
1010 return skb;
1011
1012 return NULL;
1013 }
1014
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)1015 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1016 struct sock *sk,
1017 struct sk_buff *skb)
1018 {
1019 /* don't divert multicast or local broadcast */
1020 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1021 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1022 return skb;
1023
1024 vrf_nf_set_untracked(skb);
1025
1026 if (qdisc_tx_is_default(vrf_dev) ||
1027 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1028 return vrf_ip_out_direct(vrf_dev, sk, skb);
1029
1030 return vrf_ip_out_redirect(vrf_dev, skb);
1031 }
1032
1033 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)1034 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1035 struct sock *sk,
1036 struct sk_buff *skb,
1037 u16 proto)
1038 {
1039 switch (proto) {
1040 case AF_INET:
1041 return vrf_ip_out(vrf_dev, sk, skb);
1042 case AF_INET6:
1043 return vrf_ip6_out(vrf_dev, sk, skb);
1044 }
1045
1046 return skb;
1047 }
1048
1049 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)1050 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1051 {
1052 struct rtable *rth = rtnl_dereference(vrf->rth);
1053 struct net *net = dev_net(dev);
1054 struct dst_entry *dst;
1055
1056 RCU_INIT_POINTER(vrf->rth, NULL);
1057 synchronize_rcu();
1058
1059 /* move dev in dst's to loopback so this VRF device can be deleted
1060 * - based on dst_ifdown
1061 */
1062 if (rth) {
1063 dst = &rth->dst;
1064 netdev_ref_replace(dst->dev, net->loopback_dev,
1065 &dst->dev_tracker, GFP_KERNEL);
1066 dst->dev = net->loopback_dev;
1067 dst_release(dst);
1068 }
1069 }
1070
vrf_rtable_create(struct net_device * dev)1071 static int vrf_rtable_create(struct net_device *dev)
1072 {
1073 struct net_vrf *vrf = netdev_priv(dev);
1074 struct rtable *rth;
1075
1076 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1077 return -ENOMEM;
1078
1079 /* create a dst for routing packets out through a VRF device */
1080 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1081 if (!rth)
1082 return -ENOMEM;
1083
1084 rth->dst.output = vrf_output;
1085
1086 rcu_assign_pointer(vrf->rth, rth);
1087
1088 return 0;
1089 }
1090
1091 /**************************** device handling ********************/
1092
1093 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1094 static void cycle_netdev(struct net_device *dev,
1095 struct netlink_ext_ack *extack)
1096 {
1097 unsigned int flags = dev->flags;
1098 int ret;
1099
1100 if (!netif_running(dev))
1101 return;
1102
1103 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1104 if (ret >= 0)
1105 ret = dev_change_flags(dev, flags, extack);
1106
1107 if (ret < 0) {
1108 netdev_err(dev,
1109 "Failed to cycle device %s; route tables might be wrong!\n",
1110 dev->name);
1111 }
1112 }
1113
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1114 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1115 struct netlink_ext_ack *extack)
1116 {
1117 int ret;
1118
1119 /* do not allow loopback device to be enslaved to a VRF.
1120 * The vrf device acts as the loopback for the vrf.
1121 */
1122 if (port_dev == dev_net(dev)->loopback_dev) {
1123 NL_SET_ERR_MSG(extack,
1124 "Can not enslave loopback device to a VRF");
1125 return -EOPNOTSUPP;
1126 }
1127
1128 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1129 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1130 if (ret < 0)
1131 goto err;
1132
1133 cycle_netdev(port_dev, extack);
1134
1135 return 0;
1136
1137 err:
1138 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1139 return ret;
1140 }
1141
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1142 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1143 struct netlink_ext_ack *extack)
1144 {
1145 if (netif_is_l3_master(port_dev)) {
1146 NL_SET_ERR_MSG(extack,
1147 "Can not enslave an L3 master device to a VRF");
1148 return -EINVAL;
1149 }
1150
1151 if (netif_is_l3_slave(port_dev))
1152 return -EINVAL;
1153
1154 return do_vrf_add_slave(dev, port_dev, extack);
1155 }
1156
1157 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1158 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1159 {
1160 netdev_upper_dev_unlink(port_dev, dev);
1161 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1162
1163 cycle_netdev(port_dev, NULL);
1164
1165 return 0;
1166 }
1167
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1168 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1169 {
1170 return do_vrf_del_slave(dev, port_dev);
1171 }
1172
vrf_dev_uninit(struct net_device * dev)1173 static void vrf_dev_uninit(struct net_device *dev)
1174 {
1175 struct net_vrf *vrf = netdev_priv(dev);
1176
1177 vrf_rtable_release(dev, vrf);
1178 vrf_rt6_release(dev, vrf);
1179
1180 free_percpu(dev->dstats);
1181 dev->dstats = NULL;
1182 }
1183
vrf_dev_init(struct net_device * dev)1184 static int vrf_dev_init(struct net_device *dev)
1185 {
1186 struct net_vrf *vrf = netdev_priv(dev);
1187
1188 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1189 if (!dev->dstats)
1190 goto out_nomem;
1191
1192 /* create the default dst which points back to us */
1193 if (vrf_rtable_create(dev) != 0)
1194 goto out_stats;
1195
1196 if (vrf_rt6_create(dev) != 0)
1197 goto out_rth;
1198
1199 dev->flags = IFF_MASTER | IFF_NOARP;
1200
1201 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1202 dev->operstate = IF_OPER_UP;
1203 netdev_lockdep_set_classes(dev);
1204 return 0;
1205
1206 out_rth:
1207 vrf_rtable_release(dev, vrf);
1208 out_stats:
1209 free_percpu(dev->dstats);
1210 dev->dstats = NULL;
1211 out_nomem:
1212 return -ENOMEM;
1213 }
1214
1215 static const struct net_device_ops vrf_netdev_ops = {
1216 .ndo_init = vrf_dev_init,
1217 .ndo_uninit = vrf_dev_uninit,
1218 .ndo_start_xmit = vrf_xmit,
1219 .ndo_set_mac_address = eth_mac_addr,
1220 .ndo_get_stats64 = vrf_get_stats64,
1221 .ndo_add_slave = vrf_add_slave,
1222 .ndo_del_slave = vrf_del_slave,
1223 };
1224
vrf_fib_table(const struct net_device * dev)1225 static u32 vrf_fib_table(const struct net_device *dev)
1226 {
1227 struct net_vrf *vrf = netdev_priv(dev);
1228
1229 return vrf->tb_id;
1230 }
1231
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1232 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1233 {
1234 kfree_skb(skb);
1235 return 0;
1236 }
1237
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1238 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1239 struct sk_buff *skb,
1240 struct net_device *dev)
1241 {
1242 struct net *net = dev_net(dev);
1243
1244 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1245 skb = NULL; /* kfree_skb(skb) handled by nf code */
1246
1247 return skb;
1248 }
1249
vrf_prepare_mac_header(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto)1250 static int vrf_prepare_mac_header(struct sk_buff *skb,
1251 struct net_device *vrf_dev, u16 proto)
1252 {
1253 struct ethhdr *eth;
1254 int err;
1255
1256 /* in general, we do not know if there is enough space in the head of
1257 * the packet for hosting the mac header.
1258 */
1259 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1260 if (unlikely(err))
1261 /* no space in the skb head */
1262 return -ENOBUFS;
1263
1264 __skb_push(skb, ETH_HLEN);
1265 eth = (struct ethhdr *)skb->data;
1266
1267 skb_reset_mac_header(skb);
1268 skb_reset_mac_len(skb);
1269
1270 /* we set the ethernet destination and the source addresses to the
1271 * address of the VRF device.
1272 */
1273 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1274 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1275 eth->h_proto = htons(proto);
1276
1277 /* the destination address of the Ethernet frame corresponds to the
1278 * address set on the VRF interface; therefore, the packet is intended
1279 * to be processed locally.
1280 */
1281 skb->protocol = eth->h_proto;
1282 skb->pkt_type = PACKET_HOST;
1283
1284 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1285
1286 skb_pull_inline(skb, ETH_HLEN);
1287
1288 return 0;
1289 }
1290
1291 /* prepare and add the mac header to the packet if it was not set previously.
1292 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1293 * If the mac header was already set, the original mac header is left
1294 * untouched and the function returns immediately.
1295 */
vrf_add_mac_header_if_unset(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto,struct net_device * orig_dev)1296 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1297 struct net_device *vrf_dev,
1298 u16 proto, struct net_device *orig_dev)
1299 {
1300 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1301 return 0;
1302
1303 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1304 }
1305
1306 #if IS_ENABLED(CONFIG_IPV6)
1307 /* neighbor handling is done with actual device; do not want
1308 * to flip skb->dev for those ndisc packets. This really fails
1309 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1310 * a start.
1311 */
ipv6_ndisc_frame(const struct sk_buff * skb)1312 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1313 {
1314 const struct ipv6hdr *iph = ipv6_hdr(skb);
1315 bool rc = false;
1316
1317 if (iph->nexthdr == NEXTHDR_ICMP) {
1318 const struct icmp6hdr *icmph;
1319 struct icmp6hdr _icmph;
1320
1321 icmph = skb_header_pointer(skb, sizeof(*iph),
1322 sizeof(_icmph), &_icmph);
1323 if (!icmph)
1324 goto out;
1325
1326 switch (icmph->icmp6_type) {
1327 case NDISC_ROUTER_SOLICITATION:
1328 case NDISC_ROUTER_ADVERTISEMENT:
1329 case NDISC_NEIGHBOUR_SOLICITATION:
1330 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1331 case NDISC_REDIRECT:
1332 rc = true;
1333 break;
1334 }
1335 }
1336
1337 out:
1338 return rc;
1339 }
1340
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1341 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1342 const struct net_device *dev,
1343 struct flowi6 *fl6,
1344 int ifindex,
1345 const struct sk_buff *skb,
1346 int flags)
1347 {
1348 struct net_vrf *vrf = netdev_priv(dev);
1349
1350 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1351 }
1352
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1353 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1354 int ifindex)
1355 {
1356 const struct ipv6hdr *iph = ipv6_hdr(skb);
1357 struct flowi6 fl6 = {
1358 .flowi6_iif = ifindex,
1359 .flowi6_mark = skb->mark,
1360 .flowi6_proto = iph->nexthdr,
1361 .daddr = iph->daddr,
1362 .saddr = iph->saddr,
1363 .flowlabel = ip6_flowinfo(iph),
1364 };
1365 struct net *net = dev_net(vrf_dev);
1366 struct rt6_info *rt6;
1367
1368 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1369 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1370 if (unlikely(!rt6))
1371 return;
1372
1373 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1374 return;
1375
1376 skb_dst_set(skb, &rt6->dst);
1377 }
1378
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1379 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1380 struct sk_buff *skb)
1381 {
1382 int orig_iif = skb->skb_iif;
1383 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1384 bool is_ndisc = ipv6_ndisc_frame(skb);
1385
1386 /* loopback, multicast & non-ND link-local traffic; do not push through
1387 * packet taps again. Reset pkt_type for upper layers to process skb.
1388 * For non-loopback strict packets, determine the dst using the original
1389 * ifindex.
1390 */
1391 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1392 skb->dev = vrf_dev;
1393 skb->skb_iif = vrf_dev->ifindex;
1394 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1395
1396 if (skb->pkt_type == PACKET_LOOPBACK)
1397 skb->pkt_type = PACKET_HOST;
1398 else
1399 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1400
1401 goto out;
1402 }
1403
1404 /* if packet is NDISC then keep the ingress interface */
1405 if (!is_ndisc) {
1406 struct net_device *orig_dev = skb->dev;
1407
1408 vrf_rx_stats(vrf_dev, skb->len);
1409 skb->dev = vrf_dev;
1410 skb->skb_iif = vrf_dev->ifindex;
1411
1412 if (!list_empty(&vrf_dev->ptype_all)) {
1413 int err;
1414
1415 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1416 ETH_P_IPV6,
1417 orig_dev);
1418 if (likely(!err)) {
1419 skb_push(skb, skb->mac_len);
1420 dev_queue_xmit_nit(skb, vrf_dev);
1421 skb_pull(skb, skb->mac_len);
1422 }
1423 }
1424
1425 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1426 }
1427
1428 if (need_strict)
1429 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1430
1431 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1432 out:
1433 return skb;
1434 }
1435
1436 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1437 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1438 struct sk_buff *skb)
1439 {
1440 return skb;
1441 }
1442 #endif
1443
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1444 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1445 struct sk_buff *skb)
1446 {
1447 struct net_device *orig_dev = skb->dev;
1448
1449 skb->dev = vrf_dev;
1450 skb->skb_iif = vrf_dev->ifindex;
1451 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1452
1453 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1454 goto out;
1455
1456 /* loopback traffic; do not push through packet taps again.
1457 * Reset pkt_type for upper layers to process skb
1458 */
1459 if (skb->pkt_type == PACKET_LOOPBACK) {
1460 skb->pkt_type = PACKET_HOST;
1461 goto out;
1462 }
1463
1464 vrf_rx_stats(vrf_dev, skb->len);
1465
1466 if (!list_empty(&vrf_dev->ptype_all)) {
1467 int err;
1468
1469 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1470 orig_dev);
1471 if (likely(!err)) {
1472 skb_push(skb, skb->mac_len);
1473 dev_queue_xmit_nit(skb, vrf_dev);
1474 skb_pull(skb, skb->mac_len);
1475 }
1476 }
1477
1478 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1479 out:
1480 return skb;
1481 }
1482
1483 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1484 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1485 struct sk_buff *skb,
1486 u16 proto)
1487 {
1488 switch (proto) {
1489 case AF_INET:
1490 return vrf_ip_rcv(vrf_dev, skb);
1491 case AF_INET6:
1492 return vrf_ip6_rcv(vrf_dev, skb);
1493 }
1494
1495 return skb;
1496 }
1497
1498 #if IS_ENABLED(CONFIG_IPV6)
1499 /* send to link-local or multicast address via interface enslaved to
1500 * VRF device. Force lookup to VRF table without changing flow struct
1501 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1502 * is taken on the dst by this function.
1503 */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1504 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1505 struct flowi6 *fl6)
1506 {
1507 struct net *net = dev_net(dev);
1508 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1509 struct dst_entry *dst = NULL;
1510 struct rt6_info *rt;
1511
1512 /* VRF device does not have a link-local address and
1513 * sending packets to link-local or mcast addresses over
1514 * a VRF device does not make sense
1515 */
1516 if (fl6->flowi6_oif == dev->ifindex) {
1517 dst = &net->ipv6.ip6_null_entry->dst;
1518 return dst;
1519 }
1520
1521 if (!ipv6_addr_any(&fl6->saddr))
1522 flags |= RT6_LOOKUP_F_HAS_SADDR;
1523
1524 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1525 if (rt)
1526 dst = &rt->dst;
1527
1528 return dst;
1529 }
1530 #endif
1531
1532 static const struct l3mdev_ops vrf_l3mdev_ops = {
1533 .l3mdev_fib_table = vrf_fib_table,
1534 .l3mdev_l3_rcv = vrf_l3_rcv,
1535 .l3mdev_l3_out = vrf_l3_out,
1536 #if IS_ENABLED(CONFIG_IPV6)
1537 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1538 #endif
1539 };
1540
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1541 static void vrf_get_drvinfo(struct net_device *dev,
1542 struct ethtool_drvinfo *info)
1543 {
1544 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1545 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1546 }
1547
1548 static const struct ethtool_ops vrf_ethtool_ops = {
1549 .get_drvinfo = vrf_get_drvinfo,
1550 };
1551
vrf_fib_rule_nl_size(void)1552 static inline size_t vrf_fib_rule_nl_size(void)
1553 {
1554 size_t sz;
1555
1556 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1557 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1558 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1559 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1560
1561 return sz;
1562 }
1563
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1564 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1565 {
1566 struct fib_rule_hdr *frh;
1567 struct nlmsghdr *nlh;
1568 struct sk_buff *skb;
1569 int err;
1570
1571 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1572 !ipv6_mod_enabled())
1573 return 0;
1574
1575 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1576 if (!skb)
1577 return -ENOMEM;
1578
1579 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1580 if (!nlh)
1581 goto nla_put_failure;
1582
1583 /* rule only needs to appear once */
1584 nlh->nlmsg_flags |= NLM_F_EXCL;
1585
1586 frh = nlmsg_data(nlh);
1587 memset(frh, 0, sizeof(*frh));
1588 frh->family = family;
1589 frh->action = FR_ACT_TO_TBL;
1590
1591 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1592 goto nla_put_failure;
1593
1594 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1595 goto nla_put_failure;
1596
1597 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1598 goto nla_put_failure;
1599
1600 nlmsg_end(skb, nlh);
1601
1602 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1603 skb->sk = dev_net(dev)->rtnl;
1604 if (add_it) {
1605 err = fib_nl_newrule(skb, nlh, NULL);
1606 if (err == -EEXIST)
1607 err = 0;
1608 } else {
1609 err = fib_nl_delrule(skb, nlh, NULL);
1610 if (err == -ENOENT)
1611 err = 0;
1612 }
1613 nlmsg_free(skb);
1614
1615 return err;
1616
1617 nla_put_failure:
1618 nlmsg_free(skb);
1619
1620 return -EMSGSIZE;
1621 }
1622
vrf_add_fib_rules(const struct net_device * dev)1623 static int vrf_add_fib_rules(const struct net_device *dev)
1624 {
1625 int err;
1626
1627 err = vrf_fib_rule(dev, AF_INET, true);
1628 if (err < 0)
1629 goto out_err;
1630
1631 err = vrf_fib_rule(dev, AF_INET6, true);
1632 if (err < 0)
1633 goto ipv6_err;
1634
1635 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1636 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1637 if (err < 0)
1638 goto ipmr_err;
1639 #endif
1640
1641 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1642 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1643 if (err < 0)
1644 goto ip6mr_err;
1645 #endif
1646
1647 return 0;
1648
1649 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1650 ip6mr_err:
1651 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1652 #endif
1653
1654 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1655 ipmr_err:
1656 vrf_fib_rule(dev, AF_INET6, false);
1657 #endif
1658
1659 ipv6_err:
1660 vrf_fib_rule(dev, AF_INET, false);
1661
1662 out_err:
1663 netdev_err(dev, "Failed to add FIB rules.\n");
1664 return err;
1665 }
1666
vrf_setup(struct net_device * dev)1667 static void vrf_setup(struct net_device *dev)
1668 {
1669 ether_setup(dev);
1670
1671 /* Initialize the device structure. */
1672 dev->netdev_ops = &vrf_netdev_ops;
1673 dev->l3mdev_ops = &vrf_l3mdev_ops;
1674 dev->ethtool_ops = &vrf_ethtool_ops;
1675 dev->needs_free_netdev = true;
1676
1677 /* Fill in device structure with ethernet-generic values. */
1678 eth_hw_addr_random(dev);
1679
1680 /* don't acquire vrf device's netif_tx_lock when transmitting */
1681 dev->features |= NETIF_F_LLTX;
1682
1683 /* don't allow vrf devices to change network namespaces. */
1684 dev->features |= NETIF_F_NETNS_LOCAL;
1685
1686 /* does not make sense for a VLAN to be added to a vrf device */
1687 dev->features |= NETIF_F_VLAN_CHALLENGED;
1688
1689 /* enable offload features */
1690 dev->features |= NETIF_F_GSO_SOFTWARE;
1691 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1692 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1693
1694 dev->hw_features = dev->features;
1695 dev->hw_enc_features = dev->features;
1696
1697 /* default to no qdisc; user can add if desired */
1698 dev->priv_flags |= IFF_NO_QUEUE;
1699 dev->priv_flags |= IFF_NO_RX_HANDLER;
1700 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1701
1702 /* VRF devices do not care about MTU, but if the MTU is set
1703 * too low then the ipv4 and ipv6 protocols are disabled
1704 * which breaks networking.
1705 */
1706 dev->min_mtu = IPV6_MIN_MTU;
1707 dev->max_mtu = IP6_MAX_MTU;
1708 dev->mtu = dev->max_mtu;
1709 }
1710
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1711 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1712 struct netlink_ext_ack *extack)
1713 {
1714 if (tb[IFLA_ADDRESS]) {
1715 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1716 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1717 return -EINVAL;
1718 }
1719 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1720 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1721 return -EADDRNOTAVAIL;
1722 }
1723 }
1724 return 0;
1725 }
1726
vrf_dellink(struct net_device * dev,struct list_head * head)1727 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1728 {
1729 struct net_device *port_dev;
1730 struct list_head *iter;
1731
1732 netdev_for_each_lower_dev(dev, port_dev, iter)
1733 vrf_del_slave(dev, port_dev);
1734
1735 vrf_map_unregister_dev(dev);
1736
1737 unregister_netdevice_queue(dev, head);
1738 }
1739
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1740 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1741 struct nlattr *tb[], struct nlattr *data[],
1742 struct netlink_ext_ack *extack)
1743 {
1744 struct net_vrf *vrf = netdev_priv(dev);
1745 struct netns_vrf *nn_vrf;
1746 bool *add_fib_rules;
1747 struct net *net;
1748 int err;
1749
1750 if (!data || !data[IFLA_VRF_TABLE]) {
1751 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1752 return -EINVAL;
1753 }
1754
1755 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1756 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1757 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1758 "Invalid VRF table id");
1759 return -EINVAL;
1760 }
1761
1762 dev->priv_flags |= IFF_L3MDEV_MASTER;
1763
1764 err = register_netdevice(dev);
1765 if (err)
1766 goto out;
1767
1768 /* mapping between table_id and vrf;
1769 * note: such binding could not be done in the dev init function
1770 * because dev->ifindex id is not available yet.
1771 */
1772 vrf->ifindex = dev->ifindex;
1773
1774 err = vrf_map_register_dev(dev, extack);
1775 if (err) {
1776 unregister_netdevice(dev);
1777 goto out;
1778 }
1779
1780 net = dev_net(dev);
1781 nn_vrf = net_generic(net, vrf_net_id);
1782
1783 add_fib_rules = &nn_vrf->add_fib_rules;
1784 if (*add_fib_rules) {
1785 err = vrf_add_fib_rules(dev);
1786 if (err) {
1787 vrf_map_unregister_dev(dev);
1788 unregister_netdevice(dev);
1789 goto out;
1790 }
1791 *add_fib_rules = false;
1792 }
1793
1794 out:
1795 return err;
1796 }
1797
vrf_nl_getsize(const struct net_device * dev)1798 static size_t vrf_nl_getsize(const struct net_device *dev)
1799 {
1800 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1801 }
1802
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1803 static int vrf_fillinfo(struct sk_buff *skb,
1804 const struct net_device *dev)
1805 {
1806 struct net_vrf *vrf = netdev_priv(dev);
1807
1808 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1809 }
1810
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1811 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1812 const struct net_device *slave_dev)
1813 {
1814 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1815 }
1816
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1817 static int vrf_fill_slave_info(struct sk_buff *skb,
1818 const struct net_device *vrf_dev,
1819 const struct net_device *slave_dev)
1820 {
1821 struct net_vrf *vrf = netdev_priv(vrf_dev);
1822
1823 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1824 return -EMSGSIZE;
1825
1826 return 0;
1827 }
1828
1829 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1830 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1831 };
1832
1833 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1834 .kind = DRV_NAME,
1835 .priv_size = sizeof(struct net_vrf),
1836
1837 .get_size = vrf_nl_getsize,
1838 .policy = vrf_nl_policy,
1839 .validate = vrf_validate,
1840 .fill_info = vrf_fillinfo,
1841
1842 .get_slave_size = vrf_get_slave_size,
1843 .fill_slave_info = vrf_fill_slave_info,
1844
1845 .newlink = vrf_newlink,
1846 .dellink = vrf_dellink,
1847 .setup = vrf_setup,
1848 .maxtype = IFLA_VRF_MAX,
1849 };
1850
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1851 static int vrf_device_event(struct notifier_block *unused,
1852 unsigned long event, void *ptr)
1853 {
1854 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1855
1856 /* only care about unregister events to drop slave references */
1857 if (event == NETDEV_UNREGISTER) {
1858 struct net_device *vrf_dev;
1859
1860 if (!netif_is_l3_slave(dev))
1861 goto out;
1862
1863 vrf_dev = netdev_master_upper_dev_get(dev);
1864 vrf_del_slave(vrf_dev, dev);
1865 }
1866 out:
1867 return NOTIFY_DONE;
1868 }
1869
1870 static struct notifier_block vrf_notifier_block __read_mostly = {
1871 .notifier_call = vrf_device_event,
1872 };
1873
vrf_map_init(struct vrf_map * vmap)1874 static int vrf_map_init(struct vrf_map *vmap)
1875 {
1876 spin_lock_init(&vmap->vmap_lock);
1877 hash_init(vmap->ht);
1878
1879 vmap->strict_mode = false;
1880
1881 return 0;
1882 }
1883
1884 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1885 static bool vrf_strict_mode(struct vrf_map *vmap)
1886 {
1887 bool strict_mode;
1888
1889 vrf_map_lock(vmap);
1890 strict_mode = vmap->strict_mode;
1891 vrf_map_unlock(vmap);
1892
1893 return strict_mode;
1894 }
1895
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1896 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1897 {
1898 bool *cur_mode;
1899 int res = 0;
1900
1901 vrf_map_lock(vmap);
1902
1903 cur_mode = &vmap->strict_mode;
1904 if (*cur_mode == new_mode)
1905 goto unlock;
1906
1907 if (*cur_mode) {
1908 /* disable strict mode */
1909 *cur_mode = false;
1910 } else {
1911 if (vmap->shared_tables) {
1912 /* we cannot allow strict_mode because there are some
1913 * vrfs that share one or more tables.
1914 */
1915 res = -EBUSY;
1916 goto unlock;
1917 }
1918
1919 /* no tables are shared among vrfs, so we can go back
1920 * to 1:1 association between a vrf with its table.
1921 */
1922 *cur_mode = true;
1923 }
1924
1925 unlock:
1926 vrf_map_unlock(vmap);
1927
1928 return res;
1929 }
1930
vrf_shared_table_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1931 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1932 void *buffer, size_t *lenp, loff_t *ppos)
1933 {
1934 struct net *net = (struct net *)table->extra1;
1935 struct vrf_map *vmap = netns_vrf_map(net);
1936 int proc_strict_mode = 0;
1937 struct ctl_table tmp = {
1938 .procname = table->procname,
1939 .data = &proc_strict_mode,
1940 .maxlen = sizeof(int),
1941 .mode = table->mode,
1942 .extra1 = SYSCTL_ZERO,
1943 .extra2 = SYSCTL_ONE,
1944 };
1945 int ret;
1946
1947 if (!write)
1948 proc_strict_mode = vrf_strict_mode(vmap);
1949
1950 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1951
1952 if (write && ret == 0)
1953 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1954
1955 return ret;
1956 }
1957
1958 static const struct ctl_table vrf_table[] = {
1959 {
1960 .procname = "strict_mode",
1961 .data = NULL,
1962 .maxlen = sizeof(int),
1963 .mode = 0644,
1964 .proc_handler = vrf_shared_table_handler,
1965 /* set by the vrf_netns_init */
1966 .extra1 = NULL,
1967 },
1968 { },
1969 };
1970
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1971 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1972 {
1973 struct ctl_table *table;
1974
1975 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1976 if (!table)
1977 return -ENOMEM;
1978
1979 /* init the extra1 parameter with the reference to current netns */
1980 table[0].extra1 = net;
1981
1982 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1983 if (!nn_vrf->ctl_hdr) {
1984 kfree(table);
1985 return -ENOMEM;
1986 }
1987
1988 return 0;
1989 }
1990
vrf_netns_exit_sysctl(struct net * net)1991 static void vrf_netns_exit_sysctl(struct net *net)
1992 {
1993 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1994 struct ctl_table *table;
1995
1996 table = nn_vrf->ctl_hdr->ctl_table_arg;
1997 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1998 kfree(table);
1999 }
2000 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)2001 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
2002 {
2003 return 0;
2004 }
2005
vrf_netns_exit_sysctl(struct net * net)2006 static void vrf_netns_exit_sysctl(struct net *net)
2007 {
2008 }
2009 #endif
2010
2011 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)2012 static int __net_init vrf_netns_init(struct net *net)
2013 {
2014 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2015
2016 nn_vrf->add_fib_rules = true;
2017 vrf_map_init(&nn_vrf->vmap);
2018
2019 return vrf_netns_init_sysctl(net, nn_vrf);
2020 }
2021
vrf_netns_exit(struct net * net)2022 static void __net_exit vrf_netns_exit(struct net *net)
2023 {
2024 vrf_netns_exit_sysctl(net);
2025 }
2026
2027 static struct pernet_operations vrf_net_ops __net_initdata = {
2028 .init = vrf_netns_init,
2029 .exit = vrf_netns_exit,
2030 .id = &vrf_net_id,
2031 .size = sizeof(struct netns_vrf),
2032 };
2033
vrf_init_module(void)2034 static int __init vrf_init_module(void)
2035 {
2036 int rc;
2037
2038 register_netdevice_notifier(&vrf_notifier_block);
2039
2040 rc = register_pernet_subsys(&vrf_net_ops);
2041 if (rc < 0)
2042 goto error;
2043
2044 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2045 vrf_ifindex_lookup_by_table_id);
2046 if (rc < 0)
2047 goto unreg_pernet;
2048
2049 rc = rtnl_link_register(&vrf_link_ops);
2050 if (rc < 0)
2051 goto table_lookup_unreg;
2052
2053 return 0;
2054
2055 table_lookup_unreg:
2056 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2057 vrf_ifindex_lookup_by_table_id);
2058
2059 unreg_pernet:
2060 unregister_pernet_subsys(&vrf_net_ops);
2061
2062 error:
2063 unregister_netdevice_notifier(&vrf_notifier_block);
2064 return rc;
2065 }
2066
2067 module_init(vrf_init_module);
2068 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2069 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2070 MODULE_LICENSE("GPL");
2071 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2072 MODULE_VERSION(DRV_VERSION);
2073