1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Xilinx TEMAC Ethernet device
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 *
9 * This is a driver for the Xilinx ll_temac ipcore which is often used
10 * in the Virtex and Spartan series of chips.
11 *
12 * Notes:
13 * - The ll_temac hardware uses indirect access for many of the TEMAC
14 * registers, include the MDIO bus. However, indirect access to MDIO
15 * registers take considerably more clock cycles than to TEMAC registers.
16 * MDIO accesses are long, so threads doing them should probably sleep
17 * rather than busywait. However, since only one indirect access can be
18 * in progress at any given time, that means that *all* indirect accesses
19 * could end up sleeping (to wait for an MDIO access to complete).
20 * Fortunately none of the indirect accesses are on the 'hot' path for tx
21 * or rx, so this should be okay.
22 *
23 * TODO:
24 * - Factor out locallink DMA code into separate driver
25 * - Fix support for hardware checksumming.
26 * - Testing. Lots and lots of testing.
27 *
28 */
29
30 #include <linux/delay.h>
31 #include <linux/etherdevice.h>
32 #include <linux/mii.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/netdevice.h>
36 #include <linux/if_ether.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_irq.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_net.h>
42 #include <linux/of_platform.h>
43 #include <linux/of_address.h>
44 #include <linux/skbuff.h>
45 #include <linux/spinlock.h>
46 #include <linux/tcp.h> /* needed for sizeof(tcphdr) */
47 #include <linux/udp.h> /* needed for sizeof(udphdr) */
48 #include <linux/phy.h>
49 #include <linux/in.h>
50 #include <linux/io.h>
51 #include <linux/ip.h>
52 #include <linux/slab.h>
53 #include <linux/interrupt.h>
54 #include <linux/workqueue.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/processor.h>
57 #include <linux/platform_data/xilinx-ll-temac.h>
58
59 #include "ll_temac.h"
60
61 /* Descriptors defines for Tx and Rx DMA */
62 #define TX_BD_NUM_DEFAULT 64
63 #define RX_BD_NUM_DEFAULT 1024
64 #define TX_BD_NUM_MAX 4096
65 #define RX_BD_NUM_MAX 4096
66
67 /* ---------------------------------------------------------------------
68 * Low level register access functions
69 */
70
_temac_ior_be(struct temac_local * lp,int offset)71 static u32 _temac_ior_be(struct temac_local *lp, int offset)
72 {
73 return ioread32be(lp->regs + offset);
74 }
75
_temac_iow_be(struct temac_local * lp,int offset,u32 value)76 static void _temac_iow_be(struct temac_local *lp, int offset, u32 value)
77 {
78 return iowrite32be(value, lp->regs + offset);
79 }
80
_temac_ior_le(struct temac_local * lp,int offset)81 static u32 _temac_ior_le(struct temac_local *lp, int offset)
82 {
83 return ioread32(lp->regs + offset);
84 }
85
_temac_iow_le(struct temac_local * lp,int offset,u32 value)86 static void _temac_iow_le(struct temac_local *lp, int offset, u32 value)
87 {
88 return iowrite32(value, lp->regs + offset);
89 }
90
hard_acs_rdy(struct temac_local * lp)91 static bool hard_acs_rdy(struct temac_local *lp)
92 {
93 return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK;
94 }
95
hard_acs_rdy_or_timeout(struct temac_local * lp,ktime_t timeout)96 static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout)
97 {
98 ktime_t cur = ktime_get();
99
100 return hard_acs_rdy(lp) || ktime_after(cur, timeout);
101 }
102
103 /* Poll for maximum 20 ms. This is similar to the 2 jiffies @ 100 Hz
104 * that was used before, and should cover MDIO bus speed down to 3200
105 * Hz.
106 */
107 #define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC)
108
109 /*
110 * temac_indirect_busywait - Wait for current indirect register access
111 * to complete.
112 */
temac_indirect_busywait(struct temac_local * lp)113 int temac_indirect_busywait(struct temac_local *lp)
114 {
115 ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS);
116
117 spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout));
118 if (WARN_ON(!hard_acs_rdy(lp)))
119 return -ETIMEDOUT;
120
121 return 0;
122 }
123
124 /*
125 * temac_indirect_in32 - Indirect register read access. This function
126 * must be called without lp->indirect_lock being held.
127 */
temac_indirect_in32(struct temac_local * lp,int reg)128 u32 temac_indirect_in32(struct temac_local *lp, int reg)
129 {
130 unsigned long flags;
131 int val;
132
133 spin_lock_irqsave(lp->indirect_lock, flags);
134 val = temac_indirect_in32_locked(lp, reg);
135 spin_unlock_irqrestore(lp->indirect_lock, flags);
136 return val;
137 }
138
139 /*
140 * temac_indirect_in32_locked - Indirect register read access. This
141 * function must be called with lp->indirect_lock being held. Use
142 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
143 * repeated lock/unlock and to ensure uninterrupted access to indirect
144 * registers.
145 */
temac_indirect_in32_locked(struct temac_local * lp,int reg)146 u32 temac_indirect_in32_locked(struct temac_local *lp, int reg)
147 {
148 /* This initial wait should normally not spin, as we always
149 * try to wait for indirect access to complete before
150 * releasing the indirect_lock.
151 */
152 if (WARN_ON(temac_indirect_busywait(lp)))
153 return -ETIMEDOUT;
154 /* Initiate read from indirect register */
155 temac_iow(lp, XTE_CTL0_OFFSET, reg);
156 /* Wait for indirect register access to complete. We really
157 * should not see timeouts, and could even end up causing
158 * problem for following indirect access, so let's make a bit
159 * of WARN noise.
160 */
161 if (WARN_ON(temac_indirect_busywait(lp)))
162 return -ETIMEDOUT;
163 /* Value is ready now */
164 return temac_ior(lp, XTE_LSW0_OFFSET);
165 }
166
167 /*
168 * temac_indirect_out32 - Indirect register write access. This function
169 * must be called without lp->indirect_lock being held.
170 */
temac_indirect_out32(struct temac_local * lp,int reg,u32 value)171 void temac_indirect_out32(struct temac_local *lp, int reg, u32 value)
172 {
173 unsigned long flags;
174
175 spin_lock_irqsave(lp->indirect_lock, flags);
176 temac_indirect_out32_locked(lp, reg, value);
177 spin_unlock_irqrestore(lp->indirect_lock, flags);
178 }
179
180 /*
181 * temac_indirect_out32_locked - Indirect register write access. This
182 * function must be called with lp->indirect_lock being held. Use
183 * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
184 * repeated lock/unlock and to ensure uninterrupted access to indirect
185 * registers.
186 */
temac_indirect_out32_locked(struct temac_local * lp,int reg,u32 value)187 void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value)
188 {
189 /* As in temac_indirect_in32_locked(), we should normally not
190 * spin here. And if it happens, we actually end up silently
191 * ignoring the write request. Ouch.
192 */
193 if (WARN_ON(temac_indirect_busywait(lp)))
194 return;
195 /* Initiate write to indirect register */
196 temac_iow(lp, XTE_LSW0_OFFSET, value);
197 temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg);
198 /* As in temac_indirect_in32_locked(), we should not see timeouts
199 * here. And if it happens, we continue before the write has
200 * completed. Not good.
201 */
202 WARN_ON(temac_indirect_busywait(lp));
203 }
204
205 /*
206 * temac_dma_in32_* - Memory mapped DMA read, these function expects a
207 * register input that is based on DCR word addresses which are then
208 * converted to memory mapped byte addresses. To be assigned to
209 * lp->dma_in32.
210 */
temac_dma_in32_be(struct temac_local * lp,int reg)211 static u32 temac_dma_in32_be(struct temac_local *lp, int reg)
212 {
213 return ioread32be(lp->sdma_regs + (reg << 2));
214 }
215
temac_dma_in32_le(struct temac_local * lp,int reg)216 static u32 temac_dma_in32_le(struct temac_local *lp, int reg)
217 {
218 return ioread32(lp->sdma_regs + (reg << 2));
219 }
220
221 /*
222 * temac_dma_out32_* - Memory mapped DMA read, these function expects
223 * a register input that is based on DCR word addresses which are then
224 * converted to memory mapped byte addresses. To be assigned to
225 * lp->dma_out32.
226 */
temac_dma_out32_be(struct temac_local * lp,int reg,u32 value)227 static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value)
228 {
229 iowrite32be(value, lp->sdma_regs + (reg << 2));
230 }
231
temac_dma_out32_le(struct temac_local * lp,int reg,u32 value)232 static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value)
233 {
234 iowrite32(value, lp->sdma_regs + (reg << 2));
235 }
236
237 /* DMA register access functions can be DCR based or memory mapped.
238 * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both
239 * memory mapped.
240 */
241 #ifdef CONFIG_PPC_DCR
242
243 /*
244 * temac_dma_dcr_in32 - DCR based DMA read
245 */
temac_dma_dcr_in(struct temac_local * lp,int reg)246 static u32 temac_dma_dcr_in(struct temac_local *lp, int reg)
247 {
248 return dcr_read(lp->sdma_dcrs, reg);
249 }
250
251 /*
252 * temac_dma_dcr_out32 - DCR based DMA write
253 */
temac_dma_dcr_out(struct temac_local * lp,int reg,u32 value)254 static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value)
255 {
256 dcr_write(lp->sdma_dcrs, reg, value);
257 }
258
259 /*
260 * temac_dcr_setup - If the DMA is DCR based, then setup the address and
261 * I/O functions
262 */
temac_dcr_setup(struct temac_local * lp,struct platform_device * op,struct device_node * np)263 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
264 struct device_node *np)
265 {
266 unsigned int dcrs;
267
268 /* setup the dcr address mapping if it's in the device tree */
269
270 dcrs = dcr_resource_start(np, 0);
271 if (dcrs != 0) {
272 lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0));
273 lp->dma_in = temac_dma_dcr_in;
274 lp->dma_out = temac_dma_dcr_out;
275 dev_dbg(&op->dev, "DCR base: %x\n", dcrs);
276 return 0;
277 }
278 /* no DCR in the device tree, indicate a failure */
279 return -1;
280 }
281
282 #else
283
284 /*
285 * temac_dcr_setup - This is a stub for when DCR is not supported,
286 * such as with MicroBlaze and x86
287 */
temac_dcr_setup(struct temac_local * lp,struct platform_device * op,struct device_node * np)288 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
289 struct device_node *np)
290 {
291 return -1;
292 }
293
294 #endif
295
296 /*
297 * temac_dma_bd_release - Release buffer descriptor rings
298 */
temac_dma_bd_release(struct net_device * ndev)299 static void temac_dma_bd_release(struct net_device *ndev)
300 {
301 struct temac_local *lp = netdev_priv(ndev);
302 int i;
303
304 /* Reset Local Link (DMA) */
305 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
306
307 for (i = 0; i < lp->rx_bd_num; i++) {
308 if (!lp->rx_skb[i])
309 break;
310 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
311 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
312 dev_kfree_skb(lp->rx_skb[i]);
313 }
314 if (lp->rx_bd_v)
315 dma_free_coherent(ndev->dev.parent,
316 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
317 lp->rx_bd_v, lp->rx_bd_p);
318 if (lp->tx_bd_v)
319 dma_free_coherent(ndev->dev.parent,
320 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
321 lp->tx_bd_v, lp->tx_bd_p);
322 }
323
324 /*
325 * temac_dma_bd_init - Setup buffer descriptor rings
326 */
temac_dma_bd_init(struct net_device * ndev)327 static int temac_dma_bd_init(struct net_device *ndev)
328 {
329 struct temac_local *lp = netdev_priv(ndev);
330 struct sk_buff *skb;
331 dma_addr_t skb_dma_addr;
332 int i;
333
334 lp->rx_skb = devm_kcalloc(&ndev->dev, lp->rx_bd_num,
335 sizeof(*lp->rx_skb), GFP_KERNEL);
336 if (!lp->rx_skb)
337 goto out;
338
339 /* allocate the tx and rx ring buffer descriptors. */
340 /* returns a virtual address and a physical address. */
341 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
342 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
343 &lp->tx_bd_p, GFP_KERNEL);
344 if (!lp->tx_bd_v)
345 goto out;
346
347 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
348 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
349 &lp->rx_bd_p, GFP_KERNEL);
350 if (!lp->rx_bd_v)
351 goto out;
352
353 for (i = 0; i < lp->tx_bd_num; i++) {
354 lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p
355 + sizeof(*lp->tx_bd_v) * ((i + 1) % lp->tx_bd_num));
356 }
357
358 for (i = 0; i < lp->rx_bd_num; i++) {
359 lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p
360 + sizeof(*lp->rx_bd_v) * ((i + 1) % lp->rx_bd_num));
361
362 skb = __netdev_alloc_skb_ip_align(ndev,
363 XTE_MAX_JUMBO_FRAME_SIZE,
364 GFP_KERNEL);
365 if (!skb)
366 goto out;
367
368 lp->rx_skb[i] = skb;
369 /* returns physical address of skb->data */
370 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
371 XTE_MAX_JUMBO_FRAME_SIZE,
372 DMA_FROM_DEVICE);
373 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr))
374 goto out;
375 lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr);
376 lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
377 lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
378 }
379
380 /* Configure DMA channel (irq setup) */
381 lp->dma_out(lp, TX_CHNL_CTRL,
382 lp->coalesce_delay_tx << 24 | lp->coalesce_count_tx << 16 |
383 0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used!
384 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
385 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
386 lp->dma_out(lp, RX_CHNL_CTRL,
387 lp->coalesce_delay_rx << 24 | lp->coalesce_count_rx << 16 |
388 CHNL_CTRL_IRQ_IOE |
389 CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
390 CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
391
392 /* Init descriptor indexes */
393 lp->tx_bd_ci = 0;
394 lp->tx_bd_tail = 0;
395 lp->rx_bd_ci = 0;
396 lp->rx_bd_tail = lp->rx_bd_num - 1;
397
398 /* Enable RX DMA transfers */
399 wmb();
400 lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p);
401 lp->dma_out(lp, RX_TAILDESC_PTR,
402 lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * lp->rx_bd_tail));
403
404 /* Prepare for TX DMA transfer */
405 lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p);
406
407 return 0;
408
409 out:
410 temac_dma_bd_release(ndev);
411 return -ENOMEM;
412 }
413
414 /* ---------------------------------------------------------------------
415 * net_device_ops
416 */
417
temac_do_set_mac_address(struct net_device * ndev)418 static void temac_do_set_mac_address(struct net_device *ndev)
419 {
420 struct temac_local *lp = netdev_priv(ndev);
421 unsigned long flags;
422
423 /* set up unicast MAC address filter set its mac address */
424 spin_lock_irqsave(lp->indirect_lock, flags);
425 temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET,
426 (ndev->dev_addr[0]) |
427 (ndev->dev_addr[1] << 8) |
428 (ndev->dev_addr[2] << 16) |
429 (ndev->dev_addr[3] << 24));
430 /* There are reserved bits in EUAW1
431 * so don't affect them Set MAC bits [47:32] in EUAW1
432 */
433 temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET,
434 (ndev->dev_addr[4] & 0x000000ff) |
435 (ndev->dev_addr[5] << 8));
436 spin_unlock_irqrestore(lp->indirect_lock, flags);
437 }
438
temac_init_mac_address(struct net_device * ndev,const void * address)439 static int temac_init_mac_address(struct net_device *ndev, const void *address)
440 {
441 eth_hw_addr_set(ndev, address);
442 if (!is_valid_ether_addr(ndev->dev_addr))
443 eth_hw_addr_random(ndev);
444 temac_do_set_mac_address(ndev);
445 return 0;
446 }
447
temac_set_mac_address(struct net_device * ndev,void * p)448 static int temac_set_mac_address(struct net_device *ndev, void *p)
449 {
450 struct sockaddr *addr = p;
451
452 if (!is_valid_ether_addr(addr->sa_data))
453 return -EADDRNOTAVAIL;
454 eth_hw_addr_set(ndev, addr->sa_data);
455 temac_do_set_mac_address(ndev);
456 return 0;
457 }
458
temac_set_multicast_list(struct net_device * ndev)459 static void temac_set_multicast_list(struct net_device *ndev)
460 {
461 struct temac_local *lp = netdev_priv(ndev);
462 u32 multi_addr_msw, multi_addr_lsw;
463 int i = 0;
464 unsigned long flags;
465 bool promisc_mode_disabled = false;
466
467 if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
468 (netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) {
469 temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK);
470 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
471 return;
472 }
473
474 spin_lock_irqsave(lp->indirect_lock, flags);
475
476 if (!netdev_mc_empty(ndev)) {
477 struct netdev_hw_addr *ha;
478
479 netdev_for_each_mc_addr(ha, ndev) {
480 if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM))
481 break;
482 multi_addr_msw = ((ha->addr[3] << 24) |
483 (ha->addr[2] << 16) |
484 (ha->addr[1] << 8) |
485 (ha->addr[0]));
486 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET,
487 multi_addr_msw);
488 multi_addr_lsw = ((ha->addr[5] << 8) |
489 (ha->addr[4]) | (i << 16));
490 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET,
491 multi_addr_lsw);
492 i++;
493 }
494 }
495
496 /* Clear all or remaining/unused address table entries */
497 while (i < MULTICAST_CAM_TABLE_NUM) {
498 temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0);
499 temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16);
500 i++;
501 }
502
503 /* Enable address filter block if currently disabled */
504 if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET)
505 & XTE_AFM_EPPRM_MASK) {
506 temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0);
507 promisc_mode_disabled = true;
508 }
509
510 spin_unlock_irqrestore(lp->indirect_lock, flags);
511
512 if (promisc_mode_disabled)
513 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
514 }
515
516 static struct temac_option {
517 int flg;
518 u32 opt;
519 u32 reg;
520 u32 m_or;
521 u32 m_and;
522 } temac_options[] = {
523 /* Turn on jumbo packet support for both Rx and Tx */
524 {
525 .opt = XTE_OPTION_JUMBO,
526 .reg = XTE_TXC_OFFSET,
527 .m_or = XTE_TXC_TXJMBO_MASK,
528 },
529 {
530 .opt = XTE_OPTION_JUMBO,
531 .reg = XTE_RXC1_OFFSET,
532 .m_or = XTE_RXC1_RXJMBO_MASK,
533 },
534 /* Turn on VLAN packet support for both Rx and Tx */
535 {
536 .opt = XTE_OPTION_VLAN,
537 .reg = XTE_TXC_OFFSET,
538 .m_or = XTE_TXC_TXVLAN_MASK,
539 },
540 {
541 .opt = XTE_OPTION_VLAN,
542 .reg = XTE_RXC1_OFFSET,
543 .m_or = XTE_RXC1_RXVLAN_MASK,
544 },
545 /* Turn on FCS stripping on receive packets */
546 {
547 .opt = XTE_OPTION_FCS_STRIP,
548 .reg = XTE_RXC1_OFFSET,
549 .m_or = XTE_RXC1_RXFCS_MASK,
550 },
551 /* Turn on FCS insertion on transmit packets */
552 {
553 .opt = XTE_OPTION_FCS_INSERT,
554 .reg = XTE_TXC_OFFSET,
555 .m_or = XTE_TXC_TXFCS_MASK,
556 },
557 /* Turn on length/type field checking on receive packets */
558 {
559 .opt = XTE_OPTION_LENTYPE_ERR,
560 .reg = XTE_RXC1_OFFSET,
561 .m_or = XTE_RXC1_RXLT_MASK,
562 },
563 /* Turn on flow control */
564 {
565 .opt = XTE_OPTION_FLOW_CONTROL,
566 .reg = XTE_FCC_OFFSET,
567 .m_or = XTE_FCC_RXFLO_MASK,
568 },
569 /* Turn on flow control */
570 {
571 .opt = XTE_OPTION_FLOW_CONTROL,
572 .reg = XTE_FCC_OFFSET,
573 .m_or = XTE_FCC_TXFLO_MASK,
574 },
575 /* Turn on promiscuous frame filtering (all frames are received ) */
576 {
577 .opt = XTE_OPTION_PROMISC,
578 .reg = XTE_AFM_OFFSET,
579 .m_or = XTE_AFM_EPPRM_MASK,
580 },
581 /* Enable transmitter if not already enabled */
582 {
583 .opt = XTE_OPTION_TXEN,
584 .reg = XTE_TXC_OFFSET,
585 .m_or = XTE_TXC_TXEN_MASK,
586 },
587 /* Enable receiver? */
588 {
589 .opt = XTE_OPTION_RXEN,
590 .reg = XTE_RXC1_OFFSET,
591 .m_or = XTE_RXC1_RXEN_MASK,
592 },
593 {}
594 };
595
596 /*
597 * temac_setoptions
598 */
temac_setoptions(struct net_device * ndev,u32 options)599 static u32 temac_setoptions(struct net_device *ndev, u32 options)
600 {
601 struct temac_local *lp = netdev_priv(ndev);
602 struct temac_option *tp = &temac_options[0];
603 int reg;
604 unsigned long flags;
605
606 spin_lock_irqsave(lp->indirect_lock, flags);
607 while (tp->opt) {
608 reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or;
609 if (options & tp->opt) {
610 reg |= tp->m_or;
611 temac_indirect_out32_locked(lp, tp->reg, reg);
612 }
613 tp++;
614 }
615 spin_unlock_irqrestore(lp->indirect_lock, flags);
616 lp->options |= options;
617
618 return 0;
619 }
620
621 /* Initialize temac */
temac_device_reset(struct net_device * ndev)622 static void temac_device_reset(struct net_device *ndev)
623 {
624 struct temac_local *lp = netdev_priv(ndev);
625 u32 timeout;
626 u32 val;
627 unsigned long flags;
628
629 /* Perform a software reset */
630
631 /* 0x300 host enable bit ? */
632 /* reset PHY through control register ?:1 */
633
634 dev_dbg(&ndev->dev, "%s()\n", __func__);
635
636 /* Reset the receiver and wait for it to finish reset */
637 temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK);
638 timeout = 1000;
639 while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) {
640 udelay(1);
641 if (--timeout == 0) {
642 dev_err(&ndev->dev,
643 "%s RX reset timeout!!\n", __func__);
644 break;
645 }
646 }
647
648 /* Reset the transmitter and wait for it to finish reset */
649 temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK);
650 timeout = 1000;
651 while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) {
652 udelay(1);
653 if (--timeout == 0) {
654 dev_err(&ndev->dev,
655 "%s TX reset timeout!!\n", __func__);
656 break;
657 }
658 }
659
660 /* Disable the receiver */
661 spin_lock_irqsave(lp->indirect_lock, flags);
662 val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET);
663 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET,
664 val & ~XTE_RXC1_RXEN_MASK);
665 spin_unlock_irqrestore(lp->indirect_lock, flags);
666
667 /* Reset Local Link (DMA) */
668 lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
669 timeout = 1000;
670 while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) {
671 udelay(1);
672 if (--timeout == 0) {
673 dev_err(&ndev->dev,
674 "%s DMA reset timeout!!\n", __func__);
675 break;
676 }
677 }
678 lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE);
679
680 if (temac_dma_bd_init(ndev)) {
681 dev_err(&ndev->dev,
682 "%s descriptor allocation failed\n", __func__);
683 }
684
685 spin_lock_irqsave(lp->indirect_lock, flags);
686 temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0);
687 temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0);
688 temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0);
689 temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK);
690 spin_unlock_irqrestore(lp->indirect_lock, flags);
691
692 /* Sync default options with HW
693 * but leave receiver and transmitter disabled.
694 */
695 temac_setoptions(ndev,
696 lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN));
697
698 temac_do_set_mac_address(ndev);
699
700 /* Set address filter table */
701 temac_set_multicast_list(ndev);
702 if (temac_setoptions(ndev, lp->options))
703 dev_err(&ndev->dev, "Error setting TEMAC options\n");
704
705 /* Init Driver variable */
706 netif_trans_update(ndev); /* prevent tx timeout */
707 }
708
temac_adjust_link(struct net_device * ndev)709 static void temac_adjust_link(struct net_device *ndev)
710 {
711 struct temac_local *lp = netdev_priv(ndev);
712 struct phy_device *phy = ndev->phydev;
713 u32 mii_speed;
714 int link_state;
715 unsigned long flags;
716
717 /* hash together the state values to decide if something has changed */
718 link_state = phy->speed | (phy->duplex << 1) | phy->link;
719
720 if (lp->last_link != link_state) {
721 spin_lock_irqsave(lp->indirect_lock, flags);
722 mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET);
723 mii_speed &= ~XTE_EMCFG_LINKSPD_MASK;
724
725 switch (phy->speed) {
726 case SPEED_1000:
727 mii_speed |= XTE_EMCFG_LINKSPD_1000;
728 break;
729 case SPEED_100:
730 mii_speed |= XTE_EMCFG_LINKSPD_100;
731 break;
732 case SPEED_10:
733 mii_speed |= XTE_EMCFG_LINKSPD_10;
734 break;
735 }
736
737 /* Write new speed setting out to TEMAC */
738 temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed);
739 spin_unlock_irqrestore(lp->indirect_lock, flags);
740
741 lp->last_link = link_state;
742 phy_print_status(phy);
743 }
744 }
745
746 #ifdef CONFIG_64BIT
747
ptr_to_txbd(void * p,struct cdmac_bd * bd)748 static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
749 {
750 bd->app3 = (u32)(((u64)p) >> 32);
751 bd->app4 = (u32)((u64)p & 0xFFFFFFFF);
752 }
753
ptr_from_txbd(struct cdmac_bd * bd)754 static void *ptr_from_txbd(struct cdmac_bd *bd)
755 {
756 return (void *)(((u64)(bd->app3) << 32) | bd->app4);
757 }
758
759 #else
760
ptr_to_txbd(void * p,struct cdmac_bd * bd)761 static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
762 {
763 bd->app4 = (u32)p;
764 }
765
ptr_from_txbd(struct cdmac_bd * bd)766 static void *ptr_from_txbd(struct cdmac_bd *bd)
767 {
768 return (void *)(bd->app4);
769 }
770
771 #endif
772
temac_start_xmit_done(struct net_device * ndev)773 static void temac_start_xmit_done(struct net_device *ndev)
774 {
775 struct temac_local *lp = netdev_priv(ndev);
776 struct cdmac_bd *cur_p;
777 unsigned int stat = 0;
778 struct sk_buff *skb;
779
780 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
781 stat = be32_to_cpu(cur_p->app0);
782
783 while (stat & STS_CTRL_APP0_CMPLT) {
784 /* Make sure that the other fields are read after bd is
785 * released by dma
786 */
787 rmb();
788 dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys),
789 be32_to_cpu(cur_p->len), DMA_TO_DEVICE);
790 skb = (struct sk_buff *)ptr_from_txbd(cur_p);
791 if (skb)
792 dev_consume_skb_irq(skb);
793 cur_p->app1 = 0;
794 cur_p->app2 = 0;
795 cur_p->app3 = 0;
796 cur_p->app4 = 0;
797
798 ndev->stats.tx_packets++;
799 ndev->stats.tx_bytes += be32_to_cpu(cur_p->len);
800
801 /* app0 must be visible last, as it is used to flag
802 * availability of the bd
803 */
804 smp_mb();
805 cur_p->app0 = 0;
806
807 lp->tx_bd_ci++;
808 if (lp->tx_bd_ci >= lp->tx_bd_num)
809 lp->tx_bd_ci = 0;
810
811 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
812 stat = be32_to_cpu(cur_p->app0);
813 }
814
815 /* Matches barrier in temac_start_xmit */
816 smp_mb();
817
818 netif_wake_queue(ndev);
819 }
820
temac_check_tx_bd_space(struct temac_local * lp,int num_frag)821 static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag)
822 {
823 struct cdmac_bd *cur_p;
824 int tail;
825
826 tail = lp->tx_bd_tail;
827 cur_p = &lp->tx_bd_v[tail];
828
829 do {
830 if (cur_p->app0)
831 return NETDEV_TX_BUSY;
832
833 /* Make sure to read next bd app0 after this one */
834 rmb();
835
836 tail++;
837 if (tail >= lp->tx_bd_num)
838 tail = 0;
839
840 cur_p = &lp->tx_bd_v[tail];
841 num_frag--;
842 } while (num_frag >= 0);
843
844 return 0;
845 }
846
847 static netdev_tx_t
temac_start_xmit(struct sk_buff * skb,struct net_device * ndev)848 temac_start_xmit(struct sk_buff *skb, struct net_device *ndev)
849 {
850 struct temac_local *lp = netdev_priv(ndev);
851 struct cdmac_bd *cur_p;
852 dma_addr_t tail_p, skb_dma_addr;
853 int ii;
854 unsigned long num_frag;
855 skb_frag_t *frag;
856
857 num_frag = skb_shinfo(skb)->nr_frags;
858 frag = &skb_shinfo(skb)->frags[0];
859 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
860
861 if (temac_check_tx_bd_space(lp, num_frag + 1)) {
862 if (netif_queue_stopped(ndev))
863 return NETDEV_TX_BUSY;
864
865 netif_stop_queue(ndev);
866
867 /* Matches barrier in temac_start_xmit_done */
868 smp_mb();
869
870 /* Space might have just been freed - check again */
871 if (temac_check_tx_bd_space(lp, num_frag + 1))
872 return NETDEV_TX_BUSY;
873
874 netif_wake_queue(ndev);
875 }
876
877 cur_p->app0 = 0;
878 if (skb->ip_summed == CHECKSUM_PARTIAL) {
879 unsigned int csum_start_off = skb_checksum_start_offset(skb);
880 unsigned int csum_index_off = csum_start_off + skb->csum_offset;
881
882 cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */
883 cur_p->app1 = cpu_to_be32((csum_start_off << 16)
884 | csum_index_off);
885 cur_p->app2 = 0; /* initial checksum seed */
886 }
887
888 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP);
889 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
890 skb_headlen(skb), DMA_TO_DEVICE);
891 cur_p->len = cpu_to_be32(skb_headlen(skb));
892 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) {
893 dev_kfree_skb_any(skb);
894 ndev->stats.tx_dropped++;
895 return NETDEV_TX_OK;
896 }
897 cur_p->phys = cpu_to_be32(skb_dma_addr);
898
899 for (ii = 0; ii < num_frag; ii++) {
900 if (++lp->tx_bd_tail >= lp->tx_bd_num)
901 lp->tx_bd_tail = 0;
902
903 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
904 skb_dma_addr = dma_map_single(ndev->dev.parent,
905 skb_frag_address(frag),
906 skb_frag_size(frag),
907 DMA_TO_DEVICE);
908 if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) {
909 if (--lp->tx_bd_tail < 0)
910 lp->tx_bd_tail = lp->tx_bd_num - 1;
911 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
912 while (--ii >= 0) {
913 --frag;
914 dma_unmap_single(ndev->dev.parent,
915 be32_to_cpu(cur_p->phys),
916 skb_frag_size(frag),
917 DMA_TO_DEVICE);
918 if (--lp->tx_bd_tail < 0)
919 lp->tx_bd_tail = lp->tx_bd_num - 1;
920 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
921 }
922 dma_unmap_single(ndev->dev.parent,
923 be32_to_cpu(cur_p->phys),
924 skb_headlen(skb), DMA_TO_DEVICE);
925 dev_kfree_skb_any(skb);
926 ndev->stats.tx_dropped++;
927 return NETDEV_TX_OK;
928 }
929 cur_p->phys = cpu_to_be32(skb_dma_addr);
930 cur_p->len = cpu_to_be32(skb_frag_size(frag));
931 cur_p->app0 = 0;
932 frag++;
933 }
934 cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP);
935
936 /* Mark last fragment with skb address, so it can be consumed
937 * in temac_start_xmit_done()
938 */
939 ptr_to_txbd((void *)skb, cur_p);
940
941 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
942 lp->tx_bd_tail++;
943 if (lp->tx_bd_tail >= lp->tx_bd_num)
944 lp->tx_bd_tail = 0;
945
946 skb_tx_timestamp(skb);
947
948 /* Kick off the transfer */
949 wmb();
950 lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */
951
952 if (temac_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
953 netif_stop_queue(ndev);
954
955 return NETDEV_TX_OK;
956 }
957
ll_temac_recv_buffers_available(struct temac_local * lp)958 static int ll_temac_recv_buffers_available(struct temac_local *lp)
959 {
960 int available;
961
962 if (!lp->rx_skb[lp->rx_bd_ci])
963 return 0;
964 available = 1 + lp->rx_bd_tail - lp->rx_bd_ci;
965 if (available <= 0)
966 available += lp->rx_bd_num;
967 return available;
968 }
969
ll_temac_recv(struct net_device * ndev)970 static void ll_temac_recv(struct net_device *ndev)
971 {
972 struct temac_local *lp = netdev_priv(ndev);
973 unsigned long flags;
974 int rx_bd;
975 bool update_tail = false;
976
977 spin_lock_irqsave(&lp->rx_lock, flags);
978
979 /* Process all received buffers, passing them on network
980 * stack. After this, the buffer descriptors will be in an
981 * un-allocated stage, where no skb is allocated for it, and
982 * they are therefore not available for TEMAC/DMA.
983 */
984 do {
985 struct cdmac_bd *bd = &lp->rx_bd_v[lp->rx_bd_ci];
986 struct sk_buff *skb = lp->rx_skb[lp->rx_bd_ci];
987 unsigned int bdstat = be32_to_cpu(bd->app0);
988 int length;
989
990 /* While this should not normally happen, we can end
991 * here when GFP_ATOMIC allocations fail, and we
992 * therefore have un-allocated buffers.
993 */
994 if (!skb)
995 break;
996
997 /* Loop over all completed buffer descriptors */
998 if (!(bdstat & STS_CTRL_APP0_CMPLT))
999 break;
1000
1001 dma_unmap_single(ndev->dev.parent, be32_to_cpu(bd->phys),
1002 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
1003 /* The buffer is not valid for DMA anymore */
1004 bd->phys = 0;
1005 bd->len = 0;
1006
1007 length = be32_to_cpu(bd->app4) & 0x3FFF;
1008 skb_put(skb, length);
1009 skb->protocol = eth_type_trans(skb, ndev);
1010 skb_checksum_none_assert(skb);
1011
1012 /* if we're doing rx csum offload, set it up */
1013 if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) &&
1014 (skb->protocol == htons(ETH_P_IP)) &&
1015 (skb->len > 64)) {
1016 /* Convert from device endianness (be32) to cpu
1017 * endianness, and if necessary swap the bytes
1018 * (back) for proper IP checksum byte order
1019 * (be16).
1020 */
1021 skb->csum = htons(be32_to_cpu(bd->app3) & 0xFFFF);
1022 skb->ip_summed = CHECKSUM_COMPLETE;
1023 }
1024
1025 if (!skb_defer_rx_timestamp(skb))
1026 netif_rx(skb);
1027 /* The skb buffer is now owned by network stack above */
1028 lp->rx_skb[lp->rx_bd_ci] = NULL;
1029
1030 ndev->stats.rx_packets++;
1031 ndev->stats.rx_bytes += length;
1032
1033 rx_bd = lp->rx_bd_ci;
1034 if (++lp->rx_bd_ci >= lp->rx_bd_num)
1035 lp->rx_bd_ci = 0;
1036 } while (rx_bd != lp->rx_bd_tail);
1037
1038 /* DMA operations will halt when the last buffer descriptor is
1039 * processed (ie. the one pointed to by RX_TAILDESC_PTR).
1040 * When that happens, no more interrupt events will be
1041 * generated. No IRQ_COAL or IRQ_DLY, and not even an
1042 * IRQ_ERR. To avoid stalling, we schedule a delayed work
1043 * when there is a potential risk of that happening. The work
1044 * will call this function, and thus re-schedule itself until
1045 * enough buffers are available again.
1046 */
1047 if (ll_temac_recv_buffers_available(lp) < lp->coalesce_count_rx)
1048 schedule_delayed_work(&lp->restart_work, HZ / 1000);
1049
1050 /* Allocate new buffers for those buffer descriptors that were
1051 * passed to network stack. Note that GFP_ATOMIC allocations
1052 * can fail (e.g. when a larger burst of GFP_ATOMIC
1053 * allocations occurs), so while we try to allocate all
1054 * buffers in the same interrupt where they were processed, we
1055 * continue with what we could get in case of allocation
1056 * failure. Allocation of remaining buffers will be retried
1057 * in following calls.
1058 */
1059 while (1) {
1060 struct sk_buff *skb;
1061 struct cdmac_bd *bd;
1062 dma_addr_t skb_dma_addr;
1063
1064 rx_bd = lp->rx_bd_tail + 1;
1065 if (rx_bd >= lp->rx_bd_num)
1066 rx_bd = 0;
1067 bd = &lp->rx_bd_v[rx_bd];
1068
1069 if (bd->phys)
1070 break; /* All skb's allocated */
1071
1072 skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE);
1073 if (!skb) {
1074 dev_warn(&ndev->dev, "skb alloc failed\n");
1075 break;
1076 }
1077
1078 skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
1079 XTE_MAX_JUMBO_FRAME_SIZE,
1080 DMA_FROM_DEVICE);
1081 if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent,
1082 skb_dma_addr))) {
1083 dev_kfree_skb_any(skb);
1084 break;
1085 }
1086
1087 bd->phys = cpu_to_be32(skb_dma_addr);
1088 bd->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
1089 bd->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
1090 lp->rx_skb[rx_bd] = skb;
1091
1092 lp->rx_bd_tail = rx_bd;
1093 update_tail = true;
1094 }
1095
1096 /* Move tail pointer when buffers have been allocated */
1097 if (update_tail) {
1098 lp->dma_out(lp, RX_TAILDESC_PTR,
1099 lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_tail);
1100 }
1101
1102 spin_unlock_irqrestore(&lp->rx_lock, flags);
1103 }
1104
1105 /* Function scheduled to ensure a restart in case of DMA halt
1106 * condition caused by running out of buffer descriptors.
1107 */
ll_temac_restart_work_func(struct work_struct * work)1108 static void ll_temac_restart_work_func(struct work_struct *work)
1109 {
1110 struct temac_local *lp = container_of(work, struct temac_local,
1111 restart_work.work);
1112 struct net_device *ndev = lp->ndev;
1113
1114 ll_temac_recv(ndev);
1115 }
1116
ll_temac_tx_irq(int irq,void * _ndev)1117 static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev)
1118 {
1119 struct net_device *ndev = _ndev;
1120 struct temac_local *lp = netdev_priv(ndev);
1121 unsigned int status;
1122
1123 status = lp->dma_in(lp, TX_IRQ_REG);
1124 lp->dma_out(lp, TX_IRQ_REG, status);
1125
1126 if (status & (IRQ_COAL | IRQ_DLY))
1127 temac_start_xmit_done(lp->ndev);
1128 if (status & (IRQ_ERR | IRQ_DMAERR))
1129 dev_err_ratelimited(&ndev->dev,
1130 "TX error 0x%x TX_CHNL_STS=0x%08x\n",
1131 status, lp->dma_in(lp, TX_CHNL_STS));
1132
1133 return IRQ_HANDLED;
1134 }
1135
ll_temac_rx_irq(int irq,void * _ndev)1136 static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev)
1137 {
1138 struct net_device *ndev = _ndev;
1139 struct temac_local *lp = netdev_priv(ndev);
1140 unsigned int status;
1141
1142 /* Read and clear the status registers */
1143 status = lp->dma_in(lp, RX_IRQ_REG);
1144 lp->dma_out(lp, RX_IRQ_REG, status);
1145
1146 if (status & (IRQ_COAL | IRQ_DLY))
1147 ll_temac_recv(lp->ndev);
1148 if (status & (IRQ_ERR | IRQ_DMAERR))
1149 dev_err_ratelimited(&ndev->dev,
1150 "RX error 0x%x RX_CHNL_STS=0x%08x\n",
1151 status, lp->dma_in(lp, RX_CHNL_STS));
1152
1153 return IRQ_HANDLED;
1154 }
1155
temac_open(struct net_device * ndev)1156 static int temac_open(struct net_device *ndev)
1157 {
1158 struct temac_local *lp = netdev_priv(ndev);
1159 struct phy_device *phydev = NULL;
1160 int rc;
1161
1162 dev_dbg(&ndev->dev, "temac_open()\n");
1163
1164 if (lp->phy_node) {
1165 phydev = of_phy_connect(lp->ndev, lp->phy_node,
1166 temac_adjust_link, 0, 0);
1167 if (!phydev) {
1168 dev_err(lp->dev, "of_phy_connect() failed\n");
1169 return -ENODEV;
1170 }
1171 phy_start(phydev);
1172 } else if (strlen(lp->phy_name) > 0) {
1173 phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link,
1174 lp->phy_interface);
1175 if (IS_ERR(phydev)) {
1176 dev_err(lp->dev, "phy_connect() failed\n");
1177 return PTR_ERR(phydev);
1178 }
1179 phy_start(phydev);
1180 }
1181
1182 temac_device_reset(ndev);
1183
1184 rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev);
1185 if (rc)
1186 goto err_tx_irq;
1187 rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev);
1188 if (rc)
1189 goto err_rx_irq;
1190
1191 return 0;
1192
1193 err_rx_irq:
1194 free_irq(lp->tx_irq, ndev);
1195 err_tx_irq:
1196 if (phydev)
1197 phy_disconnect(phydev);
1198 dev_err(lp->dev, "request_irq() failed\n");
1199 return rc;
1200 }
1201
temac_stop(struct net_device * ndev)1202 static int temac_stop(struct net_device *ndev)
1203 {
1204 struct temac_local *lp = netdev_priv(ndev);
1205 struct phy_device *phydev = ndev->phydev;
1206
1207 dev_dbg(&ndev->dev, "temac_close()\n");
1208
1209 cancel_delayed_work_sync(&lp->restart_work);
1210
1211 free_irq(lp->tx_irq, ndev);
1212 free_irq(lp->rx_irq, ndev);
1213
1214 if (phydev)
1215 phy_disconnect(phydev);
1216
1217 temac_dma_bd_release(ndev);
1218
1219 return 0;
1220 }
1221
1222 #ifdef CONFIG_NET_POLL_CONTROLLER
1223 static void
temac_poll_controller(struct net_device * ndev)1224 temac_poll_controller(struct net_device *ndev)
1225 {
1226 struct temac_local *lp = netdev_priv(ndev);
1227
1228 disable_irq(lp->tx_irq);
1229 disable_irq(lp->rx_irq);
1230
1231 ll_temac_rx_irq(lp->tx_irq, ndev);
1232 ll_temac_tx_irq(lp->rx_irq, ndev);
1233
1234 enable_irq(lp->tx_irq);
1235 enable_irq(lp->rx_irq);
1236 }
1237 #endif
1238
1239 static const struct net_device_ops temac_netdev_ops = {
1240 .ndo_open = temac_open,
1241 .ndo_stop = temac_stop,
1242 .ndo_start_xmit = temac_start_xmit,
1243 .ndo_set_rx_mode = temac_set_multicast_list,
1244 .ndo_set_mac_address = temac_set_mac_address,
1245 .ndo_validate_addr = eth_validate_addr,
1246 .ndo_eth_ioctl = phy_do_ioctl_running,
1247 #ifdef CONFIG_NET_POLL_CONTROLLER
1248 .ndo_poll_controller = temac_poll_controller,
1249 #endif
1250 };
1251
1252 /* ---------------------------------------------------------------------
1253 * SYSFS device attributes
1254 */
temac_show_llink_regs(struct device * dev,struct device_attribute * attr,char * buf)1255 static ssize_t temac_show_llink_regs(struct device *dev,
1256 struct device_attribute *attr, char *buf)
1257 {
1258 struct net_device *ndev = dev_get_drvdata(dev);
1259 struct temac_local *lp = netdev_priv(ndev);
1260 int i, len = 0;
1261
1262 for (i = 0; i < 0x11; i++)
1263 len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i),
1264 (i % 8) == 7 ? "\n" : " ");
1265 len += sprintf(buf + len, "\n");
1266
1267 return len;
1268 }
1269
1270 static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL);
1271
1272 static struct attribute *temac_device_attrs[] = {
1273 &dev_attr_llink_regs.attr,
1274 NULL,
1275 };
1276
1277 static const struct attribute_group temac_attr_group = {
1278 .attrs = temac_device_attrs,
1279 };
1280
1281 /* ---------------------------------------------------------------------
1282 * ethtool support
1283 */
1284
1285 static void
ll_temac_ethtools_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1286 ll_temac_ethtools_get_ringparam(struct net_device *ndev,
1287 struct ethtool_ringparam *ering,
1288 struct kernel_ethtool_ringparam *kernel_ering,
1289 struct netlink_ext_ack *extack)
1290 {
1291 struct temac_local *lp = netdev_priv(ndev);
1292
1293 ering->rx_max_pending = RX_BD_NUM_MAX;
1294 ering->rx_mini_max_pending = 0;
1295 ering->rx_jumbo_max_pending = 0;
1296 ering->tx_max_pending = TX_BD_NUM_MAX;
1297 ering->rx_pending = lp->rx_bd_num;
1298 ering->rx_mini_pending = 0;
1299 ering->rx_jumbo_pending = 0;
1300 ering->tx_pending = lp->tx_bd_num;
1301 }
1302
1303 static int
ll_temac_ethtools_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1304 ll_temac_ethtools_set_ringparam(struct net_device *ndev,
1305 struct ethtool_ringparam *ering,
1306 struct kernel_ethtool_ringparam *kernel_ering,
1307 struct netlink_ext_ack *extack)
1308 {
1309 struct temac_local *lp = netdev_priv(ndev);
1310
1311 if (ering->rx_pending > RX_BD_NUM_MAX ||
1312 ering->rx_mini_pending ||
1313 ering->rx_jumbo_pending ||
1314 ering->rx_pending > TX_BD_NUM_MAX)
1315 return -EINVAL;
1316
1317 if (netif_running(ndev))
1318 return -EBUSY;
1319
1320 lp->rx_bd_num = ering->rx_pending;
1321 lp->tx_bd_num = ering->tx_pending;
1322 return 0;
1323 }
1324
1325 static int
ll_temac_ethtools_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1326 ll_temac_ethtools_get_coalesce(struct net_device *ndev,
1327 struct ethtool_coalesce *ec,
1328 struct kernel_ethtool_coalesce *kernel_coal,
1329 struct netlink_ext_ack *extack)
1330 {
1331 struct temac_local *lp = netdev_priv(ndev);
1332
1333 ec->rx_max_coalesced_frames = lp->coalesce_count_rx;
1334 ec->tx_max_coalesced_frames = lp->coalesce_count_tx;
1335 ec->rx_coalesce_usecs = (lp->coalesce_delay_rx * 512) / 100;
1336 ec->tx_coalesce_usecs = (lp->coalesce_delay_tx * 512) / 100;
1337 return 0;
1338 }
1339
1340 static int
ll_temac_ethtools_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1341 ll_temac_ethtools_set_coalesce(struct net_device *ndev,
1342 struct ethtool_coalesce *ec,
1343 struct kernel_ethtool_coalesce *kernel_coal,
1344 struct netlink_ext_ack *extack)
1345 {
1346 struct temac_local *lp = netdev_priv(ndev);
1347
1348 if (netif_running(ndev)) {
1349 netdev_err(ndev,
1350 "Please stop netif before applying configuration\n");
1351 return -EFAULT;
1352 }
1353
1354 if (ec->rx_max_coalesced_frames)
1355 lp->coalesce_count_rx = ec->rx_max_coalesced_frames;
1356 if (ec->tx_max_coalesced_frames)
1357 lp->coalesce_count_tx = ec->tx_max_coalesced_frames;
1358 /* With typical LocalLink clock speed of 200 MHz and
1359 * C_PRESCALAR=1023, each delay count corresponds to 5.12 us.
1360 */
1361 if (ec->rx_coalesce_usecs)
1362 lp->coalesce_delay_rx =
1363 min(255U, (ec->rx_coalesce_usecs * 100) / 512);
1364 if (ec->tx_coalesce_usecs)
1365 lp->coalesce_delay_tx =
1366 min(255U, (ec->tx_coalesce_usecs * 100) / 512);
1367
1368 return 0;
1369 }
1370
1371 static const struct ethtool_ops temac_ethtool_ops = {
1372 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1373 ETHTOOL_COALESCE_MAX_FRAMES,
1374 .nway_reset = phy_ethtool_nway_reset,
1375 .get_link = ethtool_op_get_link,
1376 .get_ts_info = ethtool_op_get_ts_info,
1377 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1378 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1379 .get_ringparam = ll_temac_ethtools_get_ringparam,
1380 .set_ringparam = ll_temac_ethtools_set_ringparam,
1381 .get_coalesce = ll_temac_ethtools_get_coalesce,
1382 .set_coalesce = ll_temac_ethtools_set_coalesce,
1383 };
1384
temac_probe(struct platform_device * pdev)1385 static int temac_probe(struct platform_device *pdev)
1386 {
1387 struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev);
1388 struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np;
1389 struct temac_local *lp;
1390 struct net_device *ndev;
1391 u8 addr[ETH_ALEN];
1392 __be32 *p;
1393 bool little_endian;
1394 int rc = 0;
1395
1396 /* Init network device structure */
1397 ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp));
1398 if (!ndev)
1399 return -ENOMEM;
1400
1401 platform_set_drvdata(pdev, ndev);
1402 SET_NETDEV_DEV(ndev, &pdev->dev);
1403 ndev->features = NETIF_F_SG;
1404 ndev->netdev_ops = &temac_netdev_ops;
1405 ndev->ethtool_ops = &temac_ethtool_ops;
1406 #if 0
1407 ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */
1408 ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */
1409 ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */
1410 ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */
1411 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */
1412 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */
1413 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */
1414 ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */
1415 ndev->features |= NETIF_F_GSO; /* Enable software GSO. */
1416 ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */
1417 ndev->features |= NETIF_F_LRO; /* large receive offload */
1418 #endif
1419
1420 /* setup temac private info structure */
1421 lp = netdev_priv(ndev);
1422 lp->ndev = ndev;
1423 lp->dev = &pdev->dev;
1424 lp->options = XTE_OPTION_DEFAULTS;
1425 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1426 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1427 spin_lock_init(&lp->rx_lock);
1428 INIT_DELAYED_WORK(&lp->restart_work, ll_temac_restart_work_func);
1429
1430 /* Setup mutex for synchronization of indirect register access */
1431 if (pdata) {
1432 if (!pdata->indirect_lock) {
1433 dev_err(&pdev->dev,
1434 "indirect_lock missing in platform_data\n");
1435 return -EINVAL;
1436 }
1437 lp->indirect_lock = pdata->indirect_lock;
1438 } else {
1439 lp->indirect_lock = devm_kmalloc(&pdev->dev,
1440 sizeof(*lp->indirect_lock),
1441 GFP_KERNEL);
1442 if (!lp->indirect_lock)
1443 return -ENOMEM;
1444 spin_lock_init(lp->indirect_lock);
1445 }
1446
1447 /* map device registers */
1448 lp->regs = devm_platform_ioremap_resource_byname(pdev, 0);
1449 if (IS_ERR(lp->regs)) {
1450 dev_err(&pdev->dev, "could not map TEMAC registers\n");
1451 return -ENOMEM;
1452 }
1453
1454 /* Select register access functions with the specified
1455 * endianness mode. Default for OF devices is big-endian.
1456 */
1457 little_endian = false;
1458 if (temac_np) {
1459 if (of_get_property(temac_np, "little-endian", NULL))
1460 little_endian = true;
1461 } else if (pdata) {
1462 little_endian = pdata->reg_little_endian;
1463 }
1464 if (little_endian) {
1465 lp->temac_ior = _temac_ior_le;
1466 lp->temac_iow = _temac_iow_le;
1467 } else {
1468 lp->temac_ior = _temac_ior_be;
1469 lp->temac_iow = _temac_iow_be;
1470 }
1471
1472 /* Setup checksum offload, but default to off if not specified */
1473 lp->temac_features = 0;
1474 if (temac_np) {
1475 p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL);
1476 if (p && be32_to_cpu(*p))
1477 lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
1478 p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL);
1479 if (p && be32_to_cpu(*p))
1480 lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
1481 } else if (pdata) {
1482 if (pdata->txcsum)
1483 lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
1484 if (pdata->rxcsum)
1485 lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
1486 }
1487 if (lp->temac_features & TEMAC_FEATURE_TX_CSUM)
1488 /* Can checksum TCP/UDP over IPv4. */
1489 ndev->features |= NETIF_F_IP_CSUM;
1490
1491 /* Defaults for IRQ delay/coalescing setup. These are
1492 * configuration values, so does not belong in device-tree.
1493 */
1494 lp->coalesce_delay_tx = 0x10;
1495 lp->coalesce_count_tx = 0x22;
1496 lp->coalesce_delay_rx = 0xff;
1497 lp->coalesce_count_rx = 0x07;
1498
1499 /* Setup LocalLink DMA */
1500 if (temac_np) {
1501 /* Find the DMA node, map the DMA registers, and
1502 * decode the DMA IRQs.
1503 */
1504 dma_np = of_parse_phandle(temac_np, "llink-connected", 0);
1505 if (!dma_np) {
1506 dev_err(&pdev->dev, "could not find DMA node\n");
1507 return -ENODEV;
1508 }
1509
1510 /* Setup the DMA register accesses, could be DCR or
1511 * memory mapped.
1512 */
1513 if (temac_dcr_setup(lp, pdev, dma_np)) {
1514 /* no DCR in the device tree, try non-DCR */
1515 lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0,
1516 NULL);
1517 if (IS_ERR(lp->sdma_regs)) {
1518 dev_err(&pdev->dev,
1519 "unable to map DMA registers\n");
1520 of_node_put(dma_np);
1521 return PTR_ERR(lp->sdma_regs);
1522 }
1523 if (of_property_read_bool(dma_np, "little-endian")) {
1524 lp->dma_in = temac_dma_in32_le;
1525 lp->dma_out = temac_dma_out32_le;
1526 } else {
1527 lp->dma_in = temac_dma_in32_be;
1528 lp->dma_out = temac_dma_out32_be;
1529 }
1530 dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs);
1531 }
1532
1533 /* Get DMA RX and TX interrupts */
1534 lp->rx_irq = irq_of_parse_and_map(dma_np, 0);
1535 lp->tx_irq = irq_of_parse_and_map(dma_np, 1);
1536
1537 /* Finished with the DMA node; drop the reference */
1538 of_node_put(dma_np);
1539 } else if (pdata) {
1540 /* 2nd memory resource specifies DMA registers */
1541 lp->sdma_regs = devm_platform_ioremap_resource(pdev, 1);
1542 if (IS_ERR(lp->sdma_regs)) {
1543 dev_err(&pdev->dev,
1544 "could not map DMA registers\n");
1545 return PTR_ERR(lp->sdma_regs);
1546 }
1547 if (pdata->dma_little_endian) {
1548 lp->dma_in = temac_dma_in32_le;
1549 lp->dma_out = temac_dma_out32_le;
1550 } else {
1551 lp->dma_in = temac_dma_in32_be;
1552 lp->dma_out = temac_dma_out32_be;
1553 }
1554
1555 /* Get DMA RX and TX interrupts */
1556 lp->rx_irq = platform_get_irq(pdev, 0);
1557 lp->tx_irq = platform_get_irq(pdev, 1);
1558
1559 /* IRQ delay/coalescing setup */
1560 if (pdata->tx_irq_timeout || pdata->tx_irq_count) {
1561 lp->coalesce_delay_tx = pdata->tx_irq_timeout;
1562 lp->coalesce_count_tx = pdata->tx_irq_count;
1563 }
1564 if (pdata->rx_irq_timeout || pdata->rx_irq_count) {
1565 lp->coalesce_delay_rx = pdata->rx_irq_timeout;
1566 lp->coalesce_count_rx = pdata->rx_irq_count;
1567 }
1568 }
1569
1570 /* Error handle returned DMA RX and TX interrupts */
1571 if (lp->rx_irq < 0)
1572 return dev_err_probe(&pdev->dev, lp->rx_irq,
1573 "could not get DMA RX irq\n");
1574 if (lp->tx_irq < 0)
1575 return dev_err_probe(&pdev->dev, lp->tx_irq,
1576 "could not get DMA TX irq\n");
1577
1578 if (temac_np) {
1579 /* Retrieve the MAC address */
1580 rc = of_get_mac_address(temac_np, addr);
1581 if (rc) {
1582 dev_err(&pdev->dev, "could not find MAC address\n");
1583 return -ENODEV;
1584 }
1585 temac_init_mac_address(ndev, addr);
1586 } else if (pdata) {
1587 temac_init_mac_address(ndev, pdata->mac_addr);
1588 }
1589
1590 rc = temac_mdio_setup(lp, pdev);
1591 if (rc)
1592 dev_warn(&pdev->dev, "error registering MDIO bus\n");
1593
1594 if (temac_np) {
1595 lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0);
1596 if (lp->phy_node)
1597 dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np);
1598 } else if (pdata) {
1599 snprintf(lp->phy_name, sizeof(lp->phy_name),
1600 PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr);
1601 lp->phy_interface = pdata->phy_interface;
1602 }
1603
1604 /* Add the device attributes */
1605 rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group);
1606 if (rc) {
1607 dev_err(lp->dev, "Error creating sysfs files\n");
1608 goto err_sysfs_create;
1609 }
1610
1611 rc = register_netdev(lp->ndev);
1612 if (rc) {
1613 dev_err(lp->dev, "register_netdev() error (%i)\n", rc);
1614 goto err_register_ndev;
1615 }
1616
1617 return 0;
1618
1619 err_register_ndev:
1620 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
1621 err_sysfs_create:
1622 if (lp->phy_node)
1623 of_node_put(lp->phy_node);
1624 temac_mdio_teardown(lp);
1625 return rc;
1626 }
1627
temac_remove(struct platform_device * pdev)1628 static int temac_remove(struct platform_device *pdev)
1629 {
1630 struct net_device *ndev = platform_get_drvdata(pdev);
1631 struct temac_local *lp = netdev_priv(ndev);
1632
1633 unregister_netdev(ndev);
1634 sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
1635 if (lp->phy_node)
1636 of_node_put(lp->phy_node);
1637 temac_mdio_teardown(lp);
1638 return 0;
1639 }
1640
1641 static const struct of_device_id temac_of_match[] = {
1642 { .compatible = "xlnx,xps-ll-temac-1.01.b", },
1643 { .compatible = "xlnx,xps-ll-temac-2.00.a", },
1644 { .compatible = "xlnx,xps-ll-temac-2.02.a", },
1645 { .compatible = "xlnx,xps-ll-temac-2.03.a", },
1646 {},
1647 };
1648 MODULE_DEVICE_TABLE(of, temac_of_match);
1649
1650 static struct platform_driver temac_driver = {
1651 .probe = temac_probe,
1652 .remove = temac_remove,
1653 .driver = {
1654 .name = "xilinx_temac",
1655 .of_match_table = temac_of_match,
1656 },
1657 };
1658
1659 module_platform_driver(temac_driver);
1660
1661 MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver");
1662 MODULE_AUTHOR("Yoshio Kashiwagi");
1663 MODULE_LICENSE("GPL");
1664