1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
32 }
33 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
53 	if (!ret)
54 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
ksz8_reset_switch(struct ksz_device * dev)61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
ksz8795_set_prio_queue(struct ksz_device * dev,int port,int queue)79 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
80 {
81 	u8 hi, lo;
82 
83 	/* Number of queues can only be 1, 2, or 4. */
84 	switch (queue) {
85 	case 4:
86 	case 3:
87 		queue = PORT_QUEUE_SPLIT_4;
88 		break;
89 	case 2:
90 		queue = PORT_QUEUE_SPLIT_2;
91 		break;
92 	default:
93 		queue = PORT_QUEUE_SPLIT_1;
94 	}
95 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
96 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
97 	lo &= ~PORT_QUEUE_SPLIT_L;
98 	if (queue & PORT_QUEUE_SPLIT_2)
99 		lo |= PORT_QUEUE_SPLIT_L;
100 	hi &= ~PORT_QUEUE_SPLIT_H;
101 	if (queue & PORT_QUEUE_SPLIT_4)
102 		hi |= PORT_QUEUE_SPLIT_H;
103 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
104 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
105 
106 	/* Default is port based for egress rate limit. */
107 	if (queue != PORT_QUEUE_SPLIT_1)
108 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
109 			true);
110 }
111 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)112 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
113 {
114 	const u32 *masks;
115 	const u16 *regs;
116 	u16 ctrl_addr;
117 	u32 data;
118 	u8 check;
119 	int loop;
120 
121 	masks = dev->info->masks;
122 	regs = dev->info->regs;
123 
124 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
125 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
126 
127 	mutex_lock(&dev->alu_mutex);
128 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
129 
130 	/* It is almost guaranteed to always read the valid bit because of
131 	 * slow SPI speed.
132 	 */
133 	for (loop = 2; loop > 0; loop--) {
134 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
135 
136 		if (check & masks[MIB_COUNTER_VALID]) {
137 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
138 			if (check & masks[MIB_COUNTER_OVERFLOW])
139 				*cnt += MIB_COUNTER_VALUE + 1;
140 			*cnt += data & MIB_COUNTER_VALUE;
141 			break;
142 		}
143 	}
144 	mutex_unlock(&dev->alu_mutex);
145 }
146 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)147 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
148 			      u64 *dropped, u64 *cnt)
149 {
150 	const u32 *masks;
151 	const u16 *regs;
152 	u16 ctrl_addr;
153 	u32 data;
154 	u8 check;
155 	int loop;
156 
157 	masks = dev->info->masks;
158 	regs = dev->info->regs;
159 
160 	addr -= dev->info->reg_mib_cnt;
161 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
162 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
163 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
164 
165 	mutex_lock(&dev->alu_mutex);
166 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
167 
168 	/* It is almost guaranteed to always read the valid bit because of
169 	 * slow SPI speed.
170 	 */
171 	for (loop = 2; loop > 0; loop--) {
172 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
173 
174 		if (check & masks[MIB_COUNTER_VALID]) {
175 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
176 			if (addr < 2) {
177 				u64 total;
178 
179 				total = check & MIB_TOTAL_BYTES_H;
180 				total <<= 32;
181 				*cnt += total;
182 				*cnt += data;
183 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
184 					total = MIB_TOTAL_BYTES_H + 1;
185 					total <<= 32;
186 					*cnt += total;
187 				}
188 			} else {
189 				if (check & masks[MIB_COUNTER_OVERFLOW])
190 					*cnt += MIB_PACKET_DROPPED + 1;
191 				*cnt += data & MIB_PACKET_DROPPED;
192 			}
193 			break;
194 		}
195 	}
196 	mutex_unlock(&dev->alu_mutex);
197 }
198 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)199 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
200 			      u64 *dropped, u64 *cnt)
201 {
202 	u32 *last = (u32 *)dropped;
203 	const u16 *regs;
204 	u16 ctrl_addr;
205 	u32 data;
206 	u32 cur;
207 
208 	regs = dev->info->regs;
209 
210 	addr -= dev->info->reg_mib_cnt;
211 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
212 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
213 	ctrl_addr += port;
214 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215 
216 	mutex_lock(&dev->alu_mutex);
217 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
219 	mutex_unlock(&dev->alu_mutex);
220 
221 	data &= MIB_PACKET_DROPPED;
222 	cur = last[addr];
223 	if (data != cur) {
224 		last[addr] = data;
225 		if (data < cur)
226 			data += MIB_PACKET_DROPPED + 1;
227 		data -= cur;
228 		*cnt += data;
229 	}
230 }
231 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)232 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
233 		    u64 *dropped, u64 *cnt)
234 {
235 	if (ksz_is_ksz88x3(dev))
236 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
237 	else
238 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
239 }
240 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)241 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
242 {
243 	if (ksz_is_ksz88x3(dev))
244 		return;
245 
246 	/* enable the port for flush/freeze function */
247 	if (freeze)
248 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
249 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
250 
251 	/* disable the port after freeze is done */
252 	if (!freeze)
253 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
254 }
255 
ksz8_port_init_cnt(struct ksz_device * dev,int port)256 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
257 {
258 	struct ksz_port_mib *mib = &dev->ports[port].mib;
259 	u64 *dropped;
260 
261 	if (!ksz_is_ksz88x3(dev)) {
262 		/* flush all enabled port MIB counters */
263 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
264 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
265 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
266 	}
267 
268 	mib->cnt_ptr = 0;
269 
270 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
271 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
272 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
273 					&mib->counters[mib->cnt_ptr]);
274 		++mib->cnt_ptr;
275 	}
276 
277 	/* last one in storage */
278 	dropped = &mib->counters[dev->info->mib_cnt];
279 
280 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
281 	while (mib->cnt_ptr < dev->info->mib_cnt) {
282 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
283 					dropped, &mib->counters[mib->cnt_ptr]);
284 		++mib->cnt_ptr;
285 	}
286 }
287 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)288 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
289 {
290 	const u16 *regs;
291 	u16 ctrl_addr;
292 
293 	regs = dev->info->regs;
294 
295 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
296 
297 	mutex_lock(&dev->alu_mutex);
298 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
299 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
300 	mutex_unlock(&dev->alu_mutex);
301 }
302 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)303 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
304 {
305 	const u16 *regs;
306 	u16 ctrl_addr;
307 
308 	regs = dev->info->regs;
309 
310 	ctrl_addr = IND_ACC_TABLE(table) | addr;
311 
312 	mutex_lock(&dev->alu_mutex);
313 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
314 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
315 	mutex_unlock(&dev->alu_mutex);
316 }
317 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)318 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
319 {
320 	int timeout = 100;
321 	const u32 *masks;
322 	const u16 *regs;
323 
324 	masks = dev->info->masks;
325 	regs = dev->info->regs;
326 
327 	do {
328 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
329 		timeout--;
330 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
331 
332 	/* Entry is not ready for accessing. */
333 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
334 		return -EAGAIN;
335 	/* Entry is ready for accessing. */
336 	} else {
337 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
338 
339 		/* There is no valid entry in the table. */
340 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
341 			return -ENXIO;
342 	}
343 	return 0;
344 }
345 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u8 * timestamp,u16 * entries)346 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
347 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
348 {
349 	u32 data_hi, data_lo;
350 	const u8 *shifts;
351 	const u32 *masks;
352 	const u16 *regs;
353 	u16 ctrl_addr;
354 	u8 data;
355 	int rc;
356 
357 	shifts = dev->info->shifts;
358 	masks = dev->info->masks;
359 	regs = dev->info->regs;
360 
361 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
362 
363 	mutex_lock(&dev->alu_mutex);
364 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
365 
366 	rc = ksz8_valid_dyn_entry(dev, &data);
367 	if (rc == -EAGAIN) {
368 		if (addr == 0)
369 			*entries = 0;
370 	} else if (rc == -ENXIO) {
371 		*entries = 0;
372 	/* At least one valid entry in the table. */
373 	} else {
374 		u64 buf = 0;
375 		int cnt;
376 
377 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
378 		data_hi = (u32)(buf >> 32);
379 		data_lo = (u32)buf;
380 
381 		/* Check out how many valid entry in the table. */
382 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
383 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
384 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
385 			shifts[DYNAMIC_MAC_ENTRIES];
386 		*entries = cnt + 1;
387 
388 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
389 			shifts[DYNAMIC_MAC_FID];
390 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
391 			shifts[DYNAMIC_MAC_SRC_PORT];
392 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
393 			shifts[DYNAMIC_MAC_TIMESTAMP];
394 
395 		mac_addr[5] = (u8)data_lo;
396 		mac_addr[4] = (u8)(data_lo >> 8);
397 		mac_addr[3] = (u8)(data_lo >> 16);
398 		mac_addr[2] = (u8)(data_lo >> 24);
399 
400 		mac_addr[1] = (u8)data_hi;
401 		mac_addr[0] = (u8)(data_hi >> 8);
402 		rc = 0;
403 	}
404 	mutex_unlock(&dev->alu_mutex);
405 
406 	return rc;
407 }
408 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)409 int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
410 			 struct alu_struct *alu)
411 {
412 	u32 data_hi, data_lo;
413 	const u8 *shifts;
414 	const u32 *masks;
415 	u64 data;
416 
417 	shifts = dev->info->shifts;
418 	masks = dev->info->masks;
419 
420 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
421 	data_hi = data >> 32;
422 	data_lo = (u32)data;
423 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
424 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
425 		alu->mac[5] = (u8)data_lo;
426 		alu->mac[4] = (u8)(data_lo >> 8);
427 		alu->mac[3] = (u8)(data_lo >> 16);
428 		alu->mac[2] = (u8)(data_lo >> 24);
429 		alu->mac[1] = (u8)data_hi;
430 		alu->mac[0] = (u8)(data_hi >> 8);
431 		alu->port_forward =
432 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
433 				shifts[STATIC_MAC_FWD_PORTS];
434 		alu->is_override =
435 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
436 		data_hi >>= 1;
437 		alu->is_static = true;
438 		alu->is_use_fid =
439 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
440 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
441 				shifts[STATIC_MAC_FID];
442 		return 0;
443 	}
444 	return -ENXIO;
445 }
446 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)447 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
448 			  struct alu_struct *alu)
449 {
450 	u32 data_hi, data_lo;
451 	const u8 *shifts;
452 	const u32 *masks;
453 	u64 data;
454 
455 	shifts = dev->info->shifts;
456 	masks = dev->info->masks;
457 
458 	data_lo = ((u32)alu->mac[2] << 24) |
459 		((u32)alu->mac[3] << 16) |
460 		((u32)alu->mac[4] << 8) | alu->mac[5];
461 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
462 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
463 
464 	if (alu->is_override)
465 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
466 	if (alu->is_use_fid) {
467 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
468 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
469 	}
470 	if (alu->is_static)
471 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
472 	else
473 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
474 
475 	data = (u64)data_hi << 32 | data_lo;
476 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
477 }
478 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)479 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
480 			   u8 *member, u8 *valid)
481 {
482 	const u8 *shifts;
483 	const u32 *masks;
484 
485 	shifts = dev->info->shifts;
486 	masks = dev->info->masks;
487 
488 	*fid = vlan & masks[VLAN_TABLE_FID];
489 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
490 			shifts[VLAN_TABLE_MEMBERSHIP_S];
491 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
492 }
493 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)494 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
495 			 u16 *vlan)
496 {
497 	const u8 *shifts;
498 	const u32 *masks;
499 
500 	shifts = dev->info->shifts;
501 	masks = dev->info->masks;
502 
503 	*vlan = fid;
504 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
505 	if (valid)
506 		*vlan |= masks[VLAN_TABLE_VALID];
507 }
508 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)509 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
510 {
511 	const u8 *shifts;
512 	u64 data;
513 	int i;
514 
515 	shifts = dev->info->shifts;
516 
517 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
518 	addr *= 4;
519 	for (i = 0; i < 4; i++) {
520 		dev->vlan_cache[addr + i].table[0] = (u16)data;
521 		data >>= shifts[VLAN_TABLE];
522 	}
523 }
524 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)525 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
526 {
527 	int index;
528 	u16 *data;
529 	u16 addr;
530 	u64 buf;
531 
532 	data = (u16 *)&buf;
533 	addr = vid / 4;
534 	index = vid & 3;
535 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
536 	*vlan = data[index];
537 }
538 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)539 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
540 {
541 	int index;
542 	u16 *data;
543 	u16 addr;
544 	u64 buf;
545 
546 	data = (u16 *)&buf;
547 	addr = vid / 4;
548 	index = vid & 3;
549 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
550 	data[index] = vlan;
551 	dev->vlan_cache[vid].table[0] = vlan;
552 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
553 }
554 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)555 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
556 {
557 	u8 restart, speed, ctrl, link;
558 	int processed = true;
559 	const u16 *regs;
560 	u8 val1, val2;
561 	u16 data = 0;
562 	u8 p = phy;
563 	int ret;
564 
565 	regs = dev->info->regs;
566 
567 	switch (reg) {
568 	case MII_BMCR:
569 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
570 		if (ret)
571 			return ret;
572 
573 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
574 		if (ret)
575 			return ret;
576 
577 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
578 		if (ret)
579 			return ret;
580 
581 		if (restart & PORT_PHY_LOOPBACK)
582 			data |= BMCR_LOOPBACK;
583 		if (ctrl & PORT_FORCE_100_MBIT)
584 			data |= BMCR_SPEED100;
585 		if (ksz_is_ksz88x3(dev)) {
586 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
587 				data |= BMCR_ANENABLE;
588 		} else {
589 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
590 				data |= BMCR_ANENABLE;
591 		}
592 		if (restart & PORT_POWER_DOWN)
593 			data |= BMCR_PDOWN;
594 		if (restart & PORT_AUTO_NEG_RESTART)
595 			data |= BMCR_ANRESTART;
596 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
597 			data |= BMCR_FULLDPLX;
598 		if (speed & PORT_HP_MDIX)
599 			data |= KSZ886X_BMCR_HP_MDIX;
600 		if (restart & PORT_FORCE_MDIX)
601 			data |= KSZ886X_BMCR_FORCE_MDI;
602 		if (restart & PORT_AUTO_MDIX_DISABLE)
603 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
604 		if (restart & PORT_TX_DISABLE)
605 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
606 		if (restart & PORT_LED_OFF)
607 			data |= KSZ886X_BMCR_DISABLE_LED;
608 		break;
609 	case MII_BMSR:
610 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
611 		if (ret)
612 			return ret;
613 
614 		data = BMSR_100FULL |
615 		       BMSR_100HALF |
616 		       BMSR_10FULL |
617 		       BMSR_10HALF |
618 		       BMSR_ANEGCAPABLE;
619 		if (link & PORT_AUTO_NEG_COMPLETE)
620 			data |= BMSR_ANEGCOMPLETE;
621 		if (link & PORT_STAT_LINK_GOOD)
622 			data |= BMSR_LSTATUS;
623 		break;
624 	case MII_PHYSID1:
625 		data = KSZ8795_ID_HI;
626 		break;
627 	case MII_PHYSID2:
628 		if (ksz_is_ksz88x3(dev))
629 			data = KSZ8863_ID_LO;
630 		else
631 			data = KSZ8795_ID_LO;
632 		break;
633 	case MII_ADVERTISE:
634 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
635 		if (ret)
636 			return ret;
637 
638 		data = ADVERTISE_CSMA;
639 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
640 			data |= ADVERTISE_PAUSE_CAP;
641 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
642 			data |= ADVERTISE_100FULL;
643 		if (ctrl & PORT_AUTO_NEG_100BTX)
644 			data |= ADVERTISE_100HALF;
645 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
646 			data |= ADVERTISE_10FULL;
647 		if (ctrl & PORT_AUTO_NEG_10BT)
648 			data |= ADVERTISE_10HALF;
649 		break;
650 	case MII_LPA:
651 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
652 		if (ret)
653 			return ret;
654 
655 		data = LPA_SLCT;
656 		if (link & PORT_REMOTE_SYM_PAUSE)
657 			data |= LPA_PAUSE_CAP;
658 		if (link & PORT_REMOTE_100BTX_FD)
659 			data |= LPA_100FULL;
660 		if (link & PORT_REMOTE_100BTX)
661 			data |= LPA_100HALF;
662 		if (link & PORT_REMOTE_10BT_FD)
663 			data |= LPA_10FULL;
664 		if (link & PORT_REMOTE_10BT)
665 			data |= LPA_10HALF;
666 		if (data & ~LPA_SLCT)
667 			data |= LPA_LPACK;
668 		break;
669 	case PHY_REG_LINK_MD:
670 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
671 		if (ret)
672 			return ret;
673 
674 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
675 		if (ret)
676 			return ret;
677 
678 		if (val1 & PORT_START_CABLE_DIAG)
679 			data |= PHY_START_CABLE_DIAG;
680 
681 		if (val1 & PORT_CABLE_10M_SHORT)
682 			data |= PHY_CABLE_10M_SHORT;
683 
684 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
685 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
686 
687 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
688 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
689 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
690 		break;
691 	case PHY_REG_PHY_CTRL:
692 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
693 		if (ret)
694 			return ret;
695 
696 		if (link & PORT_MDIX_STATUS)
697 			data |= KSZ886X_CTRL_MDIX_STAT;
698 		break;
699 	default:
700 		processed = false;
701 		break;
702 	}
703 	if (processed)
704 		*val = data;
705 
706 	return 0;
707 }
708 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)709 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
710 {
711 	u8 restart, speed, ctrl, data;
712 	const u16 *regs;
713 	u8 p = phy;
714 	int ret;
715 
716 	regs = dev->info->regs;
717 
718 	switch (reg) {
719 	case MII_BMCR:
720 
721 		/* Do not support PHY reset function. */
722 		if (val & BMCR_RESET)
723 			break;
724 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
725 		if (ret)
726 			return ret;
727 
728 		data = speed;
729 		if (val & KSZ886X_BMCR_HP_MDIX)
730 			data |= PORT_HP_MDIX;
731 		else
732 			data &= ~PORT_HP_MDIX;
733 
734 		if (data != speed) {
735 			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
736 			if (ret)
737 				return ret;
738 		}
739 
740 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
741 		if (ret)
742 			return ret;
743 
744 		data = ctrl;
745 		if (ksz_is_ksz88x3(dev)) {
746 			if ((val & BMCR_ANENABLE))
747 				data |= PORT_AUTO_NEG_ENABLE;
748 			else
749 				data &= ~PORT_AUTO_NEG_ENABLE;
750 		} else {
751 			if (!(val & BMCR_ANENABLE))
752 				data |= PORT_AUTO_NEG_DISABLE;
753 			else
754 				data &= ~PORT_AUTO_NEG_DISABLE;
755 
756 			/* Fiber port does not support auto-negotiation. */
757 			if (dev->ports[p].fiber)
758 				data |= PORT_AUTO_NEG_DISABLE;
759 		}
760 
761 		if (val & BMCR_SPEED100)
762 			data |= PORT_FORCE_100_MBIT;
763 		else
764 			data &= ~PORT_FORCE_100_MBIT;
765 		if (val & BMCR_FULLDPLX)
766 			data |= PORT_FORCE_FULL_DUPLEX;
767 		else
768 			data &= ~PORT_FORCE_FULL_DUPLEX;
769 
770 		if (data != ctrl) {
771 			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
772 			if (ret)
773 				return ret;
774 		}
775 
776 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
777 		if (ret)
778 			return ret;
779 
780 		data = restart;
781 		if (val & KSZ886X_BMCR_DISABLE_LED)
782 			data |= PORT_LED_OFF;
783 		else
784 			data &= ~PORT_LED_OFF;
785 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
786 			data |= PORT_TX_DISABLE;
787 		else
788 			data &= ~PORT_TX_DISABLE;
789 		if (val & BMCR_ANRESTART)
790 			data |= PORT_AUTO_NEG_RESTART;
791 		else
792 			data &= ~(PORT_AUTO_NEG_RESTART);
793 		if (val & BMCR_PDOWN)
794 			data |= PORT_POWER_DOWN;
795 		else
796 			data &= ~PORT_POWER_DOWN;
797 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
798 			data |= PORT_AUTO_MDIX_DISABLE;
799 		else
800 			data &= ~PORT_AUTO_MDIX_DISABLE;
801 		if (val & KSZ886X_BMCR_FORCE_MDI)
802 			data |= PORT_FORCE_MDIX;
803 		else
804 			data &= ~PORT_FORCE_MDIX;
805 		if (val & BMCR_LOOPBACK)
806 			data |= PORT_PHY_LOOPBACK;
807 		else
808 			data &= ~PORT_PHY_LOOPBACK;
809 
810 		if (data != restart) {
811 			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
812 					  data);
813 			if (ret)
814 				return ret;
815 		}
816 		break;
817 	case MII_ADVERTISE:
818 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
819 		if (ret)
820 			return ret;
821 
822 		data = ctrl;
823 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
824 			  PORT_AUTO_NEG_100BTX_FD |
825 			  PORT_AUTO_NEG_100BTX |
826 			  PORT_AUTO_NEG_10BT_FD |
827 			  PORT_AUTO_NEG_10BT);
828 		if (val & ADVERTISE_PAUSE_CAP)
829 			data |= PORT_AUTO_NEG_SYM_PAUSE;
830 		if (val & ADVERTISE_100FULL)
831 			data |= PORT_AUTO_NEG_100BTX_FD;
832 		if (val & ADVERTISE_100HALF)
833 			data |= PORT_AUTO_NEG_100BTX;
834 		if (val & ADVERTISE_10FULL)
835 			data |= PORT_AUTO_NEG_10BT_FD;
836 		if (val & ADVERTISE_10HALF)
837 			data |= PORT_AUTO_NEG_10BT;
838 
839 		if (data != ctrl) {
840 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
841 			if (ret)
842 				return ret;
843 		}
844 		break;
845 	case PHY_REG_LINK_MD:
846 		if (val & PHY_START_CABLE_DIAG)
847 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
848 		break;
849 	default:
850 		break;
851 	}
852 
853 	return 0;
854 }
855 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)856 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
857 {
858 	u8 data;
859 
860 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
861 	data &= ~PORT_VLAN_MEMBERSHIP;
862 	data |= (member & dev->port_mask);
863 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
864 }
865 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)866 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
867 {
868 	u8 learn[DSA_MAX_PORTS];
869 	int first, index, cnt;
870 	struct ksz_port *p;
871 	const u16 *regs;
872 
873 	regs = dev->info->regs;
874 
875 	if ((uint)port < dev->info->port_cnt) {
876 		first = port;
877 		cnt = port + 1;
878 	} else {
879 		/* Flush all ports. */
880 		first = 0;
881 		cnt = dev->info->port_cnt;
882 	}
883 	for (index = first; index < cnt; index++) {
884 		p = &dev->ports[index];
885 		if (!p->on)
886 			continue;
887 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
888 		if (!(learn[index] & PORT_LEARN_DISABLE))
889 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
890 				    learn[index] | PORT_LEARN_DISABLE);
891 	}
892 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
893 	for (index = first; index < cnt; index++) {
894 		p = &dev->ports[index];
895 		if (!p->on)
896 			continue;
897 		if (!(learn[index] & PORT_LEARN_DISABLE))
898 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
899 	}
900 }
901 
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)902 int ksz8_fdb_dump(struct ksz_device *dev, int port,
903 		  dsa_fdb_dump_cb_t *cb, void *data)
904 {
905 	int ret = 0;
906 	u16 i = 0;
907 	u16 entries = 0;
908 	u8 timestamp = 0;
909 	u8 fid;
910 	u8 member;
911 	struct alu_struct alu;
912 
913 	do {
914 		alu.is_static = false;
915 		ret = ksz8_r_dyn_mac_table(dev, i, alu.mac, &fid, &member,
916 					   &timestamp, &entries);
917 		if (!ret && (member & BIT(port))) {
918 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
919 			if (ret)
920 				break;
921 		}
922 		i++;
923 	} while (i < entries);
924 	if (i >= entries)
925 		ret = 0;
926 
927 	return ret;
928 }
929 
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)930 int ksz8_mdb_add(struct ksz_device *dev, int port,
931 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
932 {
933 	struct alu_struct alu;
934 	int index;
935 	int empty = 0;
936 
937 	alu.port_forward = 0;
938 	for (index = 0; index < dev->info->num_statics; index++) {
939 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
940 			/* Found one already in static MAC table. */
941 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
942 			    alu.fid == mdb->vid)
943 				break;
944 		/* Remember the first empty entry. */
945 		} else if (!empty) {
946 			empty = index + 1;
947 		}
948 	}
949 
950 	/* no available entry */
951 	if (index == dev->info->num_statics && !empty)
952 		return -ENOSPC;
953 
954 	/* add entry */
955 	if (index == dev->info->num_statics) {
956 		index = empty - 1;
957 		memset(&alu, 0, sizeof(alu));
958 		memcpy(alu.mac, mdb->addr, ETH_ALEN);
959 		alu.is_static = true;
960 	}
961 	alu.port_forward |= BIT(port);
962 	if (mdb->vid) {
963 		alu.is_use_fid = true;
964 
965 		/* Need a way to map VID to FID. */
966 		alu.fid = mdb->vid;
967 	}
968 	ksz8_w_sta_mac_table(dev, index, &alu);
969 
970 	return 0;
971 }
972 
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)973 int ksz8_mdb_del(struct ksz_device *dev, int port,
974 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
975 {
976 	struct alu_struct alu;
977 	int index;
978 
979 	for (index = 0; index < dev->info->num_statics; index++) {
980 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
981 			/* Found one already in static MAC table. */
982 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
983 			    alu.fid == mdb->vid)
984 				break;
985 		}
986 	}
987 
988 	/* no available entry */
989 	if (index == dev->info->num_statics)
990 		goto exit;
991 
992 	/* clear port */
993 	alu.port_forward &= ~BIT(port);
994 	if (!alu.port_forward)
995 		alu.is_static = false;
996 	ksz8_w_sta_mac_table(dev, index, &alu);
997 
998 exit:
999 	return 0;
1000 }
1001 
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1002 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1003 			     struct netlink_ext_ack *extack)
1004 {
1005 	if (ksz_is_ksz88x3(dev))
1006 		return -ENOTSUPP;
1007 
1008 	/* Discard packets with VID not enabled on the switch */
1009 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1010 
1011 	/* Discard packets with VID not enabled on the ingress port */
1012 	for (port = 0; port < dev->phy_port_cnt; ++port)
1013 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1014 			     flag);
1015 
1016 	return 0;
1017 }
1018 
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1019 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1020 {
1021 	if (ksz_is_ksz88x3(dev)) {
1022 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1023 			0x03 << (4 - 2 * port), state);
1024 	} else {
1025 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1026 	}
1027 }
1028 
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1029 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1030 		       const struct switchdev_obj_port_vlan *vlan,
1031 		       struct netlink_ext_ack *extack)
1032 {
1033 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1034 	struct ksz_port *p = &dev->ports[port];
1035 	u16 data, new_pvid = 0;
1036 	u8 fid, member, valid;
1037 
1038 	if (ksz_is_ksz88x3(dev))
1039 		return -ENOTSUPP;
1040 
1041 	/* If a VLAN is added with untagged flag different from the
1042 	 * port's Remove Tag flag, we need to change the latter.
1043 	 * Ignore VID 0, which is always untagged.
1044 	 * Ignore CPU port, which will always be tagged.
1045 	 */
1046 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1047 	    port != dev->cpu_port) {
1048 		unsigned int vid;
1049 
1050 		/* Reject attempts to add a VLAN that requires the
1051 		 * Remove Tag flag to be changed, unless there are no
1052 		 * other VLANs currently configured.
1053 		 */
1054 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1055 			/* Skip the VID we are going to add or reconfigure */
1056 			if (vid == vlan->vid)
1057 				continue;
1058 
1059 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1060 				       &fid, &member, &valid);
1061 			if (valid && (member & BIT(port)))
1062 				return -EINVAL;
1063 		}
1064 
1065 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1066 		p->remove_tag = untagged;
1067 	}
1068 
1069 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1070 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1071 
1072 	/* First time to setup the VLAN entry. */
1073 	if (!valid) {
1074 		/* Need to find a way to map VID to FID. */
1075 		fid = 1;
1076 		valid = 1;
1077 	}
1078 	member |= BIT(port);
1079 
1080 	ksz8_to_vlan(dev, fid, member, valid, &data);
1081 	ksz8_w_vlan_table(dev, vlan->vid, data);
1082 
1083 	/* change PVID */
1084 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1085 		new_pvid = vlan->vid;
1086 
1087 	if (new_pvid) {
1088 		u16 vid;
1089 
1090 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1091 		vid &= ~VLAN_VID_MASK;
1092 		vid |= new_pvid;
1093 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1094 
1095 		ksz8_port_enable_pvid(dev, port, true);
1096 	}
1097 
1098 	return 0;
1099 }
1100 
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1101 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1102 		       const struct switchdev_obj_port_vlan *vlan)
1103 {
1104 	u16 data, pvid;
1105 	u8 fid, member, valid;
1106 
1107 	if (ksz_is_ksz88x3(dev))
1108 		return -ENOTSUPP;
1109 
1110 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1111 	pvid = pvid & 0xFFF;
1112 
1113 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1114 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1115 
1116 	member &= ~BIT(port);
1117 
1118 	/* Invalidate the entry if no more member. */
1119 	if (!member) {
1120 		fid = 0;
1121 		valid = 0;
1122 	}
1123 
1124 	ksz8_to_vlan(dev, fid, member, valid, &data);
1125 	ksz8_w_vlan_table(dev, vlan->vid, data);
1126 
1127 	if (pvid == vlan->vid)
1128 		ksz8_port_enable_pvid(dev, port, false);
1129 
1130 	return 0;
1131 }
1132 
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1133 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1134 			 struct dsa_mall_mirror_tc_entry *mirror,
1135 			 bool ingress, struct netlink_ext_ack *extack)
1136 {
1137 	if (ingress) {
1138 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1139 		dev->mirror_rx |= BIT(port);
1140 	} else {
1141 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1142 		dev->mirror_tx |= BIT(port);
1143 	}
1144 
1145 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1146 
1147 	/* configure mirror port */
1148 	if (dev->mirror_rx || dev->mirror_tx)
1149 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1150 			     PORT_MIRROR_SNIFFER, true);
1151 
1152 	return 0;
1153 }
1154 
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1155 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1156 			  struct dsa_mall_mirror_tc_entry *mirror)
1157 {
1158 	u8 data;
1159 
1160 	if (mirror->ingress) {
1161 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1162 		dev->mirror_rx &= ~BIT(port);
1163 	} else {
1164 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1165 		dev->mirror_tx &= ~BIT(port);
1166 	}
1167 
1168 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1169 
1170 	if (!dev->mirror_rx && !dev->mirror_tx)
1171 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1172 			     PORT_MIRROR_SNIFFER, false);
1173 }
1174 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1175 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1176 {
1177 	struct ksz_port *p = &dev->ports[port];
1178 
1179 	if (!p->interface && dev->compat_interface) {
1180 		dev_warn(dev->dev,
1181 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1182 			 "Please update your device tree.\n",
1183 			 port);
1184 		p->interface = dev->compat_interface;
1185 	}
1186 }
1187 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1188 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1189 {
1190 	struct dsa_switch *ds = dev->ds;
1191 	const u32 *masks;
1192 	u8 member;
1193 
1194 	masks = dev->info->masks;
1195 
1196 	/* enable broadcast storm limit */
1197 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1198 
1199 	if (!ksz_is_ksz88x3(dev))
1200 		ksz8795_set_prio_queue(dev, port, 4);
1201 
1202 	/* disable DiffServ priority */
1203 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1204 
1205 	/* replace priority */
1206 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1207 		     masks[PORT_802_1P_REMAPPING], false);
1208 
1209 	/* enable 802.1p priority */
1210 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1211 
1212 	if (cpu_port) {
1213 		if (!ksz_is_ksz88x3(dev))
1214 			ksz8795_cpu_interface_select(dev, port);
1215 
1216 		member = dsa_user_ports(ds);
1217 	} else {
1218 		member = BIT(dsa_upstream_port(ds, port));
1219 	}
1220 
1221 	ksz8_cfg_port_member(dev, port, member);
1222 }
1223 
ksz8_config_cpu_port(struct dsa_switch * ds)1224 void ksz8_config_cpu_port(struct dsa_switch *ds)
1225 {
1226 	struct ksz_device *dev = ds->priv;
1227 	struct ksz_port *p;
1228 	const u32 *masks;
1229 	const u16 *regs;
1230 	u8 remote;
1231 	int i;
1232 
1233 	masks = dev->info->masks;
1234 	regs = dev->info->regs;
1235 
1236 	/* Switch marks the maximum frame with extra byte as oversize. */
1237 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1238 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1239 
1240 	p = &dev->ports[dev->cpu_port];
1241 	p->on = 1;
1242 
1243 	ksz8_port_setup(dev, dev->cpu_port, true);
1244 
1245 	for (i = 0; i < dev->phy_port_cnt; i++) {
1246 		p = &dev->ports[i];
1247 
1248 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1249 
1250 		/* Last port may be disabled. */
1251 		if (i == dev->phy_port_cnt)
1252 			break;
1253 		p->on = 1;
1254 	}
1255 	for (i = 0; i < dev->phy_port_cnt; i++) {
1256 		p = &dev->ports[i];
1257 		if (!p->on)
1258 			continue;
1259 		if (!ksz_is_ksz88x3(dev)) {
1260 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1261 			if (remote & KSZ8_PORT_FIBER_MODE)
1262 				p->fiber = 1;
1263 		}
1264 		if (p->fiber)
1265 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1266 				     PORT_FORCE_FLOW_CTRL, true);
1267 		else
1268 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1269 				     PORT_FORCE_FLOW_CTRL, false);
1270 	}
1271 }
1272 
ksz8_handle_global_errata(struct dsa_switch * ds)1273 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1274 {
1275 	struct ksz_device *dev = ds->priv;
1276 	int ret = 0;
1277 
1278 	/* KSZ87xx Errata DS80000687C.
1279 	 * Module 2: Link drops with some EEE link partners.
1280 	 *   An issue with the EEE next page exchange between the
1281 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1282 	 *   the link dropping.
1283 	 */
1284 	if (dev->info->ksz87xx_eee_link_erratum)
1285 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1286 
1287 	return ret;
1288 }
1289 
ksz8_enable_stp_addr(struct ksz_device * dev)1290 int ksz8_enable_stp_addr(struct ksz_device *dev)
1291 {
1292 	struct alu_struct alu;
1293 
1294 	/* Setup STP address for STP operation. */
1295 	memset(&alu, 0, sizeof(alu));
1296 	ether_addr_copy(alu.mac, eth_stp_addr);
1297 	alu.is_static = true;
1298 	alu.is_override = true;
1299 	alu.port_forward = dev->info->cpu_ports;
1300 
1301 	ksz8_w_sta_mac_table(dev, 0, &alu);
1302 
1303 	return 0;
1304 }
1305 
ksz8_setup(struct dsa_switch * ds)1306 int ksz8_setup(struct dsa_switch *ds)
1307 {
1308 	struct ksz_device *dev = ds->priv;
1309 	int i;
1310 
1311 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1312 
1313 	/* Enable automatic fast aging when link changed detected. */
1314 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1315 
1316 	/* Enable aggressive back off algorithm in half duplex mode. */
1317 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1318 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1319 
1320 	/*
1321 	 * Make sure unicast VLAN boundary is set as default and
1322 	 * enable no excessive collision drop.
1323 	 */
1324 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1325 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1326 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1327 
1328 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1329 
1330 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1331 
1332 	if (!ksz_is_ksz88x3(dev))
1333 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1334 
1335 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1336 		ksz8_r_vlan_entries(dev, i);
1337 
1338 	return ksz8_handle_global_errata(ds);
1339 }
1340 
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1341 void ksz8_get_caps(struct ksz_device *dev, int port,
1342 		   struct phylink_config *config)
1343 {
1344 	config->mac_capabilities = MAC_10 | MAC_100;
1345 
1346 	/* Silicon Errata Sheet (DS80000830A):
1347 	 * "Port 1 does not respond to received flow control PAUSE frames"
1348 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1349 	 * switches.
1350 	 */
1351 	if (!ksz_is_ksz88x3(dev) || port)
1352 		config->mac_capabilities |= MAC_SYM_PAUSE;
1353 
1354 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1355 	if (!ksz_is_ksz88x3(dev))
1356 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1357 }
1358 
ksz8_get_port_addr(int port,int offset)1359 u32 ksz8_get_port_addr(int port, int offset)
1360 {
1361 	return PORT_CTRL_ADDR(port, offset);
1362 }
1363 
ksz8_switch_init(struct ksz_device * dev)1364 int ksz8_switch_init(struct ksz_device *dev)
1365 {
1366 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1367 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1368 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1369 
1370 	/* We rely on software untagging on the CPU port, so that we
1371 	 * can support both tagged and untagged VLANs
1372 	 */
1373 	dev->ds->untag_bridge_pvid = true;
1374 
1375 	/* VLAN filtering is partly controlled by the global VLAN
1376 	 * Enable flag
1377 	 */
1378 	dev->ds->vlan_filtering_is_global = true;
1379 
1380 	return 0;
1381 }
1382 
ksz8_switch_exit(struct ksz_device * dev)1383 void ksz8_switch_exit(struct ksz_device *dev)
1384 {
1385 	ksz8_reset_switch(dev);
1386 }
1387 
1388 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1389 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1390 MODULE_LICENSE("GPL");
1391