1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ8795 switch driver
4 *
5 * Copyright (C) 2017 Microchip Technology Inc.
6 * Tristram Ha <Tristram.Ha@microchip.com>
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
32 }
33
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 bool set)
36 {
37 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
38 bits, set ? bits : 0);
39 }
40
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 const u16 *regs;
44 u16 ctrl_addr;
45 int ret = 0;
46
47 regs = dev->info->regs;
48
49 mutex_lock(&dev->alu_mutex);
50
51 ctrl_addr = IND_ACC_TABLE(table) | addr;
52 ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
53 if (!ret)
54 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
55
56 mutex_unlock(&dev->alu_mutex);
57
58 return ret;
59 }
60
ksz8_reset_switch(struct ksz_device * dev)61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 if (ksz_is_ksz88x3(dev)) {
64 /* reset switch */
65 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 } else {
70 /* reset switch */
71 ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 }
75
76 return 0;
77 }
78
ksz8795_set_prio_queue(struct ksz_device * dev,int port,int queue)79 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
80 {
81 u8 hi, lo;
82
83 /* Number of queues can only be 1, 2, or 4. */
84 switch (queue) {
85 case 4:
86 case 3:
87 queue = PORT_QUEUE_SPLIT_4;
88 break;
89 case 2:
90 queue = PORT_QUEUE_SPLIT_2;
91 break;
92 default:
93 queue = PORT_QUEUE_SPLIT_1;
94 }
95 ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
96 ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
97 lo &= ~PORT_QUEUE_SPLIT_L;
98 if (queue & PORT_QUEUE_SPLIT_2)
99 lo |= PORT_QUEUE_SPLIT_L;
100 hi &= ~PORT_QUEUE_SPLIT_H;
101 if (queue & PORT_QUEUE_SPLIT_4)
102 hi |= PORT_QUEUE_SPLIT_H;
103 ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
104 ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
105
106 /* Default is port based for egress rate limit. */
107 if (queue != PORT_QUEUE_SPLIT_1)
108 ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
109 true);
110 }
111
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)112 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
113 {
114 const u32 *masks;
115 const u16 *regs;
116 u16 ctrl_addr;
117 u32 data;
118 u8 check;
119 int loop;
120
121 masks = dev->info->masks;
122 regs = dev->info->regs;
123
124 ctrl_addr = addr + dev->info->reg_mib_cnt * port;
125 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
126
127 mutex_lock(&dev->alu_mutex);
128 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
129
130 /* It is almost guaranteed to always read the valid bit because of
131 * slow SPI speed.
132 */
133 for (loop = 2; loop > 0; loop--) {
134 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
135
136 if (check & masks[MIB_COUNTER_VALID]) {
137 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
138 if (check & masks[MIB_COUNTER_OVERFLOW])
139 *cnt += MIB_COUNTER_VALUE + 1;
140 *cnt += data & MIB_COUNTER_VALUE;
141 break;
142 }
143 }
144 mutex_unlock(&dev->alu_mutex);
145 }
146
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)147 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
148 u64 *dropped, u64 *cnt)
149 {
150 const u32 *masks;
151 const u16 *regs;
152 u16 ctrl_addr;
153 u32 data;
154 u8 check;
155 int loop;
156
157 masks = dev->info->masks;
158 regs = dev->info->regs;
159
160 addr -= dev->info->reg_mib_cnt;
161 ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
162 ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
163 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
164
165 mutex_lock(&dev->alu_mutex);
166 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
167
168 /* It is almost guaranteed to always read the valid bit because of
169 * slow SPI speed.
170 */
171 for (loop = 2; loop > 0; loop--) {
172 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
173
174 if (check & masks[MIB_COUNTER_VALID]) {
175 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
176 if (addr < 2) {
177 u64 total;
178
179 total = check & MIB_TOTAL_BYTES_H;
180 total <<= 32;
181 *cnt += total;
182 *cnt += data;
183 if (check & masks[MIB_COUNTER_OVERFLOW]) {
184 total = MIB_TOTAL_BYTES_H + 1;
185 total <<= 32;
186 *cnt += total;
187 }
188 } else {
189 if (check & masks[MIB_COUNTER_OVERFLOW])
190 *cnt += MIB_PACKET_DROPPED + 1;
191 *cnt += data & MIB_PACKET_DROPPED;
192 }
193 break;
194 }
195 }
196 mutex_unlock(&dev->alu_mutex);
197 }
198
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)199 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
200 u64 *dropped, u64 *cnt)
201 {
202 u32 *last = (u32 *)dropped;
203 const u16 *regs;
204 u16 ctrl_addr;
205 u32 data;
206 u32 cur;
207
208 regs = dev->info->regs;
209
210 addr -= dev->info->reg_mib_cnt;
211 ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
212 KSZ8863_MIB_PACKET_DROPPED_RX_0;
213 ctrl_addr += port;
214 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215
216 mutex_lock(&dev->alu_mutex);
217 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
219 mutex_unlock(&dev->alu_mutex);
220
221 data &= MIB_PACKET_DROPPED;
222 cur = last[addr];
223 if (data != cur) {
224 last[addr] = data;
225 if (data < cur)
226 data += MIB_PACKET_DROPPED + 1;
227 data -= cur;
228 *cnt += data;
229 }
230 }
231
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)232 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
233 u64 *dropped, u64 *cnt)
234 {
235 if (ksz_is_ksz88x3(dev))
236 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
237 else
238 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
239 }
240
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)241 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
242 {
243 if (ksz_is_ksz88x3(dev))
244 return;
245
246 /* enable the port for flush/freeze function */
247 if (freeze)
248 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
249 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
250
251 /* disable the port after freeze is done */
252 if (!freeze)
253 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
254 }
255
ksz8_port_init_cnt(struct ksz_device * dev,int port)256 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
257 {
258 struct ksz_port_mib *mib = &dev->ports[port].mib;
259 u64 *dropped;
260
261 if (!ksz_is_ksz88x3(dev)) {
262 /* flush all enabled port MIB counters */
263 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
264 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
265 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
266 }
267
268 mib->cnt_ptr = 0;
269
270 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
271 while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
272 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
273 &mib->counters[mib->cnt_ptr]);
274 ++mib->cnt_ptr;
275 }
276
277 /* last one in storage */
278 dropped = &mib->counters[dev->info->mib_cnt];
279
280 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
281 while (mib->cnt_ptr < dev->info->mib_cnt) {
282 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
283 dropped, &mib->counters[mib->cnt_ptr]);
284 ++mib->cnt_ptr;
285 }
286 }
287
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)288 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
289 {
290 const u16 *regs;
291 u16 ctrl_addr;
292
293 regs = dev->info->regs;
294
295 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
296
297 mutex_lock(&dev->alu_mutex);
298 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
299 ksz_read64(dev, regs[REG_IND_DATA_HI], data);
300 mutex_unlock(&dev->alu_mutex);
301 }
302
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)303 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
304 {
305 const u16 *regs;
306 u16 ctrl_addr;
307
308 regs = dev->info->regs;
309
310 ctrl_addr = IND_ACC_TABLE(table) | addr;
311
312 mutex_lock(&dev->alu_mutex);
313 ksz_write64(dev, regs[REG_IND_DATA_HI], data);
314 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
315 mutex_unlock(&dev->alu_mutex);
316 }
317
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)318 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
319 {
320 int timeout = 100;
321 const u32 *masks;
322 const u16 *regs;
323
324 masks = dev->info->masks;
325 regs = dev->info->regs;
326
327 do {
328 ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
329 timeout--;
330 } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
331
332 /* Entry is not ready for accessing. */
333 if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
334 return -EAGAIN;
335 /* Entry is ready for accessing. */
336 } else {
337 ksz_read8(dev, regs[REG_IND_DATA_8], data);
338
339 /* There is no valid entry in the table. */
340 if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
341 return -ENXIO;
342 }
343 return 0;
344 }
345
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u8 * timestamp,u16 * entries)346 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
347 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
348 {
349 u32 data_hi, data_lo;
350 const u8 *shifts;
351 const u32 *masks;
352 const u16 *regs;
353 u16 ctrl_addr;
354 u8 data;
355 int rc;
356
357 shifts = dev->info->shifts;
358 masks = dev->info->masks;
359 regs = dev->info->regs;
360
361 ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
362
363 mutex_lock(&dev->alu_mutex);
364 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
365
366 rc = ksz8_valid_dyn_entry(dev, &data);
367 if (rc == -EAGAIN) {
368 if (addr == 0)
369 *entries = 0;
370 } else if (rc == -ENXIO) {
371 *entries = 0;
372 /* At least one valid entry in the table. */
373 } else {
374 u64 buf = 0;
375 int cnt;
376
377 ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
378 data_hi = (u32)(buf >> 32);
379 data_lo = (u32)buf;
380
381 /* Check out how many valid entry in the table. */
382 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
383 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
384 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
385 shifts[DYNAMIC_MAC_ENTRIES];
386 *entries = cnt + 1;
387
388 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
389 shifts[DYNAMIC_MAC_FID];
390 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
391 shifts[DYNAMIC_MAC_SRC_PORT];
392 *timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
393 shifts[DYNAMIC_MAC_TIMESTAMP];
394
395 mac_addr[5] = (u8)data_lo;
396 mac_addr[4] = (u8)(data_lo >> 8);
397 mac_addr[3] = (u8)(data_lo >> 16);
398 mac_addr[2] = (u8)(data_lo >> 24);
399
400 mac_addr[1] = (u8)data_hi;
401 mac_addr[0] = (u8)(data_hi >> 8);
402 rc = 0;
403 }
404 mutex_unlock(&dev->alu_mutex);
405
406 return rc;
407 }
408
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)409 int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
410 struct alu_struct *alu)
411 {
412 u32 data_hi, data_lo;
413 const u8 *shifts;
414 const u32 *masks;
415 u64 data;
416
417 shifts = dev->info->shifts;
418 masks = dev->info->masks;
419
420 ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
421 data_hi = data >> 32;
422 data_lo = (u32)data;
423 if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
424 masks[STATIC_MAC_TABLE_OVERRIDE])) {
425 alu->mac[5] = (u8)data_lo;
426 alu->mac[4] = (u8)(data_lo >> 8);
427 alu->mac[3] = (u8)(data_lo >> 16);
428 alu->mac[2] = (u8)(data_lo >> 24);
429 alu->mac[1] = (u8)data_hi;
430 alu->mac[0] = (u8)(data_hi >> 8);
431 alu->port_forward =
432 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
433 shifts[STATIC_MAC_FWD_PORTS];
434 alu->is_override =
435 (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
436 data_hi >>= 1;
437 alu->is_static = true;
438 alu->is_use_fid =
439 (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
440 alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
441 shifts[STATIC_MAC_FID];
442 return 0;
443 }
444 return -ENXIO;
445 }
446
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)447 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
448 struct alu_struct *alu)
449 {
450 u32 data_hi, data_lo;
451 const u8 *shifts;
452 const u32 *masks;
453 u64 data;
454
455 shifts = dev->info->shifts;
456 masks = dev->info->masks;
457
458 data_lo = ((u32)alu->mac[2] << 24) |
459 ((u32)alu->mac[3] << 16) |
460 ((u32)alu->mac[4] << 8) | alu->mac[5];
461 data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
462 data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
463
464 if (alu->is_override)
465 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
466 if (alu->is_use_fid) {
467 data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
468 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
469 }
470 if (alu->is_static)
471 data_hi |= masks[STATIC_MAC_TABLE_VALID];
472 else
473 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
474
475 data = (u64)data_hi << 32 | data_lo;
476 ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
477 }
478
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)479 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
480 u8 *member, u8 *valid)
481 {
482 const u8 *shifts;
483 const u32 *masks;
484
485 shifts = dev->info->shifts;
486 masks = dev->info->masks;
487
488 *fid = vlan & masks[VLAN_TABLE_FID];
489 *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
490 shifts[VLAN_TABLE_MEMBERSHIP_S];
491 *valid = !!(vlan & masks[VLAN_TABLE_VALID]);
492 }
493
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)494 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
495 u16 *vlan)
496 {
497 const u8 *shifts;
498 const u32 *masks;
499
500 shifts = dev->info->shifts;
501 masks = dev->info->masks;
502
503 *vlan = fid;
504 *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
505 if (valid)
506 *vlan |= masks[VLAN_TABLE_VALID];
507 }
508
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)509 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
510 {
511 const u8 *shifts;
512 u64 data;
513 int i;
514
515 shifts = dev->info->shifts;
516
517 ksz8_r_table(dev, TABLE_VLAN, addr, &data);
518 addr *= 4;
519 for (i = 0; i < 4; i++) {
520 dev->vlan_cache[addr + i].table[0] = (u16)data;
521 data >>= shifts[VLAN_TABLE];
522 }
523 }
524
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)525 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
526 {
527 int index;
528 u16 *data;
529 u16 addr;
530 u64 buf;
531
532 data = (u16 *)&buf;
533 addr = vid / 4;
534 index = vid & 3;
535 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
536 *vlan = data[index];
537 }
538
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)539 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
540 {
541 int index;
542 u16 *data;
543 u16 addr;
544 u64 buf;
545
546 data = (u16 *)&buf;
547 addr = vid / 4;
548 index = vid & 3;
549 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
550 data[index] = vlan;
551 dev->vlan_cache[vid].table[0] = vlan;
552 ksz8_w_table(dev, TABLE_VLAN, addr, buf);
553 }
554
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)555 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
556 {
557 u8 restart, speed, ctrl, link;
558 int processed = true;
559 const u16 *regs;
560 u8 val1, val2;
561 u16 data = 0;
562 u8 p = phy;
563 int ret;
564
565 regs = dev->info->regs;
566
567 switch (reg) {
568 case MII_BMCR:
569 ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
570 if (ret)
571 return ret;
572
573 ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
574 if (ret)
575 return ret;
576
577 ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
578 if (ret)
579 return ret;
580
581 if (restart & PORT_PHY_LOOPBACK)
582 data |= BMCR_LOOPBACK;
583 if (ctrl & PORT_FORCE_100_MBIT)
584 data |= BMCR_SPEED100;
585 if (ksz_is_ksz88x3(dev)) {
586 if ((ctrl & PORT_AUTO_NEG_ENABLE))
587 data |= BMCR_ANENABLE;
588 } else {
589 if (!(ctrl & PORT_AUTO_NEG_DISABLE))
590 data |= BMCR_ANENABLE;
591 }
592 if (restart & PORT_POWER_DOWN)
593 data |= BMCR_PDOWN;
594 if (restart & PORT_AUTO_NEG_RESTART)
595 data |= BMCR_ANRESTART;
596 if (ctrl & PORT_FORCE_FULL_DUPLEX)
597 data |= BMCR_FULLDPLX;
598 if (speed & PORT_HP_MDIX)
599 data |= KSZ886X_BMCR_HP_MDIX;
600 if (restart & PORT_FORCE_MDIX)
601 data |= KSZ886X_BMCR_FORCE_MDI;
602 if (restart & PORT_AUTO_MDIX_DISABLE)
603 data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
604 if (restart & PORT_TX_DISABLE)
605 data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
606 if (restart & PORT_LED_OFF)
607 data |= KSZ886X_BMCR_DISABLE_LED;
608 break;
609 case MII_BMSR:
610 ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
611 if (ret)
612 return ret;
613
614 data = BMSR_100FULL |
615 BMSR_100HALF |
616 BMSR_10FULL |
617 BMSR_10HALF |
618 BMSR_ANEGCAPABLE;
619 if (link & PORT_AUTO_NEG_COMPLETE)
620 data |= BMSR_ANEGCOMPLETE;
621 if (link & PORT_STAT_LINK_GOOD)
622 data |= BMSR_LSTATUS;
623 break;
624 case MII_PHYSID1:
625 data = KSZ8795_ID_HI;
626 break;
627 case MII_PHYSID2:
628 if (ksz_is_ksz88x3(dev))
629 data = KSZ8863_ID_LO;
630 else
631 data = KSZ8795_ID_LO;
632 break;
633 case MII_ADVERTISE:
634 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
635 if (ret)
636 return ret;
637
638 data = ADVERTISE_CSMA;
639 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
640 data |= ADVERTISE_PAUSE_CAP;
641 if (ctrl & PORT_AUTO_NEG_100BTX_FD)
642 data |= ADVERTISE_100FULL;
643 if (ctrl & PORT_AUTO_NEG_100BTX)
644 data |= ADVERTISE_100HALF;
645 if (ctrl & PORT_AUTO_NEG_10BT_FD)
646 data |= ADVERTISE_10FULL;
647 if (ctrl & PORT_AUTO_NEG_10BT)
648 data |= ADVERTISE_10HALF;
649 break;
650 case MII_LPA:
651 ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
652 if (ret)
653 return ret;
654
655 data = LPA_SLCT;
656 if (link & PORT_REMOTE_SYM_PAUSE)
657 data |= LPA_PAUSE_CAP;
658 if (link & PORT_REMOTE_100BTX_FD)
659 data |= LPA_100FULL;
660 if (link & PORT_REMOTE_100BTX)
661 data |= LPA_100HALF;
662 if (link & PORT_REMOTE_10BT_FD)
663 data |= LPA_10FULL;
664 if (link & PORT_REMOTE_10BT)
665 data |= LPA_10HALF;
666 if (data & ~LPA_SLCT)
667 data |= LPA_LPACK;
668 break;
669 case PHY_REG_LINK_MD:
670 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
671 if (ret)
672 return ret;
673
674 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
675 if (ret)
676 return ret;
677
678 if (val1 & PORT_START_CABLE_DIAG)
679 data |= PHY_START_CABLE_DIAG;
680
681 if (val1 & PORT_CABLE_10M_SHORT)
682 data |= PHY_CABLE_10M_SHORT;
683
684 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
685 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
686
687 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
688 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
689 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
690 break;
691 case PHY_REG_PHY_CTRL:
692 ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
693 if (ret)
694 return ret;
695
696 if (link & PORT_MDIX_STATUS)
697 data |= KSZ886X_CTRL_MDIX_STAT;
698 break;
699 default:
700 processed = false;
701 break;
702 }
703 if (processed)
704 *val = data;
705
706 return 0;
707 }
708
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)709 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
710 {
711 u8 restart, speed, ctrl, data;
712 const u16 *regs;
713 u8 p = phy;
714 int ret;
715
716 regs = dev->info->regs;
717
718 switch (reg) {
719 case MII_BMCR:
720
721 /* Do not support PHY reset function. */
722 if (val & BMCR_RESET)
723 break;
724 ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
725 if (ret)
726 return ret;
727
728 data = speed;
729 if (val & KSZ886X_BMCR_HP_MDIX)
730 data |= PORT_HP_MDIX;
731 else
732 data &= ~PORT_HP_MDIX;
733
734 if (data != speed) {
735 ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
736 if (ret)
737 return ret;
738 }
739
740 ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
741 if (ret)
742 return ret;
743
744 data = ctrl;
745 if (ksz_is_ksz88x3(dev)) {
746 if ((val & BMCR_ANENABLE))
747 data |= PORT_AUTO_NEG_ENABLE;
748 else
749 data &= ~PORT_AUTO_NEG_ENABLE;
750 } else {
751 if (!(val & BMCR_ANENABLE))
752 data |= PORT_AUTO_NEG_DISABLE;
753 else
754 data &= ~PORT_AUTO_NEG_DISABLE;
755
756 /* Fiber port does not support auto-negotiation. */
757 if (dev->ports[p].fiber)
758 data |= PORT_AUTO_NEG_DISABLE;
759 }
760
761 if (val & BMCR_SPEED100)
762 data |= PORT_FORCE_100_MBIT;
763 else
764 data &= ~PORT_FORCE_100_MBIT;
765 if (val & BMCR_FULLDPLX)
766 data |= PORT_FORCE_FULL_DUPLEX;
767 else
768 data &= ~PORT_FORCE_FULL_DUPLEX;
769
770 if (data != ctrl) {
771 ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
772 if (ret)
773 return ret;
774 }
775
776 ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
777 if (ret)
778 return ret;
779
780 data = restart;
781 if (val & KSZ886X_BMCR_DISABLE_LED)
782 data |= PORT_LED_OFF;
783 else
784 data &= ~PORT_LED_OFF;
785 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
786 data |= PORT_TX_DISABLE;
787 else
788 data &= ~PORT_TX_DISABLE;
789 if (val & BMCR_ANRESTART)
790 data |= PORT_AUTO_NEG_RESTART;
791 else
792 data &= ~(PORT_AUTO_NEG_RESTART);
793 if (val & BMCR_PDOWN)
794 data |= PORT_POWER_DOWN;
795 else
796 data &= ~PORT_POWER_DOWN;
797 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
798 data |= PORT_AUTO_MDIX_DISABLE;
799 else
800 data &= ~PORT_AUTO_MDIX_DISABLE;
801 if (val & KSZ886X_BMCR_FORCE_MDI)
802 data |= PORT_FORCE_MDIX;
803 else
804 data &= ~PORT_FORCE_MDIX;
805 if (val & BMCR_LOOPBACK)
806 data |= PORT_PHY_LOOPBACK;
807 else
808 data &= ~PORT_PHY_LOOPBACK;
809
810 if (data != restart) {
811 ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
812 data);
813 if (ret)
814 return ret;
815 }
816 break;
817 case MII_ADVERTISE:
818 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
819 if (ret)
820 return ret;
821
822 data = ctrl;
823 data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
824 PORT_AUTO_NEG_100BTX_FD |
825 PORT_AUTO_NEG_100BTX |
826 PORT_AUTO_NEG_10BT_FD |
827 PORT_AUTO_NEG_10BT);
828 if (val & ADVERTISE_PAUSE_CAP)
829 data |= PORT_AUTO_NEG_SYM_PAUSE;
830 if (val & ADVERTISE_100FULL)
831 data |= PORT_AUTO_NEG_100BTX_FD;
832 if (val & ADVERTISE_100HALF)
833 data |= PORT_AUTO_NEG_100BTX;
834 if (val & ADVERTISE_10FULL)
835 data |= PORT_AUTO_NEG_10BT_FD;
836 if (val & ADVERTISE_10HALF)
837 data |= PORT_AUTO_NEG_10BT;
838
839 if (data != ctrl) {
840 ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
841 if (ret)
842 return ret;
843 }
844 break;
845 case PHY_REG_LINK_MD:
846 if (val & PHY_START_CABLE_DIAG)
847 ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
848 break;
849 default:
850 break;
851 }
852
853 return 0;
854 }
855
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)856 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
857 {
858 u8 data;
859
860 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
861 data &= ~PORT_VLAN_MEMBERSHIP;
862 data |= (member & dev->port_mask);
863 ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
864 }
865
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)866 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
867 {
868 u8 learn[DSA_MAX_PORTS];
869 int first, index, cnt;
870 struct ksz_port *p;
871 const u16 *regs;
872
873 regs = dev->info->regs;
874
875 if ((uint)port < dev->info->port_cnt) {
876 first = port;
877 cnt = port + 1;
878 } else {
879 /* Flush all ports. */
880 first = 0;
881 cnt = dev->info->port_cnt;
882 }
883 for (index = first; index < cnt; index++) {
884 p = &dev->ports[index];
885 if (!p->on)
886 continue;
887 ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
888 if (!(learn[index] & PORT_LEARN_DISABLE))
889 ksz_pwrite8(dev, index, regs[P_STP_CTRL],
890 learn[index] | PORT_LEARN_DISABLE);
891 }
892 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
893 for (index = first; index < cnt; index++) {
894 p = &dev->ports[index];
895 if (!p->on)
896 continue;
897 if (!(learn[index] & PORT_LEARN_DISABLE))
898 ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
899 }
900 }
901
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)902 int ksz8_fdb_dump(struct ksz_device *dev, int port,
903 dsa_fdb_dump_cb_t *cb, void *data)
904 {
905 int ret = 0;
906 u16 i = 0;
907 u16 entries = 0;
908 u8 timestamp = 0;
909 u8 fid;
910 u8 member;
911 struct alu_struct alu;
912
913 do {
914 alu.is_static = false;
915 ret = ksz8_r_dyn_mac_table(dev, i, alu.mac, &fid, &member,
916 ×tamp, &entries);
917 if (!ret && (member & BIT(port))) {
918 ret = cb(alu.mac, alu.fid, alu.is_static, data);
919 if (ret)
920 break;
921 }
922 i++;
923 } while (i < entries);
924 if (i >= entries)
925 ret = 0;
926
927 return ret;
928 }
929
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)930 int ksz8_mdb_add(struct ksz_device *dev, int port,
931 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
932 {
933 struct alu_struct alu;
934 int index;
935 int empty = 0;
936
937 alu.port_forward = 0;
938 for (index = 0; index < dev->info->num_statics; index++) {
939 if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
940 /* Found one already in static MAC table. */
941 if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
942 alu.fid == mdb->vid)
943 break;
944 /* Remember the first empty entry. */
945 } else if (!empty) {
946 empty = index + 1;
947 }
948 }
949
950 /* no available entry */
951 if (index == dev->info->num_statics && !empty)
952 return -ENOSPC;
953
954 /* add entry */
955 if (index == dev->info->num_statics) {
956 index = empty - 1;
957 memset(&alu, 0, sizeof(alu));
958 memcpy(alu.mac, mdb->addr, ETH_ALEN);
959 alu.is_static = true;
960 }
961 alu.port_forward |= BIT(port);
962 if (mdb->vid) {
963 alu.is_use_fid = true;
964
965 /* Need a way to map VID to FID. */
966 alu.fid = mdb->vid;
967 }
968 ksz8_w_sta_mac_table(dev, index, &alu);
969
970 return 0;
971 }
972
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)973 int ksz8_mdb_del(struct ksz_device *dev, int port,
974 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
975 {
976 struct alu_struct alu;
977 int index;
978
979 for (index = 0; index < dev->info->num_statics; index++) {
980 if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
981 /* Found one already in static MAC table. */
982 if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
983 alu.fid == mdb->vid)
984 break;
985 }
986 }
987
988 /* no available entry */
989 if (index == dev->info->num_statics)
990 goto exit;
991
992 /* clear port */
993 alu.port_forward &= ~BIT(port);
994 if (!alu.port_forward)
995 alu.is_static = false;
996 ksz8_w_sta_mac_table(dev, index, &alu);
997
998 exit:
999 return 0;
1000 }
1001
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1002 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1003 struct netlink_ext_ack *extack)
1004 {
1005 if (ksz_is_ksz88x3(dev))
1006 return -ENOTSUPP;
1007
1008 /* Discard packets with VID not enabled on the switch */
1009 ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1010
1011 /* Discard packets with VID not enabled on the ingress port */
1012 for (port = 0; port < dev->phy_port_cnt; ++port)
1013 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1014 flag);
1015
1016 return 0;
1017 }
1018
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1019 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1020 {
1021 if (ksz_is_ksz88x3(dev)) {
1022 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1023 0x03 << (4 - 2 * port), state);
1024 } else {
1025 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1026 }
1027 }
1028
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1029 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1030 const struct switchdev_obj_port_vlan *vlan,
1031 struct netlink_ext_ack *extack)
1032 {
1033 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1034 struct ksz_port *p = &dev->ports[port];
1035 u16 data, new_pvid = 0;
1036 u8 fid, member, valid;
1037
1038 if (ksz_is_ksz88x3(dev))
1039 return -ENOTSUPP;
1040
1041 /* If a VLAN is added with untagged flag different from the
1042 * port's Remove Tag flag, we need to change the latter.
1043 * Ignore VID 0, which is always untagged.
1044 * Ignore CPU port, which will always be tagged.
1045 */
1046 if (untagged != p->remove_tag && vlan->vid != 0 &&
1047 port != dev->cpu_port) {
1048 unsigned int vid;
1049
1050 /* Reject attempts to add a VLAN that requires the
1051 * Remove Tag flag to be changed, unless there are no
1052 * other VLANs currently configured.
1053 */
1054 for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1055 /* Skip the VID we are going to add or reconfigure */
1056 if (vid == vlan->vid)
1057 continue;
1058
1059 ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1060 &fid, &member, &valid);
1061 if (valid && (member & BIT(port)))
1062 return -EINVAL;
1063 }
1064
1065 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1066 p->remove_tag = untagged;
1067 }
1068
1069 ksz8_r_vlan_table(dev, vlan->vid, &data);
1070 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1071
1072 /* First time to setup the VLAN entry. */
1073 if (!valid) {
1074 /* Need to find a way to map VID to FID. */
1075 fid = 1;
1076 valid = 1;
1077 }
1078 member |= BIT(port);
1079
1080 ksz8_to_vlan(dev, fid, member, valid, &data);
1081 ksz8_w_vlan_table(dev, vlan->vid, data);
1082
1083 /* change PVID */
1084 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1085 new_pvid = vlan->vid;
1086
1087 if (new_pvid) {
1088 u16 vid;
1089
1090 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1091 vid &= ~VLAN_VID_MASK;
1092 vid |= new_pvid;
1093 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1094
1095 ksz8_port_enable_pvid(dev, port, true);
1096 }
1097
1098 return 0;
1099 }
1100
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1101 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1102 const struct switchdev_obj_port_vlan *vlan)
1103 {
1104 u16 data, pvid;
1105 u8 fid, member, valid;
1106
1107 if (ksz_is_ksz88x3(dev))
1108 return -ENOTSUPP;
1109
1110 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1111 pvid = pvid & 0xFFF;
1112
1113 ksz8_r_vlan_table(dev, vlan->vid, &data);
1114 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1115
1116 member &= ~BIT(port);
1117
1118 /* Invalidate the entry if no more member. */
1119 if (!member) {
1120 fid = 0;
1121 valid = 0;
1122 }
1123
1124 ksz8_to_vlan(dev, fid, member, valid, &data);
1125 ksz8_w_vlan_table(dev, vlan->vid, data);
1126
1127 if (pvid == vlan->vid)
1128 ksz8_port_enable_pvid(dev, port, false);
1129
1130 return 0;
1131 }
1132
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1133 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1134 struct dsa_mall_mirror_tc_entry *mirror,
1135 bool ingress, struct netlink_ext_ack *extack)
1136 {
1137 if (ingress) {
1138 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1139 dev->mirror_rx |= BIT(port);
1140 } else {
1141 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1142 dev->mirror_tx |= BIT(port);
1143 }
1144
1145 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1146
1147 /* configure mirror port */
1148 if (dev->mirror_rx || dev->mirror_tx)
1149 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1150 PORT_MIRROR_SNIFFER, true);
1151
1152 return 0;
1153 }
1154
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1155 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1156 struct dsa_mall_mirror_tc_entry *mirror)
1157 {
1158 u8 data;
1159
1160 if (mirror->ingress) {
1161 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1162 dev->mirror_rx &= ~BIT(port);
1163 } else {
1164 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1165 dev->mirror_tx &= ~BIT(port);
1166 }
1167
1168 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1169
1170 if (!dev->mirror_rx && !dev->mirror_tx)
1171 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1172 PORT_MIRROR_SNIFFER, false);
1173 }
1174
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1175 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1176 {
1177 struct ksz_port *p = &dev->ports[port];
1178
1179 if (!p->interface && dev->compat_interface) {
1180 dev_warn(dev->dev,
1181 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1182 "Please update your device tree.\n",
1183 port);
1184 p->interface = dev->compat_interface;
1185 }
1186 }
1187
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1188 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1189 {
1190 struct dsa_switch *ds = dev->ds;
1191 const u32 *masks;
1192 u8 member;
1193
1194 masks = dev->info->masks;
1195
1196 /* enable broadcast storm limit */
1197 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1198
1199 if (!ksz_is_ksz88x3(dev))
1200 ksz8795_set_prio_queue(dev, port, 4);
1201
1202 /* disable DiffServ priority */
1203 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1204
1205 /* replace priority */
1206 ksz_port_cfg(dev, port, P_802_1P_CTRL,
1207 masks[PORT_802_1P_REMAPPING], false);
1208
1209 /* enable 802.1p priority */
1210 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1211
1212 if (cpu_port) {
1213 if (!ksz_is_ksz88x3(dev))
1214 ksz8795_cpu_interface_select(dev, port);
1215
1216 member = dsa_user_ports(ds);
1217 } else {
1218 member = BIT(dsa_upstream_port(ds, port));
1219 }
1220
1221 ksz8_cfg_port_member(dev, port, member);
1222 }
1223
ksz8_config_cpu_port(struct dsa_switch * ds)1224 void ksz8_config_cpu_port(struct dsa_switch *ds)
1225 {
1226 struct ksz_device *dev = ds->priv;
1227 struct ksz_port *p;
1228 const u32 *masks;
1229 const u16 *regs;
1230 u8 remote;
1231 int i;
1232
1233 masks = dev->info->masks;
1234 regs = dev->info->regs;
1235
1236 /* Switch marks the maximum frame with extra byte as oversize. */
1237 ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1238 ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1239
1240 p = &dev->ports[dev->cpu_port];
1241 p->on = 1;
1242
1243 ksz8_port_setup(dev, dev->cpu_port, true);
1244
1245 for (i = 0; i < dev->phy_port_cnt; i++) {
1246 p = &dev->ports[i];
1247
1248 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1249
1250 /* Last port may be disabled. */
1251 if (i == dev->phy_port_cnt)
1252 break;
1253 p->on = 1;
1254 }
1255 for (i = 0; i < dev->phy_port_cnt; i++) {
1256 p = &dev->ports[i];
1257 if (!p->on)
1258 continue;
1259 if (!ksz_is_ksz88x3(dev)) {
1260 ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1261 if (remote & KSZ8_PORT_FIBER_MODE)
1262 p->fiber = 1;
1263 }
1264 if (p->fiber)
1265 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1266 PORT_FORCE_FLOW_CTRL, true);
1267 else
1268 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1269 PORT_FORCE_FLOW_CTRL, false);
1270 }
1271 }
1272
ksz8_handle_global_errata(struct dsa_switch * ds)1273 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1274 {
1275 struct ksz_device *dev = ds->priv;
1276 int ret = 0;
1277
1278 /* KSZ87xx Errata DS80000687C.
1279 * Module 2: Link drops with some EEE link partners.
1280 * An issue with the EEE next page exchange between the
1281 * KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1282 * the link dropping.
1283 */
1284 if (dev->info->ksz87xx_eee_link_erratum)
1285 ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1286
1287 return ret;
1288 }
1289
ksz8_enable_stp_addr(struct ksz_device * dev)1290 int ksz8_enable_stp_addr(struct ksz_device *dev)
1291 {
1292 struct alu_struct alu;
1293
1294 /* Setup STP address for STP operation. */
1295 memset(&alu, 0, sizeof(alu));
1296 ether_addr_copy(alu.mac, eth_stp_addr);
1297 alu.is_static = true;
1298 alu.is_override = true;
1299 alu.port_forward = dev->info->cpu_ports;
1300
1301 ksz8_w_sta_mac_table(dev, 0, &alu);
1302
1303 return 0;
1304 }
1305
ksz8_setup(struct dsa_switch * ds)1306 int ksz8_setup(struct dsa_switch *ds)
1307 {
1308 struct ksz_device *dev = ds->priv;
1309 int i;
1310
1311 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1312
1313 /* Enable automatic fast aging when link changed detected. */
1314 ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1315
1316 /* Enable aggressive back off algorithm in half duplex mode. */
1317 regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1318 SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1319
1320 /*
1321 * Make sure unicast VLAN boundary is set as default and
1322 * enable no excessive collision drop.
1323 */
1324 regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1325 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1326 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1327
1328 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1329
1330 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1331
1332 if (!ksz_is_ksz88x3(dev))
1333 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1334
1335 for (i = 0; i < (dev->info->num_vlans / 4); i++)
1336 ksz8_r_vlan_entries(dev, i);
1337
1338 return ksz8_handle_global_errata(ds);
1339 }
1340
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1341 void ksz8_get_caps(struct ksz_device *dev, int port,
1342 struct phylink_config *config)
1343 {
1344 config->mac_capabilities = MAC_10 | MAC_100;
1345
1346 /* Silicon Errata Sheet (DS80000830A):
1347 * "Port 1 does not respond to received flow control PAUSE frames"
1348 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1349 * switches.
1350 */
1351 if (!ksz_is_ksz88x3(dev) || port)
1352 config->mac_capabilities |= MAC_SYM_PAUSE;
1353
1354 /* Asym pause is not supported on KSZ8863 and KSZ8873 */
1355 if (!ksz_is_ksz88x3(dev))
1356 config->mac_capabilities |= MAC_ASYM_PAUSE;
1357 }
1358
ksz8_get_port_addr(int port,int offset)1359 u32 ksz8_get_port_addr(int port, int offset)
1360 {
1361 return PORT_CTRL_ADDR(port, offset);
1362 }
1363
ksz8_switch_init(struct ksz_device * dev)1364 int ksz8_switch_init(struct ksz_device *dev)
1365 {
1366 dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1367 dev->phy_port_cnt = dev->info->port_cnt - 1;
1368 dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1369
1370 /* We rely on software untagging on the CPU port, so that we
1371 * can support both tagged and untagged VLANs
1372 */
1373 dev->ds->untag_bridge_pvid = true;
1374
1375 /* VLAN filtering is partly controlled by the global VLAN
1376 * Enable flag
1377 */
1378 dev->ds->vlan_filtering_is_global = true;
1379
1380 return 0;
1381 }
1382
ksz8_switch_exit(struct ksz_device * dev)1383 void ksz8_switch_exit(struct ksz_device *dev)
1384 {
1385 ksz8_reset_switch(dev);
1386 }
1387
1388 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1389 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1390 MODULE_LICENSE("GPL");
1391