1 /*
2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
8 * - completely revamped method functions so they are aware and
9 * independent of the flash geometry (buswidth, interleave, etc.)
10 * - scalability vs code size is completely set at compile-time
11 * (see include/linux/mtd/cfi.h for selection)
12 * - optimized write buffer method
13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
15 * (command set 0x0020)
16 * - added a writev function
17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
18 * - Plugged memory leak in cfi_staa_writev().
19 */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/mtd/map.h>
33 #include <linux/mtd/cfi.h>
34 #include <linux/mtd/mtd.h>
35
36
37 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
38 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
39 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
40 unsigned long count, loff_t to, size_t *retlen);
41 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
42 static void cfi_staa_sync (struct mtd_info *);
43 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
44 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
45 static int cfi_staa_suspend (struct mtd_info *);
46 static void cfi_staa_resume (struct mtd_info *);
47
48 static void cfi_staa_destroy(struct mtd_info *);
49
50 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
51
52 static struct mtd_info *cfi_staa_setup (struct map_info *);
53
54 static struct mtd_chip_driver cfi_staa_chipdrv = {
55 .probe = NULL, /* Not usable directly */
56 .destroy = cfi_staa_destroy,
57 .name = "cfi_cmdset_0020",
58 .module = THIS_MODULE
59 };
60
61 /* #define DEBUG_LOCK_BITS */
62 //#define DEBUG_CFI_FEATURES
63
64 #ifdef DEBUG_CFI_FEATURES
cfi_tell_features(struct cfi_pri_intelext * extp)65 static void cfi_tell_features(struct cfi_pri_intelext *extp)
66 {
67 int i;
68 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
69 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
70 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
71 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
72 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
73 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
74 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
75 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
76 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
77 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
78 for (i=9; i<32; i++) {
79 if (extp->FeatureSupport & (1<<i))
80 printk(" - Unknown Bit %X: supported\n", i);
81 }
82
83 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
84 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
85 for (i=1; i<8; i++) {
86 if (extp->SuspendCmdSupport & (1<<i))
87 printk(" - Unknown Bit %X: supported\n", i);
88 }
89
90 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
91 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
92 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
93 for (i=2; i<16; i++) {
94 if (extp->BlkStatusRegMask & (1<<i))
95 printk(" - Unknown Bit %X Active: yes\n",i);
96 }
97
98 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
99 extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
100 if (extp->VppOptimal)
101 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
102 extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
103 }
104 #endif
105
106 /* This routine is made available to other mtd code via
107 * inter_module_register. It must only be accessed through
108 * inter_module_get which will bump the use count of this module. The
109 * addresses passed back in cfi are valid as long as the use count of
110 * this module is non-zero, i.e. between inter_module_get and
111 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
112 */
cfi_cmdset_0020(struct map_info * map,int primary)113 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
114 {
115 struct cfi_private *cfi = map->fldrv_priv;
116 int i;
117
118 if (cfi->cfi_mode) {
119 /*
120 * It's a real CFI chip, not one for which the probe
121 * routine faked a CFI structure. So we read the feature
122 * table from it.
123 */
124 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
125 struct cfi_pri_intelext *extp;
126
127 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
128 if (!extp)
129 return NULL;
130
131 if (extp->MajorVersion != '1' ||
132 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
133 printk(KERN_ERR " Unknown ST Microelectronics"
134 " Extended Query version %c.%c.\n",
135 extp->MajorVersion, extp->MinorVersion);
136 kfree(extp);
137 return NULL;
138 }
139
140 /* Do some byteswapping if necessary */
141 extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport);
142 extp->BlkStatusRegMask = cfi32_to_cpu(map,
143 extp->BlkStatusRegMask);
144
145 #ifdef DEBUG_CFI_FEATURES
146 /* Tell the user about it in lots of lovely detail */
147 cfi_tell_features(extp);
148 #endif
149
150 /* Install our own private info structure */
151 cfi->cmdset_priv = extp;
152 }
153
154 for (i=0; i< cfi->numchips; i++) {
155 cfi->chips[i].word_write_time = 128;
156 cfi->chips[i].buffer_write_time = 128;
157 cfi->chips[i].erase_time = 1024;
158 cfi->chips[i].ref_point_counter = 0;
159 init_waitqueue_head(&(cfi->chips[i].wq));
160 }
161
162 return cfi_staa_setup(map);
163 }
164 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
165
cfi_staa_setup(struct map_info * map)166 static struct mtd_info *cfi_staa_setup(struct map_info *map)
167 {
168 struct cfi_private *cfi = map->fldrv_priv;
169 struct mtd_info *mtd;
170 unsigned long offset = 0;
171 int i,j;
172 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
173
174 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
176
177 if (!mtd) {
178 kfree(cfi->cmdset_priv);
179 return NULL;
180 }
181
182 mtd->priv = map;
183 mtd->type = MTD_NORFLASH;
184 mtd->size = devsize * cfi->numchips;
185
186 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
187 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
188 sizeof(struct mtd_erase_region_info),
189 GFP_KERNEL);
190 if (!mtd->eraseregions) {
191 kfree(cfi->cmdset_priv);
192 kfree(mtd);
193 return NULL;
194 }
195
196 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
197 unsigned long ernum, ersize;
198 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
199 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
200
201 if (mtd->erasesize < ersize) {
202 mtd->erasesize = ersize;
203 }
204 for (j=0; j<cfi->numchips; j++) {
205 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
206 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
207 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
208 }
209 offset += (ersize * ernum);
210 }
211
212 if (offset != devsize) {
213 /* Argh */
214 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
215 kfree(mtd->eraseregions);
216 kfree(cfi->cmdset_priv);
217 kfree(mtd);
218 return NULL;
219 }
220
221 for (i=0; i<mtd->numeraseregions;i++){
222 printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
223 i, (unsigned long long)mtd->eraseregions[i].offset,
224 mtd->eraseregions[i].erasesize,
225 mtd->eraseregions[i].numblocks);
226 }
227
228 /* Also select the correct geometry setup too */
229 mtd->_erase = cfi_staa_erase_varsize;
230 mtd->_read = cfi_staa_read;
231 mtd->_write = cfi_staa_write_buffers;
232 mtd->_writev = cfi_staa_writev;
233 mtd->_sync = cfi_staa_sync;
234 mtd->_lock = cfi_staa_lock;
235 mtd->_unlock = cfi_staa_unlock;
236 mtd->_suspend = cfi_staa_suspend;
237 mtd->_resume = cfi_staa_resume;
238 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
239 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
240 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
241 map->fldrv = &cfi_staa_chipdrv;
242 __module_get(THIS_MODULE);
243 mtd->name = map->name;
244 return mtd;
245 }
246
247
do_read_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf)248 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
249 {
250 map_word status, status_OK;
251 unsigned long timeo;
252 DECLARE_WAITQUEUE(wait, current);
253 int suspended = 0;
254 unsigned long cmd_addr;
255 struct cfi_private *cfi = map->fldrv_priv;
256
257 adr += chip->start;
258
259 /* Ensure cmd read/writes are aligned. */
260 cmd_addr = adr & ~(map_bankwidth(map)-1);
261
262 /* Let's determine this according to the interleave only once */
263 status_OK = CMD(0x80);
264
265 timeo = jiffies + HZ;
266 retry:
267 mutex_lock(&chip->mutex);
268
269 /* Check that the chip's ready to talk to us.
270 * If it's in FL_ERASING state, suspend it and make it talk now.
271 */
272 switch (chip->state) {
273 case FL_ERASING:
274 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
275 goto sleep; /* We don't support erase suspend */
276
277 map_write (map, CMD(0xb0), cmd_addr);
278 /* If the flash has finished erasing, then 'erase suspend'
279 * appears to make some (28F320) flash devices switch to
280 * 'read' mode. Make sure that we switch to 'read status'
281 * mode so we get the right data. --rmk
282 */
283 map_write(map, CMD(0x70), cmd_addr);
284 chip->oldstate = FL_ERASING;
285 chip->state = FL_ERASE_SUSPENDING;
286 // printk("Erase suspending at 0x%lx\n", cmd_addr);
287 for (;;) {
288 status = map_read(map, cmd_addr);
289 if (map_word_andequal(map, status, status_OK, status_OK))
290 break;
291
292 if (time_after(jiffies, timeo)) {
293 /* Urgh */
294 map_write(map, CMD(0xd0), cmd_addr);
295 /* make sure we're in 'read status' mode */
296 map_write(map, CMD(0x70), cmd_addr);
297 chip->state = FL_ERASING;
298 wake_up(&chip->wq);
299 mutex_unlock(&chip->mutex);
300 printk(KERN_ERR "Chip not ready after erase "
301 "suspended: status = 0x%lx\n", status.x[0]);
302 return -EIO;
303 }
304
305 mutex_unlock(&chip->mutex);
306 cfi_udelay(1);
307 mutex_lock(&chip->mutex);
308 }
309
310 suspended = 1;
311 map_write(map, CMD(0xff), cmd_addr);
312 chip->state = FL_READY;
313 break;
314
315 #if 0
316 case FL_WRITING:
317 /* Not quite yet */
318 #endif
319
320 case FL_READY:
321 break;
322
323 case FL_CFI_QUERY:
324 case FL_JEDEC_QUERY:
325 map_write(map, CMD(0x70), cmd_addr);
326 chip->state = FL_STATUS;
327 fallthrough;
328 case FL_STATUS:
329 status = map_read(map, cmd_addr);
330 if (map_word_andequal(map, status, status_OK, status_OK)) {
331 map_write(map, CMD(0xff), cmd_addr);
332 chip->state = FL_READY;
333 break;
334 }
335
336 /* Urgh. Chip not yet ready to talk to us. */
337 if (time_after(jiffies, timeo)) {
338 mutex_unlock(&chip->mutex);
339 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
340 return -EIO;
341 }
342
343 /* Latency issues. Drop the lock, wait a while and retry */
344 mutex_unlock(&chip->mutex);
345 cfi_udelay(1);
346 goto retry;
347
348 default:
349 sleep:
350 /* Stick ourselves on a wait queue to be woken when
351 someone changes the status */
352 set_current_state(TASK_UNINTERRUPTIBLE);
353 add_wait_queue(&chip->wq, &wait);
354 mutex_unlock(&chip->mutex);
355 schedule();
356 remove_wait_queue(&chip->wq, &wait);
357 timeo = jiffies + HZ;
358 goto retry;
359 }
360
361 map_copy_from(map, buf, adr, len);
362
363 if (suspended) {
364 chip->state = chip->oldstate;
365 /* What if one interleaved chip has finished and the
366 other hasn't? The old code would leave the finished
367 one in READY mode. That's bad, and caused -EROFS
368 errors to be returned from do_erase_oneblock because
369 that's the only bit it checked for at the time.
370 As the state machine appears to explicitly allow
371 sending the 0x70 (Read Status) command to an erasing
372 chip and expecting it to be ignored, that's what we
373 do. */
374 map_write(map, CMD(0xd0), cmd_addr);
375 map_write(map, CMD(0x70), cmd_addr);
376 }
377
378 wake_up(&chip->wq);
379 mutex_unlock(&chip->mutex);
380 return 0;
381 }
382
cfi_staa_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)383 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
384 {
385 struct map_info *map = mtd->priv;
386 struct cfi_private *cfi = map->fldrv_priv;
387 unsigned long ofs;
388 int chipnum;
389 int ret = 0;
390
391 /* ofs: offset within the first chip that the first read should start */
392 chipnum = (from >> cfi->chipshift);
393 ofs = from - (chipnum << cfi->chipshift);
394
395 while (len) {
396 unsigned long thislen;
397
398 if (chipnum >= cfi->numchips)
399 break;
400
401 if ((len + ofs -1) >> cfi->chipshift)
402 thislen = (1<<cfi->chipshift) - ofs;
403 else
404 thislen = len;
405
406 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
407 if (ret)
408 break;
409
410 *retlen += thislen;
411 len -= thislen;
412 buf += thislen;
413
414 ofs = 0;
415 chipnum++;
416 }
417 return ret;
418 }
419
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const u_char * buf,int len)420 static int do_write_buffer(struct map_info *map, struct flchip *chip,
421 unsigned long adr, const u_char *buf, int len)
422 {
423 struct cfi_private *cfi = map->fldrv_priv;
424 map_word status, status_OK;
425 unsigned long cmd_adr, timeo;
426 DECLARE_WAITQUEUE(wait, current);
427 int wbufsize, z;
428
429 /* M58LW064A requires bus alignment for buffer wriets -- saw */
430 if (adr & (map_bankwidth(map)-1))
431 return -EINVAL;
432
433 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
434 adr += chip->start;
435 cmd_adr = adr & ~(wbufsize-1);
436
437 /* Let's determine this according to the interleave only once */
438 status_OK = CMD(0x80);
439
440 timeo = jiffies + HZ;
441 retry:
442
443 #ifdef DEBUG_CFI_FEATURES
444 printk("%s: chip->state[%d]\n", __func__, chip->state);
445 #endif
446 mutex_lock(&chip->mutex);
447
448 /* Check that the chip's ready to talk to us.
449 * Later, we can actually think about interrupting it
450 * if it's in FL_ERASING state.
451 * Not just yet, though.
452 */
453 switch (chip->state) {
454 case FL_READY:
455 break;
456
457 case FL_CFI_QUERY:
458 case FL_JEDEC_QUERY:
459 map_write(map, CMD(0x70), cmd_adr);
460 chip->state = FL_STATUS;
461 #ifdef DEBUG_CFI_FEATURES
462 printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
463 #endif
464 fallthrough;
465 case FL_STATUS:
466 status = map_read(map, cmd_adr);
467 if (map_word_andequal(map, status, status_OK, status_OK))
468 break;
469 /* Urgh. Chip not yet ready to talk to us. */
470 if (time_after(jiffies, timeo)) {
471 mutex_unlock(&chip->mutex);
472 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
473 status.x[0], map_read(map, cmd_adr).x[0]);
474 return -EIO;
475 }
476
477 /* Latency issues. Drop the lock, wait a while and retry */
478 mutex_unlock(&chip->mutex);
479 cfi_udelay(1);
480 goto retry;
481
482 default:
483 /* Stick ourselves on a wait queue to be woken when
484 someone changes the status */
485 set_current_state(TASK_UNINTERRUPTIBLE);
486 add_wait_queue(&chip->wq, &wait);
487 mutex_unlock(&chip->mutex);
488 schedule();
489 remove_wait_queue(&chip->wq, &wait);
490 timeo = jiffies + HZ;
491 goto retry;
492 }
493
494 ENABLE_VPP(map);
495 map_write(map, CMD(0xe8), cmd_adr);
496 chip->state = FL_WRITING_TO_BUFFER;
497
498 z = 0;
499 for (;;) {
500 status = map_read(map, cmd_adr);
501 if (map_word_andequal(map, status, status_OK, status_OK))
502 break;
503
504 mutex_unlock(&chip->mutex);
505 cfi_udelay(1);
506 mutex_lock(&chip->mutex);
507
508 if (++z > 100) {
509 /* Argh. Not ready for write to buffer */
510 DISABLE_VPP(map);
511 map_write(map, CMD(0x70), cmd_adr);
512 chip->state = FL_STATUS;
513 mutex_unlock(&chip->mutex);
514 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
515 return -EIO;
516 }
517 }
518
519 /* Write length of data to come */
520 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
521
522 /* Write data */
523 for (z = 0; z < len;
524 z += map_bankwidth(map), buf += map_bankwidth(map)) {
525 map_word d;
526 d = map_word_load(map, buf);
527 map_write(map, d, adr+z);
528 }
529 /* GO GO GO */
530 map_write(map, CMD(0xd0), cmd_adr);
531 chip->state = FL_WRITING;
532
533 mutex_unlock(&chip->mutex);
534 cfi_udelay(chip->buffer_write_time);
535 mutex_lock(&chip->mutex);
536
537 timeo = jiffies + (HZ/2);
538 z = 0;
539 for (;;) {
540 if (chip->state != FL_WRITING) {
541 /* Someone's suspended the write. Sleep */
542 set_current_state(TASK_UNINTERRUPTIBLE);
543 add_wait_queue(&chip->wq, &wait);
544 mutex_unlock(&chip->mutex);
545 schedule();
546 remove_wait_queue(&chip->wq, &wait);
547 timeo = jiffies + (HZ / 2); /* FIXME */
548 mutex_lock(&chip->mutex);
549 continue;
550 }
551
552 status = map_read(map, cmd_adr);
553 if (map_word_andequal(map, status, status_OK, status_OK))
554 break;
555
556 /* OK Still waiting */
557 if (time_after(jiffies, timeo)) {
558 /* clear status */
559 map_write(map, CMD(0x50), cmd_adr);
560 /* put back into read status register mode */
561 map_write(map, CMD(0x70), adr);
562 chip->state = FL_STATUS;
563 DISABLE_VPP(map);
564 mutex_unlock(&chip->mutex);
565 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
566 return -EIO;
567 }
568
569 /* Latency issues. Drop the lock, wait a while and retry */
570 mutex_unlock(&chip->mutex);
571 cfi_udelay(1);
572 z++;
573 mutex_lock(&chip->mutex);
574 }
575 if (!z) {
576 chip->buffer_write_time--;
577 if (!chip->buffer_write_time)
578 chip->buffer_write_time++;
579 }
580 if (z > 1)
581 chip->buffer_write_time++;
582
583 /* Done and happy. */
584 DISABLE_VPP(map);
585 chip->state = FL_STATUS;
586
587 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
588 if (map_word_bitsset(map, status, CMD(0x3a))) {
589 #ifdef DEBUG_CFI_FEATURES
590 printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
591 #endif
592 /* clear status */
593 map_write(map, CMD(0x50), cmd_adr);
594 /* put back into read status register mode */
595 map_write(map, CMD(0x70), adr);
596 wake_up(&chip->wq);
597 mutex_unlock(&chip->mutex);
598 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
599 }
600 wake_up(&chip->wq);
601 mutex_unlock(&chip->mutex);
602
603 return 0;
604 }
605
cfi_staa_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)606 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
607 size_t len, size_t *retlen, const u_char *buf)
608 {
609 struct map_info *map = mtd->priv;
610 struct cfi_private *cfi = map->fldrv_priv;
611 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
612 int ret;
613 int chipnum;
614 unsigned long ofs;
615
616 chipnum = to >> cfi->chipshift;
617 ofs = to - (chipnum << cfi->chipshift);
618
619 #ifdef DEBUG_CFI_FEATURES
620 printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
621 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
622 printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
623 #endif
624
625 /* Write buffer is worth it only if more than one word to write... */
626 while (len > 0) {
627 /* We must not cross write block boundaries */
628 int size = wbufsize - (ofs & (wbufsize-1));
629
630 if (size > len)
631 size = len;
632
633 ret = do_write_buffer(map, &cfi->chips[chipnum],
634 ofs, buf, size);
635 if (ret)
636 return ret;
637
638 ofs += size;
639 buf += size;
640 (*retlen) += size;
641 len -= size;
642
643 if (ofs >> cfi->chipshift) {
644 chipnum ++;
645 ofs = 0;
646 if (chipnum == cfi->numchips)
647 return 0;
648 }
649 }
650
651 return 0;
652 }
653
654 /*
655 * Writev for ECC-Flashes is a little more complicated. We need to maintain
656 * a small buffer for this.
657 * XXX: If the buffer size is not a multiple of 2, this will break
658 */
659 #define ECCBUF_SIZE (mtd->writesize)
660 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
661 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
662 static int
cfi_staa_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)663 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
664 unsigned long count, loff_t to, size_t *retlen)
665 {
666 unsigned long i;
667 size_t totlen = 0, thislen;
668 int ret = 0;
669 size_t buflen = 0;
670 char *buffer;
671
672 if (!ECCBUF_SIZE) {
673 /* We should fall back to a general writev implementation.
674 * Until that is written, just break.
675 */
676 return -EIO;
677 }
678 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
679 if (!buffer)
680 return -ENOMEM;
681
682 for (i=0; i<count; i++) {
683 size_t elem_len = vecs[i].iov_len;
684 void *elem_base = vecs[i].iov_base;
685 if (!elem_len) /* FIXME: Might be unnecessary. Check that */
686 continue;
687 if (buflen) { /* cut off head */
688 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
689 memcpy(buffer+buflen, elem_base, elem_len);
690 buflen += elem_len;
691 continue;
692 }
693 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
694 ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen,
695 buffer);
696 totlen += thislen;
697 if (ret || thislen != ECCBUF_SIZE)
698 goto write_error;
699 elem_len -= thislen-buflen;
700 elem_base += thislen-buflen;
701 to += ECCBUF_SIZE;
702 }
703 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
704 ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len),
705 &thislen, elem_base);
706 totlen += thislen;
707 if (ret || thislen != ECCBUF_DIV(elem_len))
708 goto write_error;
709 to += thislen;
710 }
711 buflen = ECCBUF_MOD(elem_len); /* cut off tail */
712 if (buflen) {
713 memset(buffer, 0xff, ECCBUF_SIZE);
714 memcpy(buffer, elem_base + thislen, buflen);
715 }
716 }
717 if (buflen) { /* flush last page, even if not full */
718 /* This is sometimes intended behaviour, really */
719 ret = mtd_write(mtd, to, buflen, &thislen, buffer);
720 totlen += thislen;
721 if (ret || thislen != ECCBUF_SIZE)
722 goto write_error;
723 }
724 write_error:
725 if (retlen)
726 *retlen = totlen;
727 kfree(buffer);
728 return ret;
729 }
730
731
do_erase_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr)732 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
733 {
734 struct cfi_private *cfi = map->fldrv_priv;
735 map_word status, status_OK;
736 unsigned long timeo;
737 int retries = 3;
738 DECLARE_WAITQUEUE(wait, current);
739 int ret = 0;
740
741 adr += chip->start;
742
743 /* Let's determine this according to the interleave only once */
744 status_OK = CMD(0x80);
745
746 timeo = jiffies + HZ;
747 retry:
748 mutex_lock(&chip->mutex);
749
750 /* Check that the chip's ready to talk to us. */
751 switch (chip->state) {
752 case FL_CFI_QUERY:
753 case FL_JEDEC_QUERY:
754 case FL_READY:
755 map_write(map, CMD(0x70), adr);
756 chip->state = FL_STATUS;
757 fallthrough;
758 case FL_STATUS:
759 status = map_read(map, adr);
760 if (map_word_andequal(map, status, status_OK, status_OK))
761 break;
762
763 /* Urgh. Chip not yet ready to talk to us. */
764 if (time_after(jiffies, timeo)) {
765 mutex_unlock(&chip->mutex);
766 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
767 return -EIO;
768 }
769
770 /* Latency issues. Drop the lock, wait a while and retry */
771 mutex_unlock(&chip->mutex);
772 cfi_udelay(1);
773 goto retry;
774
775 default:
776 /* Stick ourselves on a wait queue to be woken when
777 someone changes the status */
778 set_current_state(TASK_UNINTERRUPTIBLE);
779 add_wait_queue(&chip->wq, &wait);
780 mutex_unlock(&chip->mutex);
781 schedule();
782 remove_wait_queue(&chip->wq, &wait);
783 timeo = jiffies + HZ;
784 goto retry;
785 }
786
787 ENABLE_VPP(map);
788 /* Clear the status register first */
789 map_write(map, CMD(0x50), adr);
790
791 /* Now erase */
792 map_write(map, CMD(0x20), adr);
793 map_write(map, CMD(0xD0), adr);
794 chip->state = FL_ERASING;
795
796 mutex_unlock(&chip->mutex);
797 msleep(1000);
798 mutex_lock(&chip->mutex);
799
800 /* FIXME. Use a timer to check this, and return immediately. */
801 /* Once the state machine's known to be working I'll do that */
802
803 timeo = jiffies + (HZ*20);
804 for (;;) {
805 if (chip->state != FL_ERASING) {
806 /* Someone's suspended the erase. Sleep */
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 add_wait_queue(&chip->wq, &wait);
809 mutex_unlock(&chip->mutex);
810 schedule();
811 remove_wait_queue(&chip->wq, &wait);
812 timeo = jiffies + (HZ*20); /* FIXME */
813 mutex_lock(&chip->mutex);
814 continue;
815 }
816
817 status = map_read(map, adr);
818 if (map_word_andequal(map, status, status_OK, status_OK))
819 break;
820
821 /* OK Still waiting */
822 if (time_after(jiffies, timeo)) {
823 map_write(map, CMD(0x70), adr);
824 chip->state = FL_STATUS;
825 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
826 DISABLE_VPP(map);
827 mutex_unlock(&chip->mutex);
828 return -EIO;
829 }
830
831 /* Latency issues. Drop the lock, wait a while and retry */
832 mutex_unlock(&chip->mutex);
833 cfi_udelay(1);
834 mutex_lock(&chip->mutex);
835 }
836
837 DISABLE_VPP(map);
838 ret = 0;
839
840 /* We've broken this before. It doesn't hurt to be safe */
841 map_write(map, CMD(0x70), adr);
842 chip->state = FL_STATUS;
843 status = map_read(map, adr);
844
845 /* check for lock bit */
846 if (map_word_bitsset(map, status, CMD(0x3a))) {
847 unsigned char chipstatus = status.x[0];
848 if (!map_word_equal(map, status, CMD(chipstatus))) {
849 int i, w;
850 for (w=0; w<map_words(map); w++) {
851 for (i = 0; i<cfi_interleave(cfi); i++) {
852 chipstatus |= status.x[w] >> (cfi->device_type * 8);
853 }
854 }
855 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
856 status.x[0], chipstatus);
857 }
858 /* Reset the error bits */
859 map_write(map, CMD(0x50), adr);
860 map_write(map, CMD(0x70), adr);
861
862 if ((chipstatus & 0x30) == 0x30) {
863 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
864 ret = -EIO;
865 } else if (chipstatus & 0x02) {
866 /* Protection bit set */
867 ret = -EROFS;
868 } else if (chipstatus & 0x8) {
869 /* Voltage */
870 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
871 ret = -EIO;
872 } else if (chipstatus & 0x20) {
873 if (retries--) {
874 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
875 timeo = jiffies + HZ;
876 chip->state = FL_STATUS;
877 mutex_unlock(&chip->mutex);
878 goto retry;
879 }
880 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
881 ret = -EIO;
882 }
883 }
884
885 wake_up(&chip->wq);
886 mutex_unlock(&chip->mutex);
887 return ret;
888 }
889
cfi_staa_erase_varsize(struct mtd_info * mtd,struct erase_info * instr)890 static int cfi_staa_erase_varsize(struct mtd_info *mtd,
891 struct erase_info *instr)
892 { struct map_info *map = mtd->priv;
893 struct cfi_private *cfi = map->fldrv_priv;
894 unsigned long adr, len;
895 int chipnum, ret;
896 int i, first;
897 struct mtd_erase_region_info *regions = mtd->eraseregions;
898
899 /* Check that both start and end of the requested erase are
900 * aligned with the erasesize at the appropriate addresses.
901 */
902
903 i = 0;
904
905 /* Skip all erase regions which are ended before the start of
906 the requested erase. Actually, to save on the calculations,
907 we skip to the first erase region which starts after the
908 start of the requested erase, and then go back one.
909 */
910
911 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
912 i++;
913 i--;
914
915 /* OK, now i is pointing at the erase region in which this
916 erase request starts. Check the start of the requested
917 erase range is aligned with the erase size which is in
918 effect here.
919 */
920
921 if (instr->addr & (regions[i].erasesize-1))
922 return -EINVAL;
923
924 /* Remember the erase region we start on */
925 first = i;
926
927 /* Next, check that the end of the requested erase is aligned
928 * with the erase region at that address.
929 */
930
931 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
932 i++;
933
934 /* As before, drop back one to point at the region in which
935 the address actually falls
936 */
937 i--;
938
939 if ((instr->addr + instr->len) & (regions[i].erasesize-1))
940 return -EINVAL;
941
942 chipnum = instr->addr >> cfi->chipshift;
943 adr = instr->addr - (chipnum << cfi->chipshift);
944 len = instr->len;
945
946 i=first;
947
948 while(len) {
949 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
950
951 if (ret)
952 return ret;
953
954 adr += regions[i].erasesize;
955 len -= regions[i].erasesize;
956
957 if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
958 i++;
959
960 if (adr >> cfi->chipshift) {
961 adr = 0;
962 chipnum++;
963
964 if (chipnum >= cfi->numchips)
965 break;
966 }
967 }
968
969 return 0;
970 }
971
cfi_staa_sync(struct mtd_info * mtd)972 static void cfi_staa_sync (struct mtd_info *mtd)
973 {
974 struct map_info *map = mtd->priv;
975 struct cfi_private *cfi = map->fldrv_priv;
976 int i;
977 struct flchip *chip;
978 int ret = 0;
979 DECLARE_WAITQUEUE(wait, current);
980
981 for (i=0; !ret && i<cfi->numchips; i++) {
982 chip = &cfi->chips[i];
983
984 retry:
985 mutex_lock(&chip->mutex);
986
987 switch(chip->state) {
988 case FL_READY:
989 case FL_STATUS:
990 case FL_CFI_QUERY:
991 case FL_JEDEC_QUERY:
992 chip->oldstate = chip->state;
993 chip->state = FL_SYNCING;
994 /* No need to wake_up() on this state change -
995 * as the whole point is that nobody can do anything
996 * with the chip now anyway.
997 */
998 fallthrough;
999 case FL_SYNCING:
1000 mutex_unlock(&chip->mutex);
1001 break;
1002
1003 default:
1004 /* Not an idle state */
1005 set_current_state(TASK_UNINTERRUPTIBLE);
1006 add_wait_queue(&chip->wq, &wait);
1007
1008 mutex_unlock(&chip->mutex);
1009 schedule();
1010 remove_wait_queue(&chip->wq, &wait);
1011
1012 goto retry;
1013 }
1014 }
1015
1016 /* Unlock the chips again */
1017
1018 for (i--; i >=0; i--) {
1019 chip = &cfi->chips[i];
1020
1021 mutex_lock(&chip->mutex);
1022
1023 if (chip->state == FL_SYNCING) {
1024 chip->state = chip->oldstate;
1025 wake_up(&chip->wq);
1026 }
1027 mutex_unlock(&chip->mutex);
1028 }
1029 }
1030
do_lock_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr)1031 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1032 {
1033 struct cfi_private *cfi = map->fldrv_priv;
1034 map_word status, status_OK;
1035 unsigned long timeo = jiffies + HZ;
1036 DECLARE_WAITQUEUE(wait, current);
1037
1038 adr += chip->start;
1039
1040 /* Let's determine this according to the interleave only once */
1041 status_OK = CMD(0x80);
1042
1043 timeo = jiffies + HZ;
1044 retry:
1045 mutex_lock(&chip->mutex);
1046
1047 /* Check that the chip's ready to talk to us. */
1048 switch (chip->state) {
1049 case FL_CFI_QUERY:
1050 case FL_JEDEC_QUERY:
1051 case FL_READY:
1052 map_write(map, CMD(0x70), adr);
1053 chip->state = FL_STATUS;
1054 fallthrough;
1055 case FL_STATUS:
1056 status = map_read(map, adr);
1057 if (map_word_andequal(map, status, status_OK, status_OK))
1058 break;
1059
1060 /* Urgh. Chip not yet ready to talk to us. */
1061 if (time_after(jiffies, timeo)) {
1062 mutex_unlock(&chip->mutex);
1063 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1064 return -EIO;
1065 }
1066
1067 /* Latency issues. Drop the lock, wait a while and retry */
1068 mutex_unlock(&chip->mutex);
1069 cfi_udelay(1);
1070 goto retry;
1071
1072 default:
1073 /* Stick ourselves on a wait queue to be woken when
1074 someone changes the status */
1075 set_current_state(TASK_UNINTERRUPTIBLE);
1076 add_wait_queue(&chip->wq, &wait);
1077 mutex_unlock(&chip->mutex);
1078 schedule();
1079 remove_wait_queue(&chip->wq, &wait);
1080 timeo = jiffies + HZ;
1081 goto retry;
1082 }
1083
1084 ENABLE_VPP(map);
1085 map_write(map, CMD(0x60), adr);
1086 map_write(map, CMD(0x01), adr);
1087 chip->state = FL_LOCKING;
1088
1089 mutex_unlock(&chip->mutex);
1090 msleep(1000);
1091 mutex_lock(&chip->mutex);
1092
1093 /* FIXME. Use a timer to check this, and return immediately. */
1094 /* Once the state machine's known to be working I'll do that */
1095
1096 timeo = jiffies + (HZ*2);
1097 for (;;) {
1098
1099 status = map_read(map, adr);
1100 if (map_word_andequal(map, status, status_OK, status_OK))
1101 break;
1102
1103 /* OK Still waiting */
1104 if (time_after(jiffies, timeo)) {
1105 map_write(map, CMD(0x70), adr);
1106 chip->state = FL_STATUS;
1107 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1108 DISABLE_VPP(map);
1109 mutex_unlock(&chip->mutex);
1110 return -EIO;
1111 }
1112
1113 /* Latency issues. Drop the lock, wait a while and retry */
1114 mutex_unlock(&chip->mutex);
1115 cfi_udelay(1);
1116 mutex_lock(&chip->mutex);
1117 }
1118
1119 /* Done and happy. */
1120 chip->state = FL_STATUS;
1121 DISABLE_VPP(map);
1122 wake_up(&chip->wq);
1123 mutex_unlock(&chip->mutex);
1124 return 0;
1125 }
cfi_staa_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1126 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1127 {
1128 struct map_info *map = mtd->priv;
1129 struct cfi_private *cfi = map->fldrv_priv;
1130 unsigned long adr;
1131 int chipnum, ret;
1132 #ifdef DEBUG_LOCK_BITS
1133 int ofs_factor = cfi->interleave * cfi->device_type;
1134 #endif
1135
1136 if (ofs & (mtd->erasesize - 1))
1137 return -EINVAL;
1138
1139 if (len & (mtd->erasesize -1))
1140 return -EINVAL;
1141
1142 chipnum = ofs >> cfi->chipshift;
1143 adr = ofs - (chipnum << cfi->chipshift);
1144
1145 while(len) {
1146
1147 #ifdef DEBUG_LOCK_BITS
1148 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1149 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1150 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1151 #endif
1152
1153 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1154
1155 #ifdef DEBUG_LOCK_BITS
1156 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1157 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1158 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1159 #endif
1160
1161 if (ret)
1162 return ret;
1163
1164 adr += mtd->erasesize;
1165 len -= mtd->erasesize;
1166
1167 if (adr >> cfi->chipshift) {
1168 adr = 0;
1169 chipnum++;
1170
1171 if (chipnum >= cfi->numchips)
1172 break;
1173 }
1174 }
1175 return 0;
1176 }
do_unlock_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr)1177 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1178 {
1179 struct cfi_private *cfi = map->fldrv_priv;
1180 map_word status, status_OK;
1181 unsigned long timeo = jiffies + HZ;
1182 DECLARE_WAITQUEUE(wait, current);
1183
1184 adr += chip->start;
1185
1186 /* Let's determine this according to the interleave only once */
1187 status_OK = CMD(0x80);
1188
1189 timeo = jiffies + HZ;
1190 retry:
1191 mutex_lock(&chip->mutex);
1192
1193 /* Check that the chip's ready to talk to us. */
1194 switch (chip->state) {
1195 case FL_CFI_QUERY:
1196 case FL_JEDEC_QUERY:
1197 case FL_READY:
1198 map_write(map, CMD(0x70), adr);
1199 chip->state = FL_STATUS;
1200 fallthrough;
1201 case FL_STATUS:
1202 status = map_read(map, adr);
1203 if (map_word_andequal(map, status, status_OK, status_OK))
1204 break;
1205
1206 /* Urgh. Chip not yet ready to talk to us. */
1207 if (time_after(jiffies, timeo)) {
1208 mutex_unlock(&chip->mutex);
1209 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1210 return -EIO;
1211 }
1212
1213 /* Latency issues. Drop the lock, wait a while and retry */
1214 mutex_unlock(&chip->mutex);
1215 cfi_udelay(1);
1216 goto retry;
1217
1218 default:
1219 /* Stick ourselves on a wait queue to be woken when
1220 someone changes the status */
1221 set_current_state(TASK_UNINTERRUPTIBLE);
1222 add_wait_queue(&chip->wq, &wait);
1223 mutex_unlock(&chip->mutex);
1224 schedule();
1225 remove_wait_queue(&chip->wq, &wait);
1226 timeo = jiffies + HZ;
1227 goto retry;
1228 }
1229
1230 ENABLE_VPP(map);
1231 map_write(map, CMD(0x60), adr);
1232 map_write(map, CMD(0xD0), adr);
1233 chip->state = FL_UNLOCKING;
1234
1235 mutex_unlock(&chip->mutex);
1236 msleep(1000);
1237 mutex_lock(&chip->mutex);
1238
1239 /* FIXME. Use a timer to check this, and return immediately. */
1240 /* Once the state machine's known to be working I'll do that */
1241
1242 timeo = jiffies + (HZ*2);
1243 for (;;) {
1244
1245 status = map_read(map, adr);
1246 if (map_word_andequal(map, status, status_OK, status_OK))
1247 break;
1248
1249 /* OK Still waiting */
1250 if (time_after(jiffies, timeo)) {
1251 map_write(map, CMD(0x70), adr);
1252 chip->state = FL_STATUS;
1253 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1254 DISABLE_VPP(map);
1255 mutex_unlock(&chip->mutex);
1256 return -EIO;
1257 }
1258
1259 /* Latency issues. Drop the unlock, wait a while and retry */
1260 mutex_unlock(&chip->mutex);
1261 cfi_udelay(1);
1262 mutex_lock(&chip->mutex);
1263 }
1264
1265 /* Done and happy. */
1266 chip->state = FL_STATUS;
1267 DISABLE_VPP(map);
1268 wake_up(&chip->wq);
1269 mutex_unlock(&chip->mutex);
1270 return 0;
1271 }
cfi_staa_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1272 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1273 {
1274 struct map_info *map = mtd->priv;
1275 struct cfi_private *cfi = map->fldrv_priv;
1276 unsigned long adr;
1277 int chipnum, ret;
1278 #ifdef DEBUG_LOCK_BITS
1279 int ofs_factor = cfi->interleave * cfi->device_type;
1280 #endif
1281
1282 chipnum = ofs >> cfi->chipshift;
1283 adr = ofs - (chipnum << cfi->chipshift);
1284
1285 #ifdef DEBUG_LOCK_BITS
1286 {
1287 unsigned long temp_adr = adr;
1288 unsigned long temp_len = len;
1289
1290 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1291 while (temp_len) {
1292 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1293 temp_adr += mtd->erasesize;
1294 temp_len -= mtd->erasesize;
1295 }
1296 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1297 }
1298 #endif
1299
1300 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1301
1302 #ifdef DEBUG_LOCK_BITS
1303 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1304 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1305 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1306 #endif
1307
1308 return ret;
1309 }
1310
cfi_staa_suspend(struct mtd_info * mtd)1311 static int cfi_staa_suspend(struct mtd_info *mtd)
1312 {
1313 struct map_info *map = mtd->priv;
1314 struct cfi_private *cfi = map->fldrv_priv;
1315 int i;
1316 struct flchip *chip;
1317 int ret = 0;
1318
1319 for (i=0; !ret && i<cfi->numchips; i++) {
1320 chip = &cfi->chips[i];
1321
1322 mutex_lock(&chip->mutex);
1323
1324 switch(chip->state) {
1325 case FL_READY:
1326 case FL_STATUS:
1327 case FL_CFI_QUERY:
1328 case FL_JEDEC_QUERY:
1329 chip->oldstate = chip->state;
1330 chip->state = FL_PM_SUSPENDED;
1331 /* No need to wake_up() on this state change -
1332 * as the whole point is that nobody can do anything
1333 * with the chip now anyway.
1334 */
1335 break;
1336
1337 case FL_PM_SUSPENDED:
1338 break;
1339
1340 default:
1341 ret = -EAGAIN;
1342 break;
1343 }
1344 mutex_unlock(&chip->mutex);
1345 }
1346
1347 /* Unlock the chips again */
1348
1349 if (ret) {
1350 for (i--; i >=0; i--) {
1351 chip = &cfi->chips[i];
1352
1353 mutex_lock(&chip->mutex);
1354
1355 if (chip->state == FL_PM_SUSPENDED) {
1356 /* No need to force it into a known state here,
1357 because we're returning failure, and it didn't
1358 get power cycled */
1359 chip->state = chip->oldstate;
1360 wake_up(&chip->wq);
1361 }
1362 mutex_unlock(&chip->mutex);
1363 }
1364 }
1365
1366 return ret;
1367 }
1368
cfi_staa_resume(struct mtd_info * mtd)1369 static void cfi_staa_resume(struct mtd_info *mtd)
1370 {
1371 struct map_info *map = mtd->priv;
1372 struct cfi_private *cfi = map->fldrv_priv;
1373 int i;
1374 struct flchip *chip;
1375
1376 for (i=0; i<cfi->numchips; i++) {
1377
1378 chip = &cfi->chips[i];
1379
1380 mutex_lock(&chip->mutex);
1381
1382 /* Go to known state. Chip may have been power cycled */
1383 if (chip->state == FL_PM_SUSPENDED) {
1384 map_write(map, CMD(0xFF), 0);
1385 chip->state = FL_READY;
1386 wake_up(&chip->wq);
1387 }
1388
1389 mutex_unlock(&chip->mutex);
1390 }
1391 }
1392
cfi_staa_destroy(struct mtd_info * mtd)1393 static void cfi_staa_destroy(struct mtd_info *mtd)
1394 {
1395 struct map_info *map = mtd->priv;
1396 struct cfi_private *cfi = map->fldrv_priv;
1397 kfree(cfi->cmdset_priv);
1398 kfree(cfi);
1399 }
1400
1401 MODULE_LICENSE("GPL");
1402