1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4 * Author: Ludovic.barre@st.com for STMicroelectronics.
5 */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16
17 #define SDMMC_LLI_BUF_LEN PAGE_SIZE
18 #define SDMMC_IDMA_BURST BIT(MMCI_STM32_IDMABNDT_SHIFT)
19
20 #define DLYB_CR 0x0
21 #define DLYB_CR_DEN BIT(0)
22 #define DLYB_CR_SEN BIT(1)
23
24 #define DLYB_CFGR 0x4
25 #define DLYB_CFGR_SEL_MASK GENMASK(3, 0)
26 #define DLYB_CFGR_UNIT_MASK GENMASK(14, 8)
27 #define DLYB_CFGR_LNG_MASK GENMASK(27, 16)
28 #define DLYB_CFGR_LNGF BIT(31)
29
30 #define DLYB_NB_DELAY 11
31 #define DLYB_CFGR_SEL_MAX (DLYB_NB_DELAY + 1)
32 #define DLYB_CFGR_UNIT_MAX 127
33
34 #define DLYB_LNG_TIMEOUT_US 1000
35 #define SDMMC_VSWEND_TIMEOUT_US 10000
36
37 struct sdmmc_lli_desc {
38 u32 idmalar;
39 u32 idmabase;
40 u32 idmasize;
41 };
42
43 struct sdmmc_idma {
44 dma_addr_t sg_dma;
45 void *sg_cpu;
46 dma_addr_t bounce_dma_addr;
47 void *bounce_buf;
48 bool use_bounce_buffer;
49 };
50
51 struct sdmmc_dlyb {
52 void __iomem *base;
53 u32 unit;
54 u32 max;
55 };
56
sdmmc_idma_validate_data(struct mmci_host * host,struct mmc_data * data)57 static int sdmmc_idma_validate_data(struct mmci_host *host,
58 struct mmc_data *data)
59 {
60 struct sdmmc_idma *idma = host->dma_priv;
61 struct device *dev = mmc_dev(host->mmc);
62 struct scatterlist *sg;
63 int i;
64
65 /*
66 * idma has constraints on idmabase & idmasize for each element
67 * excepted the last element which has no constraint on idmasize
68 */
69 idma->use_bounce_buffer = false;
70 for_each_sg(data->sg, sg, data->sg_len - 1, i) {
71 if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
72 !IS_ALIGNED(sg->length, SDMMC_IDMA_BURST)) {
73 dev_dbg(mmc_dev(host->mmc),
74 "unaligned scatterlist: ofst:%x length:%d\n",
75 data->sg->offset, data->sg->length);
76 goto use_bounce_buffer;
77 }
78 }
79
80 if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
81 dev_dbg(mmc_dev(host->mmc),
82 "unaligned last scatterlist: ofst:%x length:%d\n",
83 data->sg->offset, data->sg->length);
84 goto use_bounce_buffer;
85 }
86
87 return 0;
88
89 use_bounce_buffer:
90 if (!idma->bounce_buf) {
91 idma->bounce_buf = dmam_alloc_coherent(dev,
92 host->mmc->max_req_size,
93 &idma->bounce_dma_addr,
94 GFP_KERNEL);
95 if (!idma->bounce_buf) {
96 dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
97 return -ENOMEM;
98 }
99 }
100
101 idma->use_bounce_buffer = true;
102
103 return 0;
104 }
105
_sdmmc_idma_prep_data(struct mmci_host * host,struct mmc_data * data)106 static int _sdmmc_idma_prep_data(struct mmci_host *host,
107 struct mmc_data *data)
108 {
109 struct sdmmc_idma *idma = host->dma_priv;
110
111 if (idma->use_bounce_buffer) {
112 if (data->flags & MMC_DATA_WRITE) {
113 unsigned int xfer_bytes = data->blksz * data->blocks;
114
115 sg_copy_to_buffer(data->sg, data->sg_len,
116 idma->bounce_buf, xfer_bytes);
117 dma_wmb();
118 }
119 } else {
120 int n_elem;
121
122 n_elem = dma_map_sg(mmc_dev(host->mmc),
123 data->sg,
124 data->sg_len,
125 mmc_get_dma_dir(data));
126
127 if (!n_elem) {
128 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
129 return -EINVAL;
130 }
131 }
132 return 0;
133 }
134
sdmmc_idma_prep_data(struct mmci_host * host,struct mmc_data * data,bool next)135 static int sdmmc_idma_prep_data(struct mmci_host *host,
136 struct mmc_data *data, bool next)
137 {
138 /* Check if job is already prepared. */
139 if (!next && data->host_cookie == host->next_cookie)
140 return 0;
141
142 return _sdmmc_idma_prep_data(host, data);
143 }
144
sdmmc_idma_unprep_data(struct mmci_host * host,struct mmc_data * data,int err)145 static void sdmmc_idma_unprep_data(struct mmci_host *host,
146 struct mmc_data *data, int err)
147 {
148 struct sdmmc_idma *idma = host->dma_priv;
149
150 if (idma->use_bounce_buffer) {
151 if (data->flags & MMC_DATA_READ) {
152 unsigned int xfer_bytes = data->blksz * data->blocks;
153
154 sg_copy_from_buffer(data->sg, data->sg_len,
155 idma->bounce_buf, xfer_bytes);
156 }
157 } else {
158 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
159 mmc_get_dma_dir(data));
160 }
161 }
162
sdmmc_idma_setup(struct mmci_host * host)163 static int sdmmc_idma_setup(struct mmci_host *host)
164 {
165 struct sdmmc_idma *idma;
166 struct device *dev = mmc_dev(host->mmc);
167
168 idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
169 if (!idma)
170 return -ENOMEM;
171
172 host->dma_priv = idma;
173
174 if (host->variant->dma_lli) {
175 idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
176 &idma->sg_dma, GFP_KERNEL);
177 if (!idma->sg_cpu) {
178 dev_err(dev, "Failed to alloc IDMA descriptor\n");
179 return -ENOMEM;
180 }
181 host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
182 sizeof(struct sdmmc_lli_desc);
183 host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
184
185 host->mmc->max_req_size = SZ_1M;
186 } else {
187 host->mmc->max_segs = 1;
188 host->mmc->max_seg_size = host->mmc->max_req_size;
189 }
190
191 return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
192 }
193
sdmmc_idma_start(struct mmci_host * host,unsigned int * datactrl)194 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
195
196 {
197 struct sdmmc_idma *idma = host->dma_priv;
198 struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
199 struct mmc_data *data = host->data;
200 struct scatterlist *sg;
201 int i;
202
203 if (!host->variant->dma_lli || data->sg_len == 1 ||
204 idma->use_bounce_buffer) {
205 u32 dma_addr;
206
207 if (idma->use_bounce_buffer)
208 dma_addr = idma->bounce_dma_addr;
209 else
210 dma_addr = sg_dma_address(data->sg);
211
212 writel_relaxed(dma_addr,
213 host->base + MMCI_STM32_IDMABASE0R);
214 writel_relaxed(MMCI_STM32_IDMAEN,
215 host->base + MMCI_STM32_IDMACTRLR);
216 return 0;
217 }
218
219 for_each_sg(data->sg, sg, data->sg_len, i) {
220 desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
221 desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
222 | MMCI_STM32_ABR;
223 desc[i].idmabase = sg_dma_address(sg);
224 desc[i].idmasize = sg_dma_len(sg);
225 }
226
227 /* notice the end of link list */
228 desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
229
230 dma_wmb();
231 writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
232 writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
233 writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
234 writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
235 writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
236 host->base + MMCI_STM32_IDMACTRLR);
237
238 return 0;
239 }
240
sdmmc_idma_finalize(struct mmci_host * host,struct mmc_data * data)241 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
242 {
243 writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
244
245 if (!data->host_cookie)
246 sdmmc_idma_unprep_data(host, data, 0);
247 }
248
mmci_sdmmc_set_clkreg(struct mmci_host * host,unsigned int desired)249 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
250 {
251 unsigned int clk = 0, ddr = 0;
252
253 if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
254 host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
255 ddr = MCI_STM32_CLK_DDR;
256
257 /*
258 * cclk = mclk / (2 * clkdiv)
259 * clkdiv 0 => bypass
260 * in ddr mode bypass is not possible
261 */
262 if (desired) {
263 if (desired >= host->mclk && !ddr) {
264 host->cclk = host->mclk;
265 } else {
266 clk = DIV_ROUND_UP(host->mclk, 2 * desired);
267 if (clk > MCI_STM32_CLK_CLKDIV_MSK)
268 clk = MCI_STM32_CLK_CLKDIV_MSK;
269 host->cclk = host->mclk / (2 * clk);
270 }
271 } else {
272 /*
273 * while power-on phase the clock can't be define to 0,
274 * Only power-off and power-cyc deactivate the clock.
275 * if desired clock is 0, set max divider
276 */
277 clk = MCI_STM32_CLK_CLKDIV_MSK;
278 host->cclk = host->mclk / (2 * clk);
279 }
280
281 /* Set actual clock for debug */
282 if (host->mmc->ios.power_mode == MMC_POWER_ON)
283 host->mmc->actual_clock = host->cclk;
284 else
285 host->mmc->actual_clock = 0;
286
287 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
288 clk |= MCI_STM32_CLK_WIDEBUS_4;
289 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
290 clk |= MCI_STM32_CLK_WIDEBUS_8;
291
292 clk |= MCI_STM32_CLK_HWFCEN;
293 clk |= host->clk_reg_add;
294 clk |= ddr;
295
296 /*
297 * SDMMC_FBCK is selected when an external Delay Block is needed
298 * with SDR104 or HS200.
299 */
300 if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
301 clk |= MCI_STM32_CLK_BUSSPEED;
302 if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
303 host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
304 clk &= ~MCI_STM32_CLK_SEL_MSK;
305 clk |= MCI_STM32_CLK_SELFBCK;
306 }
307 }
308
309 mmci_write_clkreg(host, clk);
310 }
311
sdmmc_dlyb_input_ck(struct sdmmc_dlyb * dlyb)312 static void sdmmc_dlyb_input_ck(struct sdmmc_dlyb *dlyb)
313 {
314 if (!dlyb || !dlyb->base)
315 return;
316
317 /* Output clock = Input clock */
318 writel_relaxed(0, dlyb->base + DLYB_CR);
319 }
320
mmci_sdmmc_set_pwrreg(struct mmci_host * host,unsigned int pwr)321 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
322 {
323 struct mmc_ios ios = host->mmc->ios;
324 struct sdmmc_dlyb *dlyb = host->variant_priv;
325
326 /* adds OF options */
327 pwr = host->pwr_reg_add;
328
329 sdmmc_dlyb_input_ck(dlyb);
330
331 if (ios.power_mode == MMC_POWER_OFF) {
332 /* Only a reset could power-off sdmmc */
333 reset_control_assert(host->rst);
334 udelay(2);
335 reset_control_deassert(host->rst);
336
337 /*
338 * Set the SDMMC in Power-cycle state.
339 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
340 * are driven low, to prevent the Card from being supplied
341 * through the signal lines.
342 */
343 mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
344 } else if (ios.power_mode == MMC_POWER_ON) {
345 /*
346 * After power-off (reset): the irq mask defined in probe
347 * functionis lost
348 * ault irq mask (probe) must be activated
349 */
350 writel(MCI_IRQENABLE | host->variant->start_err,
351 host->base + MMCIMASK0);
352
353 /* preserves voltage switch bits */
354 pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
355 MCI_STM32_VSWITCH);
356
357 /*
358 * After a power-cycle state, we must set the SDMMC in
359 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
360 * driven high. Then we can set the SDMMC to Power-on state
361 */
362 mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
363 mdelay(1);
364 mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
365 }
366 }
367
sdmmc_get_dctrl_cfg(struct mmci_host * host)368 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
369 {
370 u32 datactrl;
371
372 datactrl = mmci_dctrl_blksz(host);
373
374 if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
375 host->data->blocks == 1)
376 datactrl |= MCI_DPSM_STM32_MODE_SDIO;
377 else if (host->data->stop && !host->mrq->sbc)
378 datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
379 else
380 datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
381
382 return datactrl;
383 }
384
sdmmc_busy_complete(struct mmci_host * host,u32 status,u32 err_msk)385 static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
386 {
387 void __iomem *base = host->base;
388 u32 busy_d0, busy_d0end, mask, sdmmc_status;
389
390 mask = readl_relaxed(base + MMCIMASK0);
391 sdmmc_status = readl_relaxed(base + MMCISTATUS);
392 busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
393 busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
394
395 /* complete if there is an error or busy_d0end */
396 if ((status & err_msk) || busy_d0end)
397 goto complete;
398
399 /*
400 * On response the busy signaling is reflected in the BUSYD0 flag.
401 * if busy_d0 is in-progress we must activate busyd0end interrupt
402 * to wait this completion. Else this request has no busy step.
403 */
404 if (busy_d0) {
405 if (!host->busy_status) {
406 writel_relaxed(mask | host->variant->busy_detect_mask,
407 base + MMCIMASK0);
408 host->busy_status = status &
409 (MCI_CMDSENT | MCI_CMDRESPEND);
410 }
411 return false;
412 }
413
414 complete:
415 if (host->busy_status) {
416 writel_relaxed(mask & ~host->variant->busy_detect_mask,
417 base + MMCIMASK0);
418 host->busy_status = 0;
419 }
420
421 writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
422
423 return true;
424 }
425
sdmmc_dlyb_set_cfgr(struct sdmmc_dlyb * dlyb,int unit,int phase,bool sampler)426 static void sdmmc_dlyb_set_cfgr(struct sdmmc_dlyb *dlyb,
427 int unit, int phase, bool sampler)
428 {
429 u32 cfgr;
430
431 writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
432
433 cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
434 FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
435 writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
436
437 if (!sampler)
438 writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
439 }
440
sdmmc_dlyb_lng_tuning(struct mmci_host * host)441 static int sdmmc_dlyb_lng_tuning(struct mmci_host *host)
442 {
443 struct sdmmc_dlyb *dlyb = host->variant_priv;
444 u32 cfgr;
445 int i, lng, ret;
446
447 for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
448 sdmmc_dlyb_set_cfgr(dlyb, i, DLYB_CFGR_SEL_MAX, true);
449
450 ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
451 (cfgr & DLYB_CFGR_LNGF),
452 1, DLYB_LNG_TIMEOUT_US);
453 if (ret) {
454 dev_warn(mmc_dev(host->mmc),
455 "delay line cfg timeout unit:%d cfgr:%d\n",
456 i, cfgr);
457 continue;
458 }
459
460 lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
461 if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
462 break;
463 }
464
465 if (i > DLYB_CFGR_UNIT_MAX)
466 return -EINVAL;
467
468 dlyb->unit = i;
469 dlyb->max = __fls(lng);
470
471 return 0;
472 }
473
sdmmc_dlyb_phase_tuning(struct mmci_host * host,u32 opcode)474 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
475 {
476 struct sdmmc_dlyb *dlyb = host->variant_priv;
477 int cur_len = 0, max_len = 0, end_of_len = 0;
478 int phase;
479
480 for (phase = 0; phase <= dlyb->max; phase++) {
481 sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
482
483 if (mmc_send_tuning(host->mmc, opcode, NULL)) {
484 cur_len = 0;
485 } else {
486 cur_len++;
487 if (cur_len > max_len) {
488 max_len = cur_len;
489 end_of_len = phase;
490 }
491 }
492 }
493
494 if (!max_len) {
495 dev_err(mmc_dev(host->mmc), "no tuning point found\n");
496 return -EINVAL;
497 }
498
499 writel_relaxed(0, dlyb->base + DLYB_CR);
500
501 phase = end_of_len - max_len / 2;
502 sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
503
504 dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
505 dlyb->unit, dlyb->max, phase);
506
507 return 0;
508 }
509
sdmmc_execute_tuning(struct mmc_host * mmc,u32 opcode)510 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
511 {
512 struct mmci_host *host = mmc_priv(mmc);
513 struct sdmmc_dlyb *dlyb = host->variant_priv;
514
515 if (!dlyb || !dlyb->base)
516 return -EINVAL;
517
518 if (sdmmc_dlyb_lng_tuning(host))
519 return -EINVAL;
520
521 return sdmmc_dlyb_phase_tuning(host, opcode);
522 }
523
sdmmc_pre_sig_volt_vswitch(struct mmci_host * host)524 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
525 {
526 /* clear the voltage switch completion flag */
527 writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
528 /* enable Voltage switch procedure */
529 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
530 }
531
sdmmc_post_sig_volt_switch(struct mmci_host * host,struct mmc_ios * ios)532 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
533 struct mmc_ios *ios)
534 {
535 unsigned long flags;
536 u32 status;
537 int ret = 0;
538
539 spin_lock_irqsave(&host->lock, flags);
540 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
541 host->pwr_reg & MCI_STM32_VSWITCHEN) {
542 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
543 spin_unlock_irqrestore(&host->lock, flags);
544
545 /* wait voltage switch completion while 10ms */
546 ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
547 status,
548 (status & MCI_STM32_VSWEND),
549 10, SDMMC_VSWEND_TIMEOUT_US);
550
551 writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
552 host->base + MMCICLEAR);
553 spin_lock_irqsave(&host->lock, flags);
554 mmci_write_pwrreg(host, host->pwr_reg &
555 ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
556 }
557 spin_unlock_irqrestore(&host->lock, flags);
558
559 return ret;
560 }
561
562 static struct mmci_host_ops sdmmc_variant_ops = {
563 .validate_data = sdmmc_idma_validate_data,
564 .prep_data = sdmmc_idma_prep_data,
565 .unprep_data = sdmmc_idma_unprep_data,
566 .get_datactrl_cfg = sdmmc_get_dctrl_cfg,
567 .dma_setup = sdmmc_idma_setup,
568 .dma_start = sdmmc_idma_start,
569 .dma_finalize = sdmmc_idma_finalize,
570 .set_clkreg = mmci_sdmmc_set_clkreg,
571 .set_pwrreg = mmci_sdmmc_set_pwrreg,
572 .busy_complete = sdmmc_busy_complete,
573 .pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
574 .post_sig_volt_switch = sdmmc_post_sig_volt_switch,
575 };
576
sdmmc_variant_init(struct mmci_host * host)577 void sdmmc_variant_init(struct mmci_host *host)
578 {
579 struct device_node *np = host->mmc->parent->of_node;
580 void __iomem *base_dlyb;
581 struct sdmmc_dlyb *dlyb;
582
583 host->ops = &sdmmc_variant_ops;
584 host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
585
586 base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
587 if (IS_ERR(base_dlyb))
588 return;
589
590 dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
591 if (!dlyb)
592 return;
593
594 dlyb->base = base_dlyb;
595 host->variant_priv = dlyb;
596 host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
597 }
598