1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
22
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
26
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
29
30 #include <asm/unaligned.h>
31
32
33 /* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61 /*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71 /* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78 #define MMC_SPI_BLOCKSIZE 512
79
80 #define MMC_SPI_R1B_TIMEOUT_MS 3000
81 #define MMC_SPI_INIT_TIMEOUT_MS 3000
82
83 /* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90 #define MMC_SPI_BLOCKSATONCE 128
91
92 /****************************************************************************/
93
94 /*
95 * Local Data Structures
96 */
97
98 /* "scratch" is per-{command,block} data exchanged with the card */
99 struct scratch {
100 u8 status[29];
101 u8 data_token;
102 __be16 crc_val;
103 };
104
105 struct mmc_spi_host {
106 struct mmc_host *mmc;
107 struct spi_device *spi;
108
109 unsigned char power_mode;
110 u16 powerup_msecs;
111
112 struct mmc_spi_platform_data *pdata;
113
114 /* for bulk data transfers */
115 struct spi_transfer token, t, crc, early_status;
116 struct spi_message m;
117
118 /* for status readback */
119 struct spi_transfer status;
120 struct spi_message readback;
121
122 /* underlying DMA-aware controller, or null */
123 struct device *dma_dev;
124
125 /* buffer used for commands and for message "overhead" */
126 struct scratch *data;
127 dma_addr_t data_dma;
128
129 /* Specs say to write ones most of the time, even when the card
130 * has no need to read its input data; and many cards won't care.
131 * This is our source of those ones.
132 */
133 void *ones;
134 dma_addr_t ones_dma;
135 };
136
137
138 /****************************************************************************/
139
140 /*
141 * MMC-over-SPI protocol glue, used by the MMC stack interface
142 */
143
mmc_cs_off(struct mmc_spi_host * host)144 static inline int mmc_cs_off(struct mmc_spi_host *host)
145 {
146 /* chipselect will always be inactive after setup() */
147 return spi_setup(host->spi);
148 }
149
150 static int
mmc_spi_readbytes(struct mmc_spi_host * host,unsigned len)151 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
152 {
153 int status;
154
155 if (len > sizeof(*host->data)) {
156 WARN_ON(1);
157 return -EIO;
158 }
159
160 host->status.len = len;
161
162 if (host->dma_dev)
163 dma_sync_single_for_device(host->dma_dev,
164 host->data_dma, sizeof(*host->data),
165 DMA_FROM_DEVICE);
166
167 status = spi_sync_locked(host->spi, &host->readback);
168
169 if (host->dma_dev)
170 dma_sync_single_for_cpu(host->dma_dev,
171 host->data_dma, sizeof(*host->data),
172 DMA_FROM_DEVICE);
173
174 return status;
175 }
176
mmc_spi_skip(struct mmc_spi_host * host,unsigned long timeout,unsigned n,u8 byte)177 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
178 unsigned n, u8 byte)
179 {
180 u8 *cp = host->data->status;
181 unsigned long start = jiffies;
182
183 do {
184 int status;
185 unsigned i;
186
187 status = mmc_spi_readbytes(host, n);
188 if (status < 0)
189 return status;
190
191 for (i = 0; i < n; i++) {
192 if (cp[i] != byte)
193 return cp[i];
194 }
195
196 /* If we need long timeouts, we may release the CPU */
197 cond_resched();
198 } while (time_is_after_jiffies(start + timeout));
199 return -ETIMEDOUT;
200 }
201
202 static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host * host,unsigned long timeout)203 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
204 {
205 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
206 }
207
mmc_spi_readtoken(struct mmc_spi_host * host,unsigned long timeout)208 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
209 {
210 return mmc_spi_skip(host, timeout, 1, 0xff);
211 }
212
213
214 /*
215 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
216 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
217 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
218 *
219 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
220 * newer cards R7 (IF_COND).
221 */
222
maptype(struct mmc_command * cmd)223 static char *maptype(struct mmc_command *cmd)
224 {
225 switch (mmc_spi_resp_type(cmd)) {
226 case MMC_RSP_SPI_R1: return "R1";
227 case MMC_RSP_SPI_R1B: return "R1B";
228 case MMC_RSP_SPI_R2: return "R2/R5";
229 case MMC_RSP_SPI_R3: return "R3/R4/R7";
230 default: return "?";
231 }
232 }
233
234 /* return zero, else negative errno after setting cmd->error */
mmc_spi_response_get(struct mmc_spi_host * host,struct mmc_command * cmd,int cs_on)235 static int mmc_spi_response_get(struct mmc_spi_host *host,
236 struct mmc_command *cmd, int cs_on)
237 {
238 unsigned long timeout_ms;
239 u8 *cp = host->data->status;
240 u8 *end = cp + host->t.len;
241 int value = 0;
242 int bitshift;
243 u8 leftover = 0;
244 unsigned short rotator;
245 int i;
246 char tag[32];
247
248 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
249 cmd->opcode, maptype(cmd));
250
251 /* Except for data block reads, the whole response will already
252 * be stored in the scratch buffer. It's somewhere after the
253 * command and the first byte we read after it. We ignore that
254 * first byte. After STOP_TRANSMISSION command it may include
255 * two data bits, but otherwise it's all ones.
256 */
257 cp += 8;
258 while (cp < end && *cp == 0xff)
259 cp++;
260
261 /* Data block reads (R1 response types) may need more data... */
262 if (cp == end) {
263 cp = host->data->status;
264 end = cp+1;
265
266 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
267 * status byte ... and we already scanned 2 bytes.
268 *
269 * REVISIT block read paths use nasty byte-at-a-time I/O
270 * so it can always DMA directly into the target buffer.
271 * It'd probably be better to memcpy() the first chunk and
272 * avoid extra i/o calls...
273 *
274 * Note we check for more than 8 bytes, because in practice,
275 * some SD cards are slow...
276 */
277 for (i = 2; i < 16; i++) {
278 value = mmc_spi_readbytes(host, 1);
279 if (value < 0)
280 goto done;
281 if (*cp != 0xff)
282 goto checkstatus;
283 }
284 value = -ETIMEDOUT;
285 goto done;
286 }
287
288 checkstatus:
289 bitshift = 0;
290 if (*cp & 0x80) {
291 /* Houston, we have an ugly card with a bit-shifted response */
292 rotator = *cp++ << 8;
293 /* read the next byte */
294 if (cp == end) {
295 value = mmc_spi_readbytes(host, 1);
296 if (value < 0)
297 goto done;
298 cp = host->data->status;
299 end = cp+1;
300 }
301 rotator |= *cp++;
302 while (rotator & 0x8000) {
303 bitshift++;
304 rotator <<= 1;
305 }
306 cmd->resp[0] = rotator >> 8;
307 leftover = rotator;
308 } else {
309 cmd->resp[0] = *cp++;
310 }
311 cmd->error = 0;
312
313 /* Status byte: the entire seven-bit R1 response. */
314 if (cmd->resp[0] != 0) {
315 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
316 & cmd->resp[0])
317 value = -EFAULT; /* Bad address */
318 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
319 value = -ENOSYS; /* Function not implemented */
320 else if (R1_SPI_COM_CRC & cmd->resp[0])
321 value = -EILSEQ; /* Illegal byte sequence */
322 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
323 & cmd->resp[0])
324 value = -EIO; /* I/O error */
325 /* else R1_SPI_IDLE, "it's resetting" */
326 }
327
328 switch (mmc_spi_resp_type(cmd)) {
329
330 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
331 * and less-common stuff like various erase operations.
332 */
333 case MMC_RSP_SPI_R1B:
334 /* maybe we read all the busy tokens already */
335 while (cp < end && *cp == 0)
336 cp++;
337 if (cp == end) {
338 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
339 MMC_SPI_R1B_TIMEOUT_MS;
340 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
341 }
342 break;
343
344 /* SPI R2 == R1 + second status byte; SEND_STATUS
345 * SPI R5 == R1 + data byte; IO_RW_DIRECT
346 */
347 case MMC_RSP_SPI_R2:
348 /* read the next byte */
349 if (cp == end) {
350 value = mmc_spi_readbytes(host, 1);
351 if (value < 0)
352 goto done;
353 cp = host->data->status;
354 end = cp+1;
355 }
356 if (bitshift) {
357 rotator = leftover << 8;
358 rotator |= *cp << bitshift;
359 cmd->resp[0] |= (rotator & 0xFF00);
360 } else {
361 cmd->resp[0] |= *cp << 8;
362 }
363 break;
364
365 /* SPI R3, R4, or R7 == R1 + 4 bytes */
366 case MMC_RSP_SPI_R3:
367 rotator = leftover << 8;
368 cmd->resp[1] = 0;
369 for (i = 0; i < 4; i++) {
370 cmd->resp[1] <<= 8;
371 /* read the next byte */
372 if (cp == end) {
373 value = mmc_spi_readbytes(host, 1);
374 if (value < 0)
375 goto done;
376 cp = host->data->status;
377 end = cp+1;
378 }
379 if (bitshift) {
380 rotator |= *cp++ << bitshift;
381 cmd->resp[1] |= (rotator >> 8);
382 rotator <<= 8;
383 } else {
384 cmd->resp[1] |= *cp++;
385 }
386 }
387 break;
388
389 /* SPI R1 == just one status byte */
390 case MMC_RSP_SPI_R1:
391 break;
392
393 default:
394 dev_dbg(&host->spi->dev, "bad response type %04x\n",
395 mmc_spi_resp_type(cmd));
396 if (value >= 0)
397 value = -EINVAL;
398 goto done;
399 }
400
401 if (value < 0)
402 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
403 tag, cmd->resp[0], cmd->resp[1]);
404
405 /* disable chipselect on errors and some success cases */
406 if (value >= 0 && cs_on)
407 return value;
408 done:
409 if (value < 0)
410 cmd->error = value;
411 mmc_cs_off(host);
412 return value;
413 }
414
415 /* Issue command and read its response.
416 * Returns zero on success, negative for error.
417 *
418 * On error, caller must cope with mmc core retry mechanism. That
419 * means immediate low-level resubmit, which affects the bus lock...
420 */
421 static int
mmc_spi_command_send(struct mmc_spi_host * host,struct mmc_request * mrq,struct mmc_command * cmd,int cs_on)422 mmc_spi_command_send(struct mmc_spi_host *host,
423 struct mmc_request *mrq,
424 struct mmc_command *cmd, int cs_on)
425 {
426 struct scratch *data = host->data;
427 u8 *cp = data->status;
428 int status;
429 struct spi_transfer *t;
430
431 /* We can handle most commands (except block reads) in one full
432 * duplex I/O operation before either starting the next transfer
433 * (data block or command) or else deselecting the card.
434 *
435 * First, write 7 bytes:
436 * - an all-ones byte to ensure the card is ready
437 * - opcode byte (plus start and transmission bits)
438 * - four bytes of big-endian argument
439 * - crc7 (plus end bit) ... always computed, it's cheap
440 *
441 * We init the whole buffer to all-ones, which is what we need
442 * to write while we're reading (later) response data.
443 */
444 memset(cp, 0xff, sizeof(data->status));
445
446 cp[1] = 0x40 | cmd->opcode;
447 put_unaligned_be32(cmd->arg, cp + 2);
448 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
449 cp += 7;
450
451 /* Then, read up to 13 bytes (while writing all-ones):
452 * - N(CR) (== 1..8) bytes of all-ones
453 * - status byte (for all response types)
454 * - the rest of the response, either:
455 * + nothing, for R1 or R1B responses
456 * + second status byte, for R2 responses
457 * + four data bytes, for R3 and R7 responses
458 *
459 * Finally, read some more bytes ... in the nice cases we know in
460 * advance how many, and reading 1 more is always OK:
461 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
462 * - N(RC) (== 1..N) bytes of all-ones, before next command
463 * - N(WR) (== 1..N) bytes of all-ones, before data write
464 *
465 * So in those cases one full duplex I/O of at most 21 bytes will
466 * handle the whole command, leaving the card ready to receive a
467 * data block or new command. We do that whenever we can, shaving
468 * CPU and IRQ costs (especially when using DMA or FIFOs).
469 *
470 * There are two other cases, where it's not generally practical
471 * to rely on a single I/O:
472 *
473 * - R1B responses need at least N(EC) bytes of all-zeroes.
474 *
475 * In this case we can *try* to fit it into one I/O, then
476 * maybe read more data later.
477 *
478 * - Data block reads are more troublesome, since a variable
479 * number of padding bytes precede the token and data.
480 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
481 * + N(AC) (== 1..many) bytes of all-ones
482 *
483 * In this case we currently only have minimal speedups here:
484 * when N(CR) == 1 we can avoid I/O in response_get().
485 */
486 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
487 cp += 2; /* min(N(CR)) + status */
488 /* R1 */
489 } else {
490 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
491 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
492 cp++;
493 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
494 cp += 4;
495 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
496 cp = data->status + sizeof(data->status);
497 /* else: R1 (most commands) */
498 }
499
500 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
501 cmd->opcode, maptype(cmd));
502
503 /* send command, leaving chipselect active */
504 spi_message_init(&host->m);
505
506 t = &host->t;
507 memset(t, 0, sizeof(*t));
508 t->tx_buf = t->rx_buf = data->status;
509 t->tx_dma = t->rx_dma = host->data_dma;
510 t->len = cp - data->status;
511 t->cs_change = 1;
512 spi_message_add_tail(t, &host->m);
513
514 if (host->dma_dev) {
515 host->m.is_dma_mapped = 1;
516 dma_sync_single_for_device(host->dma_dev,
517 host->data_dma, sizeof(*host->data),
518 DMA_BIDIRECTIONAL);
519 }
520 status = spi_sync_locked(host->spi, &host->m);
521
522 if (host->dma_dev)
523 dma_sync_single_for_cpu(host->dma_dev,
524 host->data_dma, sizeof(*host->data),
525 DMA_BIDIRECTIONAL);
526 if (status < 0) {
527 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
528 cmd->error = status;
529 return status;
530 }
531
532 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
533 return mmc_spi_response_get(host, cmd, cs_on);
534 }
535
536 /* Build data message with up to four separate transfers. For TX, we
537 * start by writing the data token. And in most cases, we finish with
538 * a status transfer.
539 *
540 * We always provide TX data for data and CRC. The MMC/SD protocol
541 * requires us to write ones; but Linux defaults to writing zeroes;
542 * so we explicitly initialize it to all ones on RX paths.
543 *
544 * We also handle DMA mapping, so the underlying SPI controller does
545 * not need to (re)do it for each message.
546 */
547 static void
mmc_spi_setup_data_message(struct mmc_spi_host * host,bool multiple,enum dma_data_direction direction)548 mmc_spi_setup_data_message(
549 struct mmc_spi_host *host,
550 bool multiple,
551 enum dma_data_direction direction)
552 {
553 struct spi_transfer *t;
554 struct scratch *scratch = host->data;
555 dma_addr_t dma = host->data_dma;
556
557 spi_message_init(&host->m);
558 if (dma)
559 host->m.is_dma_mapped = 1;
560
561 /* for reads, readblock() skips 0xff bytes before finding
562 * the token; for writes, this transfer issues that token.
563 */
564 if (direction == DMA_TO_DEVICE) {
565 t = &host->token;
566 memset(t, 0, sizeof(*t));
567 t->len = 1;
568 if (multiple)
569 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
570 else
571 scratch->data_token = SPI_TOKEN_SINGLE;
572 t->tx_buf = &scratch->data_token;
573 if (dma)
574 t->tx_dma = dma + offsetof(struct scratch, data_token);
575 spi_message_add_tail(t, &host->m);
576 }
577
578 /* Body of transfer is buffer, then CRC ...
579 * either TX-only, or RX with TX-ones.
580 */
581 t = &host->t;
582 memset(t, 0, sizeof(*t));
583 t->tx_buf = host->ones;
584 t->tx_dma = host->ones_dma;
585 /* length and actual buffer info are written later */
586 spi_message_add_tail(t, &host->m);
587
588 t = &host->crc;
589 memset(t, 0, sizeof(*t));
590 t->len = 2;
591 if (direction == DMA_TO_DEVICE) {
592 /* the actual CRC may get written later */
593 t->tx_buf = &scratch->crc_val;
594 if (dma)
595 t->tx_dma = dma + offsetof(struct scratch, crc_val);
596 } else {
597 t->tx_buf = host->ones;
598 t->tx_dma = host->ones_dma;
599 t->rx_buf = &scratch->crc_val;
600 if (dma)
601 t->rx_dma = dma + offsetof(struct scratch, crc_val);
602 }
603 spi_message_add_tail(t, &host->m);
604
605 /*
606 * A single block read is followed by N(EC) [0+] all-ones bytes
607 * before deselect ... don't bother.
608 *
609 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
610 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
611 * collect that single byte, so readblock() doesn't need to.
612 *
613 * For a write, the one-byte data response follows immediately, then
614 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
615 * Then single block reads may deselect, and multiblock ones issue
616 * the next token (next data block, or STOP_TRAN). We can try to
617 * minimize I/O ops by using a single read to collect end-of-busy.
618 */
619 if (multiple || direction == DMA_TO_DEVICE) {
620 t = &host->early_status;
621 memset(t, 0, sizeof(*t));
622 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
623 t->tx_buf = host->ones;
624 t->tx_dma = host->ones_dma;
625 t->rx_buf = scratch->status;
626 if (dma)
627 t->rx_dma = dma + offsetof(struct scratch, status);
628 t->cs_change = 1;
629 spi_message_add_tail(t, &host->m);
630 }
631 }
632
633 /*
634 * Write one block:
635 * - caller handled preceding N(WR) [1+] all-ones bytes
636 * - data block
637 * + token
638 * + data bytes
639 * + crc16
640 * - an all-ones byte ... card writes a data-response byte
641 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
642 *
643 * Return negative errno, else success.
644 */
645 static int
mmc_spi_writeblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)646 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
647 unsigned long timeout)
648 {
649 struct spi_device *spi = host->spi;
650 int status, i;
651 struct scratch *scratch = host->data;
652 u32 pattern;
653
654 if (host->mmc->use_spi_crc)
655 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
656 if (host->dma_dev)
657 dma_sync_single_for_device(host->dma_dev,
658 host->data_dma, sizeof(*scratch),
659 DMA_BIDIRECTIONAL);
660
661 status = spi_sync_locked(spi, &host->m);
662
663 if (status != 0) {
664 dev_dbg(&spi->dev, "write error (%d)\n", status);
665 return status;
666 }
667
668 if (host->dma_dev)
669 dma_sync_single_for_cpu(host->dma_dev,
670 host->data_dma, sizeof(*scratch),
671 DMA_BIDIRECTIONAL);
672
673 /*
674 * Get the transmission data-response reply. It must follow
675 * immediately after the data block we transferred. This reply
676 * doesn't necessarily tell whether the write operation succeeded;
677 * it just says if the transmission was ok and whether *earlier*
678 * writes succeeded; see the standard.
679 *
680 * In practice, there are (even modern SDHC-)cards which are late
681 * in sending the response, and miss the time frame by a few bits,
682 * so we have to cope with this situation and check the response
683 * bit-by-bit. Arggh!!!
684 */
685 pattern = get_unaligned_be32(scratch->status);
686
687 /* First 3 bit of pattern are undefined */
688 pattern |= 0xE0000000;
689
690 /* left-adjust to leading 0 bit */
691 while (pattern & 0x80000000)
692 pattern <<= 1;
693 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
694 pattern >>= 27;
695
696 switch (pattern) {
697 case SPI_RESPONSE_ACCEPTED:
698 status = 0;
699 break;
700 case SPI_RESPONSE_CRC_ERR:
701 /* host shall then issue MMC_STOP_TRANSMISSION */
702 status = -EILSEQ;
703 break;
704 case SPI_RESPONSE_WRITE_ERR:
705 /* host shall then issue MMC_STOP_TRANSMISSION,
706 * and should MMC_SEND_STATUS to sort it out
707 */
708 status = -EIO;
709 break;
710 default:
711 status = -EPROTO;
712 break;
713 }
714 if (status != 0) {
715 dev_dbg(&spi->dev, "write error %02x (%d)\n",
716 scratch->status[0], status);
717 return status;
718 }
719
720 t->tx_buf += t->len;
721 if (host->dma_dev)
722 t->tx_dma += t->len;
723
724 /* Return when not busy. If we didn't collect that status yet,
725 * we'll need some more I/O.
726 */
727 for (i = 4; i < sizeof(scratch->status); i++) {
728 /* card is non-busy if the most recent bit is 1 */
729 if (scratch->status[i] & 0x01)
730 return 0;
731 }
732 return mmc_spi_wait_unbusy(host, timeout);
733 }
734
735 /*
736 * Read one block:
737 * - skip leading all-ones bytes ... either
738 * + N(AC) [1..f(clock,CSD)] usually, else
739 * + N(CX) [0..8] when reading CSD or CID
740 * - data block
741 * + token ... if error token, no data or crc
742 * + data bytes
743 * + crc16
744 *
745 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
746 * before dropping chipselect.
747 *
748 * For multiblock reads, caller either reads the next block or issues a
749 * STOP_TRANSMISSION command.
750 */
751 static int
mmc_spi_readblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)752 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
753 unsigned long timeout)
754 {
755 struct spi_device *spi = host->spi;
756 int status;
757 struct scratch *scratch = host->data;
758 unsigned int bitshift;
759 u8 leftover;
760
761 /* At least one SD card sends an all-zeroes byte when N(CX)
762 * applies, before the all-ones bytes ... just cope with that.
763 */
764 status = mmc_spi_readbytes(host, 1);
765 if (status < 0)
766 return status;
767 status = scratch->status[0];
768 if (status == 0xff || status == 0)
769 status = mmc_spi_readtoken(host, timeout);
770
771 if (status < 0) {
772 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
773 return status;
774 }
775
776 /* The token may be bit-shifted...
777 * the first 0-bit precedes the data stream.
778 */
779 bitshift = 7;
780 while (status & 0x80) {
781 status <<= 1;
782 bitshift--;
783 }
784 leftover = status << 1;
785
786 if (host->dma_dev) {
787 dma_sync_single_for_device(host->dma_dev,
788 host->data_dma, sizeof(*scratch),
789 DMA_BIDIRECTIONAL);
790 dma_sync_single_for_device(host->dma_dev,
791 t->rx_dma, t->len,
792 DMA_FROM_DEVICE);
793 }
794
795 status = spi_sync_locked(spi, &host->m);
796 if (status < 0) {
797 dev_dbg(&spi->dev, "read error %d\n", status);
798 return status;
799 }
800
801 if (host->dma_dev) {
802 dma_sync_single_for_cpu(host->dma_dev,
803 host->data_dma, sizeof(*scratch),
804 DMA_BIDIRECTIONAL);
805 dma_sync_single_for_cpu(host->dma_dev,
806 t->rx_dma, t->len,
807 DMA_FROM_DEVICE);
808 }
809
810 if (bitshift) {
811 /* Walk through the data and the crc and do
812 * all the magic to get byte-aligned data.
813 */
814 u8 *cp = t->rx_buf;
815 unsigned int len;
816 unsigned int bitright = 8 - bitshift;
817 u8 temp;
818 for (len = t->len; len; len--) {
819 temp = *cp;
820 *cp++ = leftover | (temp >> bitshift);
821 leftover = temp << bitright;
822 }
823 cp = (u8 *) &scratch->crc_val;
824 temp = *cp;
825 *cp++ = leftover | (temp >> bitshift);
826 leftover = temp << bitright;
827 temp = *cp;
828 *cp = leftover | (temp >> bitshift);
829 }
830
831 if (host->mmc->use_spi_crc) {
832 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
833
834 be16_to_cpus(&scratch->crc_val);
835 if (scratch->crc_val != crc) {
836 dev_dbg(&spi->dev,
837 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
838 scratch->crc_val, crc, t->len);
839 return -EILSEQ;
840 }
841 }
842
843 t->rx_buf += t->len;
844 if (host->dma_dev)
845 t->rx_dma += t->len;
846
847 return 0;
848 }
849
850 /*
851 * An MMC/SD data stage includes one or more blocks, optional CRCs,
852 * and inline handshaking. That handhaking makes it unlike most
853 * other SPI protocol stacks.
854 */
855 static void
mmc_spi_data_do(struct mmc_spi_host * host,struct mmc_command * cmd,struct mmc_data * data,u32 blk_size)856 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
857 struct mmc_data *data, u32 blk_size)
858 {
859 struct spi_device *spi = host->spi;
860 struct device *dma_dev = host->dma_dev;
861 struct spi_transfer *t;
862 enum dma_data_direction direction = mmc_get_dma_dir(data);
863 struct scatterlist *sg;
864 unsigned n_sg;
865 bool multiple = (data->blocks > 1);
866 const char *write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read";
867 u32 clock_rate;
868 unsigned long timeout;
869
870 mmc_spi_setup_data_message(host, multiple, direction);
871 t = &host->t;
872
873 if (t->speed_hz)
874 clock_rate = t->speed_hz;
875 else
876 clock_rate = spi->max_speed_hz;
877
878 timeout = data->timeout_ns / 1000 +
879 data->timeout_clks * 1000000 / clock_rate;
880 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
881
882 /* Handle scatterlist segments one at a time, with synch for
883 * each 512-byte block
884 */
885 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
886 int status = 0;
887 dma_addr_t dma_addr = 0;
888 void *kmap_addr;
889 unsigned length = sg->length;
890 enum dma_data_direction dir = direction;
891
892 /* set up dma mapping for controller drivers that might
893 * use DMA ... though they may fall back to PIO
894 */
895 if (dma_dev) {
896 /* never invalidate whole *shared* pages ... */
897 if ((sg->offset != 0 || length != PAGE_SIZE)
898 && dir == DMA_FROM_DEVICE)
899 dir = DMA_BIDIRECTIONAL;
900
901 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
902 PAGE_SIZE, dir);
903 if (dma_mapping_error(dma_dev, dma_addr)) {
904 data->error = -EFAULT;
905 break;
906 }
907 if (direction == DMA_TO_DEVICE)
908 t->tx_dma = dma_addr + sg->offset;
909 else
910 t->rx_dma = dma_addr + sg->offset;
911 }
912
913 /* allow pio too; we don't allow highmem */
914 kmap_addr = kmap(sg_page(sg));
915 if (direction == DMA_TO_DEVICE)
916 t->tx_buf = kmap_addr + sg->offset;
917 else
918 t->rx_buf = kmap_addr + sg->offset;
919
920 /* transfer each block, and update request status */
921 while (length) {
922 t->len = min(length, blk_size);
923
924 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len);
925
926 if (direction == DMA_TO_DEVICE)
927 status = mmc_spi_writeblock(host, t, timeout);
928 else
929 status = mmc_spi_readblock(host, t, timeout);
930 if (status < 0)
931 break;
932
933 data->bytes_xfered += t->len;
934 length -= t->len;
935
936 if (!multiple)
937 break;
938 }
939
940 /* discard mappings */
941 if (direction == DMA_FROM_DEVICE)
942 flush_dcache_page(sg_page(sg));
943 kunmap(sg_page(sg));
944 if (dma_dev)
945 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
946
947 if (status < 0) {
948 data->error = status;
949 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
950 break;
951 }
952 }
953
954 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
955 * can be issued before multiblock writes. Unlike its more widely
956 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
957 * that can affect the STOP_TRAN logic. Complete (and current)
958 * MMC specs should sort that out before Linux starts using CMD23.
959 */
960 if (direction == DMA_TO_DEVICE && multiple) {
961 struct scratch *scratch = host->data;
962 int tmp;
963 const unsigned statlen = sizeof(scratch->status);
964
965 dev_dbg(&spi->dev, " STOP_TRAN\n");
966
967 /* Tweak the per-block message we set up earlier by morphing
968 * it to hold single buffer with the token followed by some
969 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
970 * "not busy any longer" status, and leave chip selected.
971 */
972 INIT_LIST_HEAD(&host->m.transfers);
973 list_add(&host->early_status.transfer_list,
974 &host->m.transfers);
975
976 memset(scratch->status, 0xff, statlen);
977 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
978
979 host->early_status.tx_buf = host->early_status.rx_buf;
980 host->early_status.tx_dma = host->early_status.rx_dma;
981 host->early_status.len = statlen;
982
983 if (host->dma_dev)
984 dma_sync_single_for_device(host->dma_dev,
985 host->data_dma, sizeof(*scratch),
986 DMA_BIDIRECTIONAL);
987
988 tmp = spi_sync_locked(spi, &host->m);
989
990 if (host->dma_dev)
991 dma_sync_single_for_cpu(host->dma_dev,
992 host->data_dma, sizeof(*scratch),
993 DMA_BIDIRECTIONAL);
994
995 if (tmp < 0) {
996 if (!data->error)
997 data->error = tmp;
998 return;
999 }
1000
1001 /* Ideally we collected "not busy" status with one I/O,
1002 * avoiding wasteful byte-at-a-time scanning... but more
1003 * I/O is often needed.
1004 */
1005 for (tmp = 2; tmp < statlen; tmp++) {
1006 if (scratch->status[tmp] != 0)
1007 return;
1008 }
1009 tmp = mmc_spi_wait_unbusy(host, timeout);
1010 if (tmp < 0 && !data->error)
1011 data->error = tmp;
1012 }
1013 }
1014
1015 /****************************************************************************/
1016
1017 /*
1018 * MMC driver implementation -- the interface to the MMC stack
1019 */
1020
mmc_spi_request(struct mmc_host * mmc,struct mmc_request * mrq)1021 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1022 {
1023 struct mmc_spi_host *host = mmc_priv(mmc);
1024 int status = -EINVAL;
1025 int crc_retry = 5;
1026 struct mmc_command stop;
1027
1028 #ifdef DEBUG
1029 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1030 {
1031 struct mmc_command *cmd;
1032 int invalid = 0;
1033
1034 cmd = mrq->cmd;
1035 if (!mmc_spi_resp_type(cmd)) {
1036 dev_dbg(&host->spi->dev, "bogus command\n");
1037 cmd->error = -EINVAL;
1038 invalid = 1;
1039 }
1040
1041 cmd = mrq->stop;
1042 if (cmd && !mmc_spi_resp_type(cmd)) {
1043 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1044 cmd->error = -EINVAL;
1045 invalid = 1;
1046 }
1047
1048 if (invalid) {
1049 dump_stack();
1050 mmc_request_done(host->mmc, mrq);
1051 return;
1052 }
1053 }
1054 #endif
1055
1056 /* request exclusive bus access */
1057 spi_bus_lock(host->spi->master);
1058
1059 crc_recover:
1060 /* issue command; then optionally data and stop */
1061 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1062 if (status == 0 && mrq->data) {
1063 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1064
1065 /*
1066 * The SPI bus is not always reliable for large data transfers.
1067 * If an occasional crc error is reported by the SD device with
1068 * data read/write over SPI, it may be recovered by repeating
1069 * the last SD command again. The retry count is set to 5 to
1070 * ensure the driver passes stress tests.
1071 */
1072 if (mrq->data->error == -EILSEQ && crc_retry) {
1073 stop.opcode = MMC_STOP_TRANSMISSION;
1074 stop.arg = 0;
1075 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1076 status = mmc_spi_command_send(host, mrq, &stop, 0);
1077 crc_retry--;
1078 mrq->data->error = 0;
1079 goto crc_recover;
1080 }
1081
1082 if (mrq->stop)
1083 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1084 else
1085 mmc_cs_off(host);
1086 }
1087
1088 /* release the bus */
1089 spi_bus_unlock(host->spi->master);
1090
1091 mmc_request_done(host->mmc, mrq);
1092 }
1093
1094 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1095 *
1096 * NOTE that here we can't know that the card has just been powered up;
1097 * not all MMC/SD sockets support power switching.
1098 *
1099 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1100 * this doesn't seem to do the right thing at all...
1101 */
mmc_spi_initsequence(struct mmc_spi_host * host)1102 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1103 {
1104 /* Try to be very sure any previous command has completed;
1105 * wait till not-busy, skip debris from any old commands.
1106 */
1107 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1108 mmc_spi_readbytes(host, 10);
1109
1110 /*
1111 * Do a burst with chipselect active-high. We need to do this to
1112 * meet the requirement of 74 clock cycles with both chipselect
1113 * and CMD (MOSI) high before CMD0 ... after the card has been
1114 * powered up to Vdd(min), and so is ready to take commands.
1115 *
1116 * Some cards are particularly needy of this (e.g. Viking "SD256")
1117 * while most others don't seem to care.
1118 *
1119 * Note that this is one of the places MMC/SD plays games with the
1120 * SPI protocol. Another is that when chipselect is released while
1121 * the card returns BUSY status, the clock must issue several cycles
1122 * with chipselect high before the card will stop driving its output.
1123 *
1124 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1125 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1126 * inverted by gpiolib, so if we want to ascertain to drive it high
1127 * we should toggle the default with an XOR as we do here.
1128 */
1129 host->spi->mode ^= SPI_CS_HIGH;
1130 if (spi_setup(host->spi) != 0) {
1131 /* Just warn; most cards work without it. */
1132 dev_warn(&host->spi->dev,
1133 "can't change chip-select polarity\n");
1134 host->spi->mode ^= SPI_CS_HIGH;
1135 } else {
1136 mmc_spi_readbytes(host, 18);
1137
1138 host->spi->mode ^= SPI_CS_HIGH;
1139 if (spi_setup(host->spi) != 0) {
1140 /* Wot, we can't get the same setup we had before? */
1141 dev_err(&host->spi->dev,
1142 "can't restore chip-select polarity\n");
1143 }
1144 }
1145 }
1146
mmc_powerstring(u8 power_mode)1147 static char *mmc_powerstring(u8 power_mode)
1148 {
1149 switch (power_mode) {
1150 case MMC_POWER_OFF: return "off";
1151 case MMC_POWER_UP: return "up";
1152 case MMC_POWER_ON: return "on";
1153 }
1154 return "?";
1155 }
1156
mmc_spi_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1157 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1158 {
1159 struct mmc_spi_host *host = mmc_priv(mmc);
1160
1161 if (host->power_mode != ios->power_mode) {
1162 int canpower;
1163
1164 canpower = host->pdata && host->pdata->setpower;
1165
1166 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1167 mmc_powerstring(ios->power_mode),
1168 ios->vdd,
1169 canpower ? ", can switch" : "");
1170
1171 /* switch power on/off if possible, accounting for
1172 * max 250msec powerup time if needed.
1173 */
1174 if (canpower) {
1175 switch (ios->power_mode) {
1176 case MMC_POWER_OFF:
1177 case MMC_POWER_UP:
1178 host->pdata->setpower(&host->spi->dev,
1179 ios->vdd);
1180 if (ios->power_mode == MMC_POWER_UP)
1181 msleep(host->powerup_msecs);
1182 }
1183 }
1184
1185 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186 if (ios->power_mode == MMC_POWER_ON)
1187 mmc_spi_initsequence(host);
1188
1189 /* If powering down, ground all card inputs to avoid power
1190 * delivery from data lines! On a shared SPI bus, this
1191 * will probably be temporary; 6.4.2 of the simplified SD
1192 * spec says this must last at least 1msec.
1193 *
1194 * - Clock low means CPOL 0, e.g. mode 0
1195 * - MOSI low comes from writing zero
1196 * - Chipselect is usually active low...
1197 */
1198 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1199 int mres;
1200 u8 nullbyte = 0;
1201
1202 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1203 mres = spi_setup(host->spi);
1204 if (mres < 0)
1205 dev_dbg(&host->spi->dev,
1206 "switch to SPI mode 0 failed\n");
1207
1208 if (spi_write(host->spi, &nullbyte, 1) < 0)
1209 dev_dbg(&host->spi->dev,
1210 "put spi signals to low failed\n");
1211
1212 /*
1213 * Now clock should be low due to spi mode 0;
1214 * MOSI should be low because of written 0x00;
1215 * chipselect should be low (it is active low)
1216 * power supply is off, so now MMC is off too!
1217 *
1218 * FIXME no, chipselect can be high since the
1219 * device is inactive and SPI_CS_HIGH is clear...
1220 */
1221 msleep(10);
1222 if (mres == 0) {
1223 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1224 mres = spi_setup(host->spi);
1225 if (mres < 0)
1226 dev_dbg(&host->spi->dev,
1227 "switch back to SPI mode 3 failed\n");
1228 }
1229 }
1230
1231 host->power_mode = ios->power_mode;
1232 }
1233
1234 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1235 int status;
1236
1237 host->spi->max_speed_hz = ios->clock;
1238 status = spi_setup(host->spi);
1239 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1240 host->spi->max_speed_hz, status);
1241 }
1242 }
1243
1244 static const struct mmc_host_ops mmc_spi_ops = {
1245 .request = mmc_spi_request,
1246 .set_ios = mmc_spi_set_ios,
1247 .get_ro = mmc_gpio_get_ro,
1248 .get_cd = mmc_gpio_get_cd,
1249 };
1250
1251
1252 /****************************************************************************/
1253
1254 /*
1255 * SPI driver implementation
1256 */
1257
1258 static irqreturn_t
mmc_spi_detect_irq(int irq,void * mmc)1259 mmc_spi_detect_irq(int irq, void *mmc)
1260 {
1261 struct mmc_spi_host *host = mmc_priv(mmc);
1262 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1263
1264 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1265 return IRQ_HANDLED;
1266 }
1267
1268 #ifdef CONFIG_HAS_DMA
mmc_spi_dma_alloc(struct mmc_spi_host * host)1269 static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1270 {
1271 struct spi_device *spi = host->spi;
1272 struct device *dev;
1273
1274 if (!spi->master->dev.parent->dma_mask)
1275 return 0;
1276
1277 dev = spi->master->dev.parent;
1278
1279 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1280 DMA_TO_DEVICE);
1281 if (dma_mapping_error(dev, host->ones_dma))
1282 return -ENOMEM;
1283
1284 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1285 DMA_BIDIRECTIONAL);
1286 if (dma_mapping_error(dev, host->data_dma)) {
1287 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1288 DMA_TO_DEVICE);
1289 return -ENOMEM;
1290 }
1291
1292 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1293 DMA_BIDIRECTIONAL);
1294
1295 host->dma_dev = dev;
1296 return 0;
1297 }
1298
mmc_spi_dma_free(struct mmc_spi_host * host)1299 static void mmc_spi_dma_free(struct mmc_spi_host *host)
1300 {
1301 if (!host->dma_dev)
1302 return;
1303
1304 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1305 DMA_TO_DEVICE);
1306 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1307 DMA_BIDIRECTIONAL);
1308 }
1309 #else
mmc_spi_dma_alloc(struct mmc_spi_host * host)1310 static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
mmc_spi_dma_free(struct mmc_spi_host * host)1311 static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1312 #endif
1313
mmc_spi_probe(struct spi_device * spi)1314 static int mmc_spi_probe(struct spi_device *spi)
1315 {
1316 void *ones;
1317 struct mmc_host *mmc;
1318 struct mmc_spi_host *host;
1319 int status;
1320 bool has_ro = false;
1321
1322 /* We rely on full duplex transfers, mostly to reduce
1323 * per-transfer overheads (by making fewer transfers).
1324 */
1325 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1326 return -EINVAL;
1327
1328 /* MMC and SD specs only seem to care that sampling is on the
1329 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1330 * should be legit. We'll use mode 0 since the steady state is 0,
1331 * which is appropriate for hotplugging, unless the platform data
1332 * specify mode 3 (if hardware is not compatible to mode 0).
1333 */
1334 if (spi->mode != SPI_MODE_3)
1335 spi->mode = SPI_MODE_0;
1336 spi->bits_per_word = 8;
1337
1338 status = spi_setup(spi);
1339 if (status < 0) {
1340 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1341 spi->mode, spi->max_speed_hz / 1000,
1342 status);
1343 return status;
1344 }
1345
1346 /* We need a supply of ones to transmit. This is the only time
1347 * the CPU touches these, so cache coherency isn't a concern.
1348 *
1349 * NOTE if many systems use more than one MMC-over-SPI connector
1350 * it'd save some memory to share this. That's evidently rare.
1351 */
1352 status = -ENOMEM;
1353 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1354 if (!ones)
1355 goto nomem;
1356 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1357
1358 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1359 if (!mmc)
1360 goto nomem;
1361
1362 mmc->ops = &mmc_spi_ops;
1363 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1364 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1365 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1366 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1367
1368 mmc->caps = MMC_CAP_SPI;
1369
1370 /* SPI doesn't need the lowspeed device identification thing for
1371 * MMC or SD cards, since it never comes up in open drain mode.
1372 * That's good; some SPI masters can't handle very low speeds!
1373 *
1374 * However, low speed SDIO cards need not handle over 400 KHz;
1375 * that's the only reason not to use a few MHz for f_min (until
1376 * the upper layer reads the target frequency from the CSD).
1377 */
1378 mmc->f_min = 400000;
1379 mmc->f_max = spi->max_speed_hz;
1380
1381 host = mmc_priv(mmc);
1382 host->mmc = mmc;
1383 host->spi = spi;
1384
1385 host->ones = ones;
1386
1387 dev_set_drvdata(&spi->dev, mmc);
1388
1389 /* Platform data is used to hook up things like card sensing
1390 * and power switching gpios.
1391 */
1392 host->pdata = mmc_spi_get_pdata(spi);
1393 if (host->pdata)
1394 mmc->ocr_avail = host->pdata->ocr_mask;
1395 if (!mmc->ocr_avail) {
1396 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1397 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1398 }
1399 if (host->pdata && host->pdata->setpower) {
1400 host->powerup_msecs = host->pdata->powerup_msecs;
1401 if (!host->powerup_msecs || host->powerup_msecs > 250)
1402 host->powerup_msecs = 250;
1403 }
1404
1405 /* preallocate dma buffers */
1406 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1407 if (!host->data)
1408 goto fail_nobuf1;
1409
1410 status = mmc_spi_dma_alloc(host);
1411 if (status)
1412 goto fail_dma;
1413
1414 /* setup message for status/busy readback */
1415 spi_message_init(&host->readback);
1416 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1417
1418 spi_message_add_tail(&host->status, &host->readback);
1419 host->status.tx_buf = host->ones;
1420 host->status.tx_dma = host->ones_dma;
1421 host->status.rx_buf = &host->data->status;
1422 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1423 host->status.cs_change = 1;
1424
1425 /* register card detect irq */
1426 if (host->pdata && host->pdata->init) {
1427 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1428 if (status != 0)
1429 goto fail_glue_init;
1430 }
1431
1432 /* pass platform capabilities, if any */
1433 if (host->pdata) {
1434 mmc->caps |= host->pdata->caps;
1435 mmc->caps2 |= host->pdata->caps2;
1436 }
1437
1438 status = mmc_add_host(mmc);
1439 if (status != 0)
1440 goto fail_add_host;
1441
1442 /*
1443 * Index 0 is card detect
1444 * Old boardfiles were specifying 1 ms as debounce
1445 */
1446 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1447 if (status == -EPROBE_DEFER)
1448 goto fail_add_host;
1449 if (!status) {
1450 /*
1451 * The platform has a CD GPIO signal that may support
1452 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1453 * if polling is needed or not.
1454 */
1455 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1456 mmc_gpiod_request_cd_irq(mmc);
1457 }
1458 mmc_detect_change(mmc, 0);
1459
1460 /* Index 1 is write protect/read only */
1461 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1462 if (status == -EPROBE_DEFER)
1463 goto fail_add_host;
1464 if (!status)
1465 has_ro = true;
1466
1467 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1468 dev_name(&mmc->class_dev),
1469 host->dma_dev ? "" : ", no DMA",
1470 has_ro ? "" : ", no WP",
1471 (host->pdata && host->pdata->setpower)
1472 ? "" : ", no poweroff",
1473 (mmc->caps & MMC_CAP_NEEDS_POLL)
1474 ? ", cd polling" : "");
1475 return 0;
1476
1477 fail_add_host:
1478 mmc_remove_host(mmc);
1479 fail_glue_init:
1480 mmc_spi_dma_free(host);
1481 fail_dma:
1482 kfree(host->data);
1483 fail_nobuf1:
1484 mmc_spi_put_pdata(spi);
1485 mmc_free_host(mmc);
1486 nomem:
1487 kfree(ones);
1488 return status;
1489 }
1490
1491
mmc_spi_remove(struct spi_device * spi)1492 static void mmc_spi_remove(struct spi_device *spi)
1493 {
1494 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1495 struct mmc_spi_host *host = mmc_priv(mmc);
1496
1497 /* prevent new mmc_detect_change() calls */
1498 if (host->pdata && host->pdata->exit)
1499 host->pdata->exit(&spi->dev, mmc);
1500
1501 mmc_remove_host(mmc);
1502
1503 mmc_spi_dma_free(host);
1504 kfree(host->data);
1505 kfree(host->ones);
1506
1507 spi->max_speed_hz = mmc->f_max;
1508 mmc_spi_put_pdata(spi);
1509 mmc_free_host(mmc);
1510 }
1511
1512 static const struct spi_device_id mmc_spi_dev_ids[] = {
1513 { "mmc-spi-slot"},
1514 { },
1515 };
1516 MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1517
1518 static const struct of_device_id mmc_spi_of_match_table[] = {
1519 { .compatible = "mmc-spi-slot", },
1520 {},
1521 };
1522 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1523
1524 static struct spi_driver mmc_spi_driver = {
1525 .driver = {
1526 .name = "mmc_spi",
1527 .of_match_table = mmc_spi_of_match_table,
1528 },
1529 .id_table = mmc_spi_dev_ids,
1530 .probe = mmc_spi_probe,
1531 .remove = mmc_spi_remove,
1532 };
1533
1534 module_spi_driver(mmc_spi_driver);
1535
1536 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1537 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1538 MODULE_LICENSE("GPL");
1539 MODULE_ALIAS("spi:mmc_spi");
1540