1 /* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */
2 /*
3 * Copyright(c) 2018 Intel Corporation.
4 *
5 */
6 #ifndef HFI1_TID_RDMA_H
7 #define HFI1_TID_RDMA_H
8
9 #include <linux/circ_buf.h>
10 #include "common.h"
11
12 /* Add a convenience helper */
13 #define CIRC_ADD(val, add, size) (((val) + (add)) & ((size) - 1))
14 #define CIRC_NEXT(val, size) CIRC_ADD(val, 1, size)
15 #define CIRC_PREV(val, size) CIRC_ADD(val, -1, size)
16
17 #define TID_RDMA_MIN_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */
18 #define TID_RDMA_MAX_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */
19 #define TID_RDMA_MAX_PAGES (BIT(18) >> PAGE_SHIFT)
20 #define TID_RDMA_SEGMENT_SHIFT 18
21
22 /*
23 * Bit definitions for priv->s_flags.
24 * These bit flags overload the bit flags defined for the QP's s_flags.
25 * Due to the fact that these bit fields are used only for the QP priv
26 * s_flags, there are no collisions.
27 *
28 * HFI1_S_TID_WAIT_INTERLCK - QP is waiting for requester interlock
29 * HFI1_R_TID_WAIT_INTERLCK - QP is waiting for responder interlock
30 */
31 #define HFI1_S_TID_BUSY_SET BIT(0)
32 /* BIT(1) reserved for RVT_S_BUSY. */
33 #define HFI1_R_TID_RSC_TIMER BIT(2)
34 /* BIT(3) reserved for RVT_S_RESP_PENDING. */
35 /* BIT(4) reserved for RVT_S_ACK_PENDING. */
36 #define HFI1_S_TID_WAIT_INTERLCK BIT(5)
37 #define HFI1_R_TID_WAIT_INTERLCK BIT(6)
38 /* BIT(7) - BIT(15) reserved for RVT_S_WAIT_*. */
39 /* BIT(16) reserved for RVT_S_SEND_ONE */
40 #define HFI1_S_TID_RETRY_TIMER BIT(17)
41 /* BIT(18) reserved for RVT_S_ECN. */
42 #define HFI1_R_TID_SW_PSN BIT(19)
43 /* BIT(26) reserved for HFI1_S_WAIT_HALT */
44 /* BIT(27) reserved for HFI1_S_WAIT_TID_RESP */
45 /* BIT(28) reserved for HFI1_S_WAIT_TID_SPACE */
46
47 /*
48 * Unlike regular IB RDMA VERBS, which do not require an entry
49 * in the s_ack_queue, TID RDMA WRITE requests do because they
50 * generate responses.
51 * Therefore, the s_ack_queue needs to be extended by a certain
52 * amount. The key point is that the queue needs to be extended
53 * without letting the "user" know so they user doesn't end up
54 * using these extra entries.
55 */
56 #define HFI1_TID_RDMA_WRITE_CNT 8
57
58 struct tid_rdma_params {
59 struct rcu_head rcu_head;
60 u32 qp;
61 u32 max_len;
62 u16 jkey;
63 u8 max_read;
64 u8 max_write;
65 u8 timeout;
66 u8 urg;
67 u8 version;
68 };
69
70 struct tid_rdma_qp_params {
71 struct work_struct trigger_work;
72 struct tid_rdma_params local;
73 struct tid_rdma_params __rcu *remote;
74 };
75
76 /* Track state for each hardware flow */
77 struct tid_flow_state {
78 u32 generation;
79 u32 psn;
80 u8 index;
81 u8 last_index;
82 };
83
84 enum tid_rdma_req_state {
85 TID_REQUEST_INACTIVE = 0,
86 TID_REQUEST_INIT,
87 TID_REQUEST_INIT_RESEND,
88 TID_REQUEST_ACTIVE,
89 TID_REQUEST_RESEND,
90 TID_REQUEST_RESEND_ACTIVE,
91 TID_REQUEST_QUEUED,
92 TID_REQUEST_SYNC,
93 TID_REQUEST_RNR_NAK,
94 TID_REQUEST_COMPLETE,
95 };
96
97 struct tid_rdma_request {
98 struct rvt_qp *qp;
99 struct hfi1_ctxtdata *rcd;
100 union {
101 struct rvt_swqe *swqe;
102 struct rvt_ack_entry *ack;
103 } e;
104
105 struct tid_rdma_flow *flows; /* array of tid flows */
106 struct rvt_sge_state ss; /* SGE state for TID RDMA requests */
107 u16 n_flows; /* size of the flow buffer window */
108 u16 setup_head; /* flow index we are setting up */
109 u16 clear_tail; /* flow index we are clearing */
110 u16 flow_idx; /* flow index most recently set up */
111 u16 acked_tail;
112
113 u32 seg_len;
114 u32 total_len;
115 u32 r_ack_psn; /* next expected ack PSN */
116 u32 r_flow_psn; /* IB PSN of next segment start */
117 u32 r_last_acked; /* IB PSN of last ACK'ed packet */
118 u32 s_next_psn; /* IB PSN of next segment start for read */
119
120 u32 total_segs; /* segments required to complete a request */
121 u32 cur_seg; /* index of current segment */
122 u32 comp_seg; /* index of last completed segment */
123 u32 ack_seg; /* index of last ack'ed segment */
124 u32 alloc_seg; /* index of next segment to be allocated */
125 u32 isge; /* index of "current" sge */
126 u32 ack_pending; /* num acks pending for this request */
127
128 enum tid_rdma_req_state state;
129 };
130
131 /*
132 * When header suppression is used, PSNs associated with a "flow" are
133 * relevant (and not the PSNs maintained by verbs). Track per-flow
134 * PSNs here for a TID RDMA segment.
135 *
136 */
137 struct flow_state {
138 u32 flags;
139 u32 resp_ib_psn; /* The IB PSN of the response for this flow */
140 u32 generation; /* generation of flow */
141 u32 spsn; /* starting PSN in TID space */
142 u32 lpsn; /* last PSN in TID space */
143 u32 r_next_psn; /* next PSN to be received (in TID space) */
144
145 /* For tid rdma read */
146 u32 ib_spsn; /* starting PSN in Verbs space */
147 u32 ib_lpsn; /* last PSn in Verbs space */
148 };
149
150 struct tid_rdma_pageset {
151 dma_addr_t addr : 48; /* Only needed for the first page */
152 u8 idx: 8;
153 u8 count : 7;
154 u8 mapped: 1;
155 };
156
157 /**
158 * kern_tid_node - used for managing TID's in TID groups
159 *
160 * @grp_idx: rcd relative index to tid_group
161 * @map: grp->map captured prior to programming this TID group in HW
162 * @cnt: Only @cnt of available group entries are actually programmed
163 */
164 struct kern_tid_node {
165 struct tid_group *grp;
166 u8 map;
167 u8 cnt;
168 };
169
170 /* Overall info for a TID RDMA segment */
171 struct tid_rdma_flow {
172 /*
173 * While a TID RDMA segment is being transferred, it uses a QP number
174 * from the "KDETH section of QP numbers" (which is different from the
175 * QP number that originated the request). Bits 11-15 of these QP
176 * numbers identify the "TID flow" for the segment.
177 */
178 struct flow_state flow_state;
179 struct tid_rdma_request *req;
180 u32 tid_qpn;
181 u32 tid_offset;
182 u32 length;
183 u32 sent;
184 u8 tnode_cnt;
185 u8 tidcnt;
186 u8 tid_idx;
187 u8 idx;
188 u8 npagesets;
189 u8 npkts;
190 u8 pkt;
191 u8 resync_npkts;
192 struct kern_tid_node tnode[TID_RDMA_MAX_PAGES];
193 struct tid_rdma_pageset pagesets[TID_RDMA_MAX_PAGES];
194 u32 tid_entry[TID_RDMA_MAX_PAGES];
195 };
196
197 enum tid_rnr_nak_state {
198 TID_RNR_NAK_INIT = 0,
199 TID_RNR_NAK_SEND,
200 TID_RNR_NAK_SENT,
201 };
202
203 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data);
204 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data);
205 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data);
206 void tid_rdma_conn_error(struct rvt_qp *qp);
207 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p);
208
209 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit);
210 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
211 struct rvt_sge_state *ss, bool *last);
212 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req);
213 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req);
214 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
215
216 /**
217 * trdma_clean_swqe - clean flows for swqe if large send queue
218 * @qp: the qp
219 * @wqe: the send wqe
220 */
trdma_clean_swqe(struct rvt_qp * qp,struct rvt_swqe * wqe)221 static inline void trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
222 {
223 if (!wqe->priv)
224 return;
225 __trdma_clean_swqe(qp, wqe);
226 }
227
228 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp);
229
230 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
231 struct ib_qp_init_attr *init_attr);
232 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp);
233
234 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp);
235
236 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
237 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
238 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd);
239
240 struct cntr_entry;
241 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
242 void *context, int vl, int mode, u64 data);
243
244 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
245 struct ib_other_headers *ohdr,
246 u32 *bth1, u32 *bth2, u32 *len);
247 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
248 struct ib_other_headers *ohdr, u32 *bth1,
249 u32 *bth2, u32 *len);
250 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet);
251 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
252 struct ib_other_headers *ohdr, u32 *bth0,
253 u32 *bth1, u32 *bth2, u32 *len, bool *last);
254 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet);
255 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
256 struct hfi1_pportdata *ppd,
257 struct hfi1_packet *packet);
258 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
259 u32 *bth2);
260 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp);
261 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe);
262
263 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
hfi1_setup_tid_rdma_wqe(struct rvt_qp * qp,struct rvt_swqe * wqe)264 static inline void hfi1_setup_tid_rdma_wqe(struct rvt_qp *qp,
265 struct rvt_swqe *wqe)
266 {
267 if (wqe->priv &&
268 (wqe->wr.opcode == IB_WR_RDMA_READ ||
269 wqe->wr.opcode == IB_WR_RDMA_WRITE) &&
270 wqe->length >= TID_RDMA_MIN_SEGMENT_SIZE)
271 setup_tid_rdma_wqe(qp, wqe);
272 }
273
274 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
275 struct ib_other_headers *ohdr,
276 u32 *bth1, u32 *bth2, u32 *len);
277
278 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet);
279
280 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
281 struct ib_other_headers *ohdr, u32 *bth1,
282 u32 bth2, u32 *len,
283 struct rvt_sge_state **ss);
284
285 void hfi1_del_tid_reap_timer(struct rvt_qp *qp);
286
287 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet);
288
289 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
290 struct ib_other_headers *ohdr,
291 u32 *bth1, u32 *bth2, u32 *len);
292
293 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet);
294
295 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
296 struct ib_other_headers *ohdr, u16 iflow,
297 u32 *bth1, u32 *bth2);
298
299 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet);
300
301 void hfi1_add_tid_retry_timer(struct rvt_qp *qp);
302 void hfi1_del_tid_retry_timer(struct rvt_qp *qp);
303
304 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
305 struct ib_other_headers *ohdr, u32 *bth1,
306 u32 *bth2, u16 fidx);
307
308 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet);
309
310 struct hfi1_pkt_state;
311 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps);
312
313 void _hfi1_do_tid_send(struct work_struct *work);
314
315 bool hfi1_schedule_tid_send(struct rvt_qp *qp);
316
317 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e);
318
319 #endif /* HFI1_TID_RDMA_H */
320