1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
5 */
6
7 #include <linux/pci.h>
8 #include <linux/netdevice.h>
9 #include <linux/vmalloc.h>
10 #include <linux/delay.h>
11 #include <linux/xarray.h>
12 #include <linux/module.h>
13 #include <linux/printk.h>
14 #include <linux/hrtimer.h>
15 #include <linux/bitmap.h>
16 #include <linux/numa.h>
17 #include <rdma/rdma_vt.h>
18
19 #include "hfi.h"
20 #include "device.h"
21 #include "common.h"
22 #include "trace.h"
23 #include "mad.h"
24 #include "sdma.h"
25 #include "debugfs.h"
26 #include "verbs.h"
27 #include "aspm.h"
28 #include "affinity.h"
29 #include "vnic.h"
30 #include "exp_rcv.h"
31 #include "netdev.h"
32
33 #undef pr_fmt
34 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
35
36 /*
37 * min buffers we want to have per context, after driver
38 */
39 #define HFI1_MIN_USER_CTXT_BUFCNT 7
40
41 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43
44 #define NUM_IB_PORTS 1
45
46 /*
47 * Number of user receive contexts we are configured to use (to allow for more
48 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
49 */
50 int num_user_contexts = -1;
51 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52 MODULE_PARM_DESC(
53 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54
55 uint krcvqs[RXE_NUM_DATA_VL];
56 int krcvqsset;
57 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59
60 /* computed based on above array */
61 unsigned long n_krcvqs;
62
63 static unsigned hfi1_rcvarr_split = 25;
64 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66
67 static uint eager_buffer_size = (8 << 20); /* 8MB */
68 module_param(eager_buffer_size, uint, S_IRUGO);
69 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70
71 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74
75 static uint hfi1_hdrq_entsize = 32;
76 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78
79 unsigned int user_credit_return_threshold = 33; /* default is 33% */
80 module_param(user_credit_return_threshold, uint, S_IRUGO);
81 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82
83 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84
hfi1_create_kctxt(struct hfi1_devdata * dd,struct hfi1_pportdata * ppd)85 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86 struct hfi1_pportdata *ppd)
87 {
88 struct hfi1_ctxtdata *rcd;
89 int ret;
90
91 /* Control context has to be always 0 */
92 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93
94 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
95 if (ret < 0) {
96 dd_dev_err(dd, "Kernel receive context allocation failed\n");
97 return ret;
98 }
99
100 /*
101 * Set up the kernel context flags here and now because they use
102 * default values for all receive side memories. User contexts will
103 * be handled as they are created.
104 */
105 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107 HFI1_CAP_KGET(NODROP_EGR_FULL) |
108 HFI1_CAP_KGET(DMA_RTAIL);
109
110 /* Control context must use DMA_RTAIL */
111 if (rcd->ctxt == HFI1_CTRL_CTXT)
112 rcd->flags |= HFI1_CAP_DMA_RTAIL;
113 rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114 handle_receive_interrupt_dma_rtail :
115 handle_receive_interrupt_nodma_rtail;
116
117 hfi1_set_seq_cnt(rcd, 1);
118
119 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120 if (!rcd->sc) {
121 dd_dev_err(dd, "Kernel send context allocation failed\n");
122 return -ENOMEM;
123 }
124 hfi1_init_ctxt(rcd->sc);
125
126 return 0;
127 }
128
129 /*
130 * Create the receive context array and one or more kernel contexts
131 */
hfi1_create_kctxts(struct hfi1_devdata * dd)132 int hfi1_create_kctxts(struct hfi1_devdata *dd)
133 {
134 u16 i;
135 int ret;
136
137 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138 GFP_KERNEL, dd->node);
139 if (!dd->rcd)
140 return -ENOMEM;
141
142 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143 ret = hfi1_create_kctxt(dd, dd->pport);
144 if (ret)
145 goto bail;
146 }
147
148 return 0;
149 bail:
150 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151 hfi1_free_ctxt(dd->rcd[i]);
152
153 /* All the contexts should be freed, free the array */
154 kfree(dd->rcd);
155 dd->rcd = NULL;
156 return ret;
157 }
158
159 /*
160 * Helper routines for the receive context reference count (rcd and uctxt).
161 */
hfi1_rcd_init(struct hfi1_ctxtdata * rcd)162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163 {
164 kref_init(&rcd->kref);
165 }
166
167 /**
168 * hfi1_rcd_free - When reference is zero clean up.
169 * @kref: pointer to an initialized rcd data structure
170 *
171 */
hfi1_rcd_free(struct kref * kref)172 static void hfi1_rcd_free(struct kref *kref)
173 {
174 unsigned long flags;
175 struct hfi1_ctxtdata *rcd =
176 container_of(kref, struct hfi1_ctxtdata, kref);
177
178 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179 rcd->dd->rcd[rcd->ctxt] = NULL;
180 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181
182 hfi1_free_ctxtdata(rcd->dd, rcd);
183
184 kfree(rcd);
185 }
186
187 /**
188 * hfi1_rcd_put - decrement reference for rcd
189 * @rcd: pointer to an initialized rcd data structure
190 *
191 * Use this to put a reference after the init.
192 */
hfi1_rcd_put(struct hfi1_ctxtdata * rcd)193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194 {
195 if (rcd)
196 return kref_put(&rcd->kref, hfi1_rcd_free);
197
198 return 0;
199 }
200
201 /**
202 * hfi1_rcd_get - increment reference for rcd
203 * @rcd: pointer to an initialized rcd data structure
204 *
205 * Use this to get a reference after the init.
206 *
207 * Return : reflect kref_get_unless_zero(), which returns non-zero on
208 * increment, otherwise 0.
209 */
hfi1_rcd_get(struct hfi1_ctxtdata * rcd)210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211 {
212 return kref_get_unless_zero(&rcd->kref);
213 }
214
215 /**
216 * allocate_rcd_index - allocate an rcd index from the rcd array
217 * @dd: pointer to a valid devdata structure
218 * @rcd: rcd data structure to assign
219 * @index: pointer to index that is allocated
220 *
221 * Find an empty index in the rcd array, and assign the given rcd to it.
222 * If the array is full, we are EBUSY.
223 *
224 */
allocate_rcd_index(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 * index)225 static int allocate_rcd_index(struct hfi1_devdata *dd,
226 struct hfi1_ctxtdata *rcd, u16 *index)
227 {
228 unsigned long flags;
229 u16 ctxt;
230
231 spin_lock_irqsave(&dd->uctxt_lock, flags);
232 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233 if (!dd->rcd[ctxt])
234 break;
235
236 if (ctxt < dd->num_rcv_contexts) {
237 rcd->ctxt = ctxt;
238 dd->rcd[ctxt] = rcd;
239 hfi1_rcd_init(rcd);
240 }
241 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242
243 if (ctxt >= dd->num_rcv_contexts)
244 return -EBUSY;
245
246 *index = ctxt;
247
248 return 0;
249 }
250
251 /**
252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253 * array
254 * @dd: pointer to a valid devdata structure
255 * @ctxt: the index of an possilbe rcd
256 *
257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258 * ctxt index is valid.
259 *
260 * The caller is responsible for making the _put().
261 *
262 */
hfi1_rcd_get_by_index_safe(struct hfi1_devdata * dd,u16 ctxt)263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264 u16 ctxt)
265 {
266 if (ctxt < dd->num_rcv_contexts)
267 return hfi1_rcd_get_by_index(dd, ctxt);
268
269 return NULL;
270 }
271
272 /**
273 * hfi1_rcd_get_by_index - get by index
274 * @dd: pointer to a valid devdata structure
275 * @ctxt: the index of an possilbe rcd
276 *
277 * We need to protect access to the rcd array. If access is needed to
278 * one or more index, get the protecting spinlock and then increment the
279 * kref.
280 *
281 * The caller is responsible for making the _put().
282 *
283 */
hfi1_rcd_get_by_index(struct hfi1_devdata * dd,u16 ctxt)284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285 {
286 unsigned long flags;
287 struct hfi1_ctxtdata *rcd = NULL;
288
289 spin_lock_irqsave(&dd->uctxt_lock, flags);
290 if (dd->rcd[ctxt]) {
291 rcd = dd->rcd[ctxt];
292 if (!hfi1_rcd_get(rcd))
293 rcd = NULL;
294 }
295 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296
297 return rcd;
298 }
299
300 /*
301 * Common code for user and kernel context create and setup.
302 * NOTE: the initial kref is done here (hf1_rcd_init()).
303 */
hfi1_create_ctxtdata(struct hfi1_pportdata * ppd,int numa,struct hfi1_ctxtdata ** context)304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305 struct hfi1_ctxtdata **context)
306 {
307 struct hfi1_devdata *dd = ppd->dd;
308 struct hfi1_ctxtdata *rcd;
309 unsigned kctxt_ngroups = 0;
310 u32 base;
311
312 if (dd->rcv_entries.nctxt_extra >
313 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317 if (rcd) {
318 u32 rcvtids, max_entries;
319 u16 ctxt;
320 int ret;
321
322 ret = allocate_rcd_index(dd, rcd, &ctxt);
323 if (ret) {
324 *context = NULL;
325 kfree(rcd);
326 return ret;
327 }
328
329 INIT_LIST_HEAD(&rcd->qp_wait_list);
330 hfi1_exp_tid_group_init(rcd);
331 rcd->ppd = ppd;
332 rcd->dd = dd;
333 rcd->numa_id = numa;
334 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336 rcd->slow_handler = handle_receive_interrupt;
337 rcd->do_interrupt = rcd->slow_handler;
338 rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
339
340 mutex_init(&rcd->exp_mutex);
341 spin_lock_init(&rcd->exp_lock);
342 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
343 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
344
345 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
346
347 /*
348 * Calculate the context's RcvArray entry starting point.
349 * We do this here because we have to take into account all
350 * the RcvArray entries that previous context would have
351 * taken and we have to account for any extra groups assigned
352 * to the static (kernel) or dynamic (vnic/user) contexts.
353 */
354 if (ctxt < dd->first_dyn_alloc_ctxt) {
355 if (ctxt < kctxt_ngroups) {
356 base = ctxt * (dd->rcv_entries.ngroups + 1);
357 rcd->rcv_array_groups++;
358 } else {
359 base = kctxt_ngroups +
360 (ctxt * dd->rcv_entries.ngroups);
361 }
362 } else {
363 u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
364
365 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
366 kctxt_ngroups);
367 if (ct < dd->rcv_entries.nctxt_extra) {
368 base += ct * (dd->rcv_entries.ngroups + 1);
369 rcd->rcv_array_groups++;
370 } else {
371 base += dd->rcv_entries.nctxt_extra +
372 (ct * dd->rcv_entries.ngroups);
373 }
374 }
375 rcd->eager_base = base * dd->rcv_entries.group_size;
376
377 rcd->rcvhdrq_cnt = rcvhdrcnt;
378 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
379 rcd->rhf_offset =
380 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
381 /*
382 * Simple Eager buffer allocation: we have already pre-allocated
383 * the number of RcvArray entry groups. Each ctxtdata structure
384 * holds the number of groups for that context.
385 *
386 * To follow CSR requirements and maintain cacheline alignment,
387 * make sure all sizes and bases are multiples of group_size.
388 *
389 * The expected entry count is what is left after assigning
390 * eager.
391 */
392 max_entries = rcd->rcv_array_groups *
393 dd->rcv_entries.group_size;
394 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
395 rcd->egrbufs.count = round_down(rcvtids,
396 dd->rcv_entries.group_size);
397 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
398 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
399 rcd->ctxt);
400 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
401 }
402 hfi1_cdbg(PROC,
403 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
404 rcd->ctxt, rcd->egrbufs.count);
405
406 /*
407 * Allocate array that will hold the eager buffer accounting
408 * data.
409 * This will allocate the maximum possible buffer count based
410 * on the value of the RcvArray split parameter.
411 * The resulting value will be rounded down to the closest
412 * multiple of dd->rcv_entries.group_size.
413 */
414 rcd->egrbufs.buffers =
415 kcalloc_node(rcd->egrbufs.count,
416 sizeof(*rcd->egrbufs.buffers),
417 GFP_KERNEL, numa);
418 if (!rcd->egrbufs.buffers)
419 goto bail;
420 rcd->egrbufs.rcvtids =
421 kcalloc_node(rcd->egrbufs.count,
422 sizeof(*rcd->egrbufs.rcvtids),
423 GFP_KERNEL, numa);
424 if (!rcd->egrbufs.rcvtids)
425 goto bail;
426 rcd->egrbufs.size = eager_buffer_size;
427 /*
428 * The size of the buffers programmed into the RcvArray
429 * entries needs to be big enough to handle the highest
430 * MTU supported.
431 */
432 if (rcd->egrbufs.size < hfi1_max_mtu) {
433 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
434 hfi1_cdbg(PROC,
435 "ctxt%u: eager bufs size too small. Adjusting to %u\n",
436 rcd->ctxt, rcd->egrbufs.size);
437 }
438 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
439
440 /* Applicable only for statically created kernel contexts */
441 if (ctxt < dd->first_dyn_alloc_ctxt) {
442 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
443 GFP_KERNEL, numa);
444 if (!rcd->opstats)
445 goto bail;
446
447 /* Initialize TID flow generations for the context */
448 hfi1_kern_init_ctxt_generations(rcd);
449 }
450
451 *context = rcd;
452 return 0;
453 }
454
455 bail:
456 *context = NULL;
457 hfi1_free_ctxt(rcd);
458 return -ENOMEM;
459 }
460
461 /**
462 * hfi1_free_ctxt - free context
463 * @rcd: pointer to an initialized rcd data structure
464 *
465 * This wrapper is the free function that matches hfi1_create_ctxtdata().
466 * When a context is done being used (kernel or user), this function is called
467 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
468 * Other users of the context do a get/put sequence to make sure that the
469 * structure isn't removed while in use.
470 */
hfi1_free_ctxt(struct hfi1_ctxtdata * rcd)471 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
472 {
473 hfi1_rcd_put(rcd);
474 }
475
476 /*
477 * Select the largest ccti value over all SLs to determine the intra-
478 * packet gap for the link.
479 *
480 * called with cca_timer_lock held (to protect access to cca_timer
481 * array), and rcu_read_lock() (to protect access to cc_state).
482 */
set_link_ipg(struct hfi1_pportdata * ppd)483 void set_link_ipg(struct hfi1_pportdata *ppd)
484 {
485 struct hfi1_devdata *dd = ppd->dd;
486 struct cc_state *cc_state;
487 int i;
488 u16 cce, ccti_limit, max_ccti = 0;
489 u16 shift, mult;
490 u64 src;
491 u32 current_egress_rate; /* Mbits /sec */
492 u64 max_pkt_time;
493 /*
494 * max_pkt_time is the maximum packet egress time in units
495 * of the fabric clock period 1/(805 MHz).
496 */
497
498 cc_state = get_cc_state(ppd);
499
500 if (!cc_state)
501 /*
502 * This should _never_ happen - rcu_read_lock() is held,
503 * and set_link_ipg() should not be called if cc_state
504 * is NULL.
505 */
506 return;
507
508 for (i = 0; i < OPA_MAX_SLS; i++) {
509 u16 ccti = ppd->cca_timer[i].ccti;
510
511 if (ccti > max_ccti)
512 max_ccti = ccti;
513 }
514
515 ccti_limit = cc_state->cct.ccti_limit;
516 if (max_ccti > ccti_limit)
517 max_ccti = ccti_limit;
518
519 cce = cc_state->cct.entries[max_ccti].entry;
520 shift = (cce & 0xc000) >> 14;
521 mult = (cce & 0x3fff);
522
523 current_egress_rate = active_egress_rate(ppd);
524
525 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
526
527 src = (max_pkt_time >> shift) * mult;
528
529 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
530 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
531
532 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
533 }
534
cca_timer_fn(struct hrtimer * t)535 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
536 {
537 struct cca_timer *cca_timer;
538 struct hfi1_pportdata *ppd;
539 int sl;
540 u16 ccti_timer, ccti_min;
541 struct cc_state *cc_state;
542 unsigned long flags;
543 enum hrtimer_restart ret = HRTIMER_NORESTART;
544
545 cca_timer = container_of(t, struct cca_timer, hrtimer);
546 ppd = cca_timer->ppd;
547 sl = cca_timer->sl;
548
549 rcu_read_lock();
550
551 cc_state = get_cc_state(ppd);
552
553 if (!cc_state) {
554 rcu_read_unlock();
555 return HRTIMER_NORESTART;
556 }
557
558 /*
559 * 1) decrement ccti for SL
560 * 2) calculate IPG for link (set_link_ipg())
561 * 3) restart timer, unless ccti is at min value
562 */
563
564 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
565 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
566
567 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
568
569 if (cca_timer->ccti > ccti_min) {
570 cca_timer->ccti--;
571 set_link_ipg(ppd);
572 }
573
574 if (cca_timer->ccti > ccti_min) {
575 unsigned long nsec = 1024 * ccti_timer;
576 /* ccti_timer is in units of 1.024 usec */
577 hrtimer_forward_now(t, ns_to_ktime(nsec));
578 ret = HRTIMER_RESTART;
579 }
580
581 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
582 rcu_read_unlock();
583 return ret;
584 }
585
586 /*
587 * Common code for initializing the physical port structure.
588 */
hfi1_init_pportdata(struct pci_dev * pdev,struct hfi1_pportdata * ppd,struct hfi1_devdata * dd,u8 hw_pidx,u32 port)589 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
590 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
591 {
592 int i;
593 uint default_pkey_idx;
594 struct cc_state *cc_state;
595
596 ppd->dd = dd;
597 ppd->hw_pidx = hw_pidx;
598 ppd->port = port; /* IB port number, not index */
599 ppd->prev_link_width = LINK_WIDTH_DEFAULT;
600 /*
601 * There are C_VL_COUNT number of PortVLXmitWait counters.
602 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
603 */
604 for (i = 0; i < C_VL_COUNT + 1; i++) {
605 ppd->port_vl_xmit_wait_last[i] = 0;
606 ppd->vl_xmit_flit_cnt[i] = 0;
607 }
608
609 default_pkey_idx = 1;
610
611 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
612 ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
613 ppd->pkeys[0] = 0x8001;
614
615 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
616 INIT_WORK(&ppd->link_up_work, handle_link_up);
617 INIT_WORK(&ppd->link_down_work, handle_link_down);
618 INIT_WORK(&ppd->freeze_work, handle_freeze);
619 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
620 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
621 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
622 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
623 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
624 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
625
626 mutex_init(&ppd->hls_lock);
627 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
628
629 ppd->qsfp_info.ppd = ppd;
630 ppd->sm_trap_qp = 0x0;
631 ppd->sa_qp = 0x1;
632
633 ppd->hfi1_wq = NULL;
634
635 spin_lock_init(&ppd->cca_timer_lock);
636
637 for (i = 0; i < OPA_MAX_SLS; i++) {
638 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
639 HRTIMER_MODE_REL);
640 ppd->cca_timer[i].ppd = ppd;
641 ppd->cca_timer[i].sl = i;
642 ppd->cca_timer[i].ccti = 0;
643 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
644 }
645
646 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
647
648 spin_lock_init(&ppd->cc_state_lock);
649 spin_lock_init(&ppd->cc_log_lock);
650 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
651 RCU_INIT_POINTER(ppd->cc_state, cc_state);
652 if (!cc_state)
653 goto bail;
654 return;
655
656 bail:
657 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
658 }
659
660 /*
661 * Do initialization for device that is only needed on
662 * first detect, not on resets.
663 */
loadtime_init(struct hfi1_devdata * dd)664 static int loadtime_init(struct hfi1_devdata *dd)
665 {
666 return 0;
667 }
668
669 /**
670 * init_after_reset - re-initialize after a reset
671 * @dd: the hfi1_ib device
672 *
673 * sanity check at least some of the values after reset, and
674 * ensure no receive or transmit (explicitly, in case reset
675 * failed
676 */
init_after_reset(struct hfi1_devdata * dd)677 static int init_after_reset(struct hfi1_devdata *dd)
678 {
679 int i;
680 struct hfi1_ctxtdata *rcd;
681 /*
682 * Ensure chip does no sends or receives, tail updates, or
683 * pioavail updates while we re-initialize. This is mostly
684 * for the driver data structures, not chip registers.
685 */
686 for (i = 0; i < dd->num_rcv_contexts; i++) {
687 rcd = hfi1_rcd_get_by_index(dd, i);
688 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689 HFI1_RCVCTRL_INTRAVAIL_DIS |
690 HFI1_RCVCTRL_TAILUPD_DIS, rcd);
691 hfi1_rcd_put(rcd);
692 }
693 pio_send_control(dd, PSC_GLOBAL_DISABLE);
694 for (i = 0; i < dd->num_send_contexts; i++)
695 sc_disable(dd->send_contexts[i].sc);
696
697 return 0;
698 }
699
enable_chip(struct hfi1_devdata * dd)700 static void enable_chip(struct hfi1_devdata *dd)
701 {
702 struct hfi1_ctxtdata *rcd;
703 u32 rcvmask;
704 u16 i;
705
706 /* enable PIO send */
707 pio_send_control(dd, PSC_GLOBAL_ENABLE);
708
709 /*
710 * Enable kernel ctxts' receive and receive interrupt.
711 * Other ctxts done as user opens and initializes them.
712 */
713 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
714 rcd = hfi1_rcd_get_by_index(dd, i);
715 if (!rcd)
716 continue;
717 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
718 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
719 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
720 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
721 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
722 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
723 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
724 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
725 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
726 if (HFI1_CAP_IS_KSET(TID_RDMA))
727 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
728 hfi1_rcvctrl(dd, rcvmask, rcd);
729 sc_enable(rcd->sc);
730 hfi1_rcd_put(rcd);
731 }
732 }
733
734 /**
735 * create_workqueues - create per port workqueues
736 * @dd: the hfi1_ib device
737 */
create_workqueues(struct hfi1_devdata * dd)738 static int create_workqueues(struct hfi1_devdata *dd)
739 {
740 int pidx;
741 struct hfi1_pportdata *ppd;
742
743 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
744 ppd = dd->pport + pidx;
745 if (!ppd->hfi1_wq) {
746 ppd->hfi1_wq =
747 alloc_workqueue(
748 "hfi%d_%d",
749 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
750 WQ_MEM_RECLAIM,
751 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
752 dd->unit, pidx);
753 if (!ppd->hfi1_wq)
754 goto wq_error;
755 }
756 if (!ppd->link_wq) {
757 /*
758 * Make the link workqueue single-threaded to enforce
759 * serialization.
760 */
761 ppd->link_wq =
762 alloc_workqueue(
763 "hfi_link_%d_%d",
764 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
765 1, /* max_active */
766 dd->unit, pidx);
767 if (!ppd->link_wq)
768 goto wq_error;
769 }
770 }
771 return 0;
772 wq_error:
773 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
774 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
775 ppd = dd->pport + pidx;
776 if (ppd->hfi1_wq) {
777 destroy_workqueue(ppd->hfi1_wq);
778 ppd->hfi1_wq = NULL;
779 }
780 if (ppd->link_wq) {
781 destroy_workqueue(ppd->link_wq);
782 ppd->link_wq = NULL;
783 }
784 }
785 return -ENOMEM;
786 }
787
788 /**
789 * destroy_workqueues - destroy per port workqueues
790 * @dd: the hfi1_ib device
791 */
destroy_workqueues(struct hfi1_devdata * dd)792 static void destroy_workqueues(struct hfi1_devdata *dd)
793 {
794 int pidx;
795 struct hfi1_pportdata *ppd;
796
797 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798 ppd = dd->pport + pidx;
799
800 if (ppd->hfi1_wq) {
801 destroy_workqueue(ppd->hfi1_wq);
802 ppd->hfi1_wq = NULL;
803 }
804 if (ppd->link_wq) {
805 destroy_workqueue(ppd->link_wq);
806 ppd->link_wq = NULL;
807 }
808 }
809 }
810
811 /**
812 * enable_general_intr() - Enable the IRQs that will be handled by the
813 * general interrupt handler.
814 * @dd: valid devdata
815 *
816 */
enable_general_intr(struct hfi1_devdata * dd)817 static void enable_general_intr(struct hfi1_devdata *dd)
818 {
819 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
820 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
821 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
822 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
823 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
824 set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
825 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
826 }
827
828 /**
829 * hfi1_init - do the actual initialization sequence on the chip
830 * @dd: the hfi1_ib device
831 * @reinit: re-initializing, so don't allocate new memory
832 *
833 * Do the actual initialization sequence on the chip. This is done
834 * both from the init routine called from the PCI infrastructure, and
835 * when we reset the chip, or detect that it was reset internally,
836 * or it's administratively re-enabled.
837 *
838 * Memory allocation here and in called routines is only done in
839 * the first case (reinit == 0). We have to be careful, because even
840 * without memory allocation, we need to re-write all the chip registers
841 * TIDs, etc. after the reset or enable has completed.
842 */
hfi1_init(struct hfi1_devdata * dd,int reinit)843 int hfi1_init(struct hfi1_devdata *dd, int reinit)
844 {
845 int ret = 0, pidx, lastfail = 0;
846 unsigned long len;
847 u16 i;
848 struct hfi1_ctxtdata *rcd;
849 struct hfi1_pportdata *ppd;
850
851 /* Set up send low level handlers */
852 dd->process_pio_send = hfi1_verbs_send_pio;
853 dd->process_dma_send = hfi1_verbs_send_dma;
854 dd->pio_inline_send = pio_copy;
855 dd->process_vnic_dma_send = hfi1_vnic_send_dma;
856
857 if (is_ax(dd)) {
858 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
859 dd->do_drop = true;
860 } else {
861 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
862 dd->do_drop = false;
863 }
864
865 /* make sure the link is not "up" */
866 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
867 ppd = dd->pport + pidx;
868 ppd->linkup = 0;
869 }
870
871 if (reinit)
872 ret = init_after_reset(dd);
873 else
874 ret = loadtime_init(dd);
875 if (ret)
876 goto done;
877
878 /* dd->rcd can be NULL if early initialization failed */
879 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
880 /*
881 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
882 * re-init, the simplest way to handle this is to free
883 * existing, and re-allocate.
884 * Need to re-create rest of ctxt 0 ctxtdata as well.
885 */
886 rcd = hfi1_rcd_get_by_index(dd, i);
887 if (!rcd)
888 continue;
889
890 lastfail = hfi1_create_rcvhdrq(dd, rcd);
891 if (!lastfail)
892 lastfail = hfi1_setup_eagerbufs(rcd);
893 if (!lastfail)
894 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
895 if (lastfail) {
896 dd_dev_err(dd,
897 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
898 ret = lastfail;
899 }
900 /* enable IRQ */
901 hfi1_rcd_put(rcd);
902 }
903
904 /* Allocate enough memory for user event notification. */
905 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
906 sizeof(*dd->events));
907 dd->events = vmalloc_user(len);
908 if (!dd->events)
909 dd_dev_err(dd, "Failed to allocate user events page\n");
910 /*
911 * Allocate a page for device and port status.
912 * Page will be shared amongst all user processes.
913 */
914 dd->status = vmalloc_user(PAGE_SIZE);
915 if (!dd->status)
916 dd_dev_err(dd, "Failed to allocate dev status page\n");
917 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
918 ppd = dd->pport + pidx;
919 if (dd->status)
920 /* Currently, we only have one port */
921 ppd->statusp = &dd->status->port;
922
923 set_mtu(ppd);
924 }
925
926 /* enable chip even if we have an error, so we can debug cause */
927 enable_chip(dd);
928
929 done:
930 /*
931 * Set status even if port serdes is not initialized
932 * so that diags will work.
933 */
934 if (dd->status)
935 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
936 HFI1_STATUS_INITTED;
937 if (!ret) {
938 /* enable all interrupts from the chip */
939 enable_general_intr(dd);
940 init_qsfp_int(dd);
941
942 /* chip is OK for user apps; mark it as initialized */
943 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
944 ppd = dd->pport + pidx;
945
946 /*
947 * start the serdes - must be after interrupts are
948 * enabled so we are notified when the link goes up
949 */
950 lastfail = bringup_serdes(ppd);
951 if (lastfail)
952 dd_dev_info(dd,
953 "Failed to bring up port %u\n",
954 ppd->port);
955
956 /*
957 * Set status even if port serdes is not initialized
958 * so that diags will work.
959 */
960 if (ppd->statusp)
961 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
962 HFI1_STATUS_INITTED;
963 if (!ppd->link_speed_enabled)
964 continue;
965 }
966 }
967
968 /* if ret is non-zero, we probably should do some cleanup here... */
969 return ret;
970 }
971
hfi1_lookup(int unit)972 struct hfi1_devdata *hfi1_lookup(int unit)
973 {
974 return xa_load(&hfi1_dev_table, unit);
975 }
976
977 /*
978 * Stop the timers during unit shutdown, or after an error late
979 * in initialization.
980 */
stop_timers(struct hfi1_devdata * dd)981 static void stop_timers(struct hfi1_devdata *dd)
982 {
983 struct hfi1_pportdata *ppd;
984 int pidx;
985
986 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
987 ppd = dd->pport + pidx;
988 if (ppd->led_override_timer.function) {
989 del_timer_sync(&ppd->led_override_timer);
990 atomic_set(&ppd->led_override_timer_active, 0);
991 }
992 }
993 }
994
995 /**
996 * shutdown_device - shut down a device
997 * @dd: the hfi1_ib device
998 *
999 * This is called to make the device quiet when we are about to
1000 * unload the driver, and also when the device is administratively
1001 * disabled. It does not free any data structures.
1002 * Everything it does has to be setup again by hfi1_init(dd, 1)
1003 */
shutdown_device(struct hfi1_devdata * dd)1004 static void shutdown_device(struct hfi1_devdata *dd)
1005 {
1006 struct hfi1_pportdata *ppd;
1007 struct hfi1_ctxtdata *rcd;
1008 unsigned pidx;
1009 int i;
1010
1011 if (dd->flags & HFI1_SHUTDOWN)
1012 return;
1013 dd->flags |= HFI1_SHUTDOWN;
1014
1015 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016 ppd = dd->pport + pidx;
1017
1018 ppd->linkup = 0;
1019 if (ppd->statusp)
1020 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021 HFI1_STATUS_IB_READY);
1022 }
1023 dd->flags &= ~HFI1_INITTED;
1024
1025 /* mask and clean up interrupts */
1026 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1027 msix_clean_up_interrupts(dd);
1028
1029 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030 ppd = dd->pport + pidx;
1031 for (i = 0; i < dd->num_rcv_contexts; i++) {
1032 rcd = hfi1_rcd_get_by_index(dd, i);
1033 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1034 HFI1_RCVCTRL_CTXT_DIS |
1035 HFI1_RCVCTRL_INTRAVAIL_DIS |
1036 HFI1_RCVCTRL_PKEY_DIS |
1037 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1038 hfi1_rcd_put(rcd);
1039 }
1040 /*
1041 * Gracefully stop all sends allowing any in progress to
1042 * trickle out first.
1043 */
1044 for (i = 0; i < dd->num_send_contexts; i++)
1045 sc_flush(dd->send_contexts[i].sc);
1046 }
1047
1048 /*
1049 * Enough for anything that's going to trickle out to have actually
1050 * done so.
1051 */
1052 udelay(20);
1053
1054 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1055 ppd = dd->pport + pidx;
1056
1057 /* disable all contexts */
1058 for (i = 0; i < dd->num_send_contexts; i++)
1059 sc_disable(dd->send_contexts[i].sc);
1060 /* disable the send device */
1061 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1062
1063 shutdown_led_override(ppd);
1064
1065 /*
1066 * Clear SerdesEnable.
1067 * We can't count on interrupts since we are stopping.
1068 */
1069 hfi1_quiet_serdes(ppd);
1070 if (ppd->hfi1_wq)
1071 flush_workqueue(ppd->hfi1_wq);
1072 if (ppd->link_wq)
1073 flush_workqueue(ppd->link_wq);
1074 }
1075 sdma_exit(dd);
1076 }
1077
1078 /**
1079 * hfi1_free_ctxtdata - free a context's allocated data
1080 * @dd: the hfi1_ib device
1081 * @rcd: the ctxtdata structure
1082 *
1083 * free up any allocated data for a context
1084 * It should never change any chip state, or global driver state.
1085 */
hfi1_free_ctxtdata(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1086 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1087 {
1088 u32 e;
1089
1090 if (!rcd)
1091 return;
1092
1093 if (rcd->rcvhdrq) {
1094 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1095 rcd->rcvhdrq, rcd->rcvhdrq_dma);
1096 rcd->rcvhdrq = NULL;
1097 if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1098 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1099 (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1100 rcd->rcvhdrqtailaddr_dma);
1101 rcd->rcvhdrtail_kvaddr = NULL;
1102 }
1103 }
1104
1105 /* all the RcvArray entries should have been cleared by now */
1106 kfree(rcd->egrbufs.rcvtids);
1107 rcd->egrbufs.rcvtids = NULL;
1108
1109 for (e = 0; e < rcd->egrbufs.alloced; e++) {
1110 if (rcd->egrbufs.buffers[e].addr)
1111 dma_free_coherent(&dd->pcidev->dev,
1112 rcd->egrbufs.buffers[e].len,
1113 rcd->egrbufs.buffers[e].addr,
1114 rcd->egrbufs.buffers[e].dma);
1115 }
1116 kfree(rcd->egrbufs.buffers);
1117 rcd->egrbufs.alloced = 0;
1118 rcd->egrbufs.buffers = NULL;
1119
1120 sc_free(rcd->sc);
1121 rcd->sc = NULL;
1122
1123 vfree(rcd->subctxt_uregbase);
1124 vfree(rcd->subctxt_rcvegrbuf);
1125 vfree(rcd->subctxt_rcvhdr_base);
1126 kfree(rcd->opstats);
1127
1128 rcd->subctxt_uregbase = NULL;
1129 rcd->subctxt_rcvegrbuf = NULL;
1130 rcd->subctxt_rcvhdr_base = NULL;
1131 rcd->opstats = NULL;
1132 }
1133
1134 /*
1135 * Release our hold on the shared asic data. If we are the last one,
1136 * return the structure to be finalized outside the lock. Must be
1137 * holding hfi1_dev_table lock.
1138 */
release_asic_data(struct hfi1_devdata * dd)1139 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1140 {
1141 struct hfi1_asic_data *ad;
1142 int other;
1143
1144 if (!dd->asic_data)
1145 return NULL;
1146 dd->asic_data->dds[dd->hfi1_id] = NULL;
1147 other = dd->hfi1_id ? 0 : 1;
1148 ad = dd->asic_data;
1149 dd->asic_data = NULL;
1150 /* return NULL if the other dd still has a link */
1151 return ad->dds[other] ? NULL : ad;
1152 }
1153
finalize_asic_data(struct hfi1_devdata * dd,struct hfi1_asic_data * ad)1154 static void finalize_asic_data(struct hfi1_devdata *dd,
1155 struct hfi1_asic_data *ad)
1156 {
1157 clean_up_i2c(dd, ad);
1158 kfree(ad);
1159 }
1160
1161 /**
1162 * hfi1_free_devdata - cleans up and frees per-unit data structure
1163 * @dd: pointer to a valid devdata structure
1164 *
1165 * It cleans up and frees all data structures set up by
1166 * by hfi1_alloc_devdata().
1167 */
hfi1_free_devdata(struct hfi1_devdata * dd)1168 void hfi1_free_devdata(struct hfi1_devdata *dd)
1169 {
1170 struct hfi1_asic_data *ad;
1171 unsigned long flags;
1172
1173 xa_lock_irqsave(&hfi1_dev_table, flags);
1174 __xa_erase(&hfi1_dev_table, dd->unit);
1175 ad = release_asic_data(dd);
1176 xa_unlock_irqrestore(&hfi1_dev_table, flags);
1177
1178 finalize_asic_data(dd, ad);
1179 free_platform_config(dd);
1180 rcu_barrier(); /* wait for rcu callbacks to complete */
1181 free_percpu(dd->int_counter);
1182 free_percpu(dd->rcv_limit);
1183 free_percpu(dd->send_schedule);
1184 free_percpu(dd->tx_opstats);
1185 dd->int_counter = NULL;
1186 dd->rcv_limit = NULL;
1187 dd->send_schedule = NULL;
1188 dd->tx_opstats = NULL;
1189 kfree(dd->comp_vect);
1190 dd->comp_vect = NULL;
1191 if (dd->rcvhdrtail_dummy_kvaddr)
1192 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1193 (void *)dd->rcvhdrtail_dummy_kvaddr,
1194 dd->rcvhdrtail_dummy_dma);
1195 dd->rcvhdrtail_dummy_kvaddr = NULL;
1196 sdma_clean(dd, dd->num_sdma);
1197 rvt_dealloc_device(&dd->verbs_dev.rdi);
1198 }
1199
1200 /**
1201 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1202 * @pdev: Valid PCI device
1203 * @extra: How many bytes to alloc past the default
1204 *
1205 * Must be done via verbs allocator, because the verbs cleanup process
1206 * both does cleanup and free of the data structure.
1207 * "extra" is for chip-specific data.
1208 */
hfi1_alloc_devdata(struct pci_dev * pdev,size_t extra)1209 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1210 size_t extra)
1211 {
1212 struct hfi1_devdata *dd;
1213 int ret, nports;
1214
1215 /* extra is * number of ports */
1216 nports = extra / sizeof(struct hfi1_pportdata);
1217
1218 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1219 nports);
1220 if (!dd)
1221 return ERR_PTR(-ENOMEM);
1222 dd->num_pports = nports;
1223 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1224 dd->pcidev = pdev;
1225 pci_set_drvdata(pdev, dd);
1226
1227 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1228 GFP_KERNEL);
1229 if (ret < 0) {
1230 dev_err(&pdev->dev,
1231 "Could not allocate unit ID: error %d\n", -ret);
1232 goto bail;
1233 }
1234 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1235 /*
1236 * If the BIOS does not have the NUMA node information set, select
1237 * NUMA 0 so we get consistent performance.
1238 */
1239 dd->node = pcibus_to_node(pdev->bus);
1240 if (dd->node == NUMA_NO_NODE) {
1241 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1242 dd->node = 0;
1243 }
1244
1245 /*
1246 * Initialize all locks for the device. This needs to be as early as
1247 * possible so locks are usable.
1248 */
1249 spin_lock_init(&dd->sc_lock);
1250 spin_lock_init(&dd->sendctrl_lock);
1251 spin_lock_init(&dd->rcvctrl_lock);
1252 spin_lock_init(&dd->uctxt_lock);
1253 spin_lock_init(&dd->hfi1_diag_trans_lock);
1254 spin_lock_init(&dd->sc_init_lock);
1255 spin_lock_init(&dd->dc8051_memlock);
1256 seqlock_init(&dd->sc2vl_lock);
1257 spin_lock_init(&dd->sde_map_lock);
1258 spin_lock_init(&dd->pio_map_lock);
1259 mutex_init(&dd->dc8051_lock);
1260 init_waitqueue_head(&dd->event_queue);
1261 spin_lock_init(&dd->irq_src_lock);
1262
1263 dd->int_counter = alloc_percpu(u64);
1264 if (!dd->int_counter) {
1265 ret = -ENOMEM;
1266 goto bail;
1267 }
1268
1269 dd->rcv_limit = alloc_percpu(u64);
1270 if (!dd->rcv_limit) {
1271 ret = -ENOMEM;
1272 goto bail;
1273 }
1274
1275 dd->send_schedule = alloc_percpu(u64);
1276 if (!dd->send_schedule) {
1277 ret = -ENOMEM;
1278 goto bail;
1279 }
1280
1281 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1282 if (!dd->tx_opstats) {
1283 ret = -ENOMEM;
1284 goto bail;
1285 }
1286
1287 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1288 if (!dd->comp_vect) {
1289 ret = -ENOMEM;
1290 goto bail;
1291 }
1292
1293 /* allocate dummy tail memory for all receive contexts */
1294 dd->rcvhdrtail_dummy_kvaddr =
1295 dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1296 &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1297 if (!dd->rcvhdrtail_dummy_kvaddr) {
1298 ret = -ENOMEM;
1299 goto bail;
1300 }
1301
1302 atomic_set(&dd->ipoib_rsm_usr_num, 0);
1303 return dd;
1304
1305 bail:
1306 hfi1_free_devdata(dd);
1307 return ERR_PTR(ret);
1308 }
1309
1310 /*
1311 * Called from freeze mode handlers, and from PCI error
1312 * reporting code. Should be paranoid about state of
1313 * system and data structures.
1314 */
hfi1_disable_after_error(struct hfi1_devdata * dd)1315 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1316 {
1317 if (dd->flags & HFI1_INITTED) {
1318 u32 pidx;
1319
1320 dd->flags &= ~HFI1_INITTED;
1321 if (dd->pport)
1322 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1323 struct hfi1_pportdata *ppd;
1324
1325 ppd = dd->pport + pidx;
1326 if (dd->flags & HFI1_PRESENT)
1327 set_link_state(ppd, HLS_DN_DISABLE);
1328
1329 if (ppd->statusp)
1330 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1331 }
1332 }
1333
1334 /*
1335 * Mark as having had an error for driver, and also
1336 * for /sys and status word mapped to user programs.
1337 * This marks unit as not usable, until reset.
1338 */
1339 if (dd->status)
1340 dd->status->dev |= HFI1_STATUS_HWERROR;
1341 }
1342
1343 static void remove_one(struct pci_dev *);
1344 static int init_one(struct pci_dev *, const struct pci_device_id *);
1345 static void shutdown_one(struct pci_dev *);
1346
1347 #define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1348 #define PFX DRIVER_NAME ": "
1349
1350 const struct pci_device_id hfi1_pci_tbl[] = {
1351 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1352 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1353 { 0, }
1354 };
1355
1356 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1357
1358 static struct pci_driver hfi1_pci_driver = {
1359 .name = DRIVER_NAME,
1360 .probe = init_one,
1361 .remove = remove_one,
1362 .shutdown = shutdown_one,
1363 .id_table = hfi1_pci_tbl,
1364 .err_handler = &hfi1_pci_err_handler,
1365 };
1366
compute_krcvqs(void)1367 static void __init compute_krcvqs(void)
1368 {
1369 int i;
1370
1371 for (i = 0; i < krcvqsset; i++)
1372 n_krcvqs += krcvqs[i];
1373 }
1374
1375 /*
1376 * Do all the generic driver unit- and chip-independent memory
1377 * allocation and initialization.
1378 */
hfi1_mod_init(void)1379 static int __init hfi1_mod_init(void)
1380 {
1381 int ret;
1382
1383 ret = dev_init();
1384 if (ret)
1385 goto bail;
1386
1387 ret = node_affinity_init();
1388 if (ret)
1389 goto bail;
1390
1391 /* validate max MTU before any devices start */
1392 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1393 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1394 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1395 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1396 }
1397 /* valid CUs run from 1-128 in powers of 2 */
1398 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1399 hfi1_cu = 1;
1400 /* valid credit return threshold is 0-100, variable is unsigned */
1401 if (user_credit_return_threshold > 100)
1402 user_credit_return_threshold = 100;
1403
1404 compute_krcvqs();
1405 /*
1406 * sanitize receive interrupt count, time must wait until after
1407 * the hardware type is known
1408 */
1409 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1410 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1411 /* reject invalid combinations */
1412 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1413 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1414 rcv_intr_count = 1;
1415 }
1416 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1417 /*
1418 * Avoid indefinite packet delivery by requiring a timeout
1419 * if count is > 1.
1420 */
1421 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1422 rcv_intr_timeout = 1;
1423 }
1424 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1425 /*
1426 * The dynamic algorithm expects a non-zero timeout
1427 * and a count > 1.
1428 */
1429 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1430 rcv_intr_dynamic = 0;
1431 }
1432
1433 /* sanitize link CRC options */
1434 link_crc_mask &= SUPPORTED_CRCS;
1435
1436 ret = opfn_init();
1437 if (ret < 0) {
1438 pr_err("Failed to allocate opfn_wq");
1439 goto bail_dev;
1440 }
1441
1442 /*
1443 * These must be called before the driver is registered with
1444 * the PCI subsystem.
1445 */
1446 hfi1_dbg_init();
1447 ret = pci_register_driver(&hfi1_pci_driver);
1448 if (ret < 0) {
1449 pr_err("Unable to register driver: error %d\n", -ret);
1450 goto bail_dev;
1451 }
1452 goto bail; /* all OK */
1453
1454 bail_dev:
1455 hfi1_dbg_exit();
1456 dev_cleanup();
1457 bail:
1458 return ret;
1459 }
1460
1461 module_init(hfi1_mod_init);
1462
1463 /*
1464 * Do the non-unit driver cleanup, memory free, etc. at unload.
1465 */
hfi1_mod_cleanup(void)1466 static void __exit hfi1_mod_cleanup(void)
1467 {
1468 pci_unregister_driver(&hfi1_pci_driver);
1469 opfn_exit();
1470 node_affinity_destroy_all();
1471 hfi1_dbg_exit();
1472
1473 WARN_ON(!xa_empty(&hfi1_dev_table));
1474 dispose_firmware(); /* asymmetric with obtain_firmware() */
1475 dev_cleanup();
1476 }
1477
1478 module_exit(hfi1_mod_cleanup);
1479
1480 /* this can only be called after a successful initialization */
cleanup_device_data(struct hfi1_devdata * dd)1481 static void cleanup_device_data(struct hfi1_devdata *dd)
1482 {
1483 int ctxt;
1484 int pidx;
1485
1486 /* users can't do anything more with chip */
1487 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1488 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1489 struct cc_state *cc_state;
1490 int i;
1491
1492 if (ppd->statusp)
1493 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1494
1495 for (i = 0; i < OPA_MAX_SLS; i++)
1496 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1497
1498 spin_lock(&ppd->cc_state_lock);
1499 cc_state = get_cc_state_protected(ppd);
1500 RCU_INIT_POINTER(ppd->cc_state, NULL);
1501 spin_unlock(&ppd->cc_state_lock);
1502
1503 if (cc_state)
1504 kfree_rcu(cc_state, rcu);
1505 }
1506
1507 free_credit_return(dd);
1508
1509 /*
1510 * Free any resources still in use (usually just kernel contexts)
1511 * at unload; we do for ctxtcnt, because that's what we allocate.
1512 */
1513 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1514 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1515
1516 if (rcd) {
1517 hfi1_free_ctxt_rcv_groups(rcd);
1518 hfi1_free_ctxt(rcd);
1519 }
1520 }
1521
1522 kfree(dd->rcd);
1523 dd->rcd = NULL;
1524
1525 free_pio_map(dd);
1526 /* must follow rcv context free - need to remove rcv's hooks */
1527 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1528 sc_free(dd->send_contexts[ctxt].sc);
1529 dd->num_send_contexts = 0;
1530 kfree(dd->send_contexts);
1531 dd->send_contexts = NULL;
1532 kfree(dd->hw_to_sw);
1533 dd->hw_to_sw = NULL;
1534 kfree(dd->boardname);
1535 vfree(dd->events);
1536 vfree(dd->status);
1537 }
1538
1539 /*
1540 * Clean up on unit shutdown, or error during unit load after
1541 * successful initialization.
1542 */
postinit_cleanup(struct hfi1_devdata * dd)1543 static void postinit_cleanup(struct hfi1_devdata *dd)
1544 {
1545 hfi1_start_cleanup(dd);
1546 hfi1_comp_vectors_clean_up(dd);
1547 hfi1_dev_affinity_clean_up(dd);
1548
1549 hfi1_pcie_ddcleanup(dd);
1550 hfi1_pcie_cleanup(dd->pcidev);
1551
1552 cleanup_device_data(dd);
1553
1554 hfi1_free_devdata(dd);
1555 }
1556
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1557 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1558 {
1559 int ret = 0, j, pidx, initfail;
1560 struct hfi1_devdata *dd;
1561 struct hfi1_pportdata *ppd;
1562
1563 /* First, lock the non-writable module parameters */
1564 HFI1_CAP_LOCK();
1565
1566 /* Validate dev ids */
1567 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1568 ent->device == PCI_DEVICE_ID_INTEL1)) {
1569 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1570 ent->device);
1571 ret = -ENODEV;
1572 goto bail;
1573 }
1574
1575 /* Allocate the dd so we can get to work */
1576 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1577 sizeof(struct hfi1_pportdata));
1578 if (IS_ERR(dd)) {
1579 ret = PTR_ERR(dd);
1580 goto bail;
1581 }
1582
1583 /* Validate some global module parameters */
1584 ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1585 if (ret)
1586 goto bail;
1587
1588 /* use the encoding function as a sanitization check */
1589 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1590 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1591 hfi1_hdrq_entsize);
1592 ret = -EINVAL;
1593 goto bail;
1594 }
1595
1596 /* The receive eager buffer size must be set before the receive
1597 * contexts are created.
1598 *
1599 * Set the eager buffer size. Validate that it falls in a range
1600 * allowed by the hardware - all powers of 2 between the min and
1601 * max. The maximum valid MTU is within the eager buffer range
1602 * so we do not need to cap the max_mtu by an eager buffer size
1603 * setting.
1604 */
1605 if (eager_buffer_size) {
1606 if (!is_power_of_2(eager_buffer_size))
1607 eager_buffer_size =
1608 roundup_pow_of_two(eager_buffer_size);
1609 eager_buffer_size =
1610 clamp_val(eager_buffer_size,
1611 MIN_EAGER_BUFFER * 8,
1612 MAX_EAGER_BUFFER_TOTAL);
1613 dd_dev_info(dd, "Eager buffer size %u\n",
1614 eager_buffer_size);
1615 } else {
1616 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1617 ret = -EINVAL;
1618 goto bail;
1619 }
1620
1621 /* restrict value of hfi1_rcvarr_split */
1622 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1623
1624 ret = hfi1_pcie_init(dd);
1625 if (ret)
1626 goto bail;
1627
1628 /*
1629 * Do device-specific initialization, function table setup, dd
1630 * allocation, etc.
1631 */
1632 ret = hfi1_init_dd(dd);
1633 if (ret)
1634 goto clean_bail; /* error already printed */
1635
1636 ret = create_workqueues(dd);
1637 if (ret)
1638 goto clean_bail;
1639
1640 /* do the generic initialization */
1641 initfail = hfi1_init(dd, 0);
1642
1643 ret = hfi1_register_ib_device(dd);
1644
1645 /*
1646 * Now ready for use. this should be cleared whenever we
1647 * detect a reset, or initiate one. If earlier failure,
1648 * we still create devices, so diags, etc. can be used
1649 * to determine cause of problem.
1650 */
1651 if (!initfail && !ret) {
1652 dd->flags |= HFI1_INITTED;
1653 /* create debufs files after init and ib register */
1654 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1655 }
1656
1657 j = hfi1_device_create(dd);
1658 if (j)
1659 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1660
1661 if (initfail || ret) {
1662 msix_clean_up_interrupts(dd);
1663 stop_timers(dd);
1664 flush_workqueue(ib_wq);
1665 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1666 hfi1_quiet_serdes(dd->pport + pidx);
1667 ppd = dd->pport + pidx;
1668 if (ppd->hfi1_wq) {
1669 destroy_workqueue(ppd->hfi1_wq);
1670 ppd->hfi1_wq = NULL;
1671 }
1672 if (ppd->link_wq) {
1673 destroy_workqueue(ppd->link_wq);
1674 ppd->link_wq = NULL;
1675 }
1676 }
1677 if (!j)
1678 hfi1_device_remove(dd);
1679 if (!ret)
1680 hfi1_unregister_ib_device(dd);
1681 postinit_cleanup(dd);
1682 if (initfail)
1683 ret = initfail;
1684 goto bail; /* everything already cleaned */
1685 }
1686
1687 sdma_start(dd);
1688
1689 return 0;
1690
1691 clean_bail:
1692 hfi1_pcie_cleanup(pdev);
1693 bail:
1694 return ret;
1695 }
1696
wait_for_clients(struct hfi1_devdata * dd)1697 static void wait_for_clients(struct hfi1_devdata *dd)
1698 {
1699 /*
1700 * Remove the device init value and complete the device if there is
1701 * no clients or wait for active clients to finish.
1702 */
1703 if (refcount_dec_and_test(&dd->user_refcount))
1704 complete(&dd->user_comp);
1705
1706 wait_for_completion(&dd->user_comp);
1707 }
1708
remove_one(struct pci_dev * pdev)1709 static void remove_one(struct pci_dev *pdev)
1710 {
1711 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1712
1713 /* close debugfs files before ib unregister */
1714 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1715
1716 /* remove the /dev hfi1 interface */
1717 hfi1_device_remove(dd);
1718
1719 /* wait for existing user space clients to finish */
1720 wait_for_clients(dd);
1721
1722 /* unregister from IB core */
1723 hfi1_unregister_ib_device(dd);
1724
1725 /* free netdev data */
1726 hfi1_free_rx(dd);
1727
1728 /*
1729 * Disable the IB link, disable interrupts on the device,
1730 * clear dma engines, etc.
1731 */
1732 shutdown_device(dd);
1733 destroy_workqueues(dd);
1734
1735 stop_timers(dd);
1736
1737 /* wait until all of our (qsfp) queue_work() calls complete */
1738 flush_workqueue(ib_wq);
1739
1740 postinit_cleanup(dd);
1741 }
1742
shutdown_one(struct pci_dev * pdev)1743 static void shutdown_one(struct pci_dev *pdev)
1744 {
1745 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1746
1747 shutdown_device(dd);
1748 }
1749
1750 /**
1751 * hfi1_create_rcvhdrq - create a receive header queue
1752 * @dd: the hfi1_ib device
1753 * @rcd: the context data
1754 *
1755 * This must be contiguous memory (from an i/o perspective), and must be
1756 * DMA'able (which means for some systems, it will go through an IOMMU,
1757 * or be forced into a low address range).
1758 */
hfi1_create_rcvhdrq(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1759 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1760 {
1761 unsigned amt;
1762
1763 if (!rcd->rcvhdrq) {
1764 gfp_t gfp_flags;
1765
1766 amt = rcvhdrq_size(rcd);
1767
1768 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1769 gfp_flags = GFP_KERNEL;
1770 else
1771 gfp_flags = GFP_USER;
1772 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1773 &rcd->rcvhdrq_dma,
1774 gfp_flags | __GFP_COMP);
1775
1776 if (!rcd->rcvhdrq) {
1777 dd_dev_err(dd,
1778 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1779 amt, rcd->ctxt);
1780 goto bail;
1781 }
1782
1783 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1784 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1785 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1786 PAGE_SIZE,
1787 &rcd->rcvhdrqtailaddr_dma,
1788 gfp_flags);
1789 if (!rcd->rcvhdrtail_kvaddr)
1790 goto bail_free;
1791 }
1792 }
1793
1794 set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1795 rcd->rcvhdrq_cnt);
1796
1797 return 0;
1798
1799 bail_free:
1800 dd_dev_err(dd,
1801 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1802 rcd->ctxt);
1803 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1804 rcd->rcvhdrq_dma);
1805 rcd->rcvhdrq = NULL;
1806 bail:
1807 return -ENOMEM;
1808 }
1809
1810 /**
1811 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1812 * contexts.
1813 * @rcd: the context we are setting up.
1814 *
1815 * Allocate the eager TID buffers and program them into hip.
1816 * They are no longer completely contiguous, we do multiple allocation
1817 * calls. Otherwise we get the OOM code involved, by asking for too
1818 * much per call, with disastrous results on some kernels.
1819 */
hfi1_setup_eagerbufs(struct hfi1_ctxtdata * rcd)1820 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1821 {
1822 struct hfi1_devdata *dd = rcd->dd;
1823 u32 max_entries, egrtop, alloced_bytes = 0;
1824 gfp_t gfp_flags;
1825 u16 order, idx = 0;
1826 int ret = 0;
1827 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1828
1829 /*
1830 * GFP_USER, but without GFP_FS, so buffer cache can be
1831 * coalesced (we hope); otherwise, even at order 4,
1832 * heavy filesystem activity makes these fail, and we can
1833 * use compound pages.
1834 */
1835 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1836
1837 /*
1838 * The minimum size of the eager buffers is a groups of MTU-sized
1839 * buffers.
1840 * The global eager_buffer_size parameter is checked against the
1841 * theoretical lower limit of the value. Here, we check against the
1842 * MTU.
1843 */
1844 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1845 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1846 /*
1847 * If using one-pkt-per-egr-buffer, lower the eager buffer
1848 * size to the max MTU (page-aligned).
1849 */
1850 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1851 rcd->egrbufs.rcvtid_size = round_mtu;
1852
1853 /*
1854 * Eager buffers sizes of 1MB or less require smaller TID sizes
1855 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1856 */
1857 if (rcd->egrbufs.size <= (1 << 20))
1858 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1859 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1860
1861 while (alloced_bytes < rcd->egrbufs.size &&
1862 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1863 rcd->egrbufs.buffers[idx].addr =
1864 dma_alloc_coherent(&dd->pcidev->dev,
1865 rcd->egrbufs.rcvtid_size,
1866 &rcd->egrbufs.buffers[idx].dma,
1867 gfp_flags);
1868 if (rcd->egrbufs.buffers[idx].addr) {
1869 rcd->egrbufs.buffers[idx].len =
1870 rcd->egrbufs.rcvtid_size;
1871 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1872 rcd->egrbufs.buffers[idx].addr;
1873 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1874 rcd->egrbufs.buffers[idx].dma;
1875 rcd->egrbufs.alloced++;
1876 alloced_bytes += rcd->egrbufs.rcvtid_size;
1877 idx++;
1878 } else {
1879 u32 new_size, i, j;
1880 u64 offset = 0;
1881
1882 /*
1883 * Fail the eager buffer allocation if:
1884 * - we are already using the lowest acceptable size
1885 * - we are using one-pkt-per-egr-buffer (this implies
1886 * that we are accepting only one size)
1887 */
1888 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1889 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1890 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1891 rcd->ctxt);
1892 ret = -ENOMEM;
1893 goto bail_rcvegrbuf_phys;
1894 }
1895
1896 new_size = rcd->egrbufs.rcvtid_size / 2;
1897
1898 /*
1899 * If the first attempt to allocate memory failed, don't
1900 * fail everything but continue with the next lower
1901 * size.
1902 */
1903 if (idx == 0) {
1904 rcd->egrbufs.rcvtid_size = new_size;
1905 continue;
1906 }
1907
1908 /*
1909 * Re-partition already allocated buffers to a smaller
1910 * size.
1911 */
1912 rcd->egrbufs.alloced = 0;
1913 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1914 if (i >= rcd->egrbufs.count)
1915 break;
1916 rcd->egrbufs.rcvtids[i].dma =
1917 rcd->egrbufs.buffers[j].dma + offset;
1918 rcd->egrbufs.rcvtids[i].addr =
1919 rcd->egrbufs.buffers[j].addr + offset;
1920 rcd->egrbufs.alloced++;
1921 if ((rcd->egrbufs.buffers[j].dma + offset +
1922 new_size) ==
1923 (rcd->egrbufs.buffers[j].dma +
1924 rcd->egrbufs.buffers[j].len)) {
1925 j++;
1926 offset = 0;
1927 } else {
1928 offset += new_size;
1929 }
1930 }
1931 rcd->egrbufs.rcvtid_size = new_size;
1932 }
1933 }
1934 rcd->egrbufs.numbufs = idx;
1935 rcd->egrbufs.size = alloced_bytes;
1936
1937 hfi1_cdbg(PROC,
1938 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1939 rcd->ctxt, rcd->egrbufs.alloced,
1940 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1941
1942 /*
1943 * Set the contexts rcv array head update threshold to the closest
1944 * power of 2 (so we can use a mask instead of modulo) below half
1945 * the allocated entries.
1946 */
1947 rcd->egrbufs.threshold =
1948 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1949 /*
1950 * Compute the expected RcvArray entry base. This is done after
1951 * allocating the eager buffers in order to maximize the
1952 * expected RcvArray entries for the context.
1953 */
1954 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1955 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1956 rcd->expected_count = max_entries - egrtop;
1957 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1958 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1959
1960 rcd->expected_base = rcd->eager_base + egrtop;
1961 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1962 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1963 rcd->eager_base, rcd->expected_base);
1964
1965 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1966 hfi1_cdbg(PROC,
1967 "ctxt%u: current Eager buffer size is invalid %u\n",
1968 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1969 ret = -EINVAL;
1970 goto bail_rcvegrbuf_phys;
1971 }
1972
1973 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1974 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1975 rcd->egrbufs.rcvtids[idx].dma, order);
1976 cond_resched();
1977 }
1978
1979 return 0;
1980
1981 bail_rcvegrbuf_phys:
1982 for (idx = 0; idx < rcd->egrbufs.alloced &&
1983 rcd->egrbufs.buffers[idx].addr;
1984 idx++) {
1985 dma_free_coherent(&dd->pcidev->dev,
1986 rcd->egrbufs.buffers[idx].len,
1987 rcd->egrbufs.buffers[idx].addr,
1988 rcd->egrbufs.buffers[idx].dma);
1989 rcd->egrbufs.buffers[idx].addr = NULL;
1990 rcd->egrbufs.buffers[idx].dma = 0;
1991 rcd->egrbufs.buffers[idx].len = 0;
1992 }
1993
1994 return ret;
1995 }
1996