1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors.
4 *
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6 *
7 * 7-bit I2C slave address 0x23
8 *
9 * TODO: IR LED characteristics
10 */
11
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/regmap.h>
17 #include <linux/acpi.h>
18 #include <linux/regulator/consumer.h>
19
20 #include <linux/iio/iio.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/triggered_buffer.h>
26
27 #define LTR501_DRV_NAME "ltr501"
28
29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
33 #define LTR501_PART_ID 0x86
34 #define LTR501_MANUFAC_ID 0x87
35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
48 #define LTR501_MAX_REG 0x9f
49
50 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
52 #define LTR501_CONTR_PS_GAIN_SHIFT 2
53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
54 #define LTR501_CONTR_ACTIVE BIT(1)
55
56 #define LTR501_STATUS_ALS_INTR BIT(3)
57 #define LTR501_STATUS_ALS_RDY BIT(2)
58 #define LTR501_STATUS_PS_INTR BIT(1)
59 #define LTR501_STATUS_PS_RDY BIT(0)
60
61 #define LTR501_PS_DATA_MASK 0x7ff
62 #define LTR501_PS_THRESH_MASK 0x7ff
63 #define LTR501_ALS_THRESH_MASK 0xffff
64
65 #define LTR501_ALS_DEF_PERIOD 500000
66 #define LTR501_PS_DEF_PERIOD 100000
67
68 #define LTR501_REGMAP_NAME "ltr501_regmap"
69
70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
71 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
72
73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
74
75 static const struct reg_field reg_field_it =
76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
77 static const struct reg_field reg_field_als_intr =
78 REG_FIELD(LTR501_INTR, 1, 1);
79 static const struct reg_field reg_field_ps_intr =
80 REG_FIELD(LTR501_INTR, 0, 0);
81 static const struct reg_field reg_field_als_rate =
82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
83 static const struct reg_field reg_field_ps_rate =
84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
85 static const struct reg_field reg_field_als_prst =
86 REG_FIELD(LTR501_INTR_PRST, 0, 3);
87 static const struct reg_field reg_field_ps_prst =
88 REG_FIELD(LTR501_INTR_PRST, 4, 7);
89
90 struct ltr501_samp_table {
91 int freq_val; /* repetition frequency in micro HZ*/
92 int time_val; /* repetition rate in micro seconds */
93 };
94
95 #define LTR501_RESERVED_GAIN -1
96
97 enum {
98 ltr501 = 0,
99 ltr559,
100 ltr301,
101 ltr303,
102 };
103
104 struct ltr501_gain {
105 int scale;
106 int uscale;
107 };
108
109 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
110 {1, 0},
111 {0, 5000},
112 };
113
114 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
115 {1, 0},
116 {0, 500000},
117 {0, 250000},
118 {0, 125000},
119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
121 {0, 20000},
122 {0, 10000},
123 };
124
125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
126 {1, 0},
127 {0, 250000},
128 {0, 125000},
129 {0, 62500},
130 };
131
132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
133 {0, 62500}, /* x16 gain */
134 {0, 31250}, /* x32 gain */
135 {0, 15625}, /* bits X1 are for x64 gain */
136 {0, 15624},
137 };
138
139 struct ltr501_chip_info {
140 u8 partid;
141 const struct ltr501_gain *als_gain;
142 int als_gain_tbl_size;
143 const struct ltr501_gain *ps_gain;
144 int ps_gain_tbl_size;
145 u8 als_mode_active;
146 u8 als_gain_mask;
147 u8 als_gain_shift;
148 struct iio_chan_spec const *channels;
149 const int no_channels;
150 const struct iio_info *info;
151 const struct iio_info *info_no_irq;
152 };
153
154 struct ltr501_data {
155 struct i2c_client *client;
156 struct regulator_bulk_data regulators[2];
157 struct mutex lock_als, lock_ps;
158 const struct ltr501_chip_info *chip_info;
159 u8 als_contr, ps_contr;
160 int als_period, ps_period; /* period in micro seconds */
161 struct regmap *regmap;
162 struct regmap_field *reg_it;
163 struct regmap_field *reg_als_intr;
164 struct regmap_field *reg_ps_intr;
165 struct regmap_field *reg_als_rate;
166 struct regmap_field *reg_ps_rate;
167 struct regmap_field *reg_als_prst;
168 struct regmap_field *reg_ps_prst;
169 uint32_t near_level;
170 };
171
172 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
173 {20000000, 50000}, {10000000, 100000},
174 {5000000, 200000}, {2000000, 500000},
175 {1000000, 1000000}, {500000, 2000000},
176 {500000, 2000000}, {500000, 2000000}
177 };
178
179 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
180 {20000000, 50000}, {14285714, 70000},
181 {10000000, 100000}, {5000000, 200000},
182 {2000000, 500000}, {1000000, 1000000},
183 {500000, 2000000}, {500000, 2000000},
184 {500000, 2000000}
185 };
186
ltr501_match_samp_freq(const struct ltr501_samp_table * tab,int len,int val,int val2)187 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
188 int len, int val, int val2)
189 {
190 int i, freq;
191
192 freq = val * 1000000 + val2;
193
194 for (i = 0; i < len; i++) {
195 if (tab[i].freq_val == freq)
196 return i;
197 }
198
199 return -EINVAL;
200 }
201
ltr501_als_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)202 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
203 int *val, int *val2)
204 {
205 int ret, i;
206
207 ret = regmap_field_read(data->reg_als_rate, &i);
208 if (ret < 0)
209 return ret;
210
211 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
212 return -EINVAL;
213
214 *val = ltr501_als_samp_table[i].freq_val / 1000000;
215 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
216
217 return IIO_VAL_INT_PLUS_MICRO;
218 }
219
ltr501_ps_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)220 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
221 int *val, int *val2)
222 {
223 int ret, i;
224
225 ret = regmap_field_read(data->reg_ps_rate, &i);
226 if (ret < 0)
227 return ret;
228
229 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
230 return -EINVAL;
231
232 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
233 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
234
235 return IIO_VAL_INT_PLUS_MICRO;
236 }
237
ltr501_als_write_samp_freq(struct ltr501_data * data,int val,int val2)238 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
239 int val, int val2)
240 {
241 int i, ret;
242
243 i = ltr501_match_samp_freq(ltr501_als_samp_table,
244 ARRAY_SIZE(ltr501_als_samp_table),
245 val, val2);
246
247 if (i < 0)
248 return i;
249
250 mutex_lock(&data->lock_als);
251 ret = regmap_field_write(data->reg_als_rate, i);
252 mutex_unlock(&data->lock_als);
253
254 return ret;
255 }
256
ltr501_ps_write_samp_freq(struct ltr501_data * data,int val,int val2)257 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
258 int val, int val2)
259 {
260 int i, ret;
261
262 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
263 ARRAY_SIZE(ltr501_ps_samp_table),
264 val, val2);
265
266 if (i < 0)
267 return i;
268
269 mutex_lock(&data->lock_ps);
270 ret = regmap_field_write(data->reg_ps_rate, i);
271 mutex_unlock(&data->lock_ps);
272
273 return ret;
274 }
275
ltr501_als_read_samp_period(const struct ltr501_data * data,int * val)276 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
277 {
278 int ret, i;
279
280 ret = regmap_field_read(data->reg_als_rate, &i);
281 if (ret < 0)
282 return ret;
283
284 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
285 return -EINVAL;
286
287 *val = ltr501_als_samp_table[i].time_val;
288
289 return IIO_VAL_INT;
290 }
291
ltr501_ps_read_samp_period(const struct ltr501_data * data,int * val)292 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
293 {
294 int ret, i;
295
296 ret = regmap_field_read(data->reg_ps_rate, &i);
297 if (ret < 0)
298 return ret;
299
300 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
301 return -EINVAL;
302
303 *val = ltr501_ps_samp_table[i].time_val;
304
305 return IIO_VAL_INT;
306 }
307
308 /* IR and visible spectrum coeff's are given in data sheet */
ltr501_calculate_lux(u16 vis_data,u16 ir_data)309 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
310 {
311 unsigned long ratio, lux;
312
313 if (vis_data == 0)
314 return 0;
315
316 /* multiply numerator by 100 to avoid handling ratio < 1 */
317 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
318
319 if (ratio < 45)
320 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
321 else if (ratio >= 45 && ratio < 64)
322 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
323 else if (ratio >= 64 && ratio < 85)
324 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
325 else
326 lux = 0;
327
328 return lux / 1000;
329 }
330
ltr501_drdy(const struct ltr501_data * data,u8 drdy_mask)331 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
332 {
333 int tries = 100;
334 int ret, status;
335
336 while (tries--) {
337 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
338 if (ret < 0)
339 return ret;
340 if ((status & drdy_mask) == drdy_mask)
341 return 0;
342 msleep(25);
343 }
344
345 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
346 return -EIO;
347 }
348
ltr501_set_it_time(struct ltr501_data * data,int it)349 static int ltr501_set_it_time(struct ltr501_data *data, int it)
350 {
351 int ret, i, index = -1, status;
352
353 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
354 if (int_time_mapping[i] == it) {
355 index = i;
356 break;
357 }
358 }
359 /* Make sure integ time index is valid */
360 if (index < 0)
361 return -EINVAL;
362
363 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
364 if (ret < 0)
365 return ret;
366
367 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
368 /*
369 * 200 ms and 400 ms integ time can only be
370 * used in dynamic range 1
371 */
372 if (index > 1)
373 return -EINVAL;
374 } else
375 /* 50 ms integ time can only be used in dynamic range 2 */
376 if (index == 1)
377 return -EINVAL;
378
379 return regmap_field_write(data->reg_it, index);
380 }
381
382 /* read int time in micro seconds */
ltr501_read_it_time(const struct ltr501_data * data,int * val,int * val2)383 static int ltr501_read_it_time(const struct ltr501_data *data,
384 int *val, int *val2)
385 {
386 int ret, index;
387
388 ret = regmap_field_read(data->reg_it, &index);
389 if (ret < 0)
390 return ret;
391
392 /* Make sure integ time index is valid */
393 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
394 return -EINVAL;
395
396 *val2 = int_time_mapping[index];
397 *val = 0;
398
399 return IIO_VAL_INT_PLUS_MICRO;
400 }
401
ltr501_read_als(const struct ltr501_data * data,__le16 buf[2])402 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
403 {
404 int ret;
405
406 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
407 if (ret < 0)
408 return ret;
409 /* always read both ALS channels in given order */
410 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
411 buf, 2 * sizeof(__le16));
412 }
413
ltr501_read_ps(const struct ltr501_data * data)414 static int ltr501_read_ps(const struct ltr501_data *data)
415 {
416 __le16 status;
417 int ret;
418
419 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
420 if (ret < 0)
421 return ret;
422
423 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
424 &status, sizeof(status));
425 if (ret < 0)
426 return ret;
427
428 return le16_to_cpu(status);
429 }
430
ltr501_read_intr_prst(const struct ltr501_data * data,enum iio_chan_type type,int * val2)431 static int ltr501_read_intr_prst(const struct ltr501_data *data,
432 enum iio_chan_type type,
433 int *val2)
434 {
435 int ret, samp_period, prst;
436
437 switch (type) {
438 case IIO_INTENSITY:
439 ret = regmap_field_read(data->reg_als_prst, &prst);
440 if (ret < 0)
441 return ret;
442
443 ret = ltr501_als_read_samp_period(data, &samp_period);
444
445 if (ret < 0)
446 return ret;
447 *val2 = samp_period * prst;
448 return IIO_VAL_INT_PLUS_MICRO;
449 case IIO_PROXIMITY:
450 ret = regmap_field_read(data->reg_ps_prst, &prst);
451 if (ret < 0)
452 return ret;
453
454 ret = ltr501_ps_read_samp_period(data, &samp_period);
455
456 if (ret < 0)
457 return ret;
458
459 *val2 = samp_period * prst;
460 return IIO_VAL_INT_PLUS_MICRO;
461 default:
462 return -EINVAL;
463 }
464
465 return -EINVAL;
466 }
467
ltr501_write_intr_prst(struct ltr501_data * data,enum iio_chan_type type,int val,int val2)468 static int ltr501_write_intr_prst(struct ltr501_data *data,
469 enum iio_chan_type type,
470 int val, int val2)
471 {
472 int ret, samp_period, new_val;
473 unsigned long period;
474
475 if (val < 0 || val2 < 0)
476 return -EINVAL;
477
478 /* period in microseconds */
479 period = ((val * 1000000) + val2);
480
481 switch (type) {
482 case IIO_INTENSITY:
483 ret = ltr501_als_read_samp_period(data, &samp_period);
484 if (ret < 0)
485 return ret;
486
487 /* period should be atleast equal to sampling period */
488 if (period < samp_period)
489 return -EINVAL;
490
491 new_val = DIV_ROUND_UP(period, samp_period);
492 if (new_val < 0 || new_val > 0x0f)
493 return -EINVAL;
494
495 mutex_lock(&data->lock_als);
496 ret = regmap_field_write(data->reg_als_prst, new_val);
497 mutex_unlock(&data->lock_als);
498 if (ret >= 0)
499 data->als_period = period;
500
501 return ret;
502 case IIO_PROXIMITY:
503 ret = ltr501_ps_read_samp_period(data, &samp_period);
504 if (ret < 0)
505 return ret;
506
507 /* period should be atleast equal to rate */
508 if (period < samp_period)
509 return -EINVAL;
510
511 new_val = DIV_ROUND_UP(period, samp_period);
512 if (new_val < 0 || new_val > 0x0f)
513 return -EINVAL;
514
515 mutex_lock(&data->lock_ps);
516 ret = regmap_field_write(data->reg_ps_prst, new_val);
517 mutex_unlock(&data->lock_ps);
518 if (ret >= 0)
519 data->ps_period = period;
520
521 return ret;
522 default:
523 return -EINVAL;
524 }
525
526 return -EINVAL;
527 }
528
ltr501_read_near_level(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)529 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev,
530 uintptr_t priv,
531 const struct iio_chan_spec *chan,
532 char *buf)
533 {
534 struct ltr501_data *data = iio_priv(indio_dev);
535
536 return sprintf(buf, "%u\n", data->near_level);
537 }
538
539 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = {
540 {
541 .name = "nearlevel",
542 .shared = IIO_SEPARATE,
543 .read = ltr501_read_near_level,
544 },
545 { /* sentinel */ }
546 };
547
548 static const struct iio_event_spec ltr501_als_event_spec[] = {
549 {
550 .type = IIO_EV_TYPE_THRESH,
551 .dir = IIO_EV_DIR_RISING,
552 .mask_separate = BIT(IIO_EV_INFO_VALUE),
553 }, {
554 .type = IIO_EV_TYPE_THRESH,
555 .dir = IIO_EV_DIR_FALLING,
556 .mask_separate = BIT(IIO_EV_INFO_VALUE),
557 }, {
558 .type = IIO_EV_TYPE_THRESH,
559 .dir = IIO_EV_DIR_EITHER,
560 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
561 BIT(IIO_EV_INFO_PERIOD),
562 },
563
564 };
565
566 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
567 {
568 .type = IIO_EV_TYPE_THRESH,
569 .dir = IIO_EV_DIR_RISING,
570 .mask_separate = BIT(IIO_EV_INFO_VALUE),
571 }, {
572 .type = IIO_EV_TYPE_THRESH,
573 .dir = IIO_EV_DIR_FALLING,
574 .mask_separate = BIT(IIO_EV_INFO_VALUE),
575 }, {
576 .type = IIO_EV_TYPE_THRESH,
577 .dir = IIO_EV_DIR_EITHER,
578 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
579 BIT(IIO_EV_INFO_PERIOD),
580 },
581 };
582
583 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
584 _evspec, _evsize) { \
585 .type = IIO_INTENSITY, \
586 .modified = 1, \
587 .address = (_addr), \
588 .channel2 = (_mod), \
589 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
590 .info_mask_shared_by_type = (_shared), \
591 .scan_index = (_idx), \
592 .scan_type = { \
593 .sign = 'u', \
594 .realbits = 16, \
595 .storagebits = 16, \
596 .endianness = IIO_CPU, \
597 }, \
598 .event_spec = _evspec,\
599 .num_event_specs = _evsize,\
600 }
601
602 #define LTR501_LIGHT_CHANNEL() { \
603 .type = IIO_LIGHT, \
604 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
605 .scan_index = -1, \
606 }
607
608 static const struct iio_chan_spec ltr501_channels[] = {
609 LTR501_LIGHT_CHANNEL(),
610 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
611 ltr501_als_event_spec,
612 ARRAY_SIZE(ltr501_als_event_spec)),
613 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
614 BIT(IIO_CHAN_INFO_SCALE) |
615 BIT(IIO_CHAN_INFO_INT_TIME) |
616 BIT(IIO_CHAN_INFO_SAMP_FREQ),
617 NULL, 0),
618 {
619 .type = IIO_PROXIMITY,
620 .address = LTR501_PS_DATA,
621 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
622 BIT(IIO_CHAN_INFO_SCALE),
623 .scan_index = 2,
624 .scan_type = {
625 .sign = 'u',
626 .realbits = 11,
627 .storagebits = 16,
628 .endianness = IIO_CPU,
629 },
630 .event_spec = ltr501_pxs_event_spec,
631 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
632 .ext_info = ltr501_ext_info,
633 },
634 IIO_CHAN_SOFT_TIMESTAMP(3),
635 };
636
637 static const struct iio_chan_spec ltr301_channels[] = {
638 LTR501_LIGHT_CHANNEL(),
639 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
640 ltr501_als_event_spec,
641 ARRAY_SIZE(ltr501_als_event_spec)),
642 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
643 BIT(IIO_CHAN_INFO_SCALE) |
644 BIT(IIO_CHAN_INFO_INT_TIME) |
645 BIT(IIO_CHAN_INFO_SAMP_FREQ),
646 NULL, 0),
647 IIO_CHAN_SOFT_TIMESTAMP(2),
648 };
649
ltr501_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)650 static int ltr501_read_raw(struct iio_dev *indio_dev,
651 struct iio_chan_spec const *chan,
652 int *val, int *val2, long mask)
653 {
654 struct ltr501_data *data = iio_priv(indio_dev);
655 __le16 buf[2];
656 int ret, i;
657
658 switch (mask) {
659 case IIO_CHAN_INFO_PROCESSED:
660 switch (chan->type) {
661 case IIO_LIGHT:
662 ret = iio_device_claim_direct_mode(indio_dev);
663 if (ret)
664 return ret;
665
666 mutex_lock(&data->lock_als);
667 ret = ltr501_read_als(data, buf);
668 mutex_unlock(&data->lock_als);
669 iio_device_release_direct_mode(indio_dev);
670 if (ret < 0)
671 return ret;
672 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
673 le16_to_cpu(buf[0]));
674 return IIO_VAL_INT;
675 default:
676 return -EINVAL;
677 }
678 case IIO_CHAN_INFO_RAW:
679 ret = iio_device_claim_direct_mode(indio_dev);
680 if (ret)
681 return ret;
682
683 switch (chan->type) {
684 case IIO_INTENSITY:
685 mutex_lock(&data->lock_als);
686 ret = ltr501_read_als(data, buf);
687 mutex_unlock(&data->lock_als);
688 if (ret < 0)
689 break;
690 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
691 buf[0] : buf[1]);
692 ret = IIO_VAL_INT;
693 break;
694 case IIO_PROXIMITY:
695 mutex_lock(&data->lock_ps);
696 ret = ltr501_read_ps(data);
697 mutex_unlock(&data->lock_ps);
698 if (ret < 0)
699 break;
700 *val = ret & LTR501_PS_DATA_MASK;
701 ret = IIO_VAL_INT;
702 break;
703 default:
704 ret = -EINVAL;
705 break;
706 }
707
708 iio_device_release_direct_mode(indio_dev);
709 return ret;
710
711 case IIO_CHAN_INFO_SCALE:
712 switch (chan->type) {
713 case IIO_INTENSITY:
714 i = (data->als_contr & data->chip_info->als_gain_mask)
715 >> data->chip_info->als_gain_shift;
716 *val = data->chip_info->als_gain[i].scale;
717 *val2 = data->chip_info->als_gain[i].uscale;
718 return IIO_VAL_INT_PLUS_MICRO;
719 case IIO_PROXIMITY:
720 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
721 LTR501_CONTR_PS_GAIN_SHIFT;
722 *val = data->chip_info->ps_gain[i].scale;
723 *val2 = data->chip_info->ps_gain[i].uscale;
724 return IIO_VAL_INT_PLUS_MICRO;
725 default:
726 return -EINVAL;
727 }
728 case IIO_CHAN_INFO_INT_TIME:
729 switch (chan->type) {
730 case IIO_INTENSITY:
731 return ltr501_read_it_time(data, val, val2);
732 default:
733 return -EINVAL;
734 }
735 case IIO_CHAN_INFO_SAMP_FREQ:
736 switch (chan->type) {
737 case IIO_INTENSITY:
738 return ltr501_als_read_samp_freq(data, val, val2);
739 case IIO_PROXIMITY:
740 return ltr501_ps_read_samp_freq(data, val, val2);
741 default:
742 return -EINVAL;
743 }
744 }
745 return -EINVAL;
746 }
747
ltr501_get_gain_index(const struct ltr501_gain * gain,int size,int val,int val2)748 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
749 int val, int val2)
750 {
751 int i;
752
753 for (i = 0; i < size; i++)
754 if (val == gain[i].scale && val2 == gain[i].uscale)
755 return i;
756
757 return -1;
758 }
759
ltr501_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)760 static int ltr501_write_raw(struct iio_dev *indio_dev,
761 struct iio_chan_spec const *chan,
762 int val, int val2, long mask)
763 {
764 struct ltr501_data *data = iio_priv(indio_dev);
765 int i, ret, freq_val, freq_val2;
766 const struct ltr501_chip_info *info = data->chip_info;
767
768 ret = iio_device_claim_direct_mode(indio_dev);
769 if (ret)
770 return ret;
771
772 switch (mask) {
773 case IIO_CHAN_INFO_SCALE:
774 switch (chan->type) {
775 case IIO_INTENSITY:
776 i = ltr501_get_gain_index(info->als_gain,
777 info->als_gain_tbl_size,
778 val, val2);
779 if (i < 0) {
780 ret = -EINVAL;
781 break;
782 }
783
784 data->als_contr &= ~info->als_gain_mask;
785 data->als_contr |= i << info->als_gain_shift;
786
787 ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
788 data->als_contr);
789 break;
790 case IIO_PROXIMITY:
791 i = ltr501_get_gain_index(info->ps_gain,
792 info->ps_gain_tbl_size,
793 val, val2);
794 if (i < 0) {
795 ret = -EINVAL;
796 break;
797 }
798 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
799 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
800
801 ret = regmap_write(data->regmap, LTR501_PS_CONTR,
802 data->ps_contr);
803 break;
804 default:
805 ret = -EINVAL;
806 break;
807 }
808 break;
809
810 case IIO_CHAN_INFO_INT_TIME:
811 switch (chan->type) {
812 case IIO_INTENSITY:
813 if (val != 0) {
814 ret = -EINVAL;
815 break;
816 }
817 mutex_lock(&data->lock_als);
818 ret = ltr501_set_it_time(data, val2);
819 mutex_unlock(&data->lock_als);
820 break;
821 default:
822 ret = -EINVAL;
823 break;
824 }
825 break;
826
827 case IIO_CHAN_INFO_SAMP_FREQ:
828 switch (chan->type) {
829 case IIO_INTENSITY:
830 ret = ltr501_als_read_samp_freq(data, &freq_val,
831 &freq_val2);
832 if (ret < 0)
833 break;
834
835 ret = ltr501_als_write_samp_freq(data, val, val2);
836 if (ret < 0)
837 break;
838
839 /* update persistence count when changing frequency */
840 ret = ltr501_write_intr_prst(data, chan->type,
841 0, data->als_period);
842
843 if (ret < 0)
844 ret = ltr501_als_write_samp_freq(data, freq_val,
845 freq_val2);
846 break;
847 case IIO_PROXIMITY:
848 ret = ltr501_ps_read_samp_freq(data, &freq_val,
849 &freq_val2);
850 if (ret < 0)
851 break;
852
853 ret = ltr501_ps_write_samp_freq(data, val, val2);
854 if (ret < 0)
855 break;
856
857 /* update persistence count when changing frequency */
858 ret = ltr501_write_intr_prst(data, chan->type,
859 0, data->ps_period);
860
861 if (ret < 0)
862 ret = ltr501_ps_write_samp_freq(data, freq_val,
863 freq_val2);
864 break;
865 default:
866 ret = -EINVAL;
867 break;
868 }
869 break;
870
871 default:
872 ret = -EINVAL;
873 break;
874 }
875
876 iio_device_release_direct_mode(indio_dev);
877 return ret;
878 }
879
ltr501_read_thresh(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)880 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
881 const struct iio_chan_spec *chan,
882 enum iio_event_type type,
883 enum iio_event_direction dir,
884 enum iio_event_info info,
885 int *val, int *val2)
886 {
887 const struct ltr501_data *data = iio_priv(indio_dev);
888 int ret, thresh_data;
889
890 switch (chan->type) {
891 case IIO_INTENSITY:
892 switch (dir) {
893 case IIO_EV_DIR_RISING:
894 ret = regmap_bulk_read(data->regmap,
895 LTR501_ALS_THRESH_UP,
896 &thresh_data, 2);
897 if (ret < 0)
898 return ret;
899 *val = thresh_data & LTR501_ALS_THRESH_MASK;
900 return IIO_VAL_INT;
901 case IIO_EV_DIR_FALLING:
902 ret = regmap_bulk_read(data->regmap,
903 LTR501_ALS_THRESH_LOW,
904 &thresh_data, 2);
905 if (ret < 0)
906 return ret;
907 *val = thresh_data & LTR501_ALS_THRESH_MASK;
908 return IIO_VAL_INT;
909 default:
910 return -EINVAL;
911 }
912 case IIO_PROXIMITY:
913 switch (dir) {
914 case IIO_EV_DIR_RISING:
915 ret = regmap_bulk_read(data->regmap,
916 LTR501_PS_THRESH_UP,
917 &thresh_data, 2);
918 if (ret < 0)
919 return ret;
920 *val = thresh_data & LTR501_PS_THRESH_MASK;
921 return IIO_VAL_INT;
922 case IIO_EV_DIR_FALLING:
923 ret = regmap_bulk_read(data->regmap,
924 LTR501_PS_THRESH_LOW,
925 &thresh_data, 2);
926 if (ret < 0)
927 return ret;
928 *val = thresh_data & LTR501_PS_THRESH_MASK;
929 return IIO_VAL_INT;
930 default:
931 return -EINVAL;
932 }
933 default:
934 return -EINVAL;
935 }
936
937 return -EINVAL;
938 }
939
ltr501_write_thresh(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)940 static int ltr501_write_thresh(struct iio_dev *indio_dev,
941 const struct iio_chan_spec *chan,
942 enum iio_event_type type,
943 enum iio_event_direction dir,
944 enum iio_event_info info,
945 int val, int val2)
946 {
947 struct ltr501_data *data = iio_priv(indio_dev);
948 int ret;
949
950 if (val < 0)
951 return -EINVAL;
952
953 switch (chan->type) {
954 case IIO_INTENSITY:
955 if (val > LTR501_ALS_THRESH_MASK)
956 return -EINVAL;
957 switch (dir) {
958 case IIO_EV_DIR_RISING:
959 mutex_lock(&data->lock_als);
960 ret = regmap_bulk_write(data->regmap,
961 LTR501_ALS_THRESH_UP,
962 &val, 2);
963 mutex_unlock(&data->lock_als);
964 return ret;
965 case IIO_EV_DIR_FALLING:
966 mutex_lock(&data->lock_als);
967 ret = regmap_bulk_write(data->regmap,
968 LTR501_ALS_THRESH_LOW,
969 &val, 2);
970 mutex_unlock(&data->lock_als);
971 return ret;
972 default:
973 return -EINVAL;
974 }
975 case IIO_PROXIMITY:
976 if (val > LTR501_PS_THRESH_MASK)
977 return -EINVAL;
978 switch (dir) {
979 case IIO_EV_DIR_RISING:
980 mutex_lock(&data->lock_ps);
981 ret = regmap_bulk_write(data->regmap,
982 LTR501_PS_THRESH_UP,
983 &val, 2);
984 mutex_unlock(&data->lock_ps);
985 return ret;
986 case IIO_EV_DIR_FALLING:
987 mutex_lock(&data->lock_ps);
988 ret = regmap_bulk_write(data->regmap,
989 LTR501_PS_THRESH_LOW,
990 &val, 2);
991 mutex_unlock(&data->lock_ps);
992 return ret;
993 default:
994 return -EINVAL;
995 }
996 default:
997 return -EINVAL;
998 }
999
1000 return -EINVAL;
1001 }
1002
ltr501_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1003 static int ltr501_read_event(struct iio_dev *indio_dev,
1004 const struct iio_chan_spec *chan,
1005 enum iio_event_type type,
1006 enum iio_event_direction dir,
1007 enum iio_event_info info,
1008 int *val, int *val2)
1009 {
1010 int ret;
1011
1012 switch (info) {
1013 case IIO_EV_INFO_VALUE:
1014 return ltr501_read_thresh(indio_dev, chan, type, dir,
1015 info, val, val2);
1016 case IIO_EV_INFO_PERIOD:
1017 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
1018 chan->type, val2);
1019 *val = *val2 / 1000000;
1020 *val2 = *val2 % 1000000;
1021 return ret;
1022 default:
1023 return -EINVAL;
1024 }
1025
1026 return -EINVAL;
1027 }
1028
ltr501_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1029 static int ltr501_write_event(struct iio_dev *indio_dev,
1030 const struct iio_chan_spec *chan,
1031 enum iio_event_type type,
1032 enum iio_event_direction dir,
1033 enum iio_event_info info,
1034 int val, int val2)
1035 {
1036 switch (info) {
1037 case IIO_EV_INFO_VALUE:
1038 if (val2 != 0)
1039 return -EINVAL;
1040 return ltr501_write_thresh(indio_dev, chan, type, dir,
1041 info, val, val2);
1042 case IIO_EV_INFO_PERIOD:
1043 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1044 val, val2);
1045 default:
1046 return -EINVAL;
1047 }
1048
1049 return -EINVAL;
1050 }
1051
ltr501_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1052 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1053 const struct iio_chan_spec *chan,
1054 enum iio_event_type type,
1055 enum iio_event_direction dir)
1056 {
1057 struct ltr501_data *data = iio_priv(indio_dev);
1058 int ret, status;
1059
1060 switch (chan->type) {
1061 case IIO_INTENSITY:
1062 ret = regmap_field_read(data->reg_als_intr, &status);
1063 if (ret < 0)
1064 return ret;
1065 return status;
1066 case IIO_PROXIMITY:
1067 ret = regmap_field_read(data->reg_ps_intr, &status);
1068 if (ret < 0)
1069 return ret;
1070 return status;
1071 default:
1072 return -EINVAL;
1073 }
1074
1075 return -EINVAL;
1076 }
1077
ltr501_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)1078 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1079 const struct iio_chan_spec *chan,
1080 enum iio_event_type type,
1081 enum iio_event_direction dir, int state)
1082 {
1083 struct ltr501_data *data = iio_priv(indio_dev);
1084 int ret;
1085
1086 /* only 1 and 0 are valid inputs */
1087 if (state != 1 && state != 0)
1088 return -EINVAL;
1089
1090 switch (chan->type) {
1091 case IIO_INTENSITY:
1092 mutex_lock(&data->lock_als);
1093 ret = regmap_field_write(data->reg_als_intr, state);
1094 mutex_unlock(&data->lock_als);
1095 return ret;
1096 case IIO_PROXIMITY:
1097 mutex_lock(&data->lock_ps);
1098 ret = regmap_field_write(data->reg_ps_intr, state);
1099 mutex_unlock(&data->lock_ps);
1100 return ret;
1101 default:
1102 return -EINVAL;
1103 }
1104
1105 return -EINVAL;
1106 }
1107
ltr501_show_proximity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1108 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1109 struct device_attribute *attr,
1110 char *buf)
1111 {
1112 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1113 const struct ltr501_chip_info *info = data->chip_info;
1114 ssize_t len = 0;
1115 int i;
1116
1117 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1118 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1119 continue;
1120 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1121 info->ps_gain[i].scale,
1122 info->ps_gain[i].uscale);
1123 }
1124
1125 buf[len - 1] = '\n';
1126
1127 return len;
1128 }
1129
ltr501_show_intensity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1130 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1131 struct device_attribute *attr,
1132 char *buf)
1133 {
1134 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1135 const struct ltr501_chip_info *info = data->chip_info;
1136 ssize_t len = 0;
1137 int i;
1138
1139 for (i = 0; i < info->als_gain_tbl_size; i++) {
1140 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1141 continue;
1142 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1143 info->als_gain[i].scale,
1144 info->als_gain[i].uscale);
1145 }
1146
1147 buf[len - 1] = '\n';
1148
1149 return len;
1150 }
1151
1152 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1153 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1154
1155 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1156 ltr501_show_proximity_scale_avail, NULL, 0);
1157 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1158 ltr501_show_intensity_scale_avail, NULL, 0);
1159
1160 static struct attribute *ltr501_attributes[] = {
1161 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1162 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1163 &iio_const_attr_integration_time_available.dev_attr.attr,
1164 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1165 NULL
1166 };
1167
1168 static struct attribute *ltr301_attributes[] = {
1169 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1170 &iio_const_attr_integration_time_available.dev_attr.attr,
1171 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1172 NULL
1173 };
1174
1175 static const struct attribute_group ltr501_attribute_group = {
1176 .attrs = ltr501_attributes,
1177 };
1178
1179 static const struct attribute_group ltr301_attribute_group = {
1180 .attrs = ltr301_attributes,
1181 };
1182
1183 static const struct iio_info ltr501_info_no_irq = {
1184 .read_raw = ltr501_read_raw,
1185 .write_raw = ltr501_write_raw,
1186 .attrs = <r501_attribute_group,
1187 };
1188
1189 static const struct iio_info ltr501_info = {
1190 .read_raw = ltr501_read_raw,
1191 .write_raw = ltr501_write_raw,
1192 .attrs = <r501_attribute_group,
1193 .read_event_value = <r501_read_event,
1194 .write_event_value = <r501_write_event,
1195 .read_event_config = <r501_read_event_config,
1196 .write_event_config = <r501_write_event_config,
1197 };
1198
1199 static const struct iio_info ltr301_info_no_irq = {
1200 .read_raw = ltr501_read_raw,
1201 .write_raw = ltr501_write_raw,
1202 .attrs = <r301_attribute_group,
1203 };
1204
1205 static const struct iio_info ltr301_info = {
1206 .read_raw = ltr501_read_raw,
1207 .write_raw = ltr501_write_raw,
1208 .attrs = <r301_attribute_group,
1209 .read_event_value = <r501_read_event,
1210 .write_event_value = <r501_write_event,
1211 .read_event_config = <r501_read_event_config,
1212 .write_event_config = <r501_write_event_config,
1213 };
1214
1215 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1216 [ltr501] = {
1217 .partid = 0x08,
1218 .als_gain = ltr501_als_gain_tbl,
1219 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1220 .ps_gain = ltr501_ps_gain_tbl,
1221 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1222 .als_mode_active = BIT(0) | BIT(1),
1223 .als_gain_mask = BIT(3),
1224 .als_gain_shift = 3,
1225 .info = <r501_info,
1226 .info_no_irq = <r501_info_no_irq,
1227 .channels = ltr501_channels,
1228 .no_channels = ARRAY_SIZE(ltr501_channels),
1229 },
1230 [ltr559] = {
1231 .partid = 0x09,
1232 .als_gain = ltr559_als_gain_tbl,
1233 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1234 .ps_gain = ltr559_ps_gain_tbl,
1235 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1236 .als_mode_active = BIT(0),
1237 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1238 .als_gain_shift = 2,
1239 .info = <r501_info,
1240 .info_no_irq = <r501_info_no_irq,
1241 .channels = ltr501_channels,
1242 .no_channels = ARRAY_SIZE(ltr501_channels),
1243 },
1244 [ltr301] = {
1245 .partid = 0x08,
1246 .als_gain = ltr501_als_gain_tbl,
1247 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1248 .als_mode_active = BIT(0) | BIT(1),
1249 .als_gain_mask = BIT(3),
1250 .als_gain_shift = 3,
1251 .info = <r301_info,
1252 .info_no_irq = <r301_info_no_irq,
1253 .channels = ltr301_channels,
1254 .no_channels = ARRAY_SIZE(ltr301_channels),
1255 },
1256 [ltr303] = {
1257 .partid = 0x0A,
1258 .als_gain = ltr559_als_gain_tbl,
1259 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1260 .als_mode_active = BIT(0),
1261 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1262 .als_gain_shift = 2,
1263 .info = <r301_info,
1264 .info_no_irq = <r301_info_no_irq,
1265 .channels = ltr301_channels,
1266 .no_channels = ARRAY_SIZE(ltr301_channels),
1267 },
1268 };
1269
ltr501_write_contr(struct ltr501_data * data,u8 als_val,u8 ps_val)1270 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1271 {
1272 int ret;
1273
1274 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1275 if (ret < 0)
1276 return ret;
1277
1278 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1279 }
1280
ltr501_trigger_handler(int irq,void * p)1281 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1282 {
1283 struct iio_poll_func *pf = p;
1284 struct iio_dev *indio_dev = pf->indio_dev;
1285 struct ltr501_data *data = iio_priv(indio_dev);
1286 struct {
1287 u16 channels[3];
1288 s64 ts __aligned(8);
1289 } scan;
1290 __le16 als_buf[2];
1291 u8 mask = 0;
1292 int j = 0;
1293 int ret, psdata;
1294
1295 memset(&scan, 0, sizeof(scan));
1296
1297 /* figure out which data needs to be ready */
1298 if (test_bit(0, indio_dev->active_scan_mask) ||
1299 test_bit(1, indio_dev->active_scan_mask))
1300 mask |= LTR501_STATUS_ALS_RDY;
1301 if (test_bit(2, indio_dev->active_scan_mask))
1302 mask |= LTR501_STATUS_PS_RDY;
1303
1304 ret = ltr501_drdy(data, mask);
1305 if (ret < 0)
1306 goto done;
1307
1308 if (mask & LTR501_STATUS_ALS_RDY) {
1309 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1310 als_buf, sizeof(als_buf));
1311 if (ret < 0)
1312 goto done;
1313 if (test_bit(0, indio_dev->active_scan_mask))
1314 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1315 if (test_bit(1, indio_dev->active_scan_mask))
1316 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1317 }
1318
1319 if (mask & LTR501_STATUS_PS_RDY) {
1320 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1321 &psdata, 2);
1322 if (ret < 0)
1323 goto done;
1324 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1325 }
1326
1327 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1328 iio_get_time_ns(indio_dev));
1329
1330 done:
1331 iio_trigger_notify_done(indio_dev->trig);
1332
1333 return IRQ_HANDLED;
1334 }
1335
ltr501_interrupt_handler(int irq,void * private)1336 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1337 {
1338 struct iio_dev *indio_dev = private;
1339 struct ltr501_data *data = iio_priv(indio_dev);
1340 int ret, status;
1341
1342 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1343 if (ret < 0) {
1344 dev_err(&data->client->dev,
1345 "irq read int reg failed\n");
1346 return IRQ_HANDLED;
1347 }
1348
1349 if (status & LTR501_STATUS_ALS_INTR)
1350 iio_push_event(indio_dev,
1351 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1352 IIO_EV_TYPE_THRESH,
1353 IIO_EV_DIR_EITHER),
1354 iio_get_time_ns(indio_dev));
1355
1356 if (status & LTR501_STATUS_PS_INTR)
1357 iio_push_event(indio_dev,
1358 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1359 IIO_EV_TYPE_THRESH,
1360 IIO_EV_DIR_EITHER),
1361 iio_get_time_ns(indio_dev));
1362
1363 return IRQ_HANDLED;
1364 }
1365
ltr501_init(struct ltr501_data * data)1366 static int ltr501_init(struct ltr501_data *data)
1367 {
1368 int ret, status;
1369
1370 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1371 if (ret < 0)
1372 return ret;
1373
1374 data->als_contr = status | data->chip_info->als_mode_active;
1375
1376 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1377 if (ret < 0)
1378 return ret;
1379
1380 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1381
1382 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1383 if (ret < 0)
1384 return ret;
1385
1386 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1387 if (ret < 0)
1388 return ret;
1389
1390 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1391 }
1392
ltr501_is_volatile_reg(struct device * dev,unsigned int reg)1393 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1394 {
1395 switch (reg) {
1396 case LTR501_ALS_DATA1:
1397 case LTR501_ALS_DATA1_UPPER:
1398 case LTR501_ALS_DATA0:
1399 case LTR501_ALS_DATA0_UPPER:
1400 case LTR501_ALS_PS_STATUS:
1401 case LTR501_PS_DATA:
1402 case LTR501_PS_DATA_UPPER:
1403 return true;
1404 default:
1405 return false;
1406 }
1407 }
1408
1409 static const struct regmap_config ltr501_regmap_config = {
1410 .name = LTR501_REGMAP_NAME,
1411 .reg_bits = 8,
1412 .val_bits = 8,
1413 .max_register = LTR501_MAX_REG,
1414 .cache_type = REGCACHE_RBTREE,
1415 .volatile_reg = ltr501_is_volatile_reg,
1416 };
1417
ltr501_disable_regulators(void * d)1418 static void ltr501_disable_regulators(void *d)
1419 {
1420 struct ltr501_data *data = d;
1421
1422 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
1423 }
1424
ltr501_powerdown(struct ltr501_data * data)1425 static int ltr501_powerdown(struct ltr501_data *data)
1426 {
1427 return ltr501_write_contr(data, data->als_contr &
1428 ~data->chip_info->als_mode_active,
1429 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1430 }
1431
ltr501_match_acpi_device(struct device * dev,int * chip_idx)1432 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1433 {
1434 const struct acpi_device_id *id;
1435
1436 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1437 if (!id)
1438 return NULL;
1439 *chip_idx = id->driver_data;
1440 return dev_name(dev);
1441 }
1442
ltr501_probe(struct i2c_client * client,const struct i2c_device_id * id)1443 static int ltr501_probe(struct i2c_client *client,
1444 const struct i2c_device_id *id)
1445 {
1446 struct ltr501_data *data;
1447 struct iio_dev *indio_dev;
1448 struct regmap *regmap;
1449 int ret, partid, chip_idx = 0;
1450 const char *name = NULL;
1451
1452 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1453 if (!indio_dev)
1454 return -ENOMEM;
1455
1456 regmap = devm_regmap_init_i2c(client, <r501_regmap_config);
1457 if (IS_ERR(regmap)) {
1458 dev_err(&client->dev, "Regmap initialization failed.\n");
1459 return PTR_ERR(regmap);
1460 }
1461
1462 data = iio_priv(indio_dev);
1463 i2c_set_clientdata(client, indio_dev);
1464 data->client = client;
1465 data->regmap = regmap;
1466 mutex_init(&data->lock_als);
1467 mutex_init(&data->lock_ps);
1468
1469 data->regulators[0].supply = "vdd";
1470 data->regulators[1].supply = "vddio";
1471 ret = devm_regulator_bulk_get(&client->dev,
1472 ARRAY_SIZE(data->regulators),
1473 data->regulators);
1474 if (ret)
1475 return dev_err_probe(&client->dev, ret,
1476 "Failed to get regulators\n");
1477
1478 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
1479 data->regulators);
1480 if (ret)
1481 return ret;
1482
1483 ret = devm_add_action_or_reset(&client->dev,
1484 ltr501_disable_regulators, data);
1485 if (ret)
1486 return ret;
1487
1488 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1489 reg_field_it);
1490 if (IS_ERR(data->reg_it)) {
1491 dev_err(&client->dev, "Integ time reg field init failed.\n");
1492 return PTR_ERR(data->reg_it);
1493 }
1494
1495 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1496 reg_field_als_intr);
1497 if (IS_ERR(data->reg_als_intr)) {
1498 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1499 return PTR_ERR(data->reg_als_intr);
1500 }
1501
1502 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1503 reg_field_ps_intr);
1504 if (IS_ERR(data->reg_ps_intr)) {
1505 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1506 return PTR_ERR(data->reg_ps_intr);
1507 }
1508
1509 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1510 reg_field_als_rate);
1511 if (IS_ERR(data->reg_als_rate)) {
1512 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1513 return PTR_ERR(data->reg_als_rate);
1514 }
1515
1516 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1517 reg_field_ps_rate);
1518 if (IS_ERR(data->reg_ps_rate)) {
1519 dev_err(&client->dev, "PS samp rate field init failed.\n");
1520 return PTR_ERR(data->reg_ps_rate);
1521 }
1522
1523 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1524 reg_field_als_prst);
1525 if (IS_ERR(data->reg_als_prst)) {
1526 dev_err(&client->dev, "ALS prst reg field init failed\n");
1527 return PTR_ERR(data->reg_als_prst);
1528 }
1529
1530 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1531 reg_field_ps_prst);
1532 if (IS_ERR(data->reg_ps_prst)) {
1533 dev_err(&client->dev, "PS prst reg field init failed.\n");
1534 return PTR_ERR(data->reg_ps_prst);
1535 }
1536
1537 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1538 if (ret < 0)
1539 return ret;
1540
1541 if (id) {
1542 name = id->name;
1543 chip_idx = id->driver_data;
1544 } else if (ACPI_HANDLE(&client->dev)) {
1545 name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1546 } else {
1547 return -ENODEV;
1548 }
1549
1550 data->chip_info = <r501_chip_info_tbl[chip_idx];
1551
1552 if ((partid >> 4) != data->chip_info->partid)
1553 return -ENODEV;
1554
1555 if (device_property_read_u32(&client->dev, "proximity-near-level",
1556 &data->near_level))
1557 data->near_level = 0;
1558
1559 indio_dev->info = data->chip_info->info;
1560 indio_dev->channels = data->chip_info->channels;
1561 indio_dev->num_channels = data->chip_info->no_channels;
1562 indio_dev->name = name;
1563 indio_dev->modes = INDIO_DIRECT_MODE;
1564
1565 ret = ltr501_init(data);
1566 if (ret < 0)
1567 return ret;
1568
1569 if (client->irq > 0) {
1570 ret = devm_request_threaded_irq(&client->dev, client->irq,
1571 NULL, ltr501_interrupt_handler,
1572 IRQF_TRIGGER_FALLING |
1573 IRQF_ONESHOT,
1574 "ltr501_thresh_event",
1575 indio_dev);
1576 if (ret) {
1577 dev_err(&client->dev, "request irq (%d) failed\n",
1578 client->irq);
1579 return ret;
1580 }
1581 } else {
1582 indio_dev->info = data->chip_info->info_no_irq;
1583 }
1584
1585 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1586 ltr501_trigger_handler, NULL);
1587 if (ret)
1588 goto powerdown_on_error;
1589
1590 ret = iio_device_register(indio_dev);
1591 if (ret)
1592 goto error_unreg_buffer;
1593
1594 return 0;
1595
1596 error_unreg_buffer:
1597 iio_triggered_buffer_cleanup(indio_dev);
1598 powerdown_on_error:
1599 ltr501_powerdown(data);
1600 return ret;
1601 }
1602
ltr501_remove(struct i2c_client * client)1603 static void ltr501_remove(struct i2c_client *client)
1604 {
1605 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1606
1607 iio_device_unregister(indio_dev);
1608 iio_triggered_buffer_cleanup(indio_dev);
1609 ltr501_powerdown(iio_priv(indio_dev));
1610 }
1611
ltr501_suspend(struct device * dev)1612 static int ltr501_suspend(struct device *dev)
1613 {
1614 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1615 to_i2c_client(dev)));
1616 return ltr501_powerdown(data);
1617 }
1618
ltr501_resume(struct device * dev)1619 static int ltr501_resume(struct device *dev)
1620 {
1621 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1622 to_i2c_client(dev)));
1623
1624 return ltr501_write_contr(data, data->als_contr,
1625 data->ps_contr);
1626 }
1627
1628 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1629
1630 static const struct acpi_device_id ltr_acpi_match[] = {
1631 { "LTER0501", ltr501 },
1632 { "LTER0559", ltr559 },
1633 { "LTER0301", ltr301 },
1634 { },
1635 };
1636 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1637
1638 static const struct i2c_device_id ltr501_id[] = {
1639 { "ltr501", ltr501 },
1640 { "ltr559", ltr559 },
1641 { "ltr301", ltr301 },
1642 { "ltr303", ltr303 },
1643 { }
1644 };
1645 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1646
1647 static const struct of_device_id ltr501_of_match[] = {
1648 { .compatible = "liteon,ltr501", },
1649 { .compatible = "liteon,ltr559", },
1650 { .compatible = "liteon,ltr301", },
1651 { .compatible = "liteon,ltr303", },
1652 {}
1653 };
1654 MODULE_DEVICE_TABLE(of, ltr501_of_match);
1655
1656 static struct i2c_driver ltr501_driver = {
1657 .driver = {
1658 .name = LTR501_DRV_NAME,
1659 .of_match_table = ltr501_of_match,
1660 .pm = pm_sleep_ptr(<r501_pm_ops),
1661 .acpi_match_table = ACPI_PTR(ltr_acpi_match),
1662 },
1663 .probe = ltr501_probe,
1664 .remove = ltr501_remove,
1665 .id_table = ltr501_id,
1666 };
1667
1668 module_i2c_driver(ltr501_driver);
1669
1670 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1671 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1672 MODULE_LICENSE("GPL");
1673