1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 
26 #include "radeon.h"
27 #include "radeon_ucode.h"
28 #include "radeon_asic.h"
29 #include "radeon_trace.h"
30 #include "cik.h"
31 #include "cikd.h"
32 
33 /* sdma */
34 #define CIK_SDMA_UCODE_SIZE 1050
35 #define CIK_SDMA_UCODE_VERSION 64
36 
37 /*
38  * sDMA - System DMA
39  * Starting with CIK, the GPU has new asynchronous
40  * DMA engines.  These engines are used for compute
41  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
42  * and each one supports 1 ring buffer used for gfx
43  * and 2 queues used for compute.
44  *
45  * The programming model is very similar to the CP
46  * (ring buffer, IBs, etc.), but sDMA has it's own
47  * packet format that is different from the PM4 format
48  * used by the CP. sDMA supports copying data, writing
49  * embedded data, solid fills, and a number of other
50  * things.  It also has support for tiling/detiling of
51  * buffers.
52  */
53 
54 /**
55  * cik_sdma_get_rptr - get the current read pointer
56  *
57  * @rdev: radeon_device pointer
58  * @ring: radeon ring pointer
59  *
60  * Get the current rptr from the hardware (CIK+).
61  */
cik_sdma_get_rptr(struct radeon_device * rdev,struct radeon_ring * ring)62 uint32_t cik_sdma_get_rptr(struct radeon_device *rdev,
63 			   struct radeon_ring *ring)
64 {
65 	u32 rptr, reg;
66 
67 	if (rdev->wb.enabled) {
68 		rptr = rdev->wb.wb[ring->rptr_offs/4];
69 	} else {
70 		if (ring->idx == R600_RING_TYPE_DMA_INDEX)
71 			reg = SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET;
72 		else
73 			reg = SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET;
74 
75 		rptr = RREG32(reg);
76 	}
77 
78 	return (rptr & 0x3fffc) >> 2;
79 }
80 
81 /**
82  * cik_sdma_get_wptr - get the current write pointer
83  *
84  * @rdev: radeon_device pointer
85  * @ring: radeon ring pointer
86  *
87  * Get the current wptr from the hardware (CIK+).
88  */
cik_sdma_get_wptr(struct radeon_device * rdev,struct radeon_ring * ring)89 uint32_t cik_sdma_get_wptr(struct radeon_device *rdev,
90 			   struct radeon_ring *ring)
91 {
92 	u32 reg;
93 
94 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
95 		reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET;
96 	else
97 		reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET;
98 
99 	return (RREG32(reg) & 0x3fffc) >> 2;
100 }
101 
102 /**
103  * cik_sdma_set_wptr - commit the write pointer
104  *
105  * @rdev: radeon_device pointer
106  * @ring: radeon ring pointer
107  *
108  * Write the wptr back to the hardware (CIK+).
109  */
cik_sdma_set_wptr(struct radeon_device * rdev,struct radeon_ring * ring)110 void cik_sdma_set_wptr(struct radeon_device *rdev,
111 		       struct radeon_ring *ring)
112 {
113 	u32 reg;
114 
115 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
116 		reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET;
117 	else
118 		reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET;
119 
120 	WREG32(reg, (ring->wptr << 2) & 0x3fffc);
121 	(void)RREG32(reg);
122 }
123 
124 /**
125  * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine
126  *
127  * @rdev: radeon_device pointer
128  * @ib: IB object to schedule
129  *
130  * Schedule an IB in the DMA ring (CIK).
131  */
cik_sdma_ring_ib_execute(struct radeon_device * rdev,struct radeon_ib * ib)132 void cik_sdma_ring_ib_execute(struct radeon_device *rdev,
133 			      struct radeon_ib *ib)
134 {
135 	struct radeon_ring *ring = &rdev->ring[ib->ring];
136 	u32 extra_bits = (ib->vm ? ib->vm->ids[ib->ring].id : 0) & 0xf;
137 
138 	if (rdev->wb.enabled) {
139 		u32 next_rptr = ring->wptr + 5;
140 		while ((next_rptr & 7) != 4)
141 			next_rptr++;
142 		next_rptr += 4;
143 		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
144 		radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
145 		radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
146 		radeon_ring_write(ring, 1); /* number of DWs to follow */
147 		radeon_ring_write(ring, next_rptr);
148 	}
149 
150 	/* IB packet must end on a 8 DW boundary */
151 	while ((ring->wptr & 7) != 4)
152 		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
153 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits));
154 	radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */
155 	radeon_ring_write(ring, upper_32_bits(ib->gpu_addr));
156 	radeon_ring_write(ring, ib->length_dw);
157 
158 }
159 
160 /**
161  * cik_sdma_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
162  *
163  * @rdev: radeon_device pointer
164  * @ridx: radeon ring index
165  *
166  * Emit an hdp flush packet on the requested DMA ring.
167  */
cik_sdma_hdp_flush_ring_emit(struct radeon_device * rdev,int ridx)168 static void cik_sdma_hdp_flush_ring_emit(struct radeon_device *rdev,
169 					 int ridx)
170 {
171 	struct radeon_ring *ring = &rdev->ring[ridx];
172 	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
173 			  SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
174 	u32 ref_and_mask;
175 
176 	if (ridx == R600_RING_TYPE_DMA_INDEX)
177 		ref_and_mask = SDMA0;
178 	else
179 		ref_and_mask = SDMA1;
180 
181 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
182 	radeon_ring_write(ring, GPU_HDP_FLUSH_DONE);
183 	radeon_ring_write(ring, GPU_HDP_FLUSH_REQ);
184 	radeon_ring_write(ring, ref_and_mask); /* reference */
185 	radeon_ring_write(ring, ref_and_mask); /* mask */
186 	radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */
187 }
188 
189 /**
190  * cik_sdma_fence_ring_emit - emit a fence on the DMA ring
191  *
192  * @rdev: radeon_device pointer
193  * @fence: radeon fence object
194  *
195  * Add a DMA fence packet to the ring to write
196  * the fence seq number and DMA trap packet to generate
197  * an interrupt if needed (CIK).
198  */
cik_sdma_fence_ring_emit(struct radeon_device * rdev,struct radeon_fence * fence)199 void cik_sdma_fence_ring_emit(struct radeon_device *rdev,
200 			      struct radeon_fence *fence)
201 {
202 	struct radeon_ring *ring = &rdev->ring[fence->ring];
203 	u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
204 
205 	/* write the fence */
206 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0));
207 	radeon_ring_write(ring, lower_32_bits(addr));
208 	radeon_ring_write(ring, upper_32_bits(addr));
209 	radeon_ring_write(ring, fence->seq);
210 	/* generate an interrupt */
211 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0));
212 	/* flush HDP */
213 	cik_sdma_hdp_flush_ring_emit(rdev, fence->ring);
214 }
215 
216 /**
217  * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring
218  *
219  * @rdev: radeon_device pointer
220  * @ring: radeon_ring structure holding ring information
221  * @semaphore: radeon semaphore object
222  * @emit_wait: wait or signal semaphore
223  *
224  * Add a DMA semaphore packet to the ring wait on or signal
225  * other rings (CIK).
226  */
cik_sdma_semaphore_ring_emit(struct radeon_device * rdev,struct radeon_ring * ring,struct radeon_semaphore * semaphore,bool emit_wait)227 bool cik_sdma_semaphore_ring_emit(struct radeon_device *rdev,
228 				  struct radeon_ring *ring,
229 				  struct radeon_semaphore *semaphore,
230 				  bool emit_wait)
231 {
232 	u64 addr = semaphore->gpu_addr;
233 	u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S;
234 
235 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits));
236 	radeon_ring_write(ring, addr & 0xfffffff8);
237 	radeon_ring_write(ring, upper_32_bits(addr));
238 
239 	return true;
240 }
241 
242 /**
243  * cik_sdma_gfx_stop - stop the gfx async dma engines
244  *
245  * @rdev: radeon_device pointer
246  *
247  * Stop the gfx async dma ring buffers (CIK).
248  */
cik_sdma_gfx_stop(struct radeon_device * rdev)249 static void cik_sdma_gfx_stop(struct radeon_device *rdev)
250 {
251 	u32 rb_cntl, reg_offset;
252 	int i;
253 
254 	if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
255 	    (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
256 		radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
257 
258 	for (i = 0; i < 2; i++) {
259 		if (i == 0)
260 			reg_offset = SDMA0_REGISTER_OFFSET;
261 		else
262 			reg_offset = SDMA1_REGISTER_OFFSET;
263 		rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset);
264 		rb_cntl &= ~SDMA_RB_ENABLE;
265 		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
266 		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0);
267 	}
268 	rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false;
269 	rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false;
270 
271 	/* FIXME use something else than big hammer but after few days can not
272 	 * seem to find good combination so reset SDMA blocks as it seems we
273 	 * do not shut them down properly. This fix hibernation and does not
274 	 * affect suspend to ram.
275 	 */
276 	WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1);
277 	(void)RREG32(SRBM_SOFT_RESET);
278 	udelay(50);
279 	WREG32(SRBM_SOFT_RESET, 0);
280 	(void)RREG32(SRBM_SOFT_RESET);
281 }
282 
283 /**
284  * cik_sdma_rlc_stop - stop the compute async dma engines
285  *
286  * @rdev: radeon_device pointer
287  *
288  * Stop the compute async dma queues (CIK).
289  */
cik_sdma_rlc_stop(struct radeon_device * rdev)290 static void cik_sdma_rlc_stop(struct radeon_device *rdev)
291 {
292 	/* XXX todo */
293 }
294 
295 /**
296  * cik_sdma_ctx_switch_enable - enable/disable sdma engine preemption
297  *
298  * @rdev: radeon_device pointer
299  * @enable: enable/disable preemption.
300  *
301  * Halt or unhalt the async dma engines (CIK).
302  */
cik_sdma_ctx_switch_enable(struct radeon_device * rdev,bool enable)303 static void cik_sdma_ctx_switch_enable(struct radeon_device *rdev, bool enable)
304 {
305 	uint32_t reg_offset, value;
306 	int i;
307 
308 	for (i = 0; i < 2; i++) {
309 		if (i == 0)
310 			reg_offset = SDMA0_REGISTER_OFFSET;
311 		else
312 			reg_offset = SDMA1_REGISTER_OFFSET;
313 		value = RREG32(SDMA0_CNTL + reg_offset);
314 		if (enable)
315 			value |= AUTO_CTXSW_ENABLE;
316 		else
317 			value &= ~AUTO_CTXSW_ENABLE;
318 		WREG32(SDMA0_CNTL + reg_offset, value);
319 	}
320 }
321 
322 /**
323  * cik_sdma_enable - stop the async dma engines
324  *
325  * @rdev: radeon_device pointer
326  * @enable: enable/disable the DMA MEs.
327  *
328  * Halt or unhalt the async dma engines (CIK).
329  */
cik_sdma_enable(struct radeon_device * rdev,bool enable)330 void cik_sdma_enable(struct radeon_device *rdev, bool enable)
331 {
332 	u32 me_cntl, reg_offset;
333 	int i;
334 
335 	if (!enable) {
336 		cik_sdma_gfx_stop(rdev);
337 		cik_sdma_rlc_stop(rdev);
338 	}
339 
340 	for (i = 0; i < 2; i++) {
341 		if (i == 0)
342 			reg_offset = SDMA0_REGISTER_OFFSET;
343 		else
344 			reg_offset = SDMA1_REGISTER_OFFSET;
345 		me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset);
346 		if (enable)
347 			me_cntl &= ~SDMA_HALT;
348 		else
349 			me_cntl |= SDMA_HALT;
350 		WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl);
351 	}
352 
353 	cik_sdma_ctx_switch_enable(rdev, enable);
354 }
355 
356 /**
357  * cik_sdma_gfx_resume - setup and start the async dma engines
358  *
359  * @rdev: radeon_device pointer
360  *
361  * Set up the gfx DMA ring buffers and enable them (CIK).
362  * Returns 0 for success, error for failure.
363  */
cik_sdma_gfx_resume(struct radeon_device * rdev)364 static int cik_sdma_gfx_resume(struct radeon_device *rdev)
365 {
366 	struct radeon_ring *ring;
367 	u32 rb_cntl, ib_cntl;
368 	u32 rb_bufsz;
369 	u32 reg_offset, wb_offset;
370 	int i, r;
371 
372 	for (i = 0; i < 2; i++) {
373 		if (i == 0) {
374 			ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
375 			reg_offset = SDMA0_REGISTER_OFFSET;
376 			wb_offset = R600_WB_DMA_RPTR_OFFSET;
377 		} else {
378 			ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
379 			reg_offset = SDMA1_REGISTER_OFFSET;
380 			wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET;
381 		}
382 
383 		WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0);
384 		WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0);
385 
386 		/* Set ring buffer size in dwords */
387 		rb_bufsz = order_base_2(ring->ring_size / 4);
388 		rb_cntl = rb_bufsz << 1;
389 #ifdef __BIG_ENDIAN
390 		rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE;
391 #endif
392 		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
393 
394 		/* Initialize the ring buffer's read and write pointers */
395 		WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0);
396 		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0);
397 
398 		/* set the wb address whether it's enabled or not */
399 		WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset,
400 		       upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
401 		WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset,
402 		       ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));
403 
404 		if (rdev->wb.enabled)
405 			rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE;
406 
407 		WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8);
408 		WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40);
409 
410 		ring->wptr = 0;
411 		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2);
412 
413 		/* enable DMA RB */
414 		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE);
415 
416 		ib_cntl = SDMA_IB_ENABLE;
417 #ifdef __BIG_ENDIAN
418 		ib_cntl |= SDMA_IB_SWAP_ENABLE;
419 #endif
420 		/* enable DMA IBs */
421 		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl);
422 
423 		ring->ready = true;
424 
425 		r = radeon_ring_test(rdev, ring->idx, ring);
426 		if (r) {
427 			ring->ready = false;
428 			return r;
429 		}
430 	}
431 
432 	if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
433 	    (rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
434 		radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);
435 
436 	return 0;
437 }
438 
439 /**
440  * cik_sdma_rlc_resume - setup and start the async dma engines
441  *
442  * @rdev: radeon_device pointer
443  *
444  * Set up the compute DMA queues and enable them (CIK).
445  * Returns 0 for success, error for failure.
446  */
cik_sdma_rlc_resume(struct radeon_device * rdev)447 static int cik_sdma_rlc_resume(struct radeon_device *rdev)
448 {
449 	/* XXX todo */
450 	return 0;
451 }
452 
453 /**
454  * cik_sdma_load_microcode - load the sDMA ME ucode
455  *
456  * @rdev: radeon_device pointer
457  *
458  * Loads the sDMA0/1 ucode.
459  * Returns 0 for success, -EINVAL if the ucode is not available.
460  */
cik_sdma_load_microcode(struct radeon_device * rdev)461 static int cik_sdma_load_microcode(struct radeon_device *rdev)
462 {
463 	int i;
464 
465 	if (!rdev->sdma_fw)
466 		return -EINVAL;
467 
468 	/* halt the MEs */
469 	cik_sdma_enable(rdev, false);
470 
471 	if (rdev->new_fw) {
472 		const struct sdma_firmware_header_v1_0 *hdr =
473 			(const struct sdma_firmware_header_v1_0 *)rdev->sdma_fw->data;
474 		const __le32 *fw_data;
475 		u32 fw_size;
476 
477 		radeon_ucode_print_sdma_hdr(&hdr->header);
478 
479 		/* sdma0 */
480 		fw_data = (const __le32 *)
481 			(rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
482 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
483 		WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
484 		for (i = 0; i < fw_size; i++)
485 			WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, le32_to_cpup(fw_data++));
486 		WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
487 
488 		/* sdma1 */
489 		fw_data = (const __le32 *)
490 			(rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
491 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
492 		WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
493 		for (i = 0; i < fw_size; i++)
494 			WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, le32_to_cpup(fw_data++));
495 		WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
496 	} else {
497 		const __be32 *fw_data;
498 
499 		/* sdma0 */
500 		fw_data = (const __be32 *)rdev->sdma_fw->data;
501 		WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
502 		for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
503 			WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++));
504 		WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
505 
506 		/* sdma1 */
507 		fw_data = (const __be32 *)rdev->sdma_fw->data;
508 		WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
509 		for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
510 			WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++));
511 		WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
512 	}
513 
514 	WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
515 	WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
516 	return 0;
517 }
518 
519 /**
520  * cik_sdma_resume - setup and start the async dma engines
521  *
522  * @rdev: radeon_device pointer
523  *
524  * Set up the DMA engines and enable them (CIK).
525  * Returns 0 for success, error for failure.
526  */
cik_sdma_resume(struct radeon_device * rdev)527 int cik_sdma_resume(struct radeon_device *rdev)
528 {
529 	int r;
530 
531 	r = cik_sdma_load_microcode(rdev);
532 	if (r)
533 		return r;
534 
535 	/* unhalt the MEs */
536 	cik_sdma_enable(rdev, true);
537 
538 	/* start the gfx rings and rlc compute queues */
539 	r = cik_sdma_gfx_resume(rdev);
540 	if (r)
541 		return r;
542 	r = cik_sdma_rlc_resume(rdev);
543 	if (r)
544 		return r;
545 
546 	return 0;
547 }
548 
549 /**
550  * cik_sdma_fini - tear down the async dma engines
551  *
552  * @rdev: radeon_device pointer
553  *
554  * Stop the async dma engines and free the rings (CIK).
555  */
cik_sdma_fini(struct radeon_device * rdev)556 void cik_sdma_fini(struct radeon_device *rdev)
557 {
558 	/* halt the MEs */
559 	cik_sdma_enable(rdev, false);
560 	radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
561 	radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]);
562 	/* XXX - compute dma queue tear down */
563 }
564 
565 /**
566  * cik_copy_dma - copy pages using the DMA engine
567  *
568  * @rdev: radeon_device pointer
569  * @src_offset: src GPU address
570  * @dst_offset: dst GPU address
571  * @num_gpu_pages: number of GPU pages to xfer
572  * @resv: reservation object to sync to
573  *
574  * Copy GPU paging using the DMA engine (CIK).
575  * Used by the radeon ttm implementation to move pages if
576  * registered as the asic copy callback.
577  */
cik_copy_dma(struct radeon_device * rdev,uint64_t src_offset,uint64_t dst_offset,unsigned num_gpu_pages,struct dma_resv * resv)578 struct radeon_fence *cik_copy_dma(struct radeon_device *rdev,
579 				  uint64_t src_offset, uint64_t dst_offset,
580 				  unsigned num_gpu_pages,
581 				  struct dma_resv *resv)
582 {
583 	struct radeon_fence *fence;
584 	struct radeon_sync sync;
585 	int ring_index = rdev->asic->copy.dma_ring_index;
586 	struct radeon_ring *ring = &rdev->ring[ring_index];
587 	u32 size_in_bytes, cur_size_in_bytes;
588 	int i, num_loops;
589 	int r = 0;
590 
591 	radeon_sync_create(&sync);
592 
593 	size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT);
594 	num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff);
595 	r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14);
596 	if (r) {
597 		DRM_ERROR("radeon: moving bo (%d).\n", r);
598 		radeon_sync_free(rdev, &sync, NULL);
599 		return ERR_PTR(r);
600 	}
601 
602 	radeon_sync_resv(rdev, &sync, resv, false);
603 	radeon_sync_rings(rdev, &sync, ring->idx);
604 
605 	for (i = 0; i < num_loops; i++) {
606 		cur_size_in_bytes = size_in_bytes;
607 		if (cur_size_in_bytes > 0x1fffff)
608 			cur_size_in_bytes = 0x1fffff;
609 		size_in_bytes -= cur_size_in_bytes;
610 		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0));
611 		radeon_ring_write(ring, cur_size_in_bytes);
612 		radeon_ring_write(ring, 0); /* src/dst endian swap */
613 		radeon_ring_write(ring, lower_32_bits(src_offset));
614 		radeon_ring_write(ring, upper_32_bits(src_offset));
615 		radeon_ring_write(ring, lower_32_bits(dst_offset));
616 		radeon_ring_write(ring, upper_32_bits(dst_offset));
617 		src_offset += cur_size_in_bytes;
618 		dst_offset += cur_size_in_bytes;
619 	}
620 
621 	r = radeon_fence_emit(rdev, &fence, ring->idx);
622 	if (r) {
623 		radeon_ring_unlock_undo(rdev, ring);
624 		radeon_sync_free(rdev, &sync, NULL);
625 		return ERR_PTR(r);
626 	}
627 
628 	radeon_ring_unlock_commit(rdev, ring, false);
629 	radeon_sync_free(rdev, &sync, fence);
630 
631 	return fence;
632 }
633 
634 /**
635  * cik_sdma_ring_test - simple async dma engine test
636  *
637  * @rdev: radeon_device pointer
638  * @ring: radeon_ring structure holding ring information
639  *
640  * Test the DMA engine by writing using it to write an
641  * value to memory. (CIK).
642  * Returns 0 for success, error for failure.
643  */
cik_sdma_ring_test(struct radeon_device * rdev,struct radeon_ring * ring)644 int cik_sdma_ring_test(struct radeon_device *rdev,
645 		       struct radeon_ring *ring)
646 {
647 	unsigned i;
648 	int r;
649 	unsigned index;
650 	u32 tmp;
651 	u64 gpu_addr;
652 
653 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
654 		index = R600_WB_DMA_RING_TEST_OFFSET;
655 	else
656 		index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;
657 
658 	gpu_addr = rdev->wb.gpu_addr + index;
659 
660 	tmp = 0xCAFEDEAD;
661 	rdev->wb.wb[index/4] = cpu_to_le32(tmp);
662 
663 	r = radeon_ring_lock(rdev, ring, 5);
664 	if (r) {
665 		DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r);
666 		return r;
667 	}
668 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
669 	radeon_ring_write(ring, lower_32_bits(gpu_addr));
670 	radeon_ring_write(ring, upper_32_bits(gpu_addr));
671 	radeon_ring_write(ring, 1); /* number of DWs to follow */
672 	radeon_ring_write(ring, 0xDEADBEEF);
673 	radeon_ring_unlock_commit(rdev, ring, false);
674 
675 	for (i = 0; i < rdev->usec_timeout; i++) {
676 		tmp = le32_to_cpu(rdev->wb.wb[index/4]);
677 		if (tmp == 0xDEADBEEF)
678 			break;
679 		udelay(1);
680 	}
681 
682 	if (i < rdev->usec_timeout) {
683 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
684 	} else {
685 		DRM_ERROR("radeon: ring %d test failed (0x%08X)\n",
686 			  ring->idx, tmp);
687 		r = -EINVAL;
688 	}
689 	return r;
690 }
691 
692 /**
693  * cik_sdma_ib_test - test an IB on the DMA engine
694  *
695  * @rdev: radeon_device pointer
696  * @ring: radeon_ring structure holding ring information
697  *
698  * Test a simple IB in the DMA ring (CIK).
699  * Returns 0 on success, error on failure.
700  */
cik_sdma_ib_test(struct radeon_device * rdev,struct radeon_ring * ring)701 int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
702 {
703 	struct radeon_ib ib;
704 	unsigned i;
705 	unsigned index;
706 	int r;
707 	u32 tmp = 0;
708 	u64 gpu_addr;
709 
710 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
711 		index = R600_WB_DMA_RING_TEST_OFFSET;
712 	else
713 		index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;
714 
715 	gpu_addr = rdev->wb.gpu_addr + index;
716 
717 	tmp = 0xCAFEDEAD;
718 	rdev->wb.wb[index/4] = cpu_to_le32(tmp);
719 
720 	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
721 	if (r) {
722 		DRM_ERROR("radeon: failed to get ib (%d).\n", r);
723 		return r;
724 	}
725 
726 	ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
727 	ib.ptr[1] = lower_32_bits(gpu_addr);
728 	ib.ptr[2] = upper_32_bits(gpu_addr);
729 	ib.ptr[3] = 1;
730 	ib.ptr[4] = 0xDEADBEEF;
731 	ib.length_dw = 5;
732 
733 	r = radeon_ib_schedule(rdev, &ib, NULL, false);
734 	if (r) {
735 		radeon_ib_free(rdev, &ib);
736 		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
737 		return r;
738 	}
739 	r = radeon_fence_wait_timeout(ib.fence, false, usecs_to_jiffies(
740 		RADEON_USEC_IB_TEST_TIMEOUT));
741 	if (r < 0) {
742 		DRM_ERROR("radeon: fence wait failed (%d).\n", r);
743 		return r;
744 	} else if (r == 0) {
745 		DRM_ERROR("radeon: fence wait timed out.\n");
746 		return -ETIMEDOUT;
747 	}
748 	r = 0;
749 	for (i = 0; i < rdev->usec_timeout; i++) {
750 		tmp = le32_to_cpu(rdev->wb.wb[index/4]);
751 		if (tmp == 0xDEADBEEF)
752 			break;
753 		udelay(1);
754 	}
755 	if (i < rdev->usec_timeout) {
756 		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
757 	} else {
758 		DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp);
759 		r = -EINVAL;
760 	}
761 	radeon_ib_free(rdev, &ib);
762 	return r;
763 }
764 
765 /**
766  * cik_sdma_is_lockup - Check if the DMA engine is locked up
767  *
768  * @rdev: radeon_device pointer
769  * @ring: radeon_ring structure holding ring information
770  *
771  * Check if the async DMA engine is locked up (CIK).
772  * Returns true if the engine appears to be locked up, false if not.
773  */
cik_sdma_is_lockup(struct radeon_device * rdev,struct radeon_ring * ring)774 bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
775 {
776 	u32 reset_mask = cik_gpu_check_soft_reset(rdev);
777 	u32 mask;
778 
779 	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
780 		mask = RADEON_RESET_DMA;
781 	else
782 		mask = RADEON_RESET_DMA1;
783 
784 	if (!(reset_mask & mask)) {
785 		radeon_ring_lockup_update(rdev, ring);
786 		return false;
787 	}
788 	return radeon_ring_test_lockup(rdev, ring);
789 }
790 
791 /**
792  * cik_sdma_vm_copy_pages - update PTEs by copying them from the GART
793  *
794  * @rdev: radeon_device pointer
795  * @ib: indirect buffer to fill with commands
796  * @pe: addr of the page entry
797  * @src: src addr to copy from
798  * @count: number of page entries to update
799  *
800  * Update PTEs by copying them from the GART using sDMA (CIK).
801  */
cik_sdma_vm_copy_pages(struct radeon_device * rdev,struct radeon_ib * ib,uint64_t pe,uint64_t src,unsigned count)802 void cik_sdma_vm_copy_pages(struct radeon_device *rdev,
803 			    struct radeon_ib *ib,
804 			    uint64_t pe, uint64_t src,
805 			    unsigned count)
806 {
807 	while (count) {
808 		unsigned bytes = count * 8;
809 		if (bytes > 0x1FFFF8)
810 			bytes = 0x1FFFF8;
811 
812 		ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY,
813 			SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
814 		ib->ptr[ib->length_dw++] = bytes;
815 		ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
816 		ib->ptr[ib->length_dw++] = lower_32_bits(src);
817 		ib->ptr[ib->length_dw++] = upper_32_bits(src);
818 		ib->ptr[ib->length_dw++] = lower_32_bits(pe);
819 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
820 
821 		pe += bytes;
822 		src += bytes;
823 		count -= bytes / 8;
824 	}
825 }
826 
827 /**
828  * cik_sdma_vm_write_pages - update PTEs by writing them manually
829  *
830  * @rdev: radeon_device pointer
831  * @ib: indirect buffer to fill with commands
832  * @pe: addr of the page entry
833  * @addr: dst addr to write into pe
834  * @count: number of page entries to update
835  * @incr: increase next addr by incr bytes
836  * @flags: access flags
837  *
838  * Update PTEs by writing them manually using sDMA (CIK).
839  */
cik_sdma_vm_write_pages(struct radeon_device * rdev,struct radeon_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint32_t flags)840 void cik_sdma_vm_write_pages(struct radeon_device *rdev,
841 			     struct radeon_ib *ib,
842 			     uint64_t pe,
843 			     uint64_t addr, unsigned count,
844 			     uint32_t incr, uint32_t flags)
845 {
846 	uint64_t value;
847 	unsigned ndw;
848 
849 	while (count) {
850 		ndw = count * 2;
851 		if (ndw > 0xFFFFE)
852 			ndw = 0xFFFFE;
853 
854 		/* for non-physically contiguous pages (system) */
855 		ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE,
856 			SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
857 		ib->ptr[ib->length_dw++] = pe;
858 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
859 		ib->ptr[ib->length_dw++] = ndw;
860 		for (; ndw > 0; ndw -= 2, --count, pe += 8) {
861 			if (flags & R600_PTE_SYSTEM) {
862 				value = radeon_vm_map_gart(rdev, addr);
863 			} else if (flags & R600_PTE_VALID) {
864 				value = addr;
865 			} else {
866 				value = 0;
867 			}
868 			addr += incr;
869 			value |= flags;
870 			ib->ptr[ib->length_dw++] = value;
871 			ib->ptr[ib->length_dw++] = upper_32_bits(value);
872 		}
873 	}
874 }
875 
876 /**
877  * cik_sdma_vm_set_pages - update the page tables using sDMA
878  *
879  * @rdev: radeon_device pointer
880  * @ib: indirect buffer to fill with commands
881  * @pe: addr of the page entry
882  * @addr: dst addr to write into pe
883  * @count: number of page entries to update
884  * @incr: increase next addr by incr bytes
885  * @flags: access flags
886  *
887  * Update the page tables using sDMA (CIK).
888  */
cik_sdma_vm_set_pages(struct radeon_device * rdev,struct radeon_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint32_t flags)889 void cik_sdma_vm_set_pages(struct radeon_device *rdev,
890 			   struct radeon_ib *ib,
891 			   uint64_t pe,
892 			   uint64_t addr, unsigned count,
893 			   uint32_t incr, uint32_t flags)
894 {
895 	uint64_t value;
896 	unsigned ndw;
897 
898 	while (count) {
899 		ndw = count;
900 		if (ndw > 0x7FFFF)
901 			ndw = 0x7FFFF;
902 
903 		if (flags & R600_PTE_VALID)
904 			value = addr;
905 		else
906 			value = 0;
907 
908 		/* for physically contiguous pages (vram) */
909 		ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0);
910 		ib->ptr[ib->length_dw++] = pe; /* dst addr */
911 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
912 		ib->ptr[ib->length_dw++] = flags; /* mask */
913 		ib->ptr[ib->length_dw++] = 0;
914 		ib->ptr[ib->length_dw++] = value; /* value */
915 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
916 		ib->ptr[ib->length_dw++] = incr; /* increment size */
917 		ib->ptr[ib->length_dw++] = 0;
918 		ib->ptr[ib->length_dw++] = ndw; /* number of entries */
919 
920 		pe += ndw * 8;
921 		addr += ndw * incr;
922 		count -= ndw;
923 	}
924 }
925 
926 /**
927  * cik_sdma_vm_pad_ib - pad the IB to the required number of dw
928  *
929  * @ib: indirect buffer to fill with padding
930  *
931  */
cik_sdma_vm_pad_ib(struct radeon_ib * ib)932 void cik_sdma_vm_pad_ib(struct radeon_ib *ib)
933 {
934 	while (ib->length_dw & 0x7)
935 		ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0);
936 }
937 
938 /*
939  * cik_dma_vm_flush - cik vm flush using sDMA
940  *
941  * Update the page table base and flush the VM TLB
942  * using sDMA (CIK).
943  */
cik_dma_vm_flush(struct radeon_device * rdev,struct radeon_ring * ring,unsigned vm_id,uint64_t pd_addr)944 void cik_dma_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring,
945 		      unsigned vm_id, uint64_t pd_addr)
946 {
947 	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) |
948 			  SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */
949 
950 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
951 	if (vm_id < 8) {
952 		radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2);
953 	} else {
954 		radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm_id - 8) << 2)) >> 2);
955 	}
956 	radeon_ring_write(ring, pd_addr >> 12);
957 
958 	/* update SH_MEM_* regs */
959 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
960 	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
961 	radeon_ring_write(ring, VMID(vm_id));
962 
963 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
964 	radeon_ring_write(ring, SH_MEM_BASES >> 2);
965 	radeon_ring_write(ring, 0);
966 
967 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
968 	radeon_ring_write(ring, SH_MEM_CONFIG >> 2);
969 	radeon_ring_write(ring, 0);
970 
971 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
972 	radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2);
973 	radeon_ring_write(ring, 1);
974 
975 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
976 	radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2);
977 	radeon_ring_write(ring, 0);
978 
979 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
980 	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
981 	radeon_ring_write(ring, VMID(0));
982 
983 	/* flush HDP */
984 	cik_sdma_hdp_flush_ring_emit(rdev, ring->idx);
985 
986 	/* flush TLB */
987 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
988 	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
989 	radeon_ring_write(ring, 1 << vm_id);
990 
991 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
992 	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
993 	radeon_ring_write(ring, 0);
994 	radeon_ring_write(ring, 0); /* reference */
995 	radeon_ring_write(ring, 0); /* mask */
996 	radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */
997 }
998 
999