1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020-2021 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_trace.h"
8 #include "intel_display_types.h"
9 #include "intel_dp_aux.h"
10 #include "intel_pps.h"
11 #include "intel_tc.h"
12 
intel_dp_aux_pack(const u8 * src,int src_bytes)13 static u32 intel_dp_aux_pack(const u8 *src, int src_bytes)
14 {
15 	int i;
16 	u32 v = 0;
17 
18 	if (src_bytes > 4)
19 		src_bytes = 4;
20 	for (i = 0; i < src_bytes; i++)
21 		v |= ((u32)src[i]) << ((3 - i) * 8);
22 	return v;
23 }
24 
intel_dp_aux_unpack(u32 src,u8 * dst,int dst_bytes)25 static void intel_dp_aux_unpack(u32 src, u8 *dst, int dst_bytes)
26 {
27 	int i;
28 
29 	if (dst_bytes > 4)
30 		dst_bytes = 4;
31 	for (i = 0; i < dst_bytes; i++)
32 		dst[i] = src >> ((3 - i) * 8);
33 }
34 
35 static u32
intel_dp_aux_wait_done(struct intel_dp * intel_dp)36 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
37 {
38 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
39 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
40 	const unsigned int timeout_ms = 10;
41 	u32 status;
42 	bool done;
43 
44 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
45 	done = wait_event_timeout(i915->display.gmbus.wait_queue, C,
46 				  msecs_to_jiffies_timeout(timeout_ms));
47 
48 	/* just trace the final value */
49 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
50 
51 	if (!done)
52 		drm_err(&i915->drm,
53 			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
54 			intel_dp->aux.name, timeout_ms, status);
55 #undef C
56 
57 	return status;
58 }
59 
g4x_get_aux_clock_divider(struct intel_dp * intel_dp,int index)60 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
61 {
62 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
63 
64 	if (index)
65 		return 0;
66 
67 	/*
68 	 * The clock divider is based off the hrawclk, and would like to run at
69 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
70 	 */
71 	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
72 }
73 
ilk_get_aux_clock_divider(struct intel_dp * intel_dp,int index)74 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
75 {
76 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
77 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
78 	u32 freq;
79 
80 	if (index)
81 		return 0;
82 
83 	/*
84 	 * The clock divider is based off the cdclk or PCH rawclk, and would
85 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
86 	 * divide by 2000 and use that
87 	 */
88 	if (dig_port->aux_ch == AUX_CH_A)
89 		freq = dev_priv->display.cdclk.hw.cdclk;
90 	else
91 		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
92 	return DIV_ROUND_CLOSEST(freq, 2000);
93 }
94 
hsw_get_aux_clock_divider(struct intel_dp * intel_dp,int index)95 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
96 {
97 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
98 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
99 
100 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
101 		/* Workaround for non-ULT HSW */
102 		switch (index) {
103 		case 0: return 63;
104 		case 1: return 72;
105 		default: return 0;
106 		}
107 	}
108 
109 	return ilk_get_aux_clock_divider(intel_dp, index);
110 }
111 
skl_get_aux_clock_divider(struct intel_dp * intel_dp,int index)112 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
113 {
114 	/*
115 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
116 	 * derive the clock from CDCLK automatically). We still implement the
117 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
118 	 */
119 	return index ? 0 : 1;
120 }
121 
g4x_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 aux_clock_divider)122 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
123 				int send_bytes,
124 				u32 aux_clock_divider)
125 {
126 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
127 	struct drm_i915_private *dev_priv =
128 			to_i915(dig_port->base.base.dev);
129 	u32 timeout;
130 
131 	/* Max timeout value on G4x-BDW: 1.6ms */
132 	if (IS_BROADWELL(dev_priv))
133 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
134 	else
135 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
136 
137 	return DP_AUX_CH_CTL_SEND_BUSY |
138 	       DP_AUX_CH_CTL_DONE |
139 	       DP_AUX_CH_CTL_INTERRUPT |
140 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
141 	       timeout |
142 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
143 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
144 	       (3 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
145 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
146 }
147 
skl_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 unused)148 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
149 				int send_bytes,
150 				u32 unused)
151 {
152 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
153 	struct drm_i915_private *i915 =	to_i915(dig_port->base.base.dev);
154 	u32 ret;
155 
156 	/*
157 	 * Max timeout values:
158 	 * SKL-GLK: 1.6ms
159 	 * ICL+: 4ms
160 	 */
161 	ret = DP_AUX_CH_CTL_SEND_BUSY |
162 	      DP_AUX_CH_CTL_DONE |
163 	      DP_AUX_CH_CTL_INTERRUPT |
164 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
165 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
166 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
167 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
168 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
169 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
170 
171 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
172 		ret |= DP_AUX_CH_CTL_TBT_IO;
173 
174 	/*
175 	 * Power request bit is already set during aux power well enable.
176 	 * Preserve the bit across aux transactions.
177 	 */
178 	if (DISPLAY_VER(i915) >= 14)
179 		ret |= XELPDP_DP_AUX_CH_CTL_POWER_REQUEST;
180 
181 	return ret;
182 }
183 
184 static int
intel_dp_aux_xfer(struct intel_dp * intel_dp,const u8 * send,int send_bytes,u8 * recv,int recv_size,u32 aux_send_ctl_flags)185 intel_dp_aux_xfer(struct intel_dp *intel_dp,
186 		  const u8 *send, int send_bytes,
187 		  u8 *recv, int recv_size,
188 		  u32 aux_send_ctl_flags)
189 {
190 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
191 	struct drm_i915_private *i915 =
192 			to_i915(dig_port->base.base.dev);
193 	struct intel_uncore *uncore = &i915->uncore;
194 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
195 	bool is_tc_port = intel_phy_is_tc(i915, phy);
196 	i915_reg_t ch_ctl, ch_data[5];
197 	u32 aux_clock_divider;
198 	enum intel_display_power_domain aux_domain;
199 	intel_wakeref_t aux_wakeref;
200 	intel_wakeref_t pps_wakeref;
201 	int i, ret, recv_bytes;
202 	int try, clock = 0;
203 	u32 status;
204 	bool vdd;
205 
206 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
207 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
208 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
209 
210 	if (is_tc_port)
211 		intel_tc_port_lock(dig_port);
212 
213 	aux_domain = intel_aux_power_domain(dig_port);
214 
215 	aux_wakeref = intel_display_power_get(i915, aux_domain);
216 	pps_wakeref = intel_pps_lock(intel_dp);
217 
218 	/*
219 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
220 	 * In such cases we want to leave VDD enabled and it's up to upper layers
221 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
222 	 * ourselves.
223 	 */
224 	vdd = intel_pps_vdd_on_unlocked(intel_dp);
225 
226 	/*
227 	 * dp aux is extremely sensitive to irq latency, hence request the
228 	 * lowest possible wakeup latency and so prevent the cpu from going into
229 	 * deep sleep states.
230 	 */
231 	cpu_latency_qos_update_request(&intel_dp->pm_qos, 0);
232 
233 	intel_pps_check_power_unlocked(intel_dp);
234 
235 	/* Try to wait for any previous AUX channel activity */
236 	for (try = 0; try < 3; try++) {
237 		status = intel_uncore_read_notrace(uncore, ch_ctl);
238 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
239 			break;
240 		msleep(1);
241 	}
242 	/* just trace the final value */
243 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
244 
245 	if (try == 3) {
246 		const u32 status = intel_uncore_read(uncore, ch_ctl);
247 
248 		if (status != intel_dp->aux_busy_last_status) {
249 			drm_WARN(&i915->drm, 1,
250 				 "%s: not started (status 0x%08x)\n",
251 				 intel_dp->aux.name, status);
252 			intel_dp->aux_busy_last_status = status;
253 		}
254 
255 		ret = -EBUSY;
256 		goto out;
257 	}
258 
259 	/* Only 5 data registers! */
260 	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
261 		ret = -E2BIG;
262 		goto out;
263 	}
264 
265 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
266 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
267 							  send_bytes,
268 							  aux_clock_divider);
269 
270 		send_ctl |= aux_send_ctl_flags;
271 
272 		/* Must try at least 3 times according to DP spec */
273 		for (try = 0; try < 5; try++) {
274 			/* Load the send data into the aux channel data registers */
275 			for (i = 0; i < send_bytes; i += 4)
276 				intel_uncore_write(uncore,
277 						   ch_data[i >> 2],
278 						   intel_dp_aux_pack(send + i,
279 								     send_bytes - i));
280 
281 			/* Send the command and wait for it to complete */
282 			intel_uncore_write(uncore, ch_ctl, send_ctl);
283 
284 			status = intel_dp_aux_wait_done(intel_dp);
285 
286 			/* Clear done status and any errors */
287 			intel_uncore_write(uncore,
288 					   ch_ctl,
289 					   status |
290 					   DP_AUX_CH_CTL_DONE |
291 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
292 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
293 
294 			/*
295 			 * DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
296 			 *   400us delay required for errors and timeouts
297 			 *   Timeout errors from the HW already meet this
298 			 *   requirement so skip to next iteration
299 			 */
300 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
301 				continue;
302 
303 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
304 				usleep_range(400, 500);
305 				continue;
306 			}
307 			if (status & DP_AUX_CH_CTL_DONE)
308 				goto done;
309 		}
310 	}
311 
312 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
313 		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
314 			intel_dp->aux.name, status);
315 		ret = -EBUSY;
316 		goto out;
317 	}
318 
319 done:
320 	/*
321 	 * Check for timeout or receive error. Timeouts occur when the sink is
322 	 * not connected.
323 	 */
324 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
325 		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
326 			intel_dp->aux.name, status);
327 		ret = -EIO;
328 		goto out;
329 	}
330 
331 	/*
332 	 * Timeouts occur when the device isn't connected, so they're "normal"
333 	 * -- don't fill the kernel log with these
334 	 */
335 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
336 		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
337 			    intel_dp->aux.name, status);
338 		ret = -ETIMEDOUT;
339 		goto out;
340 	}
341 
342 	/* Unload any bytes sent back from the other side */
343 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
344 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
345 
346 	/*
347 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
348 	 * We have no idea of what happened so we return -EBUSY so
349 	 * drm layer takes care for the necessary retries.
350 	 */
351 	if (recv_bytes == 0 || recv_bytes > 20) {
352 		drm_dbg_kms(&i915->drm,
353 			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
354 			    intel_dp->aux.name, recv_bytes);
355 		ret = -EBUSY;
356 		goto out;
357 	}
358 
359 	if (recv_bytes > recv_size)
360 		recv_bytes = recv_size;
361 
362 	for (i = 0; i < recv_bytes; i += 4)
363 		intel_dp_aux_unpack(intel_uncore_read(uncore, ch_data[i >> 2]),
364 				    recv + i, recv_bytes - i);
365 
366 	ret = recv_bytes;
367 out:
368 	cpu_latency_qos_update_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
369 
370 	if (vdd)
371 		intel_pps_vdd_off_unlocked(intel_dp, false);
372 
373 	intel_pps_unlock(intel_dp, pps_wakeref);
374 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
375 
376 	if (is_tc_port)
377 		intel_tc_port_unlock(dig_port);
378 
379 	return ret;
380 }
381 
382 #define BARE_ADDRESS_SIZE	3
383 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
384 
385 static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],const struct drm_dp_aux_msg * msg)386 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
387 		    const struct drm_dp_aux_msg *msg)
388 {
389 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
390 	txbuf[1] = (msg->address >> 8) & 0xff;
391 	txbuf[2] = msg->address & 0xff;
392 	txbuf[3] = msg->size - 1;
393 }
394 
intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg * msg)395 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
396 {
397 	/*
398 	 * If we're trying to send the HDCP Aksv, we need to set a the Aksv
399 	 * select bit to inform the hardware to send the Aksv after our header
400 	 * since we can't access that data from software.
401 	 */
402 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
403 	    msg->address == DP_AUX_HDCP_AKSV)
404 		return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
405 
406 	return 0;
407 }
408 
409 static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)410 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
411 {
412 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
413 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
414 	u8 txbuf[20], rxbuf[20];
415 	size_t txsize, rxsize;
416 	u32 flags = intel_dp_aux_xfer_flags(msg);
417 	int ret;
418 
419 	intel_dp_aux_header(txbuf, msg);
420 
421 	switch (msg->request & ~DP_AUX_I2C_MOT) {
422 	case DP_AUX_NATIVE_WRITE:
423 	case DP_AUX_I2C_WRITE:
424 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
425 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
426 		rxsize = 2; /* 0 or 1 data bytes */
427 
428 		if (drm_WARN_ON(&i915->drm, txsize > 20))
429 			return -E2BIG;
430 
431 		drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
432 
433 		if (msg->buffer)
434 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
435 
436 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
437 					rxbuf, rxsize, flags);
438 		if (ret > 0) {
439 			msg->reply = rxbuf[0] >> 4;
440 
441 			if (ret > 1) {
442 				/* Number of bytes written in a short write. */
443 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
444 			} else {
445 				/* Return payload size. */
446 				ret = msg->size;
447 			}
448 		}
449 		break;
450 
451 	case DP_AUX_NATIVE_READ:
452 	case DP_AUX_I2C_READ:
453 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
454 		rxsize = msg->size + 1;
455 
456 		if (drm_WARN_ON(&i915->drm, rxsize > 20))
457 			return -E2BIG;
458 
459 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
460 					rxbuf, rxsize, flags);
461 		if (ret > 0) {
462 			msg->reply = rxbuf[0] >> 4;
463 			/*
464 			 * Assume happy day, and copy the data. The caller is
465 			 * expected to check msg->reply before touching it.
466 			 *
467 			 * Return payload size.
468 			 */
469 			ret--;
470 			memcpy(msg->buffer, rxbuf + 1, ret);
471 		}
472 		break;
473 
474 	default:
475 		ret = -EINVAL;
476 		break;
477 	}
478 
479 	return ret;
480 }
481 
g4x_aux_ctl_reg(struct intel_dp * intel_dp)482 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
483 {
484 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
485 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
486 	enum aux_ch aux_ch = dig_port->aux_ch;
487 
488 	switch (aux_ch) {
489 	case AUX_CH_B:
490 	case AUX_CH_C:
491 	case AUX_CH_D:
492 		return DP_AUX_CH_CTL(aux_ch);
493 	default:
494 		MISSING_CASE(aux_ch);
495 		return DP_AUX_CH_CTL(AUX_CH_B);
496 	}
497 }
498 
g4x_aux_data_reg(struct intel_dp * intel_dp,int index)499 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
500 {
501 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
502 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
503 	enum aux_ch aux_ch = dig_port->aux_ch;
504 
505 	switch (aux_ch) {
506 	case AUX_CH_B:
507 	case AUX_CH_C:
508 	case AUX_CH_D:
509 		return DP_AUX_CH_DATA(aux_ch, index);
510 	default:
511 		MISSING_CASE(aux_ch);
512 		return DP_AUX_CH_DATA(AUX_CH_B, index);
513 	}
514 }
515 
ilk_aux_ctl_reg(struct intel_dp * intel_dp)516 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
517 {
518 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
519 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
520 	enum aux_ch aux_ch = dig_port->aux_ch;
521 
522 	switch (aux_ch) {
523 	case AUX_CH_A:
524 		return DP_AUX_CH_CTL(aux_ch);
525 	case AUX_CH_B:
526 	case AUX_CH_C:
527 	case AUX_CH_D:
528 		return PCH_DP_AUX_CH_CTL(aux_ch);
529 	default:
530 		MISSING_CASE(aux_ch);
531 		return DP_AUX_CH_CTL(AUX_CH_A);
532 	}
533 }
534 
ilk_aux_data_reg(struct intel_dp * intel_dp,int index)535 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
536 {
537 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
538 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
539 	enum aux_ch aux_ch = dig_port->aux_ch;
540 
541 	switch (aux_ch) {
542 	case AUX_CH_A:
543 		return DP_AUX_CH_DATA(aux_ch, index);
544 	case AUX_CH_B:
545 	case AUX_CH_C:
546 	case AUX_CH_D:
547 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
548 	default:
549 		MISSING_CASE(aux_ch);
550 		return DP_AUX_CH_DATA(AUX_CH_A, index);
551 	}
552 }
553 
skl_aux_ctl_reg(struct intel_dp * intel_dp)554 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
555 {
556 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
557 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
558 	enum aux_ch aux_ch = dig_port->aux_ch;
559 
560 	switch (aux_ch) {
561 	case AUX_CH_A:
562 	case AUX_CH_B:
563 	case AUX_CH_C:
564 	case AUX_CH_D:
565 	case AUX_CH_E:
566 	case AUX_CH_F:
567 		return DP_AUX_CH_CTL(aux_ch);
568 	default:
569 		MISSING_CASE(aux_ch);
570 		return DP_AUX_CH_CTL(AUX_CH_A);
571 	}
572 }
573 
skl_aux_data_reg(struct intel_dp * intel_dp,int index)574 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
575 {
576 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
577 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
578 	enum aux_ch aux_ch = dig_port->aux_ch;
579 
580 	switch (aux_ch) {
581 	case AUX_CH_A:
582 	case AUX_CH_B:
583 	case AUX_CH_C:
584 	case AUX_CH_D:
585 	case AUX_CH_E:
586 	case AUX_CH_F:
587 		return DP_AUX_CH_DATA(aux_ch, index);
588 	default:
589 		MISSING_CASE(aux_ch);
590 		return DP_AUX_CH_DATA(AUX_CH_A, index);
591 	}
592 }
593 
tgl_aux_ctl_reg(struct intel_dp * intel_dp)594 static i915_reg_t tgl_aux_ctl_reg(struct intel_dp *intel_dp)
595 {
596 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
597 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
598 	enum aux_ch aux_ch = dig_port->aux_ch;
599 
600 	switch (aux_ch) {
601 	case AUX_CH_A:
602 	case AUX_CH_B:
603 	case AUX_CH_C:
604 	case AUX_CH_USBC1:
605 	case AUX_CH_USBC2:
606 	case AUX_CH_USBC3:
607 	case AUX_CH_USBC4:
608 	case AUX_CH_USBC5:  /* aka AUX_CH_D_XELPD */
609 	case AUX_CH_USBC6:  /* aka AUX_CH_E_XELPD */
610 		return DP_AUX_CH_CTL(aux_ch);
611 	default:
612 		MISSING_CASE(aux_ch);
613 		return DP_AUX_CH_CTL(AUX_CH_A);
614 	}
615 }
616 
tgl_aux_data_reg(struct intel_dp * intel_dp,int index)617 static i915_reg_t tgl_aux_data_reg(struct intel_dp *intel_dp, int index)
618 {
619 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
620 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
621 	enum aux_ch aux_ch = dig_port->aux_ch;
622 
623 	switch (aux_ch) {
624 	case AUX_CH_A:
625 	case AUX_CH_B:
626 	case AUX_CH_C:
627 	case AUX_CH_USBC1:
628 	case AUX_CH_USBC2:
629 	case AUX_CH_USBC3:
630 	case AUX_CH_USBC4:
631 	case AUX_CH_USBC5:  /* aka AUX_CH_D_XELPD */
632 	case AUX_CH_USBC6:  /* aka AUX_CH_E_XELPD */
633 		return DP_AUX_CH_DATA(aux_ch, index);
634 	default:
635 		MISSING_CASE(aux_ch);
636 		return DP_AUX_CH_DATA(AUX_CH_A, index);
637 	}
638 }
639 
xelpdp_aux_ctl_reg(struct intel_dp * intel_dp)640 static i915_reg_t xelpdp_aux_ctl_reg(struct intel_dp *intel_dp)
641 {
642 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
643 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
644 	enum aux_ch aux_ch = dig_port->aux_ch;
645 
646 	switch (aux_ch) {
647 	case AUX_CH_A:
648 	case AUX_CH_B:
649 	case AUX_CH_USBC1:
650 	case AUX_CH_USBC2:
651 	case AUX_CH_USBC3:
652 	case AUX_CH_USBC4:
653 		return XELPDP_DP_AUX_CH_CTL(aux_ch);
654 	default:
655 		MISSING_CASE(aux_ch);
656 		return XELPDP_DP_AUX_CH_CTL(AUX_CH_A);
657 	}
658 }
659 
xelpdp_aux_data_reg(struct intel_dp * intel_dp,int index)660 static i915_reg_t xelpdp_aux_data_reg(struct intel_dp *intel_dp, int index)
661 {
662 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
663 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
664 	enum aux_ch aux_ch = dig_port->aux_ch;
665 
666 	switch (aux_ch) {
667 	case AUX_CH_A:
668 	case AUX_CH_B:
669 	case AUX_CH_USBC1:
670 	case AUX_CH_USBC2:
671 	case AUX_CH_USBC3:
672 	case AUX_CH_USBC4:
673 		return XELPDP_DP_AUX_CH_DATA(aux_ch, index);
674 	default:
675 		MISSING_CASE(aux_ch);
676 		return XELPDP_DP_AUX_CH_DATA(AUX_CH_A, index);
677 	}
678 }
679 
intel_dp_aux_fini(struct intel_dp * intel_dp)680 void intel_dp_aux_fini(struct intel_dp *intel_dp)
681 {
682 	if (cpu_latency_qos_request_active(&intel_dp->pm_qos))
683 		cpu_latency_qos_remove_request(&intel_dp->pm_qos);
684 
685 	kfree(intel_dp->aux.name);
686 }
687 
intel_dp_aux_init(struct intel_dp * intel_dp)688 void intel_dp_aux_init(struct intel_dp *intel_dp)
689 {
690 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
691 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
692 	struct intel_encoder *encoder = &dig_port->base;
693 	enum aux_ch aux_ch = dig_port->aux_ch;
694 
695 	if (DISPLAY_VER(dev_priv) >= 14) {
696 		intel_dp->aux_ch_ctl_reg = xelpdp_aux_ctl_reg;
697 		intel_dp->aux_ch_data_reg = xelpdp_aux_data_reg;
698 	} else if (DISPLAY_VER(dev_priv) >= 12) {
699 		intel_dp->aux_ch_ctl_reg = tgl_aux_ctl_reg;
700 		intel_dp->aux_ch_data_reg = tgl_aux_data_reg;
701 	} else if (DISPLAY_VER(dev_priv) >= 9) {
702 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
703 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
704 	} else if (HAS_PCH_SPLIT(dev_priv)) {
705 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
706 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
707 	} else {
708 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
709 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
710 	}
711 
712 	if (DISPLAY_VER(dev_priv) >= 9)
713 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
714 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
715 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
716 	else if (HAS_PCH_SPLIT(dev_priv))
717 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
718 	else
719 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
720 
721 	if (DISPLAY_VER(dev_priv) >= 9)
722 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
723 	else
724 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
725 
726 	intel_dp->aux.drm_dev = &dev_priv->drm;
727 	drm_dp_aux_init(&intel_dp->aux);
728 
729 	/* Failure to allocate our preferred name is not critical */
730 	if (DISPLAY_VER(dev_priv) >= 13 && aux_ch >= AUX_CH_D_XELPD)
731 		intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/%s",
732 					       aux_ch_name(aux_ch - AUX_CH_D_XELPD + AUX_CH_D),
733 					       encoder->base.name);
734 	else if (DISPLAY_VER(dev_priv) >= 12 && aux_ch >= AUX_CH_USBC1)
735 		intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX USBC%c/%s",
736 					       aux_ch - AUX_CH_USBC1 + '1',
737 					       encoder->base.name);
738 	else
739 		intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/%s",
740 					       aux_ch_name(aux_ch),
741 					       encoder->base.name);
742 
743 	intel_dp->aux.transfer = intel_dp_aux_transfer;
744 	cpu_latency_qos_add_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
745 }
746