1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_xgmi.h"
36
37 #include <drm/drm_drv.h>
38
39 /**
40 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
41 *
42 * @adev: amdgpu_device pointer
43 *
44 * Allocate video memory for pdb0 and map it for CPU access
45 * Returns 0 for success, error for failure.
46 */
amdgpu_gmc_pdb0_alloc(struct amdgpu_device * adev)47 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
48 {
49 int r;
50 struct amdgpu_bo_param bp;
51 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
52 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
53 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
54
55 memset(&bp, 0, sizeof(bp));
56 bp.size = PAGE_ALIGN((npdes + 1) * 8);
57 bp.byte_align = PAGE_SIZE;
58 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
59 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
60 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
61 bp.type = ttm_bo_type_kernel;
62 bp.resv = NULL;
63 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
64
65 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
66 if (r)
67 return r;
68
69 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
70 if (unlikely(r != 0))
71 goto bo_reserve_failure;
72
73 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
74 if (r)
75 goto bo_pin_failure;
76 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
77 if (r)
78 goto bo_kmap_failure;
79
80 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
81 return 0;
82
83 bo_kmap_failure:
84 amdgpu_bo_unpin(adev->gmc.pdb0_bo);
85 bo_pin_failure:
86 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
87 bo_reserve_failure:
88 amdgpu_bo_unref(&adev->gmc.pdb0_bo);
89 return r;
90 }
91
92 /**
93 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
94 *
95 * @bo: the BO to get the PDE for
96 * @level: the level in the PD hirarchy
97 * @addr: resulting addr
98 * @flags: resulting flags
99 *
100 * Get the address and flags to be used for a PDE (Page Directory Entry).
101 */
amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo * bo,int level,uint64_t * addr,uint64_t * flags)102 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
103 uint64_t *addr, uint64_t *flags)
104 {
105 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
106
107 switch (bo->tbo.resource->mem_type) {
108 case TTM_PL_TT:
109 *addr = bo->tbo.ttm->dma_address[0];
110 break;
111 case TTM_PL_VRAM:
112 *addr = amdgpu_bo_gpu_offset(bo);
113 break;
114 default:
115 *addr = 0;
116 break;
117 }
118 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
119 amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
120 }
121
122 /*
123 * amdgpu_gmc_pd_addr - return the address of the root directory
124 */
amdgpu_gmc_pd_addr(struct amdgpu_bo * bo)125 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
126 {
127 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
128 uint64_t pd_addr;
129
130 /* TODO: move that into ASIC specific code */
131 if (adev->asic_type >= CHIP_VEGA10) {
132 uint64_t flags = AMDGPU_PTE_VALID;
133
134 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
135 pd_addr |= flags;
136 } else {
137 pd_addr = amdgpu_bo_gpu_offset(bo);
138 }
139 return pd_addr;
140 }
141
142 /**
143 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
144 *
145 * @adev: amdgpu_device pointer
146 * @cpu_pt_addr: cpu address of the page table
147 * @gpu_page_idx: entry in the page table to update
148 * @addr: dst addr to write into pte/pde
149 * @flags: access flags
150 *
151 * Update the page tables using CPU.
152 */
amdgpu_gmc_set_pte_pde(struct amdgpu_device * adev,void * cpu_pt_addr,uint32_t gpu_page_idx,uint64_t addr,uint64_t flags)153 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
154 uint32_t gpu_page_idx, uint64_t addr,
155 uint64_t flags)
156 {
157 void __iomem *ptr = (void *)cpu_pt_addr;
158 uint64_t value;
159
160 /*
161 * The following is for PTE only. GART does not have PDEs.
162 */
163 value = addr & 0x0000FFFFFFFFF000ULL;
164 value |= flags;
165 writeq(value, ptr + (gpu_page_idx * 8));
166
167 return 0;
168 }
169
170 /**
171 * amdgpu_gmc_agp_addr - return the address in the AGP address space
172 *
173 * @bo: TTM BO which needs the address, must be in GTT domain
174 *
175 * Tries to figure out how to access the BO through the AGP aperture. Returns
176 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
177 */
amdgpu_gmc_agp_addr(struct ttm_buffer_object * bo)178 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
179 {
180 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
181
182 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
183 return AMDGPU_BO_INVALID_OFFSET;
184
185 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
186 return AMDGPU_BO_INVALID_OFFSET;
187
188 return adev->gmc.agp_start + bo->ttm->dma_address[0];
189 }
190
191 /**
192 * amdgpu_gmc_vram_location - try to find VRAM location
193 *
194 * @adev: amdgpu device structure holding all necessary information
195 * @mc: memory controller structure holding memory information
196 * @base: base address at which to put VRAM
197 *
198 * Function will try to place VRAM at base address provided
199 * as parameter.
200 */
amdgpu_gmc_vram_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,u64 base)201 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
202 u64 base)
203 {
204 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
205
206 mc->vram_start = base;
207 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
208 if (limit && limit < mc->real_vram_size)
209 mc->real_vram_size = limit;
210
211 if (mc->xgmi.num_physical_nodes == 0) {
212 mc->fb_start = mc->vram_start;
213 mc->fb_end = mc->vram_end;
214 }
215 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
216 mc->mc_vram_size >> 20, mc->vram_start,
217 mc->vram_end, mc->real_vram_size >> 20);
218 }
219
220 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
221 *
222 * @adev: amdgpu device structure holding all necessary information
223 * @mc: memory controller structure holding memory information
224 *
225 * This function is only used if use GART for FB translation. In such
226 * case, we use sysvm aperture (vmid0 page tables) for both vram
227 * and gart (aka system memory) access.
228 *
229 * GPUVM (and our organization of vmid0 page tables) require sysvm
230 * aperture to be placed at a location aligned with 8 times of native
231 * page size. For example, if vm_context0_cntl.page_table_block_size
232 * is 12, then native page size is 8G (2M*2^12), sysvm should start
233 * with a 64G aligned address. For simplicity, we just put sysvm at
234 * address 0. So vram start at address 0 and gart is right after vram.
235 */
amdgpu_gmc_sysvm_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)236 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
237 {
238 u64 hive_vram_start = 0;
239 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
240 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
241 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
242 mc->gart_start = hive_vram_end + 1;
243 mc->gart_end = mc->gart_start + mc->gart_size - 1;
244 mc->fb_start = hive_vram_start;
245 mc->fb_end = hive_vram_end;
246 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
247 mc->mc_vram_size >> 20, mc->vram_start,
248 mc->vram_end, mc->real_vram_size >> 20);
249 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
250 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
251 }
252
253 /**
254 * amdgpu_gmc_gart_location - try to find GART location
255 *
256 * @adev: amdgpu device structure holding all necessary information
257 * @mc: memory controller structure holding memory information
258 *
259 * Function will place try to place GART before or after VRAM.
260 * If GART size is bigger than space left then we ajust GART size.
261 * Thus function will never fails.
262 */
amdgpu_gmc_gart_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)263 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
264 {
265 const uint64_t four_gb = 0x100000000ULL;
266 u64 size_af, size_bf;
267 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
268 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
269
270 /* VCE doesn't like it when BOs cross a 4GB segment, so align
271 * the GART base on a 4GB boundary as well.
272 */
273 size_bf = mc->fb_start;
274 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
275
276 if (mc->gart_size > max(size_bf, size_af)) {
277 dev_warn(adev->dev, "limiting GART\n");
278 mc->gart_size = max(size_bf, size_af);
279 }
280
281 if ((size_bf >= mc->gart_size && size_bf < size_af) ||
282 (size_af < mc->gart_size))
283 mc->gart_start = 0;
284 else
285 mc->gart_start = max_mc_address - mc->gart_size + 1;
286
287 mc->gart_start &= ~(four_gb - 1);
288 mc->gart_end = mc->gart_start + mc->gart_size - 1;
289 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
290 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
291 }
292
293 /**
294 * amdgpu_gmc_agp_location - try to find AGP location
295 * @adev: amdgpu device structure holding all necessary information
296 * @mc: memory controller structure holding memory information
297 *
298 * Function will place try to find a place for the AGP BAR in the MC address
299 * space.
300 *
301 * AGP BAR will be assigned the largest available hole in the address space.
302 * Should be called after VRAM and GART locations are setup.
303 */
amdgpu_gmc_agp_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)304 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
305 {
306 const uint64_t sixteen_gb = 1ULL << 34;
307 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
308 u64 size_af, size_bf;
309
310 if (amdgpu_sriov_vf(adev)) {
311 mc->agp_start = 0xffffffffffff;
312 mc->agp_end = 0x0;
313 mc->agp_size = 0;
314
315 return;
316 }
317
318 if (mc->fb_start > mc->gart_start) {
319 size_bf = (mc->fb_start & sixteen_gb_mask) -
320 ALIGN(mc->gart_end + 1, sixteen_gb);
321 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
322 } else {
323 size_bf = mc->fb_start & sixteen_gb_mask;
324 size_af = (mc->gart_start & sixteen_gb_mask) -
325 ALIGN(mc->fb_end + 1, sixteen_gb);
326 }
327
328 if (size_bf > size_af) {
329 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
330 mc->agp_size = size_bf;
331 } else {
332 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
333 mc->agp_size = size_af;
334 }
335
336 mc->agp_end = mc->agp_start + mc->agp_size - 1;
337 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
338 mc->agp_size >> 20, mc->agp_start, mc->agp_end);
339 }
340
341 /**
342 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
343 *
344 * @addr: 48 bit physical address, page aligned (36 significant bits)
345 * @pasid: 16 bit process address space identifier
346 */
amdgpu_gmc_fault_key(uint64_t addr,uint16_t pasid)347 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
348 {
349 return addr << 4 | pasid;
350 }
351
352 /**
353 * amdgpu_gmc_filter_faults - filter VM faults
354 *
355 * @adev: amdgpu device structure
356 * @ih: interrupt ring that the fault received from
357 * @addr: address of the VM fault
358 * @pasid: PASID of the process causing the fault
359 * @timestamp: timestamp of the fault
360 *
361 * Returns:
362 * True if the fault was filtered and should not be processed further.
363 * False if the fault is a new one and needs to be handled.
364 */
amdgpu_gmc_filter_faults(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,uint64_t addr,uint16_t pasid,uint64_t timestamp)365 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
366 struct amdgpu_ih_ring *ih, uint64_t addr,
367 uint16_t pasid, uint64_t timestamp)
368 {
369 struct amdgpu_gmc *gmc = &adev->gmc;
370 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
371 struct amdgpu_gmc_fault *fault;
372 uint32_t hash;
373
374 /* Stale retry fault if timestamp goes backward */
375 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
376 return true;
377
378 /* If we don't have space left in the ring buffer return immediately */
379 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
380 AMDGPU_GMC_FAULT_TIMEOUT;
381 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
382 return true;
383
384 /* Try to find the fault in the hash */
385 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
386 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
387 while (fault->timestamp >= stamp) {
388 uint64_t tmp;
389
390 if (atomic64_read(&fault->key) == key)
391 return true;
392
393 tmp = fault->timestamp;
394 fault = &gmc->fault_ring[fault->next];
395
396 /* Check if the entry was reused */
397 if (fault->timestamp >= tmp)
398 break;
399 }
400
401 /* Add the fault to the ring */
402 fault = &gmc->fault_ring[gmc->last_fault];
403 atomic64_set(&fault->key, key);
404 fault->timestamp = timestamp;
405
406 /* And update the hash */
407 fault->next = gmc->fault_hash[hash].idx;
408 gmc->fault_hash[hash].idx = gmc->last_fault++;
409 return false;
410 }
411
412 /**
413 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
414 *
415 * @adev: amdgpu device structure
416 * @addr: address of the VM fault
417 * @pasid: PASID of the process causing the fault
418 *
419 * Remove the address from fault filter, then future vm fault on this address
420 * will pass to retry fault handler to recover.
421 */
amdgpu_gmc_filter_faults_remove(struct amdgpu_device * adev,uint64_t addr,uint16_t pasid)422 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
423 uint16_t pasid)
424 {
425 struct amdgpu_gmc *gmc = &adev->gmc;
426 uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
427 struct amdgpu_gmc_fault *fault;
428 uint32_t hash;
429 uint64_t tmp;
430
431 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
432 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
433 do {
434 if (atomic64_cmpxchg(&fault->key, key, 0) == key)
435 break;
436
437 tmp = fault->timestamp;
438 fault = &gmc->fault_ring[fault->next];
439 } while (fault->timestamp < tmp);
440 }
441
amdgpu_gmc_ras_early_init(struct amdgpu_device * adev)442 int amdgpu_gmc_ras_early_init(struct amdgpu_device *adev)
443 {
444 if (!adev->gmc.xgmi.connected_to_cpu) {
445 adev->gmc.xgmi.ras = &xgmi_ras;
446 amdgpu_ras_register_ras_block(adev, &adev->gmc.xgmi.ras->ras_block);
447 adev->gmc.xgmi.ras_if = &adev->gmc.xgmi.ras->ras_block.ras_comm;
448 }
449
450 return 0;
451 }
452
amdgpu_gmc_ras_late_init(struct amdgpu_device * adev)453 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
454 {
455 return 0;
456 }
457
amdgpu_gmc_ras_fini(struct amdgpu_device * adev)458 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
459 {
460
461 }
462
463 /*
464 * The latest engine allocation on gfx9/10 is:
465 * Engine 2, 3: firmware
466 * Engine 0, 1, 4~16: amdgpu ring,
467 * subject to change when ring number changes
468 * Engine 17: Gart flushes
469 */
470 #define GFXHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3
471 #define MMHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3
472
amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device * adev)473 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
474 {
475 struct amdgpu_ring *ring;
476 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
477 {GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
478 GFXHUB_FREE_VM_INV_ENGS_BITMAP};
479 unsigned i;
480 unsigned vmhub, inv_eng;
481
482 if (adev->enable_mes) {
483 /* reserve engine 5 for firmware */
484 for (vmhub = 0; vmhub < AMDGPU_MAX_VMHUBS; vmhub++)
485 vm_inv_engs[vmhub] &= ~(1 << 5);
486 }
487
488 for (i = 0; i < adev->num_rings; ++i) {
489 ring = adev->rings[i];
490 vmhub = ring->funcs->vmhub;
491
492 if (ring == &adev->mes.ring)
493 continue;
494
495 inv_eng = ffs(vm_inv_engs[vmhub]);
496 if (!inv_eng) {
497 dev_err(adev->dev, "no VM inv eng for ring %s\n",
498 ring->name);
499 return -EINVAL;
500 }
501
502 ring->vm_inv_eng = inv_eng - 1;
503 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
504
505 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
506 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
507 }
508
509 return 0;
510 }
511
512 /**
513 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
514 * @adev: amdgpu_device pointer
515 *
516 * Check and set if an the device @adev supports Trusted Memory
517 * Zones (TMZ).
518 */
amdgpu_gmc_tmz_set(struct amdgpu_device * adev)519 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
520 {
521 switch (adev->ip_versions[GC_HWIP][0]) {
522 /* RAVEN */
523 case IP_VERSION(9, 2, 2):
524 case IP_VERSION(9, 1, 0):
525 /* RENOIR looks like RAVEN */
526 case IP_VERSION(9, 3, 0):
527 /* GC 10.3.7 */
528 case IP_VERSION(10, 3, 7):
529 if (amdgpu_tmz == 0) {
530 adev->gmc.tmz_enabled = false;
531 dev_info(adev->dev,
532 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
533 } else {
534 adev->gmc.tmz_enabled = true;
535 dev_info(adev->dev,
536 "Trusted Memory Zone (TMZ) feature enabled\n");
537 }
538 break;
539 case IP_VERSION(10, 1, 10):
540 case IP_VERSION(10, 1, 1):
541 case IP_VERSION(10, 1, 2):
542 case IP_VERSION(10, 1, 3):
543 case IP_VERSION(10, 3, 0):
544 case IP_VERSION(10, 3, 2):
545 case IP_VERSION(10, 3, 4):
546 case IP_VERSION(10, 3, 5):
547 /* VANGOGH */
548 case IP_VERSION(10, 3, 1):
549 /* YELLOW_CARP*/
550 case IP_VERSION(10, 3, 3):
551 case IP_VERSION(11, 0, 1):
552 case IP_VERSION(11, 0, 4):
553 /* Don't enable it by default yet.
554 */
555 if (amdgpu_tmz < 1) {
556 adev->gmc.tmz_enabled = false;
557 dev_info(adev->dev,
558 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
559 } else {
560 adev->gmc.tmz_enabled = true;
561 dev_info(adev->dev,
562 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
563 }
564 break;
565 default:
566 adev->gmc.tmz_enabled = false;
567 dev_info(adev->dev,
568 "Trusted Memory Zone (TMZ) feature not supported\n");
569 break;
570 }
571 }
572
573 /**
574 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
575 * @adev: amdgpu_device pointer
576 *
577 * Set a per asic default for the no-retry parameter.
578 *
579 */
amdgpu_gmc_noretry_set(struct amdgpu_device * adev)580 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
581 {
582 struct amdgpu_gmc *gmc = &adev->gmc;
583 uint32_t gc_ver = adev->ip_versions[GC_HWIP][0];
584 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
585 gc_ver == IP_VERSION(9, 3, 0) ||
586 gc_ver == IP_VERSION(9, 4, 0) ||
587 gc_ver == IP_VERSION(9, 4, 1) ||
588 gc_ver == IP_VERSION(9, 4, 2) ||
589 gc_ver >= IP_VERSION(10, 3, 0));
590
591 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
592 }
593
amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device * adev,int hub_type,bool enable)594 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
595 bool enable)
596 {
597 struct amdgpu_vmhub *hub;
598 u32 tmp, reg, i;
599
600 hub = &adev->vmhub[hub_type];
601 for (i = 0; i < 16; i++) {
602 reg = hub->vm_context0_cntl + hub->ctx_distance * i;
603
604 tmp = (hub_type == AMDGPU_GFXHUB_0) ?
605 RREG32_SOC15_IP(GC, reg) :
606 RREG32_SOC15_IP(MMHUB, reg);
607
608 if (enable)
609 tmp |= hub->vm_cntx_cntl_vm_fault;
610 else
611 tmp &= ~hub->vm_cntx_cntl_vm_fault;
612
613 (hub_type == AMDGPU_GFXHUB_0) ?
614 WREG32_SOC15_IP(GC, reg, tmp) :
615 WREG32_SOC15_IP(MMHUB, reg, tmp);
616 }
617 }
618
amdgpu_gmc_get_vbios_allocations(struct amdgpu_device * adev)619 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
620 {
621 unsigned size;
622
623 /*
624 * Some ASICs need to reserve a region of video memory to avoid access
625 * from driver
626 */
627 adev->mman.stolen_reserved_offset = 0;
628 adev->mman.stolen_reserved_size = 0;
629
630 /*
631 * TODO:
632 * Currently there is a bug where some memory client outside
633 * of the driver writes to first 8M of VRAM on S3 resume,
634 * this overrides GART which by default gets placed in first 8M and
635 * causes VM_FAULTS once GTT is accessed.
636 * Keep the stolen memory reservation until the while this is not solved.
637 */
638 switch (adev->asic_type) {
639 case CHIP_VEGA10:
640 adev->mman.keep_stolen_vga_memory = true;
641 /*
642 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
643 */
644 #ifdef CONFIG_X86
645 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
646 adev->mman.stolen_reserved_offset = 0x500000;
647 adev->mman.stolen_reserved_size = 0x200000;
648 }
649 #endif
650 break;
651 case CHIP_RAVEN:
652 case CHIP_RENOIR:
653 adev->mman.keep_stolen_vga_memory = true;
654 break;
655 case CHIP_YELLOW_CARP:
656 if (amdgpu_discovery == 0) {
657 adev->mman.stolen_reserved_offset = 0x1ffb0000;
658 adev->mman.stolen_reserved_size = 64 * PAGE_SIZE;
659 }
660 break;
661 default:
662 adev->mman.keep_stolen_vga_memory = false;
663 break;
664 }
665
666 if (amdgpu_sriov_vf(adev) ||
667 !amdgpu_device_has_display_hardware(adev)) {
668 size = 0;
669 } else {
670 size = amdgpu_gmc_get_vbios_fb_size(adev);
671
672 if (adev->mman.keep_stolen_vga_memory)
673 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
674 }
675
676 /* set to 0 if the pre-OS buffer uses up most of vram */
677 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
678 size = 0;
679
680 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
681 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
682 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
683 } else {
684 adev->mman.stolen_vga_size = size;
685 adev->mman.stolen_extended_size = 0;
686 }
687 }
688
689 /**
690 * amdgpu_gmc_init_pdb0 - initialize PDB0
691 *
692 * @adev: amdgpu_device pointer
693 *
694 * This function is only used when GART page table is used
695 * for FB address translatioin. In such a case, we construct
696 * a 2-level system VM page table: PDB0->PTB, to cover both
697 * VRAM of the hive and system memory.
698 *
699 * PDB0 is static, initialized once on driver initialization.
700 * The first n entries of PDB0 are used as PTE by setting
701 * P bit to 1, pointing to VRAM. The n+1'th entry points
702 * to a big PTB covering system memory.
703 *
704 */
amdgpu_gmc_init_pdb0(struct amdgpu_device * adev)705 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
706 {
707 int i;
708 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
709 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
710 */
711 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
712 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
713 u64 vram_addr = adev->vm_manager.vram_base_offset -
714 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
715 u64 vram_end = vram_addr + vram_size;
716 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
717 int idx;
718
719 if (!drm_dev_enter(adev_to_drm(adev), &idx))
720 return;
721
722 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
723 flags |= AMDGPU_PTE_WRITEABLE;
724 flags |= AMDGPU_PTE_SNOOPED;
725 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
726 flags |= AMDGPU_PDE_PTE;
727
728 /* The first n PDE0 entries are used as PTE,
729 * pointing to vram
730 */
731 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
732 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
733
734 /* The n+1'th PDE0 entry points to a huge
735 * PTB who has more than 512 entries each
736 * pointing to a 4K system page
737 */
738 flags = AMDGPU_PTE_VALID;
739 flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
740 /* Requires gart_ptb_gpu_pa to be 4K aligned */
741 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
742 drm_dev_exit(idx);
743 }
744
745 /**
746 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
747 * address
748 *
749 * @adev: amdgpu_device pointer
750 * @mc_addr: MC address of buffer
751 */
amdgpu_gmc_vram_mc2pa(struct amdgpu_device * adev,uint64_t mc_addr)752 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
753 {
754 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
755 }
756
757 /**
758 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
759 * GPU's view
760 *
761 * @adev: amdgpu_device pointer
762 * @bo: amdgpu buffer object
763 */
amdgpu_gmc_vram_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)764 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
765 {
766 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
767 }
768
769 /**
770 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
771 * from CPU's view
772 *
773 * @adev: amdgpu_device pointer
774 * @bo: amdgpu buffer object
775 */
amdgpu_gmc_vram_cpu_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)776 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
777 {
778 return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
779 }
780
amdgpu_gmc_vram_checking(struct amdgpu_device * adev)781 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
782 {
783 struct amdgpu_bo *vram_bo = NULL;
784 uint64_t vram_gpu = 0;
785 void *vram_ptr = NULL;
786
787 int ret, size = 0x100000;
788 uint8_t cptr[10];
789
790 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
791 AMDGPU_GEM_DOMAIN_VRAM,
792 &vram_bo,
793 &vram_gpu,
794 &vram_ptr);
795 if (ret)
796 return ret;
797
798 memset(vram_ptr, 0x86, size);
799 memset(cptr, 0x86, 10);
800
801 /**
802 * Check the start, the mid, and the end of the memory if the content of
803 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
804 * workable.
805 *
806 * Note: If check the each byte of whole 1M bo, it will cost too many
807 * seconds, so here, we just pick up three parts for emulation.
808 */
809 ret = memcmp(vram_ptr, cptr, 10);
810 if (ret)
811 return ret;
812
813 ret = memcmp(vram_ptr + (size / 2), cptr, 10);
814 if (ret)
815 return ret;
816
817 ret = memcmp(vram_ptr + size - 10, cptr, 10);
818 if (ret)
819 return ret;
820
821 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
822 &vram_ptr);
823
824 return 0;
825 }
826