1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/crypto.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 #include <crypto/engine.h>
25 #include <crypto/hash.h>
26 #include <crypto/md5.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/sha1.h>
29 #include <crypto/sha2.h>
30 #include <crypto/internal/hash.h>
31
32 #define HASH_CR 0x00
33 #define HASH_DIN 0x04
34 #define HASH_STR 0x08
35 #define HASH_IMR 0x20
36 #define HASH_SR 0x24
37 #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
38 #define HASH_HREG(x) (0x310 + ((x) * 0x04))
39 #define HASH_HWCFGR 0x3F0
40 #define HASH_VER 0x3F4
41 #define HASH_ID 0x3F8
42
43 /* Control Register */
44 #define HASH_CR_INIT BIT(2)
45 #define HASH_CR_DMAE BIT(3)
46 #define HASH_CR_DATATYPE_POS 4
47 #define HASH_CR_MODE BIT(6)
48 #define HASH_CR_MDMAT BIT(13)
49 #define HASH_CR_DMAA BIT(14)
50 #define HASH_CR_LKEY BIT(16)
51
52 #define HASH_CR_ALGO_SHA1 0x0
53 #define HASH_CR_ALGO_MD5 0x80
54 #define HASH_CR_ALGO_SHA224 0x40000
55 #define HASH_CR_ALGO_SHA256 0x40080
56
57 /* Interrupt */
58 #define HASH_DINIE BIT(0)
59 #define HASH_DCIE BIT(1)
60
61 /* Interrupt Mask */
62 #define HASH_MASK_CALC_COMPLETION BIT(0)
63 #define HASH_MASK_DATA_INPUT BIT(1)
64
65 /* Context swap register */
66 #define HASH_CSR_REGISTER_NUMBER 53
67
68 /* Status Flags */
69 #define HASH_SR_DATA_INPUT_READY BIT(0)
70 #define HASH_SR_OUTPUT_READY BIT(1)
71 #define HASH_SR_DMA_ACTIVE BIT(2)
72 #define HASH_SR_BUSY BIT(3)
73
74 /* STR Register */
75 #define HASH_STR_NBLW_MASK GENMASK(4, 0)
76 #define HASH_STR_DCAL BIT(8)
77
78 #define HASH_FLAGS_INIT BIT(0)
79 #define HASH_FLAGS_OUTPUT_READY BIT(1)
80 #define HASH_FLAGS_CPU BIT(2)
81 #define HASH_FLAGS_DMA_READY BIT(3)
82 #define HASH_FLAGS_DMA_ACTIVE BIT(4)
83 #define HASH_FLAGS_HMAC_INIT BIT(5)
84 #define HASH_FLAGS_HMAC_FINAL BIT(6)
85 #define HASH_FLAGS_HMAC_KEY BIT(7)
86
87 #define HASH_FLAGS_FINAL BIT(15)
88 #define HASH_FLAGS_FINUP BIT(16)
89 #define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
90 #define HASH_FLAGS_MD5 BIT(18)
91 #define HASH_FLAGS_SHA1 BIT(19)
92 #define HASH_FLAGS_SHA224 BIT(20)
93 #define HASH_FLAGS_SHA256 BIT(21)
94 #define HASH_FLAGS_ERRORS BIT(22)
95 #define HASH_FLAGS_HMAC BIT(23)
96
97 #define HASH_OP_UPDATE 1
98 #define HASH_OP_FINAL 2
99
100 enum stm32_hash_data_format {
101 HASH_DATA_32_BITS = 0x0,
102 HASH_DATA_16_BITS = 0x1,
103 HASH_DATA_8_BITS = 0x2,
104 HASH_DATA_1_BIT = 0x3
105 };
106
107 #define HASH_BUFLEN 256
108 #define HASH_LONG_KEY 64
109 #define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
110 #define HASH_QUEUE_LENGTH 16
111 #define HASH_DMA_THRESHOLD 50
112
113 #define HASH_AUTOSUSPEND_DELAY 50
114
115 struct stm32_hash_ctx {
116 struct crypto_engine_ctx enginectx;
117 struct stm32_hash_dev *hdev;
118 unsigned long flags;
119
120 u8 key[HASH_MAX_KEY_SIZE];
121 int keylen;
122 };
123
124 struct stm32_hash_request_ctx {
125 struct stm32_hash_dev *hdev;
126 unsigned long flags;
127 unsigned long op;
128
129 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
130 size_t digcnt;
131 size_t bufcnt;
132 size_t buflen;
133
134 /* DMA */
135 struct scatterlist *sg;
136 unsigned int offset;
137 unsigned int total;
138 struct scatterlist sg_key;
139
140 dma_addr_t dma_addr;
141 size_t dma_ct;
142 int nents;
143
144 u8 data_type;
145
146 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
147
148 /* Export Context */
149 u32 *hw_context;
150 };
151
152 struct stm32_hash_algs_info {
153 struct ahash_alg *algs_list;
154 size_t size;
155 };
156
157 struct stm32_hash_pdata {
158 struct stm32_hash_algs_info *algs_info;
159 size_t algs_info_size;
160 };
161
162 struct stm32_hash_dev {
163 struct list_head list;
164 struct device *dev;
165 struct clk *clk;
166 struct reset_control *rst;
167 void __iomem *io_base;
168 phys_addr_t phys_base;
169 u32 dma_mode;
170 u32 dma_maxburst;
171
172 struct ahash_request *req;
173 struct crypto_engine *engine;
174
175 int err;
176 unsigned long flags;
177
178 struct dma_chan *dma_lch;
179 struct completion dma_completion;
180
181 const struct stm32_hash_pdata *pdata;
182 };
183
184 struct stm32_hash_drv {
185 struct list_head dev_list;
186 spinlock_t lock; /* List protection access */
187 };
188
189 static struct stm32_hash_drv stm32_hash = {
190 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
191 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
192 };
193
194 static void stm32_hash_dma_callback(void *param);
195
stm32_hash_read(struct stm32_hash_dev * hdev,u32 offset)196 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
197 {
198 return readl_relaxed(hdev->io_base + offset);
199 }
200
stm32_hash_write(struct stm32_hash_dev * hdev,u32 offset,u32 value)201 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
202 u32 offset, u32 value)
203 {
204 writel_relaxed(value, hdev->io_base + offset);
205 }
206
stm32_hash_wait_busy(struct stm32_hash_dev * hdev)207 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
208 {
209 u32 status;
210
211 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
212 !(status & HASH_SR_BUSY), 10, 10000);
213 }
214
stm32_hash_set_nblw(struct stm32_hash_dev * hdev,int length)215 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
216 {
217 u32 reg;
218
219 reg = stm32_hash_read(hdev, HASH_STR);
220 reg &= ~(HASH_STR_NBLW_MASK);
221 reg |= (8U * ((length) % 4U));
222 stm32_hash_write(hdev, HASH_STR, reg);
223 }
224
stm32_hash_write_key(struct stm32_hash_dev * hdev)225 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
226 {
227 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
228 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
229 u32 reg;
230 int keylen = ctx->keylen;
231 void *key = ctx->key;
232
233 if (keylen) {
234 stm32_hash_set_nblw(hdev, keylen);
235
236 while (keylen > 0) {
237 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
238 keylen -= 4;
239 key += 4;
240 }
241
242 reg = stm32_hash_read(hdev, HASH_STR);
243 reg |= HASH_STR_DCAL;
244 stm32_hash_write(hdev, HASH_STR, reg);
245
246 return -EINPROGRESS;
247 }
248
249 return 0;
250 }
251
stm32_hash_write_ctrl(struct stm32_hash_dev * hdev)252 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
253 {
254 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
255 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
256 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
257
258 u32 reg = HASH_CR_INIT;
259
260 if (!(hdev->flags & HASH_FLAGS_INIT)) {
261 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
262 case HASH_FLAGS_MD5:
263 reg |= HASH_CR_ALGO_MD5;
264 break;
265 case HASH_FLAGS_SHA1:
266 reg |= HASH_CR_ALGO_SHA1;
267 break;
268 case HASH_FLAGS_SHA224:
269 reg |= HASH_CR_ALGO_SHA224;
270 break;
271 case HASH_FLAGS_SHA256:
272 reg |= HASH_CR_ALGO_SHA256;
273 break;
274 default:
275 reg |= HASH_CR_ALGO_MD5;
276 }
277
278 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
279
280 if (rctx->flags & HASH_FLAGS_HMAC) {
281 hdev->flags |= HASH_FLAGS_HMAC;
282 reg |= HASH_CR_MODE;
283 if (ctx->keylen > HASH_LONG_KEY)
284 reg |= HASH_CR_LKEY;
285 }
286
287 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
288
289 stm32_hash_write(hdev, HASH_CR, reg);
290
291 hdev->flags |= HASH_FLAGS_INIT;
292
293 dev_dbg(hdev->dev, "Write Control %x\n", reg);
294 }
295 }
296
stm32_hash_append_sg(struct stm32_hash_request_ctx * rctx)297 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
298 {
299 size_t count;
300
301 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
302 count = min(rctx->sg->length - rctx->offset, rctx->total);
303 count = min(count, rctx->buflen - rctx->bufcnt);
304
305 if (count <= 0) {
306 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
307 rctx->sg = sg_next(rctx->sg);
308 continue;
309 } else {
310 break;
311 }
312 }
313
314 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
315 rctx->offset, count, 0);
316
317 rctx->bufcnt += count;
318 rctx->offset += count;
319 rctx->total -= count;
320
321 if (rctx->offset == rctx->sg->length) {
322 rctx->sg = sg_next(rctx->sg);
323 if (rctx->sg)
324 rctx->offset = 0;
325 else
326 rctx->total = 0;
327 }
328 }
329 }
330
stm32_hash_xmit_cpu(struct stm32_hash_dev * hdev,const u8 * buf,size_t length,int final)331 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
332 const u8 *buf, size_t length, int final)
333 {
334 unsigned int count, len32;
335 const u32 *buffer = (const u32 *)buf;
336 u32 reg;
337
338 if (final)
339 hdev->flags |= HASH_FLAGS_FINAL;
340
341 len32 = DIV_ROUND_UP(length, sizeof(u32));
342
343 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
344 __func__, length, final, len32);
345
346 hdev->flags |= HASH_FLAGS_CPU;
347
348 stm32_hash_write_ctrl(hdev);
349
350 if (stm32_hash_wait_busy(hdev))
351 return -ETIMEDOUT;
352
353 if ((hdev->flags & HASH_FLAGS_HMAC) &&
354 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
355 hdev->flags |= HASH_FLAGS_HMAC_KEY;
356 stm32_hash_write_key(hdev);
357 if (stm32_hash_wait_busy(hdev))
358 return -ETIMEDOUT;
359 }
360
361 for (count = 0; count < len32; count++)
362 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
363
364 if (final) {
365 stm32_hash_set_nblw(hdev, length);
366 reg = stm32_hash_read(hdev, HASH_STR);
367 reg |= HASH_STR_DCAL;
368 stm32_hash_write(hdev, HASH_STR, reg);
369 if (hdev->flags & HASH_FLAGS_HMAC) {
370 if (stm32_hash_wait_busy(hdev))
371 return -ETIMEDOUT;
372 stm32_hash_write_key(hdev);
373 }
374 return -EINPROGRESS;
375 }
376
377 return 0;
378 }
379
stm32_hash_update_cpu(struct stm32_hash_dev * hdev)380 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
381 {
382 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
383 int bufcnt, err = 0, final;
384
385 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
386
387 final = (rctx->flags & HASH_FLAGS_FINUP);
388
389 while ((rctx->total >= rctx->buflen) ||
390 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
391 stm32_hash_append_sg(rctx);
392 bufcnt = rctx->bufcnt;
393 rctx->bufcnt = 0;
394 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
395 }
396
397 stm32_hash_append_sg(rctx);
398
399 if (final) {
400 bufcnt = rctx->bufcnt;
401 rctx->bufcnt = 0;
402 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
403 (rctx->flags & HASH_FLAGS_FINUP));
404 }
405
406 return err;
407 }
408
stm32_hash_xmit_dma(struct stm32_hash_dev * hdev,struct scatterlist * sg,int length,int mdma)409 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
410 struct scatterlist *sg, int length, int mdma)
411 {
412 struct dma_async_tx_descriptor *in_desc;
413 dma_cookie_t cookie;
414 u32 reg;
415 int err;
416
417 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
418 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
419 DMA_CTRL_ACK);
420 if (!in_desc) {
421 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
422 return -ENOMEM;
423 }
424
425 reinit_completion(&hdev->dma_completion);
426 in_desc->callback = stm32_hash_dma_callback;
427 in_desc->callback_param = hdev;
428
429 hdev->flags |= HASH_FLAGS_FINAL;
430 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
431
432 reg = stm32_hash_read(hdev, HASH_CR);
433
434 if (mdma)
435 reg |= HASH_CR_MDMAT;
436 else
437 reg &= ~HASH_CR_MDMAT;
438
439 reg |= HASH_CR_DMAE;
440
441 stm32_hash_write(hdev, HASH_CR, reg);
442
443 stm32_hash_set_nblw(hdev, length);
444
445 cookie = dmaengine_submit(in_desc);
446 err = dma_submit_error(cookie);
447 if (err)
448 return -ENOMEM;
449
450 dma_async_issue_pending(hdev->dma_lch);
451
452 if (!wait_for_completion_timeout(&hdev->dma_completion,
453 msecs_to_jiffies(100)))
454 err = -ETIMEDOUT;
455
456 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
457 NULL, NULL) != DMA_COMPLETE)
458 err = -ETIMEDOUT;
459
460 if (err) {
461 dev_err(hdev->dev, "DMA Error %i\n", err);
462 dmaengine_terminate_all(hdev->dma_lch);
463 return err;
464 }
465
466 return -EINPROGRESS;
467 }
468
stm32_hash_dma_callback(void * param)469 static void stm32_hash_dma_callback(void *param)
470 {
471 struct stm32_hash_dev *hdev = param;
472
473 complete(&hdev->dma_completion);
474
475 hdev->flags |= HASH_FLAGS_DMA_READY;
476 }
477
stm32_hash_hmac_dma_send(struct stm32_hash_dev * hdev)478 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
479 {
480 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
481 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
482 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
483 int err;
484
485 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
486 err = stm32_hash_write_key(hdev);
487 if (stm32_hash_wait_busy(hdev))
488 return -ETIMEDOUT;
489 } else {
490 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
491 sg_init_one(&rctx->sg_key, ctx->key,
492 ALIGN(ctx->keylen, sizeof(u32)));
493
494 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
495 DMA_TO_DEVICE);
496 if (rctx->dma_ct == 0) {
497 dev_err(hdev->dev, "dma_map_sg error\n");
498 return -ENOMEM;
499 }
500
501 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
502
503 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
504 }
505
506 return err;
507 }
508
stm32_hash_dma_init(struct stm32_hash_dev * hdev)509 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
510 {
511 struct dma_slave_config dma_conf;
512 struct dma_chan *chan;
513 int err;
514
515 memset(&dma_conf, 0, sizeof(dma_conf));
516
517 dma_conf.direction = DMA_MEM_TO_DEV;
518 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
519 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
520 dma_conf.src_maxburst = hdev->dma_maxburst;
521 dma_conf.dst_maxburst = hdev->dma_maxburst;
522 dma_conf.device_fc = false;
523
524 chan = dma_request_chan(hdev->dev, "in");
525 if (IS_ERR(chan))
526 return PTR_ERR(chan);
527
528 hdev->dma_lch = chan;
529
530 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
531 if (err) {
532 dma_release_channel(hdev->dma_lch);
533 hdev->dma_lch = NULL;
534 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
535 return err;
536 }
537
538 init_completion(&hdev->dma_completion);
539
540 return 0;
541 }
542
stm32_hash_dma_send(struct stm32_hash_dev * hdev)543 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
544 {
545 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
546 struct scatterlist sg[1], *tsg;
547 int err = 0, len = 0, reg, ncp = 0;
548 unsigned int i;
549 u32 *buffer = (void *)rctx->buffer;
550
551 rctx->sg = hdev->req->src;
552 rctx->total = hdev->req->nbytes;
553
554 rctx->nents = sg_nents(rctx->sg);
555
556 if (rctx->nents < 0)
557 return -EINVAL;
558
559 stm32_hash_write_ctrl(hdev);
560
561 if (hdev->flags & HASH_FLAGS_HMAC) {
562 err = stm32_hash_hmac_dma_send(hdev);
563 if (err != -EINPROGRESS)
564 return err;
565 }
566
567 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
568 len = sg->length;
569
570 sg[0] = *tsg;
571 if (sg_is_last(sg)) {
572 if (hdev->dma_mode == 1) {
573 len = (ALIGN(sg->length, 16) - 16);
574
575 ncp = sg_pcopy_to_buffer(
576 rctx->sg, rctx->nents,
577 rctx->buffer, sg->length - len,
578 rctx->total - sg->length + len);
579
580 sg->length = len;
581 } else {
582 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
583 len = sg->length;
584 sg->length = ALIGN(sg->length,
585 sizeof(u32));
586 }
587 }
588 }
589
590 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
591 DMA_TO_DEVICE);
592 if (rctx->dma_ct == 0) {
593 dev_err(hdev->dev, "dma_map_sg error\n");
594 return -ENOMEM;
595 }
596
597 err = stm32_hash_xmit_dma(hdev, sg, len,
598 !sg_is_last(sg));
599
600 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
601
602 if (err == -ENOMEM)
603 return err;
604 }
605
606 if (hdev->dma_mode == 1) {
607 if (stm32_hash_wait_busy(hdev))
608 return -ETIMEDOUT;
609 reg = stm32_hash_read(hdev, HASH_CR);
610 reg &= ~HASH_CR_DMAE;
611 reg |= HASH_CR_DMAA;
612 stm32_hash_write(hdev, HASH_CR, reg);
613
614 if (ncp) {
615 memset(buffer + ncp, 0,
616 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
617 writesl(hdev->io_base + HASH_DIN, buffer,
618 DIV_ROUND_UP(ncp, sizeof(u32)));
619 }
620 stm32_hash_set_nblw(hdev, ncp);
621 reg = stm32_hash_read(hdev, HASH_STR);
622 reg |= HASH_STR_DCAL;
623 stm32_hash_write(hdev, HASH_STR, reg);
624 err = -EINPROGRESS;
625 }
626
627 if (hdev->flags & HASH_FLAGS_HMAC) {
628 if (stm32_hash_wait_busy(hdev))
629 return -ETIMEDOUT;
630 err = stm32_hash_hmac_dma_send(hdev);
631 }
632
633 return err;
634 }
635
stm32_hash_find_dev(struct stm32_hash_ctx * ctx)636 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
637 {
638 struct stm32_hash_dev *hdev = NULL, *tmp;
639
640 spin_lock_bh(&stm32_hash.lock);
641 if (!ctx->hdev) {
642 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
643 hdev = tmp;
644 break;
645 }
646 ctx->hdev = hdev;
647 } else {
648 hdev = ctx->hdev;
649 }
650
651 spin_unlock_bh(&stm32_hash.lock);
652
653 return hdev;
654 }
655
stm32_hash_dma_aligned_data(struct ahash_request * req)656 static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
657 {
658 struct scatterlist *sg;
659 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
660 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
661 int i;
662
663 if (req->nbytes <= HASH_DMA_THRESHOLD)
664 return false;
665
666 if (sg_nents(req->src) > 1) {
667 if (hdev->dma_mode == 1)
668 return false;
669 for_each_sg(req->src, sg, sg_nents(req->src), i) {
670 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
671 (!sg_is_last(sg)))
672 return false;
673 }
674 }
675
676 if (req->src->offset % 4)
677 return false;
678
679 return true;
680 }
681
stm32_hash_init(struct ahash_request * req)682 static int stm32_hash_init(struct ahash_request *req)
683 {
684 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
685 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
686 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
687 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
688
689 rctx->hdev = hdev;
690
691 rctx->flags = HASH_FLAGS_CPU;
692
693 rctx->digcnt = crypto_ahash_digestsize(tfm);
694 switch (rctx->digcnt) {
695 case MD5_DIGEST_SIZE:
696 rctx->flags |= HASH_FLAGS_MD5;
697 break;
698 case SHA1_DIGEST_SIZE:
699 rctx->flags |= HASH_FLAGS_SHA1;
700 break;
701 case SHA224_DIGEST_SIZE:
702 rctx->flags |= HASH_FLAGS_SHA224;
703 break;
704 case SHA256_DIGEST_SIZE:
705 rctx->flags |= HASH_FLAGS_SHA256;
706 break;
707 default:
708 return -EINVAL;
709 }
710
711 rctx->bufcnt = 0;
712 rctx->buflen = HASH_BUFLEN;
713 rctx->total = 0;
714 rctx->offset = 0;
715 rctx->data_type = HASH_DATA_8_BITS;
716
717 memset(rctx->buffer, 0, HASH_BUFLEN);
718
719 if (ctx->flags & HASH_FLAGS_HMAC)
720 rctx->flags |= HASH_FLAGS_HMAC;
721
722 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
723
724 return 0;
725 }
726
stm32_hash_update_req(struct stm32_hash_dev * hdev)727 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
728 {
729 return stm32_hash_update_cpu(hdev);
730 }
731
stm32_hash_final_req(struct stm32_hash_dev * hdev)732 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
733 {
734 struct ahash_request *req = hdev->req;
735 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
736 int err;
737 int buflen = rctx->bufcnt;
738
739 rctx->bufcnt = 0;
740
741 if (!(rctx->flags & HASH_FLAGS_CPU))
742 err = stm32_hash_dma_send(hdev);
743 else
744 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
745
746
747 return err;
748 }
749
stm32_hash_copy_hash(struct ahash_request * req)750 static void stm32_hash_copy_hash(struct ahash_request *req)
751 {
752 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
753 __be32 *hash = (void *)rctx->digest;
754 unsigned int i, hashsize;
755
756 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
757 case HASH_FLAGS_MD5:
758 hashsize = MD5_DIGEST_SIZE;
759 break;
760 case HASH_FLAGS_SHA1:
761 hashsize = SHA1_DIGEST_SIZE;
762 break;
763 case HASH_FLAGS_SHA224:
764 hashsize = SHA224_DIGEST_SIZE;
765 break;
766 case HASH_FLAGS_SHA256:
767 hashsize = SHA256_DIGEST_SIZE;
768 break;
769 default:
770 return;
771 }
772
773 for (i = 0; i < hashsize / sizeof(u32); i++)
774 hash[i] = cpu_to_be32(stm32_hash_read(rctx->hdev,
775 HASH_HREG(i)));
776 }
777
stm32_hash_finish(struct ahash_request * req)778 static int stm32_hash_finish(struct ahash_request *req)
779 {
780 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
781
782 if (!req->result)
783 return -EINVAL;
784
785 memcpy(req->result, rctx->digest, rctx->digcnt);
786
787 return 0;
788 }
789
stm32_hash_finish_req(struct ahash_request * req,int err)790 static void stm32_hash_finish_req(struct ahash_request *req, int err)
791 {
792 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
793 struct stm32_hash_dev *hdev = rctx->hdev;
794
795 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
796 stm32_hash_copy_hash(req);
797 err = stm32_hash_finish(req);
798 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
799 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
800 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
801 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
802 HASH_FLAGS_HMAC_KEY);
803 } else {
804 rctx->flags |= HASH_FLAGS_ERRORS;
805 }
806
807 pm_runtime_mark_last_busy(hdev->dev);
808 pm_runtime_put_autosuspend(hdev->dev);
809
810 crypto_finalize_hash_request(hdev->engine, req, err);
811 }
812
stm32_hash_hw_init(struct stm32_hash_dev * hdev,struct stm32_hash_request_ctx * rctx)813 static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
814 struct stm32_hash_request_ctx *rctx)
815 {
816 pm_runtime_get_sync(hdev->dev);
817
818 if (!(HASH_FLAGS_INIT & hdev->flags)) {
819 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
820 stm32_hash_write(hdev, HASH_STR, 0);
821 stm32_hash_write(hdev, HASH_DIN, 0);
822 stm32_hash_write(hdev, HASH_IMR, 0);
823 hdev->err = 0;
824 }
825
826 return 0;
827 }
828
829 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
830 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
831
stm32_hash_handle_queue(struct stm32_hash_dev * hdev,struct ahash_request * req)832 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
833 struct ahash_request *req)
834 {
835 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
836 }
837
stm32_hash_prepare_req(struct crypto_engine * engine,void * areq)838 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
839 {
840 struct ahash_request *req = container_of(areq, struct ahash_request,
841 base);
842 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
843 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
844 struct stm32_hash_request_ctx *rctx;
845
846 if (!hdev)
847 return -ENODEV;
848
849 hdev->req = req;
850
851 rctx = ahash_request_ctx(req);
852
853 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
854 rctx->op, req->nbytes);
855
856 return stm32_hash_hw_init(hdev, rctx);
857 }
858
stm32_hash_one_request(struct crypto_engine * engine,void * areq)859 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
860 {
861 struct ahash_request *req = container_of(areq, struct ahash_request,
862 base);
863 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
864 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
865 struct stm32_hash_request_ctx *rctx;
866 int err = 0;
867
868 if (!hdev)
869 return -ENODEV;
870
871 hdev->req = req;
872
873 rctx = ahash_request_ctx(req);
874
875 if (rctx->op == HASH_OP_UPDATE)
876 err = stm32_hash_update_req(hdev);
877 else if (rctx->op == HASH_OP_FINAL)
878 err = stm32_hash_final_req(hdev);
879
880 if (err != -EINPROGRESS)
881 /* done task will not finish it, so do it here */
882 stm32_hash_finish_req(req, err);
883
884 return 0;
885 }
886
stm32_hash_enqueue(struct ahash_request * req,unsigned int op)887 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
888 {
889 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
890 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
891 struct stm32_hash_dev *hdev = ctx->hdev;
892
893 rctx->op = op;
894
895 return stm32_hash_handle_queue(hdev, req);
896 }
897
stm32_hash_update(struct ahash_request * req)898 static int stm32_hash_update(struct ahash_request *req)
899 {
900 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
901
902 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
903 return 0;
904
905 rctx->total = req->nbytes;
906 rctx->sg = req->src;
907 rctx->offset = 0;
908
909 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
910 stm32_hash_append_sg(rctx);
911 return 0;
912 }
913
914 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
915 }
916
stm32_hash_final(struct ahash_request * req)917 static int stm32_hash_final(struct ahash_request *req)
918 {
919 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
920
921 rctx->flags |= HASH_FLAGS_FINUP;
922
923 return stm32_hash_enqueue(req, HASH_OP_FINAL);
924 }
925
stm32_hash_finup(struct ahash_request * req)926 static int stm32_hash_finup(struct ahash_request *req)
927 {
928 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
929 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
930 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
931 int err1, err2;
932
933 rctx->flags |= HASH_FLAGS_FINUP;
934
935 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
936 rctx->flags &= ~HASH_FLAGS_CPU;
937
938 err1 = stm32_hash_update(req);
939
940 if (err1 == -EINPROGRESS || err1 == -EBUSY)
941 return err1;
942
943 /*
944 * final() has to be always called to cleanup resources
945 * even if update() failed, except EINPROGRESS
946 */
947 err2 = stm32_hash_final(req);
948
949 return err1 ?: err2;
950 }
951
stm32_hash_digest(struct ahash_request * req)952 static int stm32_hash_digest(struct ahash_request *req)
953 {
954 return stm32_hash_init(req) ?: stm32_hash_finup(req);
955 }
956
stm32_hash_export(struct ahash_request * req,void * out)957 static int stm32_hash_export(struct ahash_request *req, void *out)
958 {
959 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
961 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
962 u32 *preg;
963 unsigned int i;
964
965 pm_runtime_get_sync(hdev->dev);
966
967 while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
968 cpu_relax();
969
970 rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
971 sizeof(u32),
972 GFP_KERNEL);
973
974 preg = rctx->hw_context;
975
976 *preg++ = stm32_hash_read(hdev, HASH_IMR);
977 *preg++ = stm32_hash_read(hdev, HASH_STR);
978 *preg++ = stm32_hash_read(hdev, HASH_CR);
979 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
980 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
981
982 pm_runtime_mark_last_busy(hdev->dev);
983 pm_runtime_put_autosuspend(hdev->dev);
984
985 memcpy(out, rctx, sizeof(*rctx));
986
987 return 0;
988 }
989
stm32_hash_import(struct ahash_request * req,const void * in)990 static int stm32_hash_import(struct ahash_request *req, const void *in)
991 {
992 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
993 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
994 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
995 const u32 *preg = in;
996 u32 reg;
997 unsigned int i;
998
999 memcpy(rctx, in, sizeof(*rctx));
1000
1001 preg = rctx->hw_context;
1002
1003 pm_runtime_get_sync(hdev->dev);
1004
1005 stm32_hash_write(hdev, HASH_IMR, *preg++);
1006 stm32_hash_write(hdev, HASH_STR, *preg++);
1007 stm32_hash_write(hdev, HASH_CR, *preg);
1008 reg = *preg++ | HASH_CR_INIT;
1009 stm32_hash_write(hdev, HASH_CR, reg);
1010
1011 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1012 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1013
1014 pm_runtime_mark_last_busy(hdev->dev);
1015 pm_runtime_put_autosuspend(hdev->dev);
1016
1017 kfree(rctx->hw_context);
1018
1019 return 0;
1020 }
1021
stm32_hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1022 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1023 const u8 *key, unsigned int keylen)
1024 {
1025 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1026
1027 if (keylen <= HASH_MAX_KEY_SIZE) {
1028 memcpy(ctx->key, key, keylen);
1029 ctx->keylen = keylen;
1030 } else {
1031 return -ENOMEM;
1032 }
1033
1034 return 0;
1035 }
1036
stm32_hash_cra_init_algs(struct crypto_tfm * tfm,const char * algs_hmac_name)1037 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1038 const char *algs_hmac_name)
1039 {
1040 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1041
1042 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1043 sizeof(struct stm32_hash_request_ctx));
1044
1045 ctx->keylen = 0;
1046
1047 if (algs_hmac_name)
1048 ctx->flags |= HASH_FLAGS_HMAC;
1049
1050 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1051 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1052 ctx->enginectx.op.unprepare_request = NULL;
1053 return 0;
1054 }
1055
stm32_hash_cra_init(struct crypto_tfm * tfm)1056 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1057 {
1058 return stm32_hash_cra_init_algs(tfm, NULL);
1059 }
1060
stm32_hash_cra_md5_init(struct crypto_tfm * tfm)1061 static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1062 {
1063 return stm32_hash_cra_init_algs(tfm, "md5");
1064 }
1065
stm32_hash_cra_sha1_init(struct crypto_tfm * tfm)1066 static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1067 {
1068 return stm32_hash_cra_init_algs(tfm, "sha1");
1069 }
1070
stm32_hash_cra_sha224_init(struct crypto_tfm * tfm)1071 static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1072 {
1073 return stm32_hash_cra_init_algs(tfm, "sha224");
1074 }
1075
stm32_hash_cra_sha256_init(struct crypto_tfm * tfm)1076 static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1077 {
1078 return stm32_hash_cra_init_algs(tfm, "sha256");
1079 }
1080
stm32_hash_irq_thread(int irq,void * dev_id)1081 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1082 {
1083 struct stm32_hash_dev *hdev = dev_id;
1084
1085 if (HASH_FLAGS_CPU & hdev->flags) {
1086 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1087 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1088 goto finish;
1089 }
1090 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1091 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1092 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1093 goto finish;
1094 }
1095 }
1096
1097 return IRQ_HANDLED;
1098
1099 finish:
1100 /* Finish current request */
1101 stm32_hash_finish_req(hdev->req, 0);
1102
1103 return IRQ_HANDLED;
1104 }
1105
stm32_hash_irq_handler(int irq,void * dev_id)1106 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1107 {
1108 struct stm32_hash_dev *hdev = dev_id;
1109 u32 reg;
1110
1111 reg = stm32_hash_read(hdev, HASH_SR);
1112 if (reg & HASH_SR_OUTPUT_READY) {
1113 reg &= ~HASH_SR_OUTPUT_READY;
1114 stm32_hash_write(hdev, HASH_SR, reg);
1115 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1116 /* Disable IT*/
1117 stm32_hash_write(hdev, HASH_IMR, 0);
1118 return IRQ_WAKE_THREAD;
1119 }
1120
1121 return IRQ_NONE;
1122 }
1123
1124 static struct ahash_alg algs_md5_sha1[] = {
1125 {
1126 .init = stm32_hash_init,
1127 .update = stm32_hash_update,
1128 .final = stm32_hash_final,
1129 .finup = stm32_hash_finup,
1130 .digest = stm32_hash_digest,
1131 .export = stm32_hash_export,
1132 .import = stm32_hash_import,
1133 .halg = {
1134 .digestsize = MD5_DIGEST_SIZE,
1135 .statesize = sizeof(struct stm32_hash_request_ctx),
1136 .base = {
1137 .cra_name = "md5",
1138 .cra_driver_name = "stm32-md5",
1139 .cra_priority = 200,
1140 .cra_flags = CRYPTO_ALG_ASYNC |
1141 CRYPTO_ALG_KERN_DRIVER_ONLY,
1142 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1143 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1144 .cra_alignmask = 3,
1145 .cra_init = stm32_hash_cra_init,
1146 .cra_module = THIS_MODULE,
1147 }
1148 }
1149 },
1150 {
1151 .init = stm32_hash_init,
1152 .update = stm32_hash_update,
1153 .final = stm32_hash_final,
1154 .finup = stm32_hash_finup,
1155 .digest = stm32_hash_digest,
1156 .export = stm32_hash_export,
1157 .import = stm32_hash_import,
1158 .setkey = stm32_hash_setkey,
1159 .halg = {
1160 .digestsize = MD5_DIGEST_SIZE,
1161 .statesize = sizeof(struct stm32_hash_request_ctx),
1162 .base = {
1163 .cra_name = "hmac(md5)",
1164 .cra_driver_name = "stm32-hmac-md5",
1165 .cra_priority = 200,
1166 .cra_flags = CRYPTO_ALG_ASYNC |
1167 CRYPTO_ALG_KERN_DRIVER_ONLY,
1168 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1169 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1170 .cra_alignmask = 3,
1171 .cra_init = stm32_hash_cra_md5_init,
1172 .cra_module = THIS_MODULE,
1173 }
1174 }
1175 },
1176 {
1177 .init = stm32_hash_init,
1178 .update = stm32_hash_update,
1179 .final = stm32_hash_final,
1180 .finup = stm32_hash_finup,
1181 .digest = stm32_hash_digest,
1182 .export = stm32_hash_export,
1183 .import = stm32_hash_import,
1184 .halg = {
1185 .digestsize = SHA1_DIGEST_SIZE,
1186 .statesize = sizeof(struct stm32_hash_request_ctx),
1187 .base = {
1188 .cra_name = "sha1",
1189 .cra_driver_name = "stm32-sha1",
1190 .cra_priority = 200,
1191 .cra_flags = CRYPTO_ALG_ASYNC |
1192 CRYPTO_ALG_KERN_DRIVER_ONLY,
1193 .cra_blocksize = SHA1_BLOCK_SIZE,
1194 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1195 .cra_alignmask = 3,
1196 .cra_init = stm32_hash_cra_init,
1197 .cra_module = THIS_MODULE,
1198 }
1199 }
1200 },
1201 {
1202 .init = stm32_hash_init,
1203 .update = stm32_hash_update,
1204 .final = stm32_hash_final,
1205 .finup = stm32_hash_finup,
1206 .digest = stm32_hash_digest,
1207 .export = stm32_hash_export,
1208 .import = stm32_hash_import,
1209 .setkey = stm32_hash_setkey,
1210 .halg = {
1211 .digestsize = SHA1_DIGEST_SIZE,
1212 .statesize = sizeof(struct stm32_hash_request_ctx),
1213 .base = {
1214 .cra_name = "hmac(sha1)",
1215 .cra_driver_name = "stm32-hmac-sha1",
1216 .cra_priority = 200,
1217 .cra_flags = CRYPTO_ALG_ASYNC |
1218 CRYPTO_ALG_KERN_DRIVER_ONLY,
1219 .cra_blocksize = SHA1_BLOCK_SIZE,
1220 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1221 .cra_alignmask = 3,
1222 .cra_init = stm32_hash_cra_sha1_init,
1223 .cra_module = THIS_MODULE,
1224 }
1225 }
1226 },
1227 };
1228
1229 static struct ahash_alg algs_sha224_sha256[] = {
1230 {
1231 .init = stm32_hash_init,
1232 .update = stm32_hash_update,
1233 .final = stm32_hash_final,
1234 .finup = stm32_hash_finup,
1235 .digest = stm32_hash_digest,
1236 .export = stm32_hash_export,
1237 .import = stm32_hash_import,
1238 .halg = {
1239 .digestsize = SHA224_DIGEST_SIZE,
1240 .statesize = sizeof(struct stm32_hash_request_ctx),
1241 .base = {
1242 .cra_name = "sha224",
1243 .cra_driver_name = "stm32-sha224",
1244 .cra_priority = 200,
1245 .cra_flags = CRYPTO_ALG_ASYNC |
1246 CRYPTO_ALG_KERN_DRIVER_ONLY,
1247 .cra_blocksize = SHA224_BLOCK_SIZE,
1248 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1249 .cra_alignmask = 3,
1250 .cra_init = stm32_hash_cra_init,
1251 .cra_module = THIS_MODULE,
1252 }
1253 }
1254 },
1255 {
1256 .init = stm32_hash_init,
1257 .update = stm32_hash_update,
1258 .final = stm32_hash_final,
1259 .finup = stm32_hash_finup,
1260 .digest = stm32_hash_digest,
1261 .setkey = stm32_hash_setkey,
1262 .export = stm32_hash_export,
1263 .import = stm32_hash_import,
1264 .halg = {
1265 .digestsize = SHA224_DIGEST_SIZE,
1266 .statesize = sizeof(struct stm32_hash_request_ctx),
1267 .base = {
1268 .cra_name = "hmac(sha224)",
1269 .cra_driver_name = "stm32-hmac-sha224",
1270 .cra_priority = 200,
1271 .cra_flags = CRYPTO_ALG_ASYNC |
1272 CRYPTO_ALG_KERN_DRIVER_ONLY,
1273 .cra_blocksize = SHA224_BLOCK_SIZE,
1274 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1275 .cra_alignmask = 3,
1276 .cra_init = stm32_hash_cra_sha224_init,
1277 .cra_module = THIS_MODULE,
1278 }
1279 }
1280 },
1281 {
1282 .init = stm32_hash_init,
1283 .update = stm32_hash_update,
1284 .final = stm32_hash_final,
1285 .finup = stm32_hash_finup,
1286 .digest = stm32_hash_digest,
1287 .export = stm32_hash_export,
1288 .import = stm32_hash_import,
1289 .halg = {
1290 .digestsize = SHA256_DIGEST_SIZE,
1291 .statesize = sizeof(struct stm32_hash_request_ctx),
1292 .base = {
1293 .cra_name = "sha256",
1294 .cra_driver_name = "stm32-sha256",
1295 .cra_priority = 200,
1296 .cra_flags = CRYPTO_ALG_ASYNC |
1297 CRYPTO_ALG_KERN_DRIVER_ONLY,
1298 .cra_blocksize = SHA256_BLOCK_SIZE,
1299 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1300 .cra_alignmask = 3,
1301 .cra_init = stm32_hash_cra_init,
1302 .cra_module = THIS_MODULE,
1303 }
1304 }
1305 },
1306 {
1307 .init = stm32_hash_init,
1308 .update = stm32_hash_update,
1309 .final = stm32_hash_final,
1310 .finup = stm32_hash_finup,
1311 .digest = stm32_hash_digest,
1312 .export = stm32_hash_export,
1313 .import = stm32_hash_import,
1314 .setkey = stm32_hash_setkey,
1315 .halg = {
1316 .digestsize = SHA256_DIGEST_SIZE,
1317 .statesize = sizeof(struct stm32_hash_request_ctx),
1318 .base = {
1319 .cra_name = "hmac(sha256)",
1320 .cra_driver_name = "stm32-hmac-sha256",
1321 .cra_priority = 200,
1322 .cra_flags = CRYPTO_ALG_ASYNC |
1323 CRYPTO_ALG_KERN_DRIVER_ONLY,
1324 .cra_blocksize = SHA256_BLOCK_SIZE,
1325 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1326 .cra_alignmask = 3,
1327 .cra_init = stm32_hash_cra_sha256_init,
1328 .cra_module = THIS_MODULE,
1329 }
1330 }
1331 },
1332 };
1333
stm32_hash_register_algs(struct stm32_hash_dev * hdev)1334 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1335 {
1336 unsigned int i, j;
1337 int err;
1338
1339 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1340 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1341 err = crypto_register_ahash(
1342 &hdev->pdata->algs_info[i].algs_list[j]);
1343 if (err)
1344 goto err_algs;
1345 }
1346 }
1347
1348 return 0;
1349 err_algs:
1350 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1351 for (; i--; ) {
1352 for (; j--;)
1353 crypto_unregister_ahash(
1354 &hdev->pdata->algs_info[i].algs_list[j]);
1355 }
1356
1357 return err;
1358 }
1359
stm32_hash_unregister_algs(struct stm32_hash_dev * hdev)1360 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1361 {
1362 unsigned int i, j;
1363
1364 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1365 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1366 crypto_unregister_ahash(
1367 &hdev->pdata->algs_info[i].algs_list[j]);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1374 {
1375 .algs_list = algs_md5_sha1,
1376 .size = ARRAY_SIZE(algs_md5_sha1),
1377 },
1378 };
1379
1380 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1381 .algs_info = stm32_hash_algs_info_stm32f4,
1382 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1383 };
1384
1385 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1386 {
1387 .algs_list = algs_md5_sha1,
1388 .size = ARRAY_SIZE(algs_md5_sha1),
1389 },
1390 {
1391 .algs_list = algs_sha224_sha256,
1392 .size = ARRAY_SIZE(algs_sha224_sha256),
1393 },
1394 };
1395
1396 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1397 .algs_info = stm32_hash_algs_info_stm32f7,
1398 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1399 };
1400
1401 static const struct of_device_id stm32_hash_of_match[] = {
1402 {
1403 .compatible = "st,stm32f456-hash",
1404 .data = &stm32_hash_pdata_stm32f4,
1405 },
1406 {
1407 .compatible = "st,stm32f756-hash",
1408 .data = &stm32_hash_pdata_stm32f7,
1409 },
1410 {},
1411 };
1412
1413 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1414
stm32_hash_get_of_match(struct stm32_hash_dev * hdev,struct device * dev)1415 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1416 struct device *dev)
1417 {
1418 hdev->pdata = of_device_get_match_data(dev);
1419 if (!hdev->pdata) {
1420 dev_err(dev, "no compatible OF match\n");
1421 return -EINVAL;
1422 }
1423
1424 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1425 &hdev->dma_maxburst)) {
1426 dev_info(dev, "dma-maxburst not specified, using 0\n");
1427 hdev->dma_maxburst = 0;
1428 }
1429
1430 return 0;
1431 }
1432
stm32_hash_probe(struct platform_device * pdev)1433 static int stm32_hash_probe(struct platform_device *pdev)
1434 {
1435 struct stm32_hash_dev *hdev;
1436 struct device *dev = &pdev->dev;
1437 struct resource *res;
1438 int ret, irq;
1439
1440 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1441 if (!hdev)
1442 return -ENOMEM;
1443
1444 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1445 hdev->io_base = devm_ioremap_resource(dev, res);
1446 if (IS_ERR(hdev->io_base))
1447 return PTR_ERR(hdev->io_base);
1448
1449 hdev->phys_base = res->start;
1450
1451 ret = stm32_hash_get_of_match(hdev, dev);
1452 if (ret)
1453 return ret;
1454
1455 irq = platform_get_irq(pdev, 0);
1456 if (irq < 0)
1457 return irq;
1458
1459 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1460 stm32_hash_irq_thread, IRQF_ONESHOT,
1461 dev_name(dev), hdev);
1462 if (ret) {
1463 dev_err(dev, "Cannot grab IRQ\n");
1464 return ret;
1465 }
1466
1467 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1468 if (IS_ERR(hdev->clk))
1469 return dev_err_probe(dev, PTR_ERR(hdev->clk),
1470 "failed to get clock for hash\n");
1471
1472 ret = clk_prepare_enable(hdev->clk);
1473 if (ret) {
1474 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1475 return ret;
1476 }
1477
1478 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1479 pm_runtime_use_autosuspend(dev);
1480
1481 pm_runtime_get_noresume(dev);
1482 pm_runtime_set_active(dev);
1483 pm_runtime_enable(dev);
1484
1485 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1486 if (IS_ERR(hdev->rst)) {
1487 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
1488 ret = -EPROBE_DEFER;
1489 goto err_reset;
1490 }
1491 } else {
1492 reset_control_assert(hdev->rst);
1493 udelay(2);
1494 reset_control_deassert(hdev->rst);
1495 }
1496
1497 hdev->dev = dev;
1498
1499 platform_set_drvdata(pdev, hdev);
1500
1501 ret = stm32_hash_dma_init(hdev);
1502 switch (ret) {
1503 case 0:
1504 break;
1505 case -ENOENT:
1506 dev_dbg(dev, "DMA mode not available\n");
1507 break;
1508 default:
1509 goto err_dma;
1510 }
1511
1512 spin_lock(&stm32_hash.lock);
1513 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1514 spin_unlock(&stm32_hash.lock);
1515
1516 /* Initialize crypto engine */
1517 hdev->engine = crypto_engine_alloc_init(dev, 1);
1518 if (!hdev->engine) {
1519 ret = -ENOMEM;
1520 goto err_engine;
1521 }
1522
1523 ret = crypto_engine_start(hdev->engine);
1524 if (ret)
1525 goto err_engine_start;
1526
1527 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1528
1529 /* Register algos */
1530 ret = stm32_hash_register_algs(hdev);
1531 if (ret)
1532 goto err_algs;
1533
1534 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1535 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1536
1537 pm_runtime_put_sync(dev);
1538
1539 return 0;
1540
1541 err_algs:
1542 err_engine_start:
1543 crypto_engine_exit(hdev->engine);
1544 err_engine:
1545 spin_lock(&stm32_hash.lock);
1546 list_del(&hdev->list);
1547 spin_unlock(&stm32_hash.lock);
1548 err_dma:
1549 if (hdev->dma_lch)
1550 dma_release_channel(hdev->dma_lch);
1551 err_reset:
1552 pm_runtime_disable(dev);
1553 pm_runtime_put_noidle(dev);
1554
1555 clk_disable_unprepare(hdev->clk);
1556
1557 return ret;
1558 }
1559
stm32_hash_remove(struct platform_device * pdev)1560 static int stm32_hash_remove(struct platform_device *pdev)
1561 {
1562 struct stm32_hash_dev *hdev;
1563 int ret;
1564
1565 hdev = platform_get_drvdata(pdev);
1566 if (!hdev)
1567 return -ENODEV;
1568
1569 ret = pm_runtime_resume_and_get(hdev->dev);
1570 if (ret < 0)
1571 return ret;
1572
1573 stm32_hash_unregister_algs(hdev);
1574
1575 crypto_engine_exit(hdev->engine);
1576
1577 spin_lock(&stm32_hash.lock);
1578 list_del(&hdev->list);
1579 spin_unlock(&stm32_hash.lock);
1580
1581 if (hdev->dma_lch)
1582 dma_release_channel(hdev->dma_lch);
1583
1584 pm_runtime_disable(hdev->dev);
1585 pm_runtime_put_noidle(hdev->dev);
1586
1587 clk_disable_unprepare(hdev->clk);
1588
1589 return 0;
1590 }
1591
1592 #ifdef CONFIG_PM
stm32_hash_runtime_suspend(struct device * dev)1593 static int stm32_hash_runtime_suspend(struct device *dev)
1594 {
1595 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1596
1597 clk_disable_unprepare(hdev->clk);
1598
1599 return 0;
1600 }
1601
stm32_hash_runtime_resume(struct device * dev)1602 static int stm32_hash_runtime_resume(struct device *dev)
1603 {
1604 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1605 int ret;
1606
1607 ret = clk_prepare_enable(hdev->clk);
1608 if (ret) {
1609 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1610 return ret;
1611 }
1612
1613 return 0;
1614 }
1615 #endif
1616
1617 static const struct dev_pm_ops stm32_hash_pm_ops = {
1618 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1619 pm_runtime_force_resume)
1620 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1621 stm32_hash_runtime_resume, NULL)
1622 };
1623
1624 static struct platform_driver stm32_hash_driver = {
1625 .probe = stm32_hash_probe,
1626 .remove = stm32_hash_remove,
1627 .driver = {
1628 .name = "stm32-hash",
1629 .pm = &stm32_hash_pm_ops,
1630 .of_match_table = stm32_hash_of_match,
1631 }
1632 };
1633
1634 module_platform_driver(stm32_hash_driver);
1635
1636 MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1637 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1638 MODULE_LICENSE("GPL v2");
1639