1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/scatterlist.h>
26
27 #include <crypto/ctr.h>
28 #include <crypto/aes.h>
29 #include <crypto/algapi.h>
30 #include <crypto/scatterwalk.h>
31
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/internal/hash.h>
37
38 #define _SBF(s, v) ((v) << (s))
39
40 /* Feed control registers */
41 #define SSS_REG_FCINTSTAT 0x0000
42 #define SSS_FCINTSTAT_HPARTINT BIT(7)
43 #define SSS_FCINTSTAT_HDONEINT BIT(5)
44 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
45 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
46 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
47 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
48
49 #define SSS_REG_FCINTENSET 0x0004
50 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
51 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
52 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
53 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
54 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
55 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
56
57 #define SSS_REG_FCINTENCLR 0x0008
58 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
59 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
60 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
61 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
62 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
63 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
64
65 #define SSS_REG_FCINTPEND 0x000C
66 #define SSS_FCINTPEND_HPARTINTP BIT(7)
67 #define SSS_FCINTPEND_HDONEINTP BIT(5)
68 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
69 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
70 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
71 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
72
73 #define SSS_REG_FCFIFOSTAT 0x0010
74 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
75 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
76 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
77 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
78 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
79 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
80 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
81 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
82
83 #define SSS_REG_FCFIFOCTRL 0x0014
84 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
85 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
86 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
87 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
88 #define SSS_HASHIN_MASK _SBF(0, 0x03)
89
90 #define SSS_REG_FCBRDMAS 0x0020
91 #define SSS_REG_FCBRDMAL 0x0024
92 #define SSS_REG_FCBRDMAC 0x0028
93 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
94 #define SSS_FCBRDMAC_FLUSH BIT(0)
95
96 #define SSS_REG_FCBTDMAS 0x0030
97 #define SSS_REG_FCBTDMAL 0x0034
98 #define SSS_REG_FCBTDMAC 0x0038
99 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
100 #define SSS_FCBTDMAC_FLUSH BIT(0)
101
102 #define SSS_REG_FCHRDMAS 0x0040
103 #define SSS_REG_FCHRDMAL 0x0044
104 #define SSS_REG_FCHRDMAC 0x0048
105 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
106 #define SSS_FCHRDMAC_FLUSH BIT(0)
107
108 #define SSS_REG_FCPKDMAS 0x0050
109 #define SSS_REG_FCPKDMAL 0x0054
110 #define SSS_REG_FCPKDMAC 0x0058
111 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
112 #define SSS_FCPKDMAC_DESCEND BIT(2)
113 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
114 #define SSS_FCPKDMAC_FLUSH BIT(0)
115
116 #define SSS_REG_FCPKDMAO 0x005C
117
118 /* AES registers */
119 #define SSS_REG_AES_CONTROL 0x00
120 #define SSS_AES_BYTESWAP_DI BIT(11)
121 #define SSS_AES_BYTESWAP_DO BIT(10)
122 #define SSS_AES_BYTESWAP_IV BIT(9)
123 #define SSS_AES_BYTESWAP_CNT BIT(8)
124 #define SSS_AES_BYTESWAP_KEY BIT(7)
125 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
126 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
127 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
128 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
129 #define SSS_AES_FIFO_MODE BIT(3)
130 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
131 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
132 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
133 #define SSS_AES_MODE_DECRYPT BIT(0)
134
135 #define SSS_REG_AES_STATUS 0x04
136 #define SSS_AES_BUSY BIT(2)
137 #define SSS_AES_INPUT_READY BIT(1)
138 #define SSS_AES_OUTPUT_READY BIT(0)
139
140 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
141 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
142 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
143 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
144 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
145
146 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
147 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
148 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
149
150 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
151 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
152 SSS_AES_REG(dev, reg))
153
154 /* HW engine modes */
155 #define FLAGS_AES_DECRYPT BIT(0)
156 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
157 #define FLAGS_AES_CBC _SBF(1, 0x01)
158 #define FLAGS_AES_CTR _SBF(1, 0x02)
159
160 #define AES_KEY_LEN 16
161 #define CRYPTO_QUEUE_LEN 1
162
163 /* HASH registers */
164 #define SSS_REG_HASH_CTRL 0x00
165
166 #define SSS_HASH_USER_IV_EN BIT(5)
167 #define SSS_HASH_INIT_BIT BIT(4)
168 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
169 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
170 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
171
172 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
173
174 #define SSS_REG_HASH_CTRL_PAUSE 0x04
175
176 #define SSS_HASH_PAUSE BIT(0)
177
178 #define SSS_REG_HASH_CTRL_FIFO 0x08
179
180 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
181 #define SSS_HASH_FIFO_MODE_CPU 0
182
183 #define SSS_REG_HASH_CTRL_SWAP 0x0C
184
185 #define SSS_HASH_BYTESWAP_DI BIT(3)
186 #define SSS_HASH_BYTESWAP_DO BIT(2)
187 #define SSS_HASH_BYTESWAP_IV BIT(1)
188 #define SSS_HASH_BYTESWAP_KEY BIT(0)
189
190 #define SSS_REG_HASH_STATUS 0x10
191
192 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
193 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
194 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
195
196 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
197 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
198
199 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
200 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
201
202 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
203 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
204
205 #define HASH_BLOCK_SIZE 64
206 #define HASH_REG_SIZEOF 4
207 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
209 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
210
211 /*
212 * HASH bit numbers, used by device, setting in dev->hash_flags with
213 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
214 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
215 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
216 */
217 #define HASH_FLAGS_BUSY 0
218 #define HASH_FLAGS_FINAL 1
219 #define HASH_FLAGS_DMA_ACTIVE 2
220 #define HASH_FLAGS_OUTPUT_READY 3
221 #define HASH_FLAGS_DMA_READY 4
222 #define HASH_FLAGS_SGS_COPIED 5
223 #define HASH_FLAGS_SGS_ALLOCED 6
224
225 /* HASH HW constants */
226 #define BUFLEN HASH_BLOCK_SIZE
227
228 #define SSS_HASH_DMA_LEN_ALIGN 8
229 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
230
231 #define SSS_HASH_QUEUE_LENGTH 10
232
233 /**
234 * struct samsung_aes_variant - platform specific SSS driver data
235 * @aes_offset: AES register offset from SSS module's base.
236 * @hash_offset: HASH register offset from SSS module's base.
237 * @clk_names: names of clocks needed to run SSS IP
238 *
239 * Specifies platform specific configuration of SSS module.
240 * Note: A structure for driver specific platform data is used for future
241 * expansion of its usage.
242 */
243 struct samsung_aes_variant {
244 unsigned int aes_offset;
245 unsigned int hash_offset;
246 const char *clk_names[2];
247 };
248
249 struct s5p_aes_reqctx {
250 unsigned long mode;
251 };
252
253 struct s5p_aes_ctx {
254 struct s5p_aes_dev *dev;
255
256 u8 aes_key[AES_MAX_KEY_SIZE];
257 u8 nonce[CTR_RFC3686_NONCE_SIZE];
258 int keylen;
259 };
260
261 /**
262 * struct s5p_aes_dev - Crypto device state container
263 * @dev: Associated device
264 * @clk: Clock for accessing hardware
265 * @pclk: APB bus clock necessary to access the hardware
266 * @ioaddr: Mapped IO memory region
267 * @aes_ioaddr: Per-varian offset for AES block IO memory
268 * @irq_fc: Feed control interrupt line
269 * @req: Crypto request currently handled by the device
270 * @ctx: Configuration for currently handled crypto request
271 * @sg_src: Scatter list with source data for currently handled block
272 * in device. This is DMA-mapped into device.
273 * @sg_dst: Scatter list with destination data for currently handled block
274 * in device. This is DMA-mapped into device.
275 * @sg_src_cpy: In case of unaligned access, copied scatter list
276 * with source data.
277 * @sg_dst_cpy: In case of unaligned access, copied scatter list
278 * with destination data.
279 * @tasklet: New request scheduling jib
280 * @queue: Crypto queue
281 * @busy: Indicates whether the device is currently handling some request
282 * thus it uses some of the fields from this state, like:
283 * req, ctx, sg_src/dst (and copies). This essentially
284 * protects against concurrent access to these fields.
285 * @lock: Lock for protecting both access to device hardware registers
286 * and fields related to current request (including the busy field).
287 * @res: Resources for hash.
288 * @io_hash_base: Per-variant offset for HASH block IO memory.
289 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
290 * variable.
291 * @hash_flags: Flags for current HASH op.
292 * @hash_queue: Async hash queue.
293 * @hash_tasklet: New HASH request scheduling job.
294 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
295 * @hash_req: Current request sending to SSS HASH block.
296 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
297 * @hash_sg_cnt: Counter for hash_sg_iter.
298 *
299 * @use_hash: true if HASH algs enabled
300 */
301 struct s5p_aes_dev {
302 struct device *dev;
303 struct clk *clk;
304 struct clk *pclk;
305 void __iomem *ioaddr;
306 void __iomem *aes_ioaddr;
307 int irq_fc;
308
309 struct skcipher_request *req;
310 struct s5p_aes_ctx *ctx;
311 struct scatterlist *sg_src;
312 struct scatterlist *sg_dst;
313
314 struct scatterlist *sg_src_cpy;
315 struct scatterlist *sg_dst_cpy;
316
317 struct tasklet_struct tasklet;
318 struct crypto_queue queue;
319 bool busy;
320 spinlock_t lock;
321
322 struct resource *res;
323 void __iomem *io_hash_base;
324
325 spinlock_t hash_lock; /* protect hash_ vars */
326 unsigned long hash_flags;
327 struct crypto_queue hash_queue;
328 struct tasklet_struct hash_tasklet;
329
330 u8 xmit_buf[BUFLEN];
331 struct ahash_request *hash_req;
332 struct scatterlist *hash_sg_iter;
333 unsigned int hash_sg_cnt;
334
335 bool use_hash;
336 };
337
338 /**
339 * struct s5p_hash_reqctx - HASH request context
340 * @dd: Associated device
341 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
342 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
343 * @digest: Digest message or IV for partial result
344 * @nregs: Number of HW registers for digest or IV read/write
345 * @engine: Bits for selecting type of HASH in SSS block
346 * @sg: sg for DMA transfer
347 * @sg_len: Length of sg for DMA transfer
348 * @sgl: sg for joining buffer and req->src scatterlist
349 * @skip: Skip offset in req->src for current op
350 * @total: Total number of bytes for current request
351 * @finup: Keep state for finup or final.
352 * @error: Keep track of error.
353 * @bufcnt: Number of bytes holded in buffer[]
354 * @buffer: For byte(s) from end of req->src in UPDATE op
355 */
356 struct s5p_hash_reqctx {
357 struct s5p_aes_dev *dd;
358 bool op_update;
359
360 u64 digcnt;
361 u8 digest[SHA256_DIGEST_SIZE];
362
363 unsigned int nregs; /* digest_size / sizeof(reg) */
364 u32 engine;
365
366 struct scatterlist *sg;
367 unsigned int sg_len;
368 struct scatterlist sgl[2];
369 unsigned int skip;
370 unsigned int total;
371 bool finup;
372 bool error;
373
374 u32 bufcnt;
375 u8 buffer[];
376 };
377
378 /**
379 * struct s5p_hash_ctx - HASH transformation context
380 * @dd: Associated device
381 * @flags: Bits for algorithm HASH.
382 * @fallback: Software transformation for zero message or size < BUFLEN.
383 */
384 struct s5p_hash_ctx {
385 struct s5p_aes_dev *dd;
386 unsigned long flags;
387 struct crypto_shash *fallback;
388 };
389
390 static const struct samsung_aes_variant s5p_aes_data = {
391 .aes_offset = 0x4000,
392 .hash_offset = 0x6000,
393 .clk_names = { "secss", },
394 };
395
396 static const struct samsung_aes_variant exynos_aes_data = {
397 .aes_offset = 0x200,
398 .hash_offset = 0x400,
399 .clk_names = { "secss", },
400 };
401
402 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
403 .aes_offset = 0x400,
404 .hash_offset = 0x800,
405 .clk_names = { "aclk", "pclk", },
406 };
407
408 static const struct of_device_id s5p_sss_dt_match[] = {
409 {
410 .compatible = "samsung,s5pv210-secss",
411 .data = &s5p_aes_data,
412 },
413 {
414 .compatible = "samsung,exynos4210-secss",
415 .data = &exynos_aes_data,
416 },
417 {
418 .compatible = "samsung,exynos5433-slim-sss",
419 .data = &exynos5433_slim_aes_data,
420 },
421 { },
422 };
423 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
424
find_s5p_sss_version(const struct platform_device * pdev)425 static inline const struct samsung_aes_variant *find_s5p_sss_version
426 (const struct platform_device *pdev)
427 {
428 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
429 return of_device_get_match_data(&pdev->dev);
430
431 return (const struct samsung_aes_variant *)
432 platform_get_device_id(pdev)->driver_data;
433 }
434
435 static struct s5p_aes_dev *s5p_dev;
436
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)437 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
438 const struct scatterlist *sg)
439 {
440 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
441 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
442 }
443
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)444 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
445 const struct scatterlist *sg)
446 {
447 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
448 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
449 }
450
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)451 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
452 {
453 int len;
454
455 if (!*sg)
456 return;
457
458 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
459 free_pages((unsigned long)sg_virt(*sg), get_order(len));
460
461 kfree(*sg);
462 *sg = NULL;
463 }
464
s5p_sg_copy_buf(void * buf,struct scatterlist * sg,unsigned int nbytes,int out)465 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
466 unsigned int nbytes, int out)
467 {
468 struct scatter_walk walk;
469
470 if (!nbytes)
471 return;
472
473 scatterwalk_start(&walk, sg);
474 scatterwalk_copychunks(buf, &walk, nbytes, out);
475 scatterwalk_done(&walk, out, 0);
476 }
477
s5p_sg_done(struct s5p_aes_dev * dev)478 static void s5p_sg_done(struct s5p_aes_dev *dev)
479 {
480 struct skcipher_request *req = dev->req;
481 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
482
483 if (dev->sg_dst_cpy) {
484 dev_dbg(dev->dev,
485 "Copying %d bytes of output data back to original place\n",
486 dev->req->cryptlen);
487 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
488 dev->req->cryptlen, 1);
489 }
490 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
491 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
492 if (reqctx->mode & FLAGS_AES_CBC)
493 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
494
495 else if (reqctx->mode & FLAGS_AES_CTR)
496 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
497 }
498
499 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct skcipher_request * req,int err)500 static void s5p_aes_complete(struct skcipher_request *req, int err)
501 {
502 req->base.complete(&req->base, err);
503 }
504
s5p_unset_outdata(struct s5p_aes_dev * dev)505 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
506 {
507 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
508 }
509
s5p_unset_indata(struct s5p_aes_dev * dev)510 static void s5p_unset_indata(struct s5p_aes_dev *dev)
511 {
512 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
513 }
514
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)515 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
516 struct scatterlist **dst)
517 {
518 void *pages;
519 int len;
520
521 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
522 if (!*dst)
523 return -ENOMEM;
524
525 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
526 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
527 if (!pages) {
528 kfree(*dst);
529 *dst = NULL;
530 return -ENOMEM;
531 }
532
533 s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
534
535 sg_init_table(*dst, 1);
536 sg_set_buf(*dst, pages, len);
537
538 return 0;
539 }
540
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)541 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
542 {
543 if (!sg->length)
544 return -EINVAL;
545
546 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
547 return -ENOMEM;
548
549 dev->sg_dst = sg;
550
551 return 0;
552 }
553
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)554 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
555 {
556 if (!sg->length)
557 return -EINVAL;
558
559 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
560 return -ENOMEM;
561
562 dev->sg_src = sg;
563
564 return 0;
565 }
566
567 /*
568 * Returns -ERRNO on error (mapping of new data failed).
569 * On success returns:
570 * - 0 if there is no more data,
571 * - 1 if new transmitting (output) data is ready and its address+length
572 * have to be written to device (by calling s5p_set_dma_outdata()).
573 */
s5p_aes_tx(struct s5p_aes_dev * dev)574 static int s5p_aes_tx(struct s5p_aes_dev *dev)
575 {
576 int ret = 0;
577
578 s5p_unset_outdata(dev);
579
580 if (!sg_is_last(dev->sg_dst)) {
581 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
582 if (!ret)
583 ret = 1;
584 }
585
586 return ret;
587 }
588
589 /*
590 * Returns -ERRNO on error (mapping of new data failed).
591 * On success returns:
592 * - 0 if there is no more data,
593 * - 1 if new receiving (input) data is ready and its address+length
594 * have to be written to device (by calling s5p_set_dma_indata()).
595 */
s5p_aes_rx(struct s5p_aes_dev * dev)596 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
597 {
598 int ret = 0;
599
600 s5p_unset_indata(dev);
601
602 if (!sg_is_last(dev->sg_src)) {
603 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
604 if (!ret)
605 ret = 1;
606 }
607
608 return ret;
609 }
610
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)611 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
612 {
613 return __raw_readl(dd->io_hash_base + offset);
614 }
615
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)616 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
617 u32 offset, u32 value)
618 {
619 __raw_writel(value, dd->io_hash_base + offset);
620 }
621
622 /**
623 * s5p_set_dma_hashdata() - start DMA with sg
624 * @dev: device
625 * @sg: scatterlist ready to DMA transmit
626 */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)627 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
628 const struct scatterlist *sg)
629 {
630 dev->hash_sg_cnt--;
631 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
632 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
633 }
634
635 /**
636 * s5p_hash_rx() - get next hash_sg_iter
637 * @dev: device
638 *
639 * Return:
640 * 2 if there is no more data and it is UPDATE op
641 * 1 if new receiving (input) data is ready and can be written to device
642 * 0 if there is no more data and it is FINAL op
643 */
s5p_hash_rx(struct s5p_aes_dev * dev)644 static int s5p_hash_rx(struct s5p_aes_dev *dev)
645 {
646 if (dev->hash_sg_cnt > 0) {
647 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
648 return 1;
649 }
650
651 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
652 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
653 return 0;
654
655 return 2;
656 }
657
s5p_aes_interrupt(int irq,void * dev_id)658 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
659 {
660 struct platform_device *pdev = dev_id;
661 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
662 struct skcipher_request *req;
663 int err_dma_tx = 0;
664 int err_dma_rx = 0;
665 int err_dma_hx = 0;
666 bool tx_end = false;
667 bool hx_end = false;
668 unsigned long flags;
669 u32 status, st_bits;
670 int err;
671
672 spin_lock_irqsave(&dev->lock, flags);
673
674 /*
675 * Handle rx or tx interrupt. If there is still data (scatterlist did not
676 * reach end), then map next scatterlist entry.
677 * In case of such mapping error, s5p_aes_complete() should be called.
678 *
679 * If there is no more data in tx scatter list, call s5p_aes_complete()
680 * and schedule new tasklet.
681 *
682 * Handle hx interrupt. If there is still data map next entry.
683 */
684 status = SSS_READ(dev, FCINTSTAT);
685 if (status & SSS_FCINTSTAT_BRDMAINT)
686 err_dma_rx = s5p_aes_rx(dev);
687
688 if (status & SSS_FCINTSTAT_BTDMAINT) {
689 if (sg_is_last(dev->sg_dst))
690 tx_end = true;
691 err_dma_tx = s5p_aes_tx(dev);
692 }
693
694 if (status & SSS_FCINTSTAT_HRDMAINT)
695 err_dma_hx = s5p_hash_rx(dev);
696
697 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
698 SSS_FCINTSTAT_HRDMAINT);
699 /* clear DMA bits */
700 SSS_WRITE(dev, FCINTPEND, st_bits);
701
702 /* clear HASH irq bits */
703 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
704 /* cannot have both HPART and HDONE */
705 if (status & SSS_FCINTSTAT_HPARTINT)
706 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
707
708 if (status & SSS_FCINTSTAT_HDONEINT)
709 st_bits = SSS_HASH_STATUS_MSG_DONE;
710
711 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
712 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
713 hx_end = true;
714 /* when DONE or PART, do not handle HASH DMA */
715 err_dma_hx = 0;
716 }
717
718 if (err_dma_rx < 0) {
719 err = err_dma_rx;
720 goto error;
721 }
722 if (err_dma_tx < 0) {
723 err = err_dma_tx;
724 goto error;
725 }
726
727 if (tx_end) {
728 s5p_sg_done(dev);
729 if (err_dma_hx == 1)
730 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
731
732 spin_unlock_irqrestore(&dev->lock, flags);
733
734 s5p_aes_complete(dev->req, 0);
735 /* Device is still busy */
736 tasklet_schedule(&dev->tasklet);
737 } else {
738 /*
739 * Writing length of DMA block (either receiving or
740 * transmitting) will start the operation immediately, so this
741 * should be done at the end (even after clearing pending
742 * interrupts to not miss the interrupt).
743 */
744 if (err_dma_tx == 1)
745 s5p_set_dma_outdata(dev, dev->sg_dst);
746 if (err_dma_rx == 1)
747 s5p_set_dma_indata(dev, dev->sg_src);
748 if (err_dma_hx == 1)
749 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
750
751 spin_unlock_irqrestore(&dev->lock, flags);
752 }
753
754 goto hash_irq_end;
755
756 error:
757 s5p_sg_done(dev);
758 dev->busy = false;
759 req = dev->req;
760 if (err_dma_hx == 1)
761 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
762
763 spin_unlock_irqrestore(&dev->lock, flags);
764 s5p_aes_complete(req, err);
765
766 hash_irq_end:
767 /*
768 * Note about else if:
769 * when hash_sg_iter reaches end and its UPDATE op,
770 * issue SSS_HASH_PAUSE and wait for HPART irq
771 */
772 if (hx_end)
773 tasklet_schedule(&dev->hash_tasklet);
774 else if (err_dma_hx == 2)
775 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
776 SSS_HASH_PAUSE);
777
778 return IRQ_HANDLED;
779 }
780
781 /**
782 * s5p_hash_read_msg() - read message or IV from HW
783 * @req: AHASH request
784 */
s5p_hash_read_msg(struct ahash_request * req)785 static void s5p_hash_read_msg(struct ahash_request *req)
786 {
787 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
788 struct s5p_aes_dev *dd = ctx->dd;
789 u32 *hash = (u32 *)ctx->digest;
790 unsigned int i;
791
792 for (i = 0; i < ctx->nregs; i++)
793 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
794 }
795
796 /**
797 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
798 * @dd: device
799 * @ctx: request context
800 */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)801 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
802 const struct s5p_hash_reqctx *ctx)
803 {
804 const u32 *hash = (const u32 *)ctx->digest;
805 unsigned int i;
806
807 for (i = 0; i < ctx->nregs; i++)
808 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
809 }
810
811 /**
812 * s5p_hash_write_iv() - write IV for next partial/finup op.
813 * @req: AHASH request
814 */
s5p_hash_write_iv(struct ahash_request * req)815 static void s5p_hash_write_iv(struct ahash_request *req)
816 {
817 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
818
819 s5p_hash_write_ctx_iv(ctx->dd, ctx);
820 }
821
822 /**
823 * s5p_hash_copy_result() - copy digest into req->result
824 * @req: AHASH request
825 */
s5p_hash_copy_result(struct ahash_request * req)826 static void s5p_hash_copy_result(struct ahash_request *req)
827 {
828 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
829
830 if (!req->result)
831 return;
832
833 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
834 }
835
836 /**
837 * s5p_hash_dma_flush() - flush HASH DMA
838 * @dev: secss device
839 */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)840 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
841 {
842 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
843 }
844
845 /**
846 * s5p_hash_dma_enable() - enable DMA mode for HASH
847 * @dev: secss device
848 *
849 * enable DMA mode for HASH
850 */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)851 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
852 {
853 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
854 }
855
856 /**
857 * s5p_hash_irq_disable() - disable irq HASH signals
858 * @dev: secss device
859 * @flags: bitfield with irq's to be disabled
860 */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)861 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
862 {
863 SSS_WRITE(dev, FCINTENCLR, flags);
864 }
865
866 /**
867 * s5p_hash_irq_enable() - enable irq signals
868 * @dev: secss device
869 * @flags: bitfield with irq's to be enabled
870 */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)871 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
872 {
873 SSS_WRITE(dev, FCINTENSET, flags);
874 }
875
876 /**
877 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
878 * @dev: secss device
879 * @hashflow: HASH stream flow with/without crypto AES/DES
880 */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)881 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
882 {
883 unsigned long flags;
884 u32 flow;
885
886 spin_lock_irqsave(&dev->lock, flags);
887
888 flow = SSS_READ(dev, FCFIFOCTRL);
889 flow &= ~SSS_HASHIN_MASK;
890 flow |= hashflow;
891 SSS_WRITE(dev, FCFIFOCTRL, flow);
892
893 spin_unlock_irqrestore(&dev->lock, flags);
894 }
895
896 /**
897 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
898 * @dev: secss device
899 * @hashflow: HASH stream flow with/without AES/DES
900 *
901 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
902 * enable HASH irq's HRDMA, HDONE, HPART
903 */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)904 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
905 {
906 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
907 SSS_FCINTENCLR_HDONEINTENCLR |
908 SSS_FCINTENCLR_HPARTINTENCLR);
909 s5p_hash_dma_flush(dev);
910
911 s5p_hash_dma_enable(dev);
912 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
913 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
914 SSS_FCINTENSET_HDONEINTENSET |
915 SSS_FCINTENSET_HPARTINTENSET);
916 }
917
918 /**
919 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
920 * @dd: secss device
921 * @length: length for request
922 * @final: true if final op
923 *
924 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
925 * after previous updates, fill up IV words. For final, calculate and set
926 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
927 * length as 2^63 so it will be never reached and set to zero prelow and
928 * prehigh.
929 *
930 * This function does not start DMA transfer.
931 */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)932 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
933 bool final)
934 {
935 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
936 u32 prelow, prehigh, low, high;
937 u32 configflags, swapflags;
938 u64 tmplen;
939
940 configflags = ctx->engine | SSS_HASH_INIT_BIT;
941
942 if (likely(ctx->digcnt)) {
943 s5p_hash_write_ctx_iv(dd, ctx);
944 configflags |= SSS_HASH_USER_IV_EN;
945 }
946
947 if (final) {
948 /* number of bytes for last part */
949 low = length;
950 high = 0;
951 /* total number of bits prev hashed */
952 tmplen = ctx->digcnt * 8;
953 prelow = (u32)tmplen;
954 prehigh = (u32)(tmplen >> 32);
955 } else {
956 prelow = 0;
957 prehigh = 0;
958 low = 0;
959 high = BIT(31);
960 }
961
962 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
963 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
964
965 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
966 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
967 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
968 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
969
970 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
971 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
972 }
973
974 /**
975 * s5p_hash_xmit_dma() - start DMA hash processing
976 * @dd: secss device
977 * @length: length for request
978 * @final: true if final op
979 *
980 * Update digcnt here, as it is needed for finup/final op.
981 */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)982 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
983 bool final)
984 {
985 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
986 unsigned int cnt;
987
988 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
989 if (!cnt) {
990 dev_err(dd->dev, "dma_map_sg error\n");
991 ctx->error = true;
992 return -EINVAL;
993 }
994
995 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
996 dd->hash_sg_iter = ctx->sg;
997 dd->hash_sg_cnt = cnt;
998 s5p_hash_write_ctrl(dd, length, final);
999 ctx->digcnt += length;
1000 ctx->total -= length;
1001
1002 /* catch last interrupt */
1003 if (final)
1004 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1005
1006 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1007
1008 return -EINPROGRESS;
1009 }
1010
1011 /**
1012 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1013 * @ctx: request context
1014 * @sg: source scatterlist request
1015 * @new_len: number of bytes to process from sg
1016 *
1017 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1018 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1019 * with allocated buffer.
1020 *
1021 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1022 */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1023 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1024 struct scatterlist *sg, unsigned int new_len)
1025 {
1026 unsigned int pages, len;
1027 void *buf;
1028
1029 len = new_len + ctx->bufcnt;
1030 pages = get_order(len);
1031
1032 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1033 if (!buf) {
1034 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1035 ctx->error = true;
1036 return -ENOMEM;
1037 }
1038
1039 if (ctx->bufcnt)
1040 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1041
1042 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1043 new_len, 0);
1044 sg_init_table(ctx->sgl, 1);
1045 sg_set_buf(ctx->sgl, buf, len);
1046 ctx->sg = ctx->sgl;
1047 ctx->sg_len = 1;
1048 ctx->bufcnt = 0;
1049 ctx->skip = 0;
1050 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1051
1052 return 0;
1053 }
1054
1055 /**
1056 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1057 * @ctx: request context
1058 * @sg: source scatterlist request
1059 * @new_len: number of bytes to process from sg
1060 *
1061 * Allocate new scatterlist table, copy data for HASH into it. If there was
1062 * xmit_buf filled, prepare it first, then copy page, length and offset from
1063 * source sg into it, adjusting begin and/or end for skip offset and
1064 * hash_later value.
1065 *
1066 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1067 * it after irq ends processing.
1068 */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1069 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1070 struct scatterlist *sg, unsigned int new_len)
1071 {
1072 unsigned int skip = ctx->skip, n = sg_nents(sg);
1073 struct scatterlist *tmp;
1074 unsigned int len;
1075
1076 if (ctx->bufcnt)
1077 n++;
1078
1079 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1080 if (!ctx->sg) {
1081 ctx->error = true;
1082 return -ENOMEM;
1083 }
1084
1085 sg_init_table(ctx->sg, n);
1086
1087 tmp = ctx->sg;
1088
1089 ctx->sg_len = 0;
1090
1091 if (ctx->bufcnt) {
1092 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1093 tmp = sg_next(tmp);
1094 ctx->sg_len++;
1095 }
1096
1097 while (sg && skip >= sg->length) {
1098 skip -= sg->length;
1099 sg = sg_next(sg);
1100 }
1101
1102 while (sg && new_len) {
1103 len = sg->length - skip;
1104 if (new_len < len)
1105 len = new_len;
1106
1107 new_len -= len;
1108 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1109 skip = 0;
1110 if (new_len <= 0)
1111 sg_mark_end(tmp);
1112
1113 tmp = sg_next(tmp);
1114 ctx->sg_len++;
1115 sg = sg_next(sg);
1116 }
1117
1118 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1119
1120 return 0;
1121 }
1122
1123 /**
1124 * s5p_hash_prepare_sgs() - prepare sg for processing
1125 * @ctx: request context
1126 * @sg: source scatterlist request
1127 * @new_len: number of bytes to process from sg
1128 * @final: final flag
1129 *
1130 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1131 * sg table have good aligned elements (list_ok). If one of this checks fails,
1132 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1133 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1134 * table and prepare sg elements.
1135 *
1136 * For digest or finup all conditions can be good, and we may not need any
1137 * fixes.
1138 */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1139 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1140 struct scatterlist *sg,
1141 unsigned int new_len, bool final)
1142 {
1143 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1144 bool aligned = true, list_ok = true;
1145 struct scatterlist *sg_tmp = sg;
1146
1147 if (!sg || !sg->length || !new_len)
1148 return 0;
1149
1150 if (skip || !final)
1151 list_ok = false;
1152
1153 while (nbytes > 0 && sg_tmp) {
1154 n++;
1155 if (skip >= sg_tmp->length) {
1156 skip -= sg_tmp->length;
1157 if (!sg_tmp->length) {
1158 aligned = false;
1159 break;
1160 }
1161 } else {
1162 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1163 aligned = false;
1164 break;
1165 }
1166
1167 if (nbytes < sg_tmp->length - skip) {
1168 list_ok = false;
1169 break;
1170 }
1171
1172 nbytes -= sg_tmp->length - skip;
1173 skip = 0;
1174 }
1175
1176 sg_tmp = sg_next(sg_tmp);
1177 }
1178
1179 if (!aligned)
1180 return s5p_hash_copy_sgs(ctx, sg, new_len);
1181 else if (!list_ok)
1182 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1183
1184 /*
1185 * Have aligned data from previous operation and/or current
1186 * Note: will enter here only if (digest or finup) and aligned
1187 */
1188 if (ctx->bufcnt) {
1189 ctx->sg_len = n;
1190 sg_init_table(ctx->sgl, 2);
1191 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1192 sg_chain(ctx->sgl, 2, sg);
1193 ctx->sg = ctx->sgl;
1194 ctx->sg_len++;
1195 } else {
1196 ctx->sg = sg;
1197 ctx->sg_len = n;
1198 }
1199
1200 return 0;
1201 }
1202
1203 /**
1204 * s5p_hash_prepare_request() - prepare request for processing
1205 * @req: AHASH request
1206 * @update: true if UPDATE op
1207 *
1208 * Note 1: we can have update flag _and_ final flag at the same time.
1209 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1210 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1211 * we have final op
1212 */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1213 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1214 {
1215 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1216 bool final = ctx->finup;
1217 int xmit_len, hash_later, nbytes;
1218 int ret;
1219
1220 if (update)
1221 nbytes = req->nbytes;
1222 else
1223 nbytes = 0;
1224
1225 ctx->total = nbytes + ctx->bufcnt;
1226 if (!ctx->total)
1227 return 0;
1228
1229 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1230 /* bytes left from previous request, so fill up to BUFLEN */
1231 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1232
1233 if (len > nbytes)
1234 len = nbytes;
1235
1236 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1237 0, len, 0);
1238 ctx->bufcnt += len;
1239 nbytes -= len;
1240 ctx->skip = len;
1241 } else {
1242 ctx->skip = 0;
1243 }
1244
1245 if (ctx->bufcnt)
1246 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1247
1248 xmit_len = ctx->total;
1249 if (final) {
1250 hash_later = 0;
1251 } else {
1252 if (IS_ALIGNED(xmit_len, BUFLEN))
1253 xmit_len -= BUFLEN;
1254 else
1255 xmit_len -= xmit_len & (BUFLEN - 1);
1256
1257 hash_later = ctx->total - xmit_len;
1258 /* copy hash_later bytes from end of req->src */
1259 /* previous bytes are in xmit_buf, so no overwrite */
1260 scatterwalk_map_and_copy(ctx->buffer, req->src,
1261 req->nbytes - hash_later,
1262 hash_later, 0);
1263 }
1264
1265 if (xmit_len > BUFLEN) {
1266 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1267 final);
1268 if (ret)
1269 return ret;
1270 } else {
1271 /* have buffered data only */
1272 if (unlikely(!ctx->bufcnt)) {
1273 /* first update didn't fill up buffer */
1274 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1275 0, xmit_len, 0);
1276 }
1277
1278 sg_init_table(ctx->sgl, 1);
1279 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1280
1281 ctx->sg = ctx->sgl;
1282 ctx->sg_len = 1;
1283 }
1284
1285 ctx->bufcnt = hash_later;
1286 if (!final)
1287 ctx->total = xmit_len;
1288
1289 return 0;
1290 }
1291
1292 /**
1293 * s5p_hash_update_dma_stop() - unmap DMA
1294 * @dd: secss device
1295 *
1296 * Unmap scatterlist ctx->sg.
1297 */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1298 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1299 {
1300 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1301
1302 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1303 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1304 }
1305
1306 /**
1307 * s5p_hash_finish() - copy calculated digest to crypto layer
1308 * @req: AHASH request
1309 */
s5p_hash_finish(struct ahash_request * req)1310 static void s5p_hash_finish(struct ahash_request *req)
1311 {
1312 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1313 struct s5p_aes_dev *dd = ctx->dd;
1314
1315 if (ctx->digcnt)
1316 s5p_hash_copy_result(req);
1317
1318 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1319 }
1320
1321 /**
1322 * s5p_hash_finish_req() - finish request
1323 * @req: AHASH request
1324 * @err: error
1325 */
s5p_hash_finish_req(struct ahash_request * req,int err)1326 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1327 {
1328 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1329 struct s5p_aes_dev *dd = ctx->dd;
1330 unsigned long flags;
1331
1332 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1333 free_pages((unsigned long)sg_virt(ctx->sg),
1334 get_order(ctx->sg->length));
1335
1336 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1337 kfree(ctx->sg);
1338
1339 ctx->sg = NULL;
1340 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1341 BIT(HASH_FLAGS_SGS_COPIED));
1342
1343 if (!err && !ctx->error) {
1344 s5p_hash_read_msg(req);
1345 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1346 s5p_hash_finish(req);
1347 } else {
1348 ctx->error = true;
1349 }
1350
1351 spin_lock_irqsave(&dd->hash_lock, flags);
1352 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1353 BIT(HASH_FLAGS_DMA_READY) |
1354 BIT(HASH_FLAGS_OUTPUT_READY));
1355 spin_unlock_irqrestore(&dd->hash_lock, flags);
1356
1357 if (req->base.complete)
1358 req->base.complete(&req->base, err);
1359 }
1360
1361 /**
1362 * s5p_hash_handle_queue() - handle hash queue
1363 * @dd: device s5p_aes_dev
1364 * @req: AHASH request
1365 *
1366 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1367 * device then processes the first request from the dd->queue
1368 *
1369 * Returns: see s5p_hash_final below.
1370 */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1371 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1372 struct ahash_request *req)
1373 {
1374 struct crypto_async_request *async_req, *backlog;
1375 struct s5p_hash_reqctx *ctx;
1376 unsigned long flags;
1377 int err = 0, ret = 0;
1378
1379 retry:
1380 spin_lock_irqsave(&dd->hash_lock, flags);
1381 if (req)
1382 ret = ahash_enqueue_request(&dd->hash_queue, req);
1383
1384 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1385 spin_unlock_irqrestore(&dd->hash_lock, flags);
1386 return ret;
1387 }
1388
1389 backlog = crypto_get_backlog(&dd->hash_queue);
1390 async_req = crypto_dequeue_request(&dd->hash_queue);
1391 if (async_req)
1392 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1393
1394 spin_unlock_irqrestore(&dd->hash_lock, flags);
1395
1396 if (!async_req)
1397 return ret;
1398
1399 if (backlog)
1400 backlog->complete(backlog, -EINPROGRESS);
1401
1402 req = ahash_request_cast(async_req);
1403 dd->hash_req = req;
1404 ctx = ahash_request_ctx(req);
1405
1406 err = s5p_hash_prepare_request(req, ctx->op_update);
1407 if (err || !ctx->total)
1408 goto out;
1409
1410 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1411 ctx->op_update, req->nbytes);
1412
1413 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1414 if (ctx->digcnt)
1415 s5p_hash_write_iv(req); /* restore hash IV */
1416
1417 if (ctx->op_update) { /* HASH_OP_UPDATE */
1418 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1419 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1420 /* no final() after finup() */
1421 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1422 } else { /* HASH_OP_FINAL */
1423 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1424 }
1425 out:
1426 if (err != -EINPROGRESS) {
1427 /* hash_tasklet_cb will not finish it, so do it here */
1428 s5p_hash_finish_req(req, err);
1429 req = NULL;
1430
1431 /*
1432 * Execute next request immediately if there is anything
1433 * in queue.
1434 */
1435 goto retry;
1436 }
1437
1438 return ret;
1439 }
1440
1441 /**
1442 * s5p_hash_tasklet_cb() - hash tasklet
1443 * @data: ptr to s5p_aes_dev
1444 */
s5p_hash_tasklet_cb(unsigned long data)1445 static void s5p_hash_tasklet_cb(unsigned long data)
1446 {
1447 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1448
1449 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1450 s5p_hash_handle_queue(dd, NULL);
1451 return;
1452 }
1453
1454 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1455 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1456 &dd->hash_flags)) {
1457 s5p_hash_update_dma_stop(dd);
1458 }
1459
1460 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1461 &dd->hash_flags)) {
1462 /* hash or semi-hash ready */
1463 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1464 goto finish;
1465 }
1466 }
1467
1468 return;
1469
1470 finish:
1471 /* finish curent request */
1472 s5p_hash_finish_req(dd->hash_req, 0);
1473
1474 /* If we are not busy, process next req */
1475 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1476 s5p_hash_handle_queue(dd, NULL);
1477 }
1478
1479 /**
1480 * s5p_hash_enqueue() - enqueue request
1481 * @req: AHASH request
1482 * @op: operation UPDATE (true) or FINAL (false)
1483 *
1484 * Returns: see s5p_hash_final below.
1485 */
s5p_hash_enqueue(struct ahash_request * req,bool op)1486 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1487 {
1488 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1489 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1490
1491 ctx->op_update = op;
1492
1493 return s5p_hash_handle_queue(tctx->dd, req);
1494 }
1495
1496 /**
1497 * s5p_hash_update() - process the hash input data
1498 * @req: AHASH request
1499 *
1500 * If request will fit in buffer, copy it and return immediately
1501 * else enqueue it with OP_UPDATE.
1502 *
1503 * Returns: see s5p_hash_final below.
1504 */
s5p_hash_update(struct ahash_request * req)1505 static int s5p_hash_update(struct ahash_request *req)
1506 {
1507 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1508
1509 if (!req->nbytes)
1510 return 0;
1511
1512 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1513 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1514 0, req->nbytes, 0);
1515 ctx->bufcnt += req->nbytes;
1516 return 0;
1517 }
1518
1519 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1520 }
1521
1522 /**
1523 * s5p_hash_final() - close up hash and calculate digest
1524 * @req: AHASH request
1525 *
1526 * Note: in final req->src do not have any data, and req->nbytes can be
1527 * non-zero.
1528 *
1529 * If there were no input data processed yet and the buffered hash data is
1530 * less than BUFLEN (64) then calculate the final hash immediately by using
1531 * SW algorithm fallback.
1532 *
1533 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1534 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1535 * previous update op, so there are always some buffered bytes in ctx->buffer,
1536 * which means that ctx->bufcnt!=0
1537 *
1538 * Returns:
1539 * 0 if the request has been processed immediately,
1540 * -EINPROGRESS if the operation has been queued for later execution or is set
1541 * to processing by HW,
1542 * -EBUSY if queue is full and request should be resubmitted later,
1543 * other negative values denotes an error.
1544 */
s5p_hash_final(struct ahash_request * req)1545 static int s5p_hash_final(struct ahash_request *req)
1546 {
1547 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1548
1549 ctx->finup = true;
1550 if (ctx->error)
1551 return -EINVAL; /* uncompleted hash is not needed */
1552
1553 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1554 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1555
1556 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1557 ctx->bufcnt, req->result);
1558 }
1559
1560 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1561 }
1562
1563 /**
1564 * s5p_hash_finup() - process last req->src and calculate digest
1565 * @req: AHASH request containing the last update data
1566 *
1567 * Return values: see s5p_hash_final above.
1568 */
s5p_hash_finup(struct ahash_request * req)1569 static int s5p_hash_finup(struct ahash_request *req)
1570 {
1571 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1572 int err1, err2;
1573
1574 ctx->finup = true;
1575
1576 err1 = s5p_hash_update(req);
1577 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1578 return err1;
1579
1580 /*
1581 * final() has to be always called to cleanup resources even if
1582 * update() failed, except EINPROGRESS or calculate digest for small
1583 * size
1584 */
1585 err2 = s5p_hash_final(req);
1586
1587 return err1 ?: err2;
1588 }
1589
1590 /**
1591 * s5p_hash_init() - initialize AHASH request contex
1592 * @req: AHASH request
1593 *
1594 * Init async hash request context.
1595 */
s5p_hash_init(struct ahash_request * req)1596 static int s5p_hash_init(struct ahash_request *req)
1597 {
1598 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1599 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1600 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1601
1602 ctx->dd = tctx->dd;
1603 ctx->error = false;
1604 ctx->finup = false;
1605 ctx->bufcnt = 0;
1606 ctx->digcnt = 0;
1607 ctx->total = 0;
1608 ctx->skip = 0;
1609
1610 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1611 crypto_ahash_digestsize(tfm));
1612
1613 switch (crypto_ahash_digestsize(tfm)) {
1614 case MD5_DIGEST_SIZE:
1615 ctx->engine = SSS_HASH_ENGINE_MD5;
1616 ctx->nregs = HASH_MD5_MAX_REG;
1617 break;
1618 case SHA1_DIGEST_SIZE:
1619 ctx->engine = SSS_HASH_ENGINE_SHA1;
1620 ctx->nregs = HASH_SHA1_MAX_REG;
1621 break;
1622 case SHA256_DIGEST_SIZE:
1623 ctx->engine = SSS_HASH_ENGINE_SHA256;
1624 ctx->nregs = HASH_SHA256_MAX_REG;
1625 break;
1626 default:
1627 ctx->error = true;
1628 return -EINVAL;
1629 }
1630
1631 return 0;
1632 }
1633
1634 /**
1635 * s5p_hash_digest - calculate digest from req->src
1636 * @req: AHASH request
1637 *
1638 * Return values: see s5p_hash_final above.
1639 */
s5p_hash_digest(struct ahash_request * req)1640 static int s5p_hash_digest(struct ahash_request *req)
1641 {
1642 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1643 }
1644
1645 /**
1646 * s5p_hash_cra_init_alg - init crypto alg transformation
1647 * @tfm: crypto transformation
1648 */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1649 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1650 {
1651 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1652 const char *alg_name = crypto_tfm_alg_name(tfm);
1653
1654 tctx->dd = s5p_dev;
1655 /* Allocate a fallback and abort if it failed. */
1656 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1657 CRYPTO_ALG_NEED_FALLBACK);
1658 if (IS_ERR(tctx->fallback)) {
1659 pr_err("fallback alloc fails for '%s'\n", alg_name);
1660 return PTR_ERR(tctx->fallback);
1661 }
1662
1663 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1664 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1665
1666 return 0;
1667 }
1668
1669 /**
1670 * s5p_hash_cra_init - init crypto tfm
1671 * @tfm: crypto transformation
1672 */
s5p_hash_cra_init(struct crypto_tfm * tfm)1673 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1674 {
1675 return s5p_hash_cra_init_alg(tfm);
1676 }
1677
1678 /**
1679 * s5p_hash_cra_exit - exit crypto tfm
1680 * @tfm: crypto transformation
1681 *
1682 * free allocated fallback
1683 */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1684 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1685 {
1686 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1687
1688 crypto_free_shash(tctx->fallback);
1689 tctx->fallback = NULL;
1690 }
1691
1692 /**
1693 * s5p_hash_export - export hash state
1694 * @req: AHASH request
1695 * @out: buffer for exported state
1696 */
s5p_hash_export(struct ahash_request * req,void * out)1697 static int s5p_hash_export(struct ahash_request *req, void *out)
1698 {
1699 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1700
1701 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1702
1703 return 0;
1704 }
1705
1706 /**
1707 * s5p_hash_import - import hash state
1708 * @req: AHASH request
1709 * @in: buffer with state to be imported from
1710 */
s5p_hash_import(struct ahash_request * req,const void * in)1711 static int s5p_hash_import(struct ahash_request *req, const void *in)
1712 {
1713 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1714 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1715 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1716 const struct s5p_hash_reqctx *ctx_in = in;
1717
1718 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1719 if (ctx_in->bufcnt > BUFLEN) {
1720 ctx->error = true;
1721 return -EINVAL;
1722 }
1723
1724 ctx->dd = tctx->dd;
1725 ctx->error = false;
1726
1727 return 0;
1728 }
1729
1730 static struct ahash_alg algs_sha1_md5_sha256[] = {
1731 {
1732 .init = s5p_hash_init,
1733 .update = s5p_hash_update,
1734 .final = s5p_hash_final,
1735 .finup = s5p_hash_finup,
1736 .digest = s5p_hash_digest,
1737 .export = s5p_hash_export,
1738 .import = s5p_hash_import,
1739 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1740 .halg.digestsize = SHA1_DIGEST_SIZE,
1741 .halg.base = {
1742 .cra_name = "sha1",
1743 .cra_driver_name = "exynos-sha1",
1744 .cra_priority = 100,
1745 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1746 CRYPTO_ALG_ASYNC |
1747 CRYPTO_ALG_NEED_FALLBACK,
1748 .cra_blocksize = HASH_BLOCK_SIZE,
1749 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1750 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1751 .cra_module = THIS_MODULE,
1752 .cra_init = s5p_hash_cra_init,
1753 .cra_exit = s5p_hash_cra_exit,
1754 }
1755 },
1756 {
1757 .init = s5p_hash_init,
1758 .update = s5p_hash_update,
1759 .final = s5p_hash_final,
1760 .finup = s5p_hash_finup,
1761 .digest = s5p_hash_digest,
1762 .export = s5p_hash_export,
1763 .import = s5p_hash_import,
1764 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1765 .halg.digestsize = MD5_DIGEST_SIZE,
1766 .halg.base = {
1767 .cra_name = "md5",
1768 .cra_driver_name = "exynos-md5",
1769 .cra_priority = 100,
1770 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1771 CRYPTO_ALG_ASYNC |
1772 CRYPTO_ALG_NEED_FALLBACK,
1773 .cra_blocksize = HASH_BLOCK_SIZE,
1774 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1775 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1776 .cra_module = THIS_MODULE,
1777 .cra_init = s5p_hash_cra_init,
1778 .cra_exit = s5p_hash_cra_exit,
1779 }
1780 },
1781 {
1782 .init = s5p_hash_init,
1783 .update = s5p_hash_update,
1784 .final = s5p_hash_final,
1785 .finup = s5p_hash_finup,
1786 .digest = s5p_hash_digest,
1787 .export = s5p_hash_export,
1788 .import = s5p_hash_import,
1789 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1790 .halg.digestsize = SHA256_DIGEST_SIZE,
1791 .halg.base = {
1792 .cra_name = "sha256",
1793 .cra_driver_name = "exynos-sha256",
1794 .cra_priority = 100,
1795 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1796 CRYPTO_ALG_ASYNC |
1797 CRYPTO_ALG_NEED_FALLBACK,
1798 .cra_blocksize = HASH_BLOCK_SIZE,
1799 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1800 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1801 .cra_module = THIS_MODULE,
1802 .cra_init = s5p_hash_cra_init,
1803 .cra_exit = s5p_hash_cra_exit,
1804 }
1805 }
1806
1807 };
1808
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1809 static void s5p_set_aes(struct s5p_aes_dev *dev,
1810 const u8 *key, const u8 *iv, const u8 *ctr,
1811 unsigned int keylen)
1812 {
1813 void __iomem *keystart;
1814
1815 if (iv)
1816 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1817 AES_BLOCK_SIZE);
1818
1819 if (ctr)
1820 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1821 AES_BLOCK_SIZE);
1822
1823 if (keylen == AES_KEYSIZE_256)
1824 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1825 else if (keylen == AES_KEYSIZE_192)
1826 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1827 else
1828 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1829
1830 memcpy_toio(keystart, key, keylen);
1831 }
1832
s5p_is_sg_aligned(struct scatterlist * sg)1833 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1834 {
1835 while (sg) {
1836 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1837 return false;
1838 sg = sg_next(sg);
1839 }
1840
1841 return true;
1842 }
1843
s5p_set_indata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1844 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1845 struct skcipher_request *req)
1846 {
1847 struct scatterlist *sg;
1848 int err;
1849
1850 dev->sg_src_cpy = NULL;
1851 sg = req->src;
1852 if (!s5p_is_sg_aligned(sg)) {
1853 dev_dbg(dev->dev,
1854 "At least one unaligned source scatter list, making a copy\n");
1855 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1856 if (err)
1857 return err;
1858
1859 sg = dev->sg_src_cpy;
1860 }
1861
1862 err = s5p_set_indata(dev, sg);
1863 if (err) {
1864 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1865 return err;
1866 }
1867
1868 return 0;
1869 }
1870
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1871 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1872 struct skcipher_request *req)
1873 {
1874 struct scatterlist *sg;
1875 int err;
1876
1877 dev->sg_dst_cpy = NULL;
1878 sg = req->dst;
1879 if (!s5p_is_sg_aligned(sg)) {
1880 dev_dbg(dev->dev,
1881 "At least one unaligned dest scatter list, making a copy\n");
1882 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1883 if (err)
1884 return err;
1885
1886 sg = dev->sg_dst_cpy;
1887 }
1888
1889 err = s5p_set_outdata(dev, sg);
1890 if (err) {
1891 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1892 return err;
1893 }
1894
1895 return 0;
1896 }
1897
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1898 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1899 {
1900 struct skcipher_request *req = dev->req;
1901 u32 aes_control;
1902 unsigned long flags;
1903 int err;
1904 u8 *iv, *ctr;
1905
1906 /* This sets bit [13:12] to 00, which selects 128-bit counter */
1907 aes_control = SSS_AES_KEY_CHANGE_MODE;
1908 if (mode & FLAGS_AES_DECRYPT)
1909 aes_control |= SSS_AES_MODE_DECRYPT;
1910
1911 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1912 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1913 iv = req->iv;
1914 ctr = NULL;
1915 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1916 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1917 iv = NULL;
1918 ctr = req->iv;
1919 } else {
1920 iv = NULL; /* AES_ECB */
1921 ctr = NULL;
1922 }
1923
1924 if (dev->ctx->keylen == AES_KEYSIZE_192)
1925 aes_control |= SSS_AES_KEY_SIZE_192;
1926 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1927 aes_control |= SSS_AES_KEY_SIZE_256;
1928
1929 aes_control |= SSS_AES_FIFO_MODE;
1930
1931 /* as a variant it is possible to use byte swapping on DMA side */
1932 aes_control |= SSS_AES_BYTESWAP_DI
1933 | SSS_AES_BYTESWAP_DO
1934 | SSS_AES_BYTESWAP_IV
1935 | SSS_AES_BYTESWAP_KEY
1936 | SSS_AES_BYTESWAP_CNT;
1937
1938 spin_lock_irqsave(&dev->lock, flags);
1939
1940 SSS_WRITE(dev, FCINTENCLR,
1941 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1942 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1943
1944 err = s5p_set_indata_start(dev, req);
1945 if (err)
1946 goto indata_error;
1947
1948 err = s5p_set_outdata_start(dev, req);
1949 if (err)
1950 goto outdata_error;
1951
1952 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1953 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1954
1955 s5p_set_dma_indata(dev, dev->sg_src);
1956 s5p_set_dma_outdata(dev, dev->sg_dst);
1957
1958 SSS_WRITE(dev, FCINTENSET,
1959 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1960
1961 spin_unlock_irqrestore(&dev->lock, flags);
1962
1963 return;
1964
1965 outdata_error:
1966 s5p_unset_indata(dev);
1967
1968 indata_error:
1969 s5p_sg_done(dev);
1970 dev->busy = false;
1971 spin_unlock_irqrestore(&dev->lock, flags);
1972 s5p_aes_complete(req, err);
1973 }
1974
s5p_tasklet_cb(unsigned long data)1975 static void s5p_tasklet_cb(unsigned long data)
1976 {
1977 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1978 struct crypto_async_request *async_req, *backlog;
1979 struct s5p_aes_reqctx *reqctx;
1980 unsigned long flags;
1981
1982 spin_lock_irqsave(&dev->lock, flags);
1983 backlog = crypto_get_backlog(&dev->queue);
1984 async_req = crypto_dequeue_request(&dev->queue);
1985
1986 if (!async_req) {
1987 dev->busy = false;
1988 spin_unlock_irqrestore(&dev->lock, flags);
1989 return;
1990 }
1991 spin_unlock_irqrestore(&dev->lock, flags);
1992
1993 if (backlog)
1994 backlog->complete(backlog, -EINPROGRESS);
1995
1996 dev->req = skcipher_request_cast(async_req);
1997 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1998 reqctx = skcipher_request_ctx(dev->req);
1999
2000 s5p_aes_crypt_start(dev, reqctx->mode);
2001 }
2002
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct skcipher_request * req)2003 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2004 struct skcipher_request *req)
2005 {
2006 unsigned long flags;
2007 int err;
2008
2009 spin_lock_irqsave(&dev->lock, flags);
2010 err = crypto_enqueue_request(&dev->queue, &req->base);
2011 if (dev->busy) {
2012 spin_unlock_irqrestore(&dev->lock, flags);
2013 return err;
2014 }
2015 dev->busy = true;
2016
2017 spin_unlock_irqrestore(&dev->lock, flags);
2018
2019 tasklet_schedule(&dev->tasklet);
2020
2021 return err;
2022 }
2023
s5p_aes_crypt(struct skcipher_request * req,unsigned long mode)2024 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2025 {
2026 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2027 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2028 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2029 struct s5p_aes_dev *dev = ctx->dev;
2030
2031 if (!req->cryptlen)
2032 return 0;
2033
2034 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2035 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2036 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2037 return -EINVAL;
2038 }
2039
2040 reqctx->mode = mode;
2041
2042 return s5p_aes_handle_req(dev, req);
2043 }
2044
s5p_aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)2045 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2046 const u8 *key, unsigned int keylen)
2047 {
2048 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2049 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2050
2051 if (keylen != AES_KEYSIZE_128 &&
2052 keylen != AES_KEYSIZE_192 &&
2053 keylen != AES_KEYSIZE_256)
2054 return -EINVAL;
2055
2056 memcpy(ctx->aes_key, key, keylen);
2057 ctx->keylen = keylen;
2058
2059 return 0;
2060 }
2061
s5p_aes_ecb_encrypt(struct skcipher_request * req)2062 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2063 {
2064 return s5p_aes_crypt(req, 0);
2065 }
2066
s5p_aes_ecb_decrypt(struct skcipher_request * req)2067 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2068 {
2069 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2070 }
2071
s5p_aes_cbc_encrypt(struct skcipher_request * req)2072 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2073 {
2074 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2075 }
2076
s5p_aes_cbc_decrypt(struct skcipher_request * req)2077 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2078 {
2079 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2080 }
2081
s5p_aes_ctr_crypt(struct skcipher_request * req)2082 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2083 {
2084 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2085 }
2086
s5p_aes_init_tfm(struct crypto_skcipher * tfm)2087 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2088 {
2089 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2090
2091 ctx->dev = s5p_dev;
2092 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2093
2094 return 0;
2095 }
2096
2097 static struct skcipher_alg algs[] = {
2098 {
2099 .base.cra_name = "ecb(aes)",
2100 .base.cra_driver_name = "ecb-aes-s5p",
2101 .base.cra_priority = 100,
2102 .base.cra_flags = CRYPTO_ALG_ASYNC |
2103 CRYPTO_ALG_KERN_DRIVER_ONLY,
2104 .base.cra_blocksize = AES_BLOCK_SIZE,
2105 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2106 .base.cra_alignmask = 0x0f,
2107 .base.cra_module = THIS_MODULE,
2108
2109 .min_keysize = AES_MIN_KEY_SIZE,
2110 .max_keysize = AES_MAX_KEY_SIZE,
2111 .setkey = s5p_aes_setkey,
2112 .encrypt = s5p_aes_ecb_encrypt,
2113 .decrypt = s5p_aes_ecb_decrypt,
2114 .init = s5p_aes_init_tfm,
2115 },
2116 {
2117 .base.cra_name = "cbc(aes)",
2118 .base.cra_driver_name = "cbc-aes-s5p",
2119 .base.cra_priority = 100,
2120 .base.cra_flags = CRYPTO_ALG_ASYNC |
2121 CRYPTO_ALG_KERN_DRIVER_ONLY,
2122 .base.cra_blocksize = AES_BLOCK_SIZE,
2123 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2124 .base.cra_alignmask = 0x0f,
2125 .base.cra_module = THIS_MODULE,
2126
2127 .min_keysize = AES_MIN_KEY_SIZE,
2128 .max_keysize = AES_MAX_KEY_SIZE,
2129 .ivsize = AES_BLOCK_SIZE,
2130 .setkey = s5p_aes_setkey,
2131 .encrypt = s5p_aes_cbc_encrypt,
2132 .decrypt = s5p_aes_cbc_decrypt,
2133 .init = s5p_aes_init_tfm,
2134 },
2135 {
2136 .base.cra_name = "ctr(aes)",
2137 .base.cra_driver_name = "ctr-aes-s5p",
2138 .base.cra_priority = 100,
2139 .base.cra_flags = CRYPTO_ALG_ASYNC |
2140 CRYPTO_ALG_KERN_DRIVER_ONLY,
2141 .base.cra_blocksize = 1,
2142 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2143 .base.cra_alignmask = 0x0f,
2144 .base.cra_module = THIS_MODULE,
2145
2146 .min_keysize = AES_MIN_KEY_SIZE,
2147 .max_keysize = AES_MAX_KEY_SIZE,
2148 .ivsize = AES_BLOCK_SIZE,
2149 .setkey = s5p_aes_setkey,
2150 .encrypt = s5p_aes_ctr_crypt,
2151 .decrypt = s5p_aes_ctr_crypt,
2152 .init = s5p_aes_init_tfm,
2153 },
2154 };
2155
s5p_aes_probe(struct platform_device * pdev)2156 static int s5p_aes_probe(struct platform_device *pdev)
2157 {
2158 struct device *dev = &pdev->dev;
2159 int i, j, err;
2160 const struct samsung_aes_variant *variant;
2161 struct s5p_aes_dev *pdata;
2162 struct resource *res;
2163 unsigned int hash_i;
2164
2165 if (s5p_dev)
2166 return -EEXIST;
2167
2168 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2169 if (!pdata)
2170 return -ENOMEM;
2171
2172 variant = find_s5p_sss_version(pdev);
2173 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2174 if (!res)
2175 return -EINVAL;
2176
2177 /*
2178 * Note: HASH and PRNG uses the same registers in secss, avoid
2179 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2180 * is enabled in config. We need larger size for HASH registers in
2181 * secss, current describe only AES/DES
2182 */
2183 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2184 if (variant == &exynos_aes_data) {
2185 res->end += 0x300;
2186 pdata->use_hash = true;
2187 }
2188 }
2189
2190 pdata->res = res;
2191 pdata->ioaddr = devm_ioremap_resource(dev, res);
2192 if (IS_ERR(pdata->ioaddr)) {
2193 if (!pdata->use_hash)
2194 return PTR_ERR(pdata->ioaddr);
2195 /* try AES without HASH */
2196 res->end -= 0x300;
2197 pdata->use_hash = false;
2198 pdata->ioaddr = devm_ioremap_resource(dev, res);
2199 if (IS_ERR(pdata->ioaddr))
2200 return PTR_ERR(pdata->ioaddr);
2201 }
2202
2203 pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2204 if (IS_ERR(pdata->clk))
2205 return dev_err_probe(dev, PTR_ERR(pdata->clk),
2206 "failed to find secss clock %s\n",
2207 variant->clk_names[0]);
2208
2209 err = clk_prepare_enable(pdata->clk);
2210 if (err < 0) {
2211 dev_err(dev, "Enabling clock %s failed, err %d\n",
2212 variant->clk_names[0], err);
2213 return err;
2214 }
2215
2216 if (variant->clk_names[1]) {
2217 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2218 if (IS_ERR(pdata->pclk)) {
2219 err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2220 "failed to find clock %s\n",
2221 variant->clk_names[1]);
2222 goto err_clk;
2223 }
2224
2225 err = clk_prepare_enable(pdata->pclk);
2226 if (err < 0) {
2227 dev_err(dev, "Enabling clock %s failed, err %d\n",
2228 variant->clk_names[0], err);
2229 goto err_clk;
2230 }
2231 } else {
2232 pdata->pclk = NULL;
2233 }
2234
2235 spin_lock_init(&pdata->lock);
2236 spin_lock_init(&pdata->hash_lock);
2237
2238 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2239 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2240
2241 pdata->irq_fc = platform_get_irq(pdev, 0);
2242 if (pdata->irq_fc < 0) {
2243 err = pdata->irq_fc;
2244 dev_warn(dev, "feed control interrupt is not available.\n");
2245 goto err_irq;
2246 }
2247 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2248 s5p_aes_interrupt, IRQF_ONESHOT,
2249 pdev->name, pdev);
2250 if (err < 0) {
2251 dev_warn(dev, "feed control interrupt is not available.\n");
2252 goto err_irq;
2253 }
2254
2255 pdata->busy = false;
2256 pdata->dev = dev;
2257 platform_set_drvdata(pdev, pdata);
2258 s5p_dev = pdata;
2259
2260 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2261 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2262
2263 for (i = 0; i < ARRAY_SIZE(algs); i++) {
2264 err = crypto_register_skcipher(&algs[i]);
2265 if (err)
2266 goto err_algs;
2267 }
2268
2269 if (pdata->use_hash) {
2270 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2271 (unsigned long)pdata);
2272 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2273
2274 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2275 hash_i++) {
2276 struct ahash_alg *alg;
2277
2278 alg = &algs_sha1_md5_sha256[hash_i];
2279 err = crypto_register_ahash(alg);
2280 if (err) {
2281 dev_err(dev, "can't register '%s': %d\n",
2282 alg->halg.base.cra_driver_name, err);
2283 goto err_hash;
2284 }
2285 }
2286 }
2287
2288 dev_info(dev, "s5p-sss driver registered\n");
2289
2290 return 0;
2291
2292 err_hash:
2293 for (j = hash_i - 1; j >= 0; j--)
2294 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2295
2296 tasklet_kill(&pdata->hash_tasklet);
2297 res->end -= 0x300;
2298
2299 err_algs:
2300 if (i < ARRAY_SIZE(algs))
2301 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2302 err);
2303
2304 for (j = 0; j < i; j++)
2305 crypto_unregister_skcipher(&algs[j]);
2306
2307 tasklet_kill(&pdata->tasklet);
2308
2309 err_irq:
2310 clk_disable_unprepare(pdata->pclk);
2311
2312 err_clk:
2313 clk_disable_unprepare(pdata->clk);
2314 s5p_dev = NULL;
2315
2316 return err;
2317 }
2318
s5p_aes_remove(struct platform_device * pdev)2319 static int s5p_aes_remove(struct platform_device *pdev)
2320 {
2321 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2322 int i;
2323
2324 for (i = 0; i < ARRAY_SIZE(algs); i++)
2325 crypto_unregister_skcipher(&algs[i]);
2326
2327 tasklet_kill(&pdata->tasklet);
2328 if (pdata->use_hash) {
2329 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2330 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2331
2332 pdata->res->end -= 0x300;
2333 tasklet_kill(&pdata->hash_tasklet);
2334 pdata->use_hash = false;
2335 }
2336
2337 clk_disable_unprepare(pdata->pclk);
2338
2339 clk_disable_unprepare(pdata->clk);
2340 s5p_dev = NULL;
2341
2342 return 0;
2343 }
2344
2345 static struct platform_driver s5p_aes_crypto = {
2346 .probe = s5p_aes_probe,
2347 .remove = s5p_aes_remove,
2348 .driver = {
2349 .name = "s5p-secss",
2350 .of_match_table = s5p_sss_dt_match,
2351 },
2352 };
2353
2354 module_platform_driver(s5p_aes_crypto);
2355
2356 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2357 MODULE_LICENSE("GPL v2");
2358 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2359 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2360