1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
3 *
4 * Copyright (C) 2019 Marvell International Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <crypto/aes.h>
12 #include <crypto/authenc.h>
13 #include <crypto/cryptd.h>
14 #include <crypto/des.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/sha1.h>
17 #include <crypto/sha2.h>
18 #include <crypto/xts.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/sort.h>
22 #include <linux/module.h>
23 #include "otx_cptvf.h"
24 #include "otx_cptvf_algs.h"
25 #include "otx_cptvf_reqmgr.h"
26
27 #define CPT_MAX_VF_NUM 64
28 /* Size of salt in AES GCM mode */
29 #define AES_GCM_SALT_SIZE 4
30 /* Size of IV in AES GCM mode */
31 #define AES_GCM_IV_SIZE 8
32 /* Size of ICV (Integrity Check Value) in AES GCM mode */
33 #define AES_GCM_ICV_SIZE 16
34 /* Offset of IV in AES GCM mode */
35 #define AES_GCM_IV_OFFSET 8
36 #define CONTROL_WORD_LEN 8
37 #define KEY2_OFFSET 48
38 #define DMA_MODE_FLAG(dma_mode) \
39 (((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0)
40
41 /* Truncated SHA digest size */
42 #define SHA1_TRUNC_DIGEST_SIZE 12
43 #define SHA256_TRUNC_DIGEST_SIZE 16
44 #define SHA384_TRUNC_DIGEST_SIZE 24
45 #define SHA512_TRUNC_DIGEST_SIZE 32
46
47 static DEFINE_MUTEX(mutex);
48 static int is_crypto_registered;
49
50 struct cpt_device_desc {
51 enum otx_cptpf_type pf_type;
52 struct pci_dev *dev;
53 int num_queues;
54 };
55
56 struct cpt_device_table {
57 atomic_t count;
58 struct cpt_device_desc desc[CPT_MAX_VF_NUM];
59 };
60
61 static struct cpt_device_table se_devices = {
62 .count = ATOMIC_INIT(0)
63 };
64
65 static struct cpt_device_table ae_devices = {
66 .count = ATOMIC_INIT(0)
67 };
68
get_se_device(struct pci_dev ** pdev,int * cpu_num)69 static inline int get_se_device(struct pci_dev **pdev, int *cpu_num)
70 {
71 int count, ret = 0;
72
73 count = atomic_read(&se_devices.count);
74 if (count < 1)
75 return -ENODEV;
76
77 *cpu_num = get_cpu();
78
79 if (se_devices.desc[0].pf_type == OTX_CPT_SE) {
80 /*
81 * On OcteonTX platform there is one CPT instruction queue bound
82 * to each VF. We get maximum performance if one CPT queue
83 * is available for each cpu otherwise CPT queues need to be
84 * shared between cpus.
85 */
86 if (*cpu_num >= count)
87 *cpu_num %= count;
88 *pdev = se_devices.desc[*cpu_num].dev;
89 } else {
90 pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type);
91 ret = -EINVAL;
92 }
93 put_cpu();
94
95 return ret;
96 }
97
validate_hmac_cipher_null(struct otx_cpt_req_info * cpt_req)98 static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req)
99 {
100 struct otx_cpt_req_ctx *rctx;
101 struct aead_request *req;
102 struct crypto_aead *tfm;
103
104 req = container_of(cpt_req->areq, struct aead_request, base);
105 tfm = crypto_aead_reqtfm(req);
106 rctx = aead_request_ctx(req);
107 if (memcmp(rctx->fctx.hmac.s.hmac_calc,
108 rctx->fctx.hmac.s.hmac_recv,
109 crypto_aead_authsize(tfm)) != 0)
110 return -EBADMSG;
111
112 return 0;
113 }
114
otx_cpt_aead_callback(int status,void * arg1,void * arg2)115 static void otx_cpt_aead_callback(int status, void *arg1, void *arg2)
116 {
117 struct otx_cpt_info_buffer *cpt_info = arg2;
118 struct crypto_async_request *areq = arg1;
119 struct otx_cpt_req_info *cpt_req;
120 struct pci_dev *pdev;
121
122 if (!cpt_info)
123 goto complete;
124
125 cpt_req = cpt_info->req;
126 if (!status) {
127 /*
128 * When selected cipher is NULL we need to manually
129 * verify whether calculated hmac value matches
130 * received hmac value
131 */
132 if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ &&
133 !cpt_req->is_enc)
134 status = validate_hmac_cipher_null(cpt_req);
135 }
136 pdev = cpt_info->pdev;
137 do_request_cleanup(pdev, cpt_info);
138
139 complete:
140 if (areq)
141 areq->complete(areq, status);
142 }
143
output_iv_copyback(struct crypto_async_request * areq)144 static void output_iv_copyback(struct crypto_async_request *areq)
145 {
146 struct otx_cpt_req_info *req_info;
147 struct skcipher_request *sreq;
148 struct crypto_skcipher *stfm;
149 struct otx_cpt_req_ctx *rctx;
150 struct otx_cpt_enc_ctx *ctx;
151 u32 start, ivsize;
152
153 sreq = container_of(areq, struct skcipher_request, base);
154 stfm = crypto_skcipher_reqtfm(sreq);
155 ctx = crypto_skcipher_ctx(stfm);
156 if (ctx->cipher_type == OTX_CPT_AES_CBC ||
157 ctx->cipher_type == OTX_CPT_DES3_CBC) {
158 rctx = skcipher_request_ctx(sreq);
159 req_info = &rctx->cpt_req;
160 ivsize = crypto_skcipher_ivsize(stfm);
161 start = sreq->cryptlen - ivsize;
162
163 if (req_info->is_enc) {
164 scatterwalk_map_and_copy(sreq->iv, sreq->dst, start,
165 ivsize, 0);
166 } else {
167 if (sreq->src != sreq->dst) {
168 scatterwalk_map_and_copy(sreq->iv, sreq->src,
169 start, ivsize, 0);
170 } else {
171 memcpy(sreq->iv, req_info->iv_out, ivsize);
172 kfree(req_info->iv_out);
173 }
174 }
175 }
176 }
177
otx_cpt_skcipher_callback(int status,void * arg1,void * arg2)178 static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2)
179 {
180 struct otx_cpt_info_buffer *cpt_info = arg2;
181 struct crypto_async_request *areq = arg1;
182 struct pci_dev *pdev;
183
184 if (areq) {
185 if (!status)
186 output_iv_copyback(areq);
187 if (cpt_info) {
188 pdev = cpt_info->pdev;
189 do_request_cleanup(pdev, cpt_info);
190 }
191 areq->complete(areq, status);
192 }
193 }
194
update_input_data(struct otx_cpt_req_info * req_info,struct scatterlist * inp_sg,u32 nbytes,u32 * argcnt)195 static inline void update_input_data(struct otx_cpt_req_info *req_info,
196 struct scatterlist *inp_sg,
197 u32 nbytes, u32 *argcnt)
198 {
199 req_info->req.dlen += nbytes;
200
201 while (nbytes) {
202 u32 len = min(nbytes, inp_sg->length);
203 u8 *ptr = sg_virt(inp_sg);
204
205 req_info->in[*argcnt].vptr = (void *)ptr;
206 req_info->in[*argcnt].size = len;
207 nbytes -= len;
208 ++(*argcnt);
209 inp_sg = sg_next(inp_sg);
210 }
211 }
212
update_output_data(struct otx_cpt_req_info * req_info,struct scatterlist * outp_sg,u32 offset,u32 nbytes,u32 * argcnt)213 static inline void update_output_data(struct otx_cpt_req_info *req_info,
214 struct scatterlist *outp_sg,
215 u32 offset, u32 nbytes, u32 *argcnt)
216 {
217 req_info->rlen += nbytes;
218
219 while (nbytes) {
220 u32 len = min(nbytes, outp_sg->length - offset);
221 u8 *ptr = sg_virt(outp_sg);
222
223 req_info->out[*argcnt].vptr = (void *) (ptr + offset);
224 req_info->out[*argcnt].size = len;
225 nbytes -= len;
226 ++(*argcnt);
227 offset = 0;
228 outp_sg = sg_next(outp_sg);
229 }
230 }
231
create_ctx_hdr(struct skcipher_request * req,u32 enc,u32 * argcnt)232 static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc,
233 u32 *argcnt)
234 {
235 struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
236 struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
237 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
238 struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
239 struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm);
240 struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
241 int ivsize = crypto_skcipher_ivsize(stfm);
242 u32 start = req->cryptlen - ivsize;
243 gfp_t flags;
244
245 flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
246 GFP_KERNEL : GFP_ATOMIC;
247 req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
248 req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
249
250 req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
251 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
252 if (enc) {
253 req_info->req.opcode.s.minor = 2;
254 } else {
255 req_info->req.opcode.s.minor = 3;
256 if ((ctx->cipher_type == OTX_CPT_AES_CBC ||
257 ctx->cipher_type == OTX_CPT_DES3_CBC) &&
258 req->src == req->dst) {
259 req_info->iv_out = kmalloc(ivsize, flags);
260 if (!req_info->iv_out)
261 return -ENOMEM;
262
263 scatterwalk_map_and_copy(req_info->iv_out, req->src,
264 start, ivsize, 0);
265 }
266 }
267 /* Encryption data length */
268 req_info->req.param1 = req->cryptlen;
269 /* Authentication data length */
270 req_info->req.param2 = 0;
271
272 fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
273 fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
274 fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
275
276 if (ctx->cipher_type == OTX_CPT_AES_XTS)
277 memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
278 else
279 memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
280
281 memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm));
282
283 fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
284
285 /*
286 * Storing Packet Data Information in offset
287 * Control Word First 8 bytes
288 */
289 req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
290 req_info->in[*argcnt].size = CONTROL_WORD_LEN;
291 req_info->req.dlen += CONTROL_WORD_LEN;
292 ++(*argcnt);
293
294 req_info->in[*argcnt].vptr = (u8 *)fctx;
295 req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
296 req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
297
298 ++(*argcnt);
299
300 return 0;
301 }
302
create_input_list(struct skcipher_request * req,u32 enc,u32 enc_iv_len)303 static inline u32 create_input_list(struct skcipher_request *req, u32 enc,
304 u32 enc_iv_len)
305 {
306 struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
307 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
308 u32 argcnt = 0;
309 int ret;
310
311 ret = create_ctx_hdr(req, enc, &argcnt);
312 if (ret)
313 return ret;
314
315 update_input_data(req_info, req->src, req->cryptlen, &argcnt);
316 req_info->incnt = argcnt;
317
318 return 0;
319 }
320
create_output_list(struct skcipher_request * req,u32 enc_iv_len)321 static inline void create_output_list(struct skcipher_request *req,
322 u32 enc_iv_len)
323 {
324 struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
325 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
326 u32 argcnt = 0;
327
328 /*
329 * OUTPUT Buffer Processing
330 * AES encryption/decryption output would be
331 * received in the following format
332 *
333 * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
334 * [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ]
335 */
336 update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt);
337 req_info->outcnt = argcnt;
338 }
339
cpt_enc_dec(struct skcipher_request * req,u32 enc)340 static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc)
341 {
342 struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
343 struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
344 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
345 u32 enc_iv_len = crypto_skcipher_ivsize(stfm);
346 struct pci_dev *pdev;
347 int status, cpu_num;
348
349 /* Validate that request doesn't exceed maximum CPT supported size */
350 if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE)
351 return -E2BIG;
352
353 /* Clear control words */
354 rctx->ctrl_word.flags = 0;
355 rctx->fctx.enc.enc_ctrl.flags = 0;
356
357 status = create_input_list(req, enc, enc_iv_len);
358 if (status)
359 return status;
360 create_output_list(req, enc_iv_len);
361
362 status = get_se_device(&pdev, &cpu_num);
363 if (status)
364 return status;
365
366 req_info->callback = (void *)otx_cpt_skcipher_callback;
367 req_info->areq = &req->base;
368 req_info->req_type = OTX_CPT_ENC_DEC_REQ;
369 req_info->is_enc = enc;
370 req_info->is_trunc_hmac = false;
371 req_info->ctrl.s.grp = 0;
372
373 /*
374 * We perform an asynchronous send and once
375 * the request is completed the driver would
376 * intimate through registered call back functions
377 */
378 status = otx_cpt_do_request(pdev, req_info, cpu_num);
379
380 return status;
381 }
382
otx_cpt_skcipher_encrypt(struct skcipher_request * req)383 static int otx_cpt_skcipher_encrypt(struct skcipher_request *req)
384 {
385 return cpt_enc_dec(req, true);
386 }
387
otx_cpt_skcipher_decrypt(struct skcipher_request * req)388 static int otx_cpt_skcipher_decrypt(struct skcipher_request *req)
389 {
390 return cpt_enc_dec(req, false);
391 }
392
otx_cpt_skcipher_xts_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen)393 static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm,
394 const u8 *key, u32 keylen)
395 {
396 struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
397 const u8 *key2 = key + (keylen / 2);
398 const u8 *key1 = key;
399 int ret;
400
401 ret = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
402 if (ret)
403 return ret;
404 ctx->key_len = keylen;
405 memcpy(ctx->enc_key, key1, keylen / 2);
406 memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
407 ctx->cipher_type = OTX_CPT_AES_XTS;
408 switch (ctx->key_len) {
409 case 2 * AES_KEYSIZE_128:
410 ctx->key_type = OTX_CPT_AES_128_BIT;
411 break;
412 case 2 * AES_KEYSIZE_256:
413 ctx->key_type = OTX_CPT_AES_256_BIT;
414 break;
415 default:
416 return -EINVAL;
417 }
418
419 return 0;
420 }
421
cpt_des_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen,u8 cipher_type)422 static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
423 u32 keylen, u8 cipher_type)
424 {
425 struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
426
427 if (keylen != DES3_EDE_KEY_SIZE)
428 return -EINVAL;
429
430 ctx->key_len = keylen;
431 ctx->cipher_type = cipher_type;
432
433 memcpy(ctx->enc_key, key, keylen);
434
435 return 0;
436 }
437
cpt_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen,u8 cipher_type)438 static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
439 u32 keylen, u8 cipher_type)
440 {
441 struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
442
443 switch (keylen) {
444 case AES_KEYSIZE_128:
445 ctx->key_type = OTX_CPT_AES_128_BIT;
446 break;
447 case AES_KEYSIZE_192:
448 ctx->key_type = OTX_CPT_AES_192_BIT;
449 break;
450 case AES_KEYSIZE_256:
451 ctx->key_type = OTX_CPT_AES_256_BIT;
452 break;
453 default:
454 return -EINVAL;
455 }
456 ctx->key_len = keylen;
457 ctx->cipher_type = cipher_type;
458
459 memcpy(ctx->enc_key, key, keylen);
460
461 return 0;
462 }
463
otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen)464 static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm,
465 const u8 *key, u32 keylen)
466 {
467 return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC);
468 }
469
otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen)470 static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm,
471 const u8 *key, u32 keylen)
472 {
473 return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB);
474 }
475
otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen)476 static int otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher *tfm,
477 const u8 *key, u32 keylen)
478 {
479 return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CFB);
480 }
481
otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen)482 static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm,
483 const u8 *key, u32 keylen)
484 {
485 return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC);
486 }
487
otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher * tfm,const u8 * key,u32 keylen)488 static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm,
489 const u8 *key, u32 keylen)
490 {
491 return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB);
492 }
493
otx_cpt_enc_dec_init(struct crypto_skcipher * tfm)494 static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm)
495 {
496 struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
497
498 memset(ctx, 0, sizeof(*ctx));
499 /*
500 * Additional memory for skcipher_request is
501 * allocated since the cryptd daemon uses
502 * this memory for request_ctx information
503 */
504 crypto_skcipher_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx) +
505 sizeof(struct skcipher_request));
506
507 return 0;
508 }
509
cpt_aead_init(struct crypto_aead * tfm,u8 cipher_type,u8 mac_type)510 static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type)
511 {
512 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
513
514 ctx->cipher_type = cipher_type;
515 ctx->mac_type = mac_type;
516
517 /*
518 * When selected cipher is NULL we use HMAC opcode instead of
519 * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms
520 * for calculating ipad and opad
521 */
522 if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) {
523 switch (ctx->mac_type) {
524 case OTX_CPT_SHA1:
525 ctx->hashalg = crypto_alloc_shash("sha1", 0,
526 CRYPTO_ALG_ASYNC);
527 if (IS_ERR(ctx->hashalg))
528 return PTR_ERR(ctx->hashalg);
529 break;
530
531 case OTX_CPT_SHA256:
532 ctx->hashalg = crypto_alloc_shash("sha256", 0,
533 CRYPTO_ALG_ASYNC);
534 if (IS_ERR(ctx->hashalg))
535 return PTR_ERR(ctx->hashalg);
536 break;
537
538 case OTX_CPT_SHA384:
539 ctx->hashalg = crypto_alloc_shash("sha384", 0,
540 CRYPTO_ALG_ASYNC);
541 if (IS_ERR(ctx->hashalg))
542 return PTR_ERR(ctx->hashalg);
543 break;
544
545 case OTX_CPT_SHA512:
546 ctx->hashalg = crypto_alloc_shash("sha512", 0,
547 CRYPTO_ALG_ASYNC);
548 if (IS_ERR(ctx->hashalg))
549 return PTR_ERR(ctx->hashalg);
550 break;
551 }
552 }
553
554 crypto_aead_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx));
555
556 return 0;
557 }
558
otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead * tfm)559 static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm)
560 {
561 return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1);
562 }
563
otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead * tfm)564 static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm)
565 {
566 return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256);
567 }
568
otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead * tfm)569 static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm)
570 {
571 return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384);
572 }
573
otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead * tfm)574 static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm)
575 {
576 return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512);
577 }
578
otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead * tfm)579 static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm)
580 {
581 return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1);
582 }
583
otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead * tfm)584 static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm)
585 {
586 return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256);
587 }
588
otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead * tfm)589 static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm)
590 {
591 return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384);
592 }
593
otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead * tfm)594 static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm)
595 {
596 return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512);
597 }
598
otx_cpt_aead_gcm_aes_init(struct crypto_aead * tfm)599 static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm)
600 {
601 return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL);
602 }
603
otx_cpt_aead_exit(struct crypto_aead * tfm)604 static void otx_cpt_aead_exit(struct crypto_aead *tfm)
605 {
606 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
607
608 kfree(ctx->ipad);
609 kfree(ctx->opad);
610 if (ctx->hashalg)
611 crypto_free_shash(ctx->hashalg);
612 kfree(ctx->sdesc);
613 }
614
615 /*
616 * This is the Integrity Check Value validation (aka the authentication tag
617 * length)
618 */
otx_cpt_aead_set_authsize(struct crypto_aead * tfm,unsigned int authsize)619 static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm,
620 unsigned int authsize)
621 {
622 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
623
624 switch (ctx->mac_type) {
625 case OTX_CPT_SHA1:
626 if (authsize != SHA1_DIGEST_SIZE &&
627 authsize != SHA1_TRUNC_DIGEST_SIZE)
628 return -EINVAL;
629
630 if (authsize == SHA1_TRUNC_DIGEST_SIZE)
631 ctx->is_trunc_hmac = true;
632 break;
633
634 case OTX_CPT_SHA256:
635 if (authsize != SHA256_DIGEST_SIZE &&
636 authsize != SHA256_TRUNC_DIGEST_SIZE)
637 return -EINVAL;
638
639 if (authsize == SHA256_TRUNC_DIGEST_SIZE)
640 ctx->is_trunc_hmac = true;
641 break;
642
643 case OTX_CPT_SHA384:
644 if (authsize != SHA384_DIGEST_SIZE &&
645 authsize != SHA384_TRUNC_DIGEST_SIZE)
646 return -EINVAL;
647
648 if (authsize == SHA384_TRUNC_DIGEST_SIZE)
649 ctx->is_trunc_hmac = true;
650 break;
651
652 case OTX_CPT_SHA512:
653 if (authsize != SHA512_DIGEST_SIZE &&
654 authsize != SHA512_TRUNC_DIGEST_SIZE)
655 return -EINVAL;
656
657 if (authsize == SHA512_TRUNC_DIGEST_SIZE)
658 ctx->is_trunc_hmac = true;
659 break;
660
661 case OTX_CPT_MAC_NULL:
662 if (ctx->cipher_type == OTX_CPT_AES_GCM) {
663 if (authsize != AES_GCM_ICV_SIZE)
664 return -EINVAL;
665 } else
666 return -EINVAL;
667 break;
668
669 default:
670 return -EINVAL;
671 }
672
673 tfm->authsize = authsize;
674 return 0;
675 }
676
alloc_sdesc(struct crypto_shash * alg)677 static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg)
678 {
679 struct otx_cpt_sdesc *sdesc;
680 int size;
681
682 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
683 sdesc = kmalloc(size, GFP_KERNEL);
684 if (!sdesc)
685 return NULL;
686
687 sdesc->shash.tfm = alg;
688
689 return sdesc;
690 }
691
swap_data32(void * buf,u32 len)692 static inline void swap_data32(void *buf, u32 len)
693 {
694 cpu_to_be32_array(buf, buf, len / 4);
695 }
696
swap_data64(void * buf,u32 len)697 static inline void swap_data64(void *buf, u32 len)
698 {
699 __be64 *dst = buf;
700 u64 *src = buf;
701 int i = 0;
702
703 for (i = 0 ; i < len / 8; i++, src++, dst++)
704 *dst = cpu_to_be64p(src);
705 }
706
copy_pad(u8 mac_type,u8 * out_pad,u8 * in_pad)707 static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad)
708 {
709 struct sha512_state *sha512;
710 struct sha256_state *sha256;
711 struct sha1_state *sha1;
712
713 switch (mac_type) {
714 case OTX_CPT_SHA1:
715 sha1 = (struct sha1_state *) in_pad;
716 swap_data32(sha1->state, SHA1_DIGEST_SIZE);
717 memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE);
718 break;
719
720 case OTX_CPT_SHA256:
721 sha256 = (struct sha256_state *) in_pad;
722 swap_data32(sha256->state, SHA256_DIGEST_SIZE);
723 memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE);
724 break;
725
726 case OTX_CPT_SHA384:
727 case OTX_CPT_SHA512:
728 sha512 = (struct sha512_state *) in_pad;
729 swap_data64(sha512->state, SHA512_DIGEST_SIZE);
730 memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE);
731 break;
732
733 default:
734 return -EINVAL;
735 }
736
737 return 0;
738 }
739
aead_hmac_init(struct crypto_aead * cipher)740 static int aead_hmac_init(struct crypto_aead *cipher)
741 {
742 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
743 int state_size = crypto_shash_statesize(ctx->hashalg);
744 int ds = crypto_shash_digestsize(ctx->hashalg);
745 int bs = crypto_shash_blocksize(ctx->hashalg);
746 int authkeylen = ctx->auth_key_len;
747 u8 *ipad = NULL, *opad = NULL;
748 int ret = 0, icount = 0;
749
750 ctx->sdesc = alloc_sdesc(ctx->hashalg);
751 if (!ctx->sdesc)
752 return -ENOMEM;
753
754 ctx->ipad = kzalloc(bs, GFP_KERNEL);
755 if (!ctx->ipad) {
756 ret = -ENOMEM;
757 goto calc_fail;
758 }
759
760 ctx->opad = kzalloc(bs, GFP_KERNEL);
761 if (!ctx->opad) {
762 ret = -ENOMEM;
763 goto calc_fail;
764 }
765
766 ipad = kzalloc(state_size, GFP_KERNEL);
767 if (!ipad) {
768 ret = -ENOMEM;
769 goto calc_fail;
770 }
771
772 opad = kzalloc(state_size, GFP_KERNEL);
773 if (!opad) {
774 ret = -ENOMEM;
775 goto calc_fail;
776 }
777
778 if (authkeylen > bs) {
779 ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key,
780 authkeylen, ipad);
781 if (ret)
782 goto calc_fail;
783
784 authkeylen = ds;
785 } else {
786 memcpy(ipad, ctx->key, authkeylen);
787 }
788
789 memset(ipad + authkeylen, 0, bs - authkeylen);
790 memcpy(opad, ipad, bs);
791
792 for (icount = 0; icount < bs; icount++) {
793 ipad[icount] ^= 0x36;
794 opad[icount] ^= 0x5c;
795 }
796
797 /*
798 * Partial Hash calculated from the software
799 * algorithm is retrieved for IPAD & OPAD
800 */
801
802 /* IPAD Calculation */
803 crypto_shash_init(&ctx->sdesc->shash);
804 crypto_shash_update(&ctx->sdesc->shash, ipad, bs);
805 crypto_shash_export(&ctx->sdesc->shash, ipad);
806 ret = copy_pad(ctx->mac_type, ctx->ipad, ipad);
807 if (ret)
808 goto calc_fail;
809
810 /* OPAD Calculation */
811 crypto_shash_init(&ctx->sdesc->shash);
812 crypto_shash_update(&ctx->sdesc->shash, opad, bs);
813 crypto_shash_export(&ctx->sdesc->shash, opad);
814 ret = copy_pad(ctx->mac_type, ctx->opad, opad);
815 if (ret)
816 goto calc_fail;
817
818 kfree(ipad);
819 kfree(opad);
820
821 return 0;
822
823 calc_fail:
824 kfree(ctx->ipad);
825 ctx->ipad = NULL;
826 kfree(ctx->opad);
827 ctx->opad = NULL;
828 kfree(ipad);
829 kfree(opad);
830 kfree(ctx->sdesc);
831 ctx->sdesc = NULL;
832
833 return ret;
834 }
835
otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead * cipher,const unsigned char * key,unsigned int keylen)836 static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher,
837 const unsigned char *key,
838 unsigned int keylen)
839 {
840 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
841 struct crypto_authenc_key_param *param;
842 int enckeylen = 0, authkeylen = 0;
843 struct rtattr *rta = (void *)key;
844 int status = -EINVAL;
845
846 if (!RTA_OK(rta, keylen))
847 goto badkey;
848
849 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
850 goto badkey;
851
852 if (RTA_PAYLOAD(rta) < sizeof(*param))
853 goto badkey;
854
855 param = RTA_DATA(rta);
856 enckeylen = be32_to_cpu(param->enckeylen);
857 key += RTA_ALIGN(rta->rta_len);
858 keylen -= RTA_ALIGN(rta->rta_len);
859 if (keylen < enckeylen)
860 goto badkey;
861
862 if (keylen > OTX_CPT_MAX_KEY_SIZE)
863 goto badkey;
864
865 authkeylen = keylen - enckeylen;
866 memcpy(ctx->key, key, keylen);
867
868 switch (enckeylen) {
869 case AES_KEYSIZE_128:
870 ctx->key_type = OTX_CPT_AES_128_BIT;
871 break;
872 case AES_KEYSIZE_192:
873 ctx->key_type = OTX_CPT_AES_192_BIT;
874 break;
875 case AES_KEYSIZE_256:
876 ctx->key_type = OTX_CPT_AES_256_BIT;
877 break;
878 default:
879 /* Invalid key length */
880 goto badkey;
881 }
882
883 ctx->enc_key_len = enckeylen;
884 ctx->auth_key_len = authkeylen;
885
886 status = aead_hmac_init(cipher);
887 if (status)
888 goto badkey;
889
890 return 0;
891 badkey:
892 return status;
893 }
894
otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead * cipher,const unsigned char * key,unsigned int keylen)895 static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher,
896 const unsigned char *key,
897 unsigned int keylen)
898 {
899 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
900 struct crypto_authenc_key_param *param;
901 struct rtattr *rta = (void *)key;
902 int enckeylen = 0;
903
904 if (!RTA_OK(rta, keylen))
905 goto badkey;
906
907 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
908 goto badkey;
909
910 if (RTA_PAYLOAD(rta) < sizeof(*param))
911 goto badkey;
912
913 param = RTA_DATA(rta);
914 enckeylen = be32_to_cpu(param->enckeylen);
915 key += RTA_ALIGN(rta->rta_len);
916 keylen -= RTA_ALIGN(rta->rta_len);
917 if (enckeylen != 0)
918 goto badkey;
919
920 if (keylen > OTX_CPT_MAX_KEY_SIZE)
921 goto badkey;
922
923 memcpy(ctx->key, key, keylen);
924 ctx->enc_key_len = enckeylen;
925 ctx->auth_key_len = keylen;
926 return 0;
927 badkey:
928 return -EINVAL;
929 }
930
otx_cpt_aead_gcm_aes_setkey(struct crypto_aead * cipher,const unsigned char * key,unsigned int keylen)931 static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher,
932 const unsigned char *key,
933 unsigned int keylen)
934 {
935 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
936
937 /*
938 * For aes gcm we expect to get encryption key (16, 24, 32 bytes)
939 * and salt (4 bytes)
940 */
941 switch (keylen) {
942 case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE:
943 ctx->key_type = OTX_CPT_AES_128_BIT;
944 ctx->enc_key_len = AES_KEYSIZE_128;
945 break;
946 case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE:
947 ctx->key_type = OTX_CPT_AES_192_BIT;
948 ctx->enc_key_len = AES_KEYSIZE_192;
949 break;
950 case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE:
951 ctx->key_type = OTX_CPT_AES_256_BIT;
952 ctx->enc_key_len = AES_KEYSIZE_256;
953 break;
954 default:
955 /* Invalid key and salt length */
956 return -EINVAL;
957 }
958
959 /* Store encryption key and salt */
960 memcpy(ctx->key, key, keylen);
961
962 return 0;
963 }
964
create_aead_ctx_hdr(struct aead_request * req,u32 enc,u32 * argcnt)965 static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc,
966 u32 *argcnt)
967 {
968 struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
969 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
970 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
971 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
972 struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
973 int mac_len = crypto_aead_authsize(tfm);
974 int ds;
975
976 rctx->ctrl_word.e.enc_data_offset = req->assoclen;
977
978 switch (ctx->cipher_type) {
979 case OTX_CPT_AES_CBC:
980 fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
981 /* Copy encryption key to context */
982 memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len,
983 ctx->enc_key_len);
984 /* Copy IV to context */
985 memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm));
986
987 ds = crypto_shash_digestsize(ctx->hashalg);
988 if (ctx->mac_type == OTX_CPT_SHA384)
989 ds = SHA512_DIGEST_SIZE;
990 if (ctx->ipad)
991 memcpy(fctx->hmac.e.ipad, ctx->ipad, ds);
992 if (ctx->opad)
993 memcpy(fctx->hmac.e.opad, ctx->opad, ds);
994 break;
995
996 case OTX_CPT_AES_GCM:
997 fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR;
998 /* Copy encryption key to context */
999 memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len);
1000 /* Copy salt to context */
1001 memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len,
1002 AES_GCM_SALT_SIZE);
1003
1004 rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET;
1005 break;
1006
1007 default:
1008 /* Unknown cipher type */
1009 return -EINVAL;
1010 }
1011 rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.cflags);
1012
1013 req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
1014 req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
1015 req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
1016 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
1017 if (enc) {
1018 req_info->req.opcode.s.minor = 2;
1019 req_info->req.param1 = req->cryptlen;
1020 req_info->req.param2 = req->cryptlen + req->assoclen;
1021 } else {
1022 req_info->req.opcode.s.minor = 3;
1023 req_info->req.param1 = req->cryptlen - mac_len;
1024 req_info->req.param2 = req->cryptlen + req->assoclen - mac_len;
1025 }
1026
1027 fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
1028 fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
1029 fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type;
1030 fctx->enc.enc_ctrl.e.mac_len = mac_len;
1031 fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
1032
1033 /*
1034 * Storing Packet Data Information in offset
1035 * Control Word First 8 bytes
1036 */
1037 req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
1038 req_info->in[*argcnt].size = CONTROL_WORD_LEN;
1039 req_info->req.dlen += CONTROL_WORD_LEN;
1040 ++(*argcnt);
1041
1042 req_info->in[*argcnt].vptr = (u8 *)fctx;
1043 req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
1044 req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
1045 ++(*argcnt);
1046
1047 return 0;
1048 }
1049
create_hmac_ctx_hdr(struct aead_request * req,u32 * argcnt,u32 enc)1050 static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt,
1051 u32 enc)
1052 {
1053 struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1054 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1055 struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
1056 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1057
1058 req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
1059 req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
1060 req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC |
1061 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
1062 req_info->is_trunc_hmac = ctx->is_trunc_hmac;
1063
1064 req_info->req.opcode.s.minor = 0;
1065 req_info->req.param1 = ctx->auth_key_len;
1066 req_info->req.param2 = ctx->mac_type << 8;
1067
1068 /* Add authentication key */
1069 req_info->in[*argcnt].vptr = ctx->key;
1070 req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8);
1071 req_info->req.dlen += round_up(ctx->auth_key_len, 8);
1072 ++(*argcnt);
1073
1074 return 0;
1075 }
1076
create_aead_input_list(struct aead_request * req,u32 enc)1077 static inline u32 create_aead_input_list(struct aead_request *req, u32 enc)
1078 {
1079 struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1080 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1081 u32 inputlen = req->cryptlen + req->assoclen;
1082 u32 status, argcnt = 0;
1083
1084 status = create_aead_ctx_hdr(req, enc, &argcnt);
1085 if (status)
1086 return status;
1087 update_input_data(req_info, req->src, inputlen, &argcnt);
1088 req_info->incnt = argcnt;
1089
1090 return 0;
1091 }
1092
create_aead_output_list(struct aead_request * req,u32 enc,u32 mac_len)1093 static inline u32 create_aead_output_list(struct aead_request *req, u32 enc,
1094 u32 mac_len)
1095 {
1096 struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1097 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1098 u32 argcnt = 0, outputlen = 0;
1099
1100 if (enc)
1101 outputlen = req->cryptlen + req->assoclen + mac_len;
1102 else
1103 outputlen = req->cryptlen + req->assoclen - mac_len;
1104
1105 update_output_data(req_info, req->dst, 0, outputlen, &argcnt);
1106 req_info->outcnt = argcnt;
1107
1108 return 0;
1109 }
1110
create_aead_null_input_list(struct aead_request * req,u32 enc,u32 mac_len)1111 static inline u32 create_aead_null_input_list(struct aead_request *req,
1112 u32 enc, u32 mac_len)
1113 {
1114 struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1115 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1116 u32 inputlen, argcnt = 0;
1117
1118 if (enc)
1119 inputlen = req->cryptlen + req->assoclen;
1120 else
1121 inputlen = req->cryptlen + req->assoclen - mac_len;
1122
1123 create_hmac_ctx_hdr(req, &argcnt, enc);
1124 update_input_data(req_info, req->src, inputlen, &argcnt);
1125 req_info->incnt = argcnt;
1126
1127 return 0;
1128 }
1129
create_aead_null_output_list(struct aead_request * req,u32 enc,u32 mac_len)1130 static inline u32 create_aead_null_output_list(struct aead_request *req,
1131 u32 enc, u32 mac_len)
1132 {
1133 struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1134 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1135 struct scatterlist *dst;
1136 u8 *ptr = NULL;
1137 int argcnt = 0, status, offset;
1138 u32 inputlen;
1139
1140 if (enc)
1141 inputlen = req->cryptlen + req->assoclen;
1142 else
1143 inputlen = req->cryptlen + req->assoclen - mac_len;
1144
1145 /*
1146 * If source and destination are different
1147 * then copy payload to destination
1148 */
1149 if (req->src != req->dst) {
1150
1151 ptr = kmalloc(inputlen, (req_info->areq->flags &
1152 CRYPTO_TFM_REQ_MAY_SLEEP) ?
1153 GFP_KERNEL : GFP_ATOMIC);
1154 if (!ptr) {
1155 status = -ENOMEM;
1156 goto error;
1157 }
1158
1159 status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr,
1160 inputlen);
1161 if (status != inputlen) {
1162 status = -EINVAL;
1163 goto error_free;
1164 }
1165 status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr,
1166 inputlen);
1167 if (status != inputlen) {
1168 status = -EINVAL;
1169 goto error_free;
1170 }
1171 kfree(ptr);
1172 }
1173
1174 if (enc) {
1175 /*
1176 * In an encryption scenario hmac needs
1177 * to be appended after payload
1178 */
1179 dst = req->dst;
1180 offset = inputlen;
1181 while (offset >= dst->length) {
1182 offset -= dst->length;
1183 dst = sg_next(dst);
1184 if (!dst) {
1185 status = -ENOENT;
1186 goto error;
1187 }
1188 }
1189
1190 update_output_data(req_info, dst, offset, mac_len, &argcnt);
1191 } else {
1192 /*
1193 * In a decryption scenario calculated hmac for received
1194 * payload needs to be compare with hmac received
1195 */
1196 status = sg_copy_buffer(req->src, sg_nents(req->src),
1197 rctx->fctx.hmac.s.hmac_recv, mac_len,
1198 inputlen, true);
1199 if (status != mac_len) {
1200 status = -EINVAL;
1201 goto error;
1202 }
1203
1204 req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc;
1205 req_info->out[argcnt].size = mac_len;
1206 argcnt++;
1207 }
1208
1209 req_info->outcnt = argcnt;
1210 return 0;
1211
1212 error_free:
1213 kfree(ptr);
1214 error:
1215 return status;
1216 }
1217
cpt_aead_enc_dec(struct aead_request * req,u8 reg_type,u8 enc)1218 static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc)
1219 {
1220 struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1221 struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1222 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1223 struct pci_dev *pdev;
1224 u32 status, cpu_num;
1225
1226 /* Clear control words */
1227 rctx->ctrl_word.flags = 0;
1228 rctx->fctx.enc.enc_ctrl.flags = 0;
1229
1230 req_info->callback = otx_cpt_aead_callback;
1231 req_info->areq = &req->base;
1232 req_info->req_type = reg_type;
1233 req_info->is_enc = enc;
1234 req_info->is_trunc_hmac = false;
1235
1236 switch (reg_type) {
1237 case OTX_CPT_AEAD_ENC_DEC_REQ:
1238 status = create_aead_input_list(req, enc);
1239 if (status)
1240 return status;
1241 status = create_aead_output_list(req, enc,
1242 crypto_aead_authsize(tfm));
1243 if (status)
1244 return status;
1245 break;
1246
1247 case OTX_CPT_AEAD_ENC_DEC_NULL_REQ:
1248 status = create_aead_null_input_list(req, enc,
1249 crypto_aead_authsize(tfm));
1250 if (status)
1251 return status;
1252 status = create_aead_null_output_list(req, enc,
1253 crypto_aead_authsize(tfm));
1254 if (status)
1255 return status;
1256 break;
1257
1258 default:
1259 return -EINVAL;
1260 }
1261
1262 /* Validate that request doesn't exceed maximum CPT supported size */
1263 if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE ||
1264 req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE)
1265 return -E2BIG;
1266
1267 status = get_se_device(&pdev, &cpu_num);
1268 if (status)
1269 return status;
1270
1271 req_info->ctrl.s.grp = 0;
1272
1273 status = otx_cpt_do_request(pdev, req_info, cpu_num);
1274 /*
1275 * We perform an asynchronous send and once
1276 * the request is completed the driver would
1277 * intimate through registered call back functions
1278 */
1279 return status;
1280 }
1281
otx_cpt_aead_encrypt(struct aead_request * req)1282 static int otx_cpt_aead_encrypt(struct aead_request *req)
1283 {
1284 return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true);
1285 }
1286
otx_cpt_aead_decrypt(struct aead_request * req)1287 static int otx_cpt_aead_decrypt(struct aead_request *req)
1288 {
1289 return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false);
1290 }
1291
otx_cpt_aead_null_encrypt(struct aead_request * req)1292 static int otx_cpt_aead_null_encrypt(struct aead_request *req)
1293 {
1294 return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true);
1295 }
1296
otx_cpt_aead_null_decrypt(struct aead_request * req)1297 static int otx_cpt_aead_null_decrypt(struct aead_request *req)
1298 {
1299 return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false);
1300 }
1301
1302 static struct skcipher_alg otx_cpt_skciphers[] = { {
1303 .base.cra_name = "xts(aes)",
1304 .base.cra_driver_name = "cpt_xts_aes",
1305 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1306 .base.cra_blocksize = AES_BLOCK_SIZE,
1307 .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1308 .base.cra_alignmask = 7,
1309 .base.cra_priority = 4001,
1310 .base.cra_module = THIS_MODULE,
1311
1312 .init = otx_cpt_enc_dec_init,
1313 .ivsize = AES_BLOCK_SIZE,
1314 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1315 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1316 .setkey = otx_cpt_skcipher_xts_setkey,
1317 .encrypt = otx_cpt_skcipher_encrypt,
1318 .decrypt = otx_cpt_skcipher_decrypt,
1319 }, {
1320 .base.cra_name = "cbc(aes)",
1321 .base.cra_driver_name = "cpt_cbc_aes",
1322 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1323 .base.cra_blocksize = AES_BLOCK_SIZE,
1324 .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1325 .base.cra_alignmask = 7,
1326 .base.cra_priority = 4001,
1327 .base.cra_module = THIS_MODULE,
1328
1329 .init = otx_cpt_enc_dec_init,
1330 .ivsize = AES_BLOCK_SIZE,
1331 .min_keysize = AES_MIN_KEY_SIZE,
1332 .max_keysize = AES_MAX_KEY_SIZE,
1333 .setkey = otx_cpt_skcipher_cbc_aes_setkey,
1334 .encrypt = otx_cpt_skcipher_encrypt,
1335 .decrypt = otx_cpt_skcipher_decrypt,
1336 }, {
1337 .base.cra_name = "ecb(aes)",
1338 .base.cra_driver_name = "cpt_ecb_aes",
1339 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1340 .base.cra_blocksize = AES_BLOCK_SIZE,
1341 .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1342 .base.cra_alignmask = 7,
1343 .base.cra_priority = 4001,
1344 .base.cra_module = THIS_MODULE,
1345
1346 .init = otx_cpt_enc_dec_init,
1347 .ivsize = 0,
1348 .min_keysize = AES_MIN_KEY_SIZE,
1349 .max_keysize = AES_MAX_KEY_SIZE,
1350 .setkey = otx_cpt_skcipher_ecb_aes_setkey,
1351 .encrypt = otx_cpt_skcipher_encrypt,
1352 .decrypt = otx_cpt_skcipher_decrypt,
1353 }, {
1354 .base.cra_name = "cfb(aes)",
1355 .base.cra_driver_name = "cpt_cfb_aes",
1356 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1357 .base.cra_blocksize = AES_BLOCK_SIZE,
1358 .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1359 .base.cra_alignmask = 7,
1360 .base.cra_priority = 4001,
1361 .base.cra_module = THIS_MODULE,
1362
1363 .init = otx_cpt_enc_dec_init,
1364 .ivsize = AES_BLOCK_SIZE,
1365 .min_keysize = AES_MIN_KEY_SIZE,
1366 .max_keysize = AES_MAX_KEY_SIZE,
1367 .setkey = otx_cpt_skcipher_cfb_aes_setkey,
1368 .encrypt = otx_cpt_skcipher_encrypt,
1369 .decrypt = otx_cpt_skcipher_decrypt,
1370 }, {
1371 .base.cra_name = "cbc(des3_ede)",
1372 .base.cra_driver_name = "cpt_cbc_des3_ede",
1373 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1374 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1375 .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1376 .base.cra_alignmask = 7,
1377 .base.cra_priority = 4001,
1378 .base.cra_module = THIS_MODULE,
1379
1380 .init = otx_cpt_enc_dec_init,
1381 .min_keysize = DES3_EDE_KEY_SIZE,
1382 .max_keysize = DES3_EDE_KEY_SIZE,
1383 .ivsize = DES_BLOCK_SIZE,
1384 .setkey = otx_cpt_skcipher_cbc_des3_setkey,
1385 .encrypt = otx_cpt_skcipher_encrypt,
1386 .decrypt = otx_cpt_skcipher_decrypt,
1387 }, {
1388 .base.cra_name = "ecb(des3_ede)",
1389 .base.cra_driver_name = "cpt_ecb_des3_ede",
1390 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1391 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1392 .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1393 .base.cra_alignmask = 7,
1394 .base.cra_priority = 4001,
1395 .base.cra_module = THIS_MODULE,
1396
1397 .init = otx_cpt_enc_dec_init,
1398 .min_keysize = DES3_EDE_KEY_SIZE,
1399 .max_keysize = DES3_EDE_KEY_SIZE,
1400 .ivsize = 0,
1401 .setkey = otx_cpt_skcipher_ecb_des3_setkey,
1402 .encrypt = otx_cpt_skcipher_encrypt,
1403 .decrypt = otx_cpt_skcipher_decrypt,
1404 } };
1405
1406 static struct aead_alg otx_cpt_aeads[] = { {
1407 .base = {
1408 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1409 .cra_driver_name = "cpt_hmac_sha1_cbc_aes",
1410 .cra_blocksize = AES_BLOCK_SIZE,
1411 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1412 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1413 .cra_priority = 4001,
1414 .cra_alignmask = 0,
1415 .cra_module = THIS_MODULE,
1416 },
1417 .init = otx_cpt_aead_cbc_aes_sha1_init,
1418 .exit = otx_cpt_aead_exit,
1419 .setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1420 .setauthsize = otx_cpt_aead_set_authsize,
1421 .encrypt = otx_cpt_aead_encrypt,
1422 .decrypt = otx_cpt_aead_decrypt,
1423 .ivsize = AES_BLOCK_SIZE,
1424 .maxauthsize = SHA1_DIGEST_SIZE,
1425 }, {
1426 .base = {
1427 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1428 .cra_driver_name = "cpt_hmac_sha256_cbc_aes",
1429 .cra_blocksize = AES_BLOCK_SIZE,
1430 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1431 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1432 .cra_priority = 4001,
1433 .cra_alignmask = 0,
1434 .cra_module = THIS_MODULE,
1435 },
1436 .init = otx_cpt_aead_cbc_aes_sha256_init,
1437 .exit = otx_cpt_aead_exit,
1438 .setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1439 .setauthsize = otx_cpt_aead_set_authsize,
1440 .encrypt = otx_cpt_aead_encrypt,
1441 .decrypt = otx_cpt_aead_decrypt,
1442 .ivsize = AES_BLOCK_SIZE,
1443 .maxauthsize = SHA256_DIGEST_SIZE,
1444 }, {
1445 .base = {
1446 .cra_name = "authenc(hmac(sha384),cbc(aes))",
1447 .cra_driver_name = "cpt_hmac_sha384_cbc_aes",
1448 .cra_blocksize = AES_BLOCK_SIZE,
1449 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1450 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1451 .cra_priority = 4001,
1452 .cra_alignmask = 0,
1453 .cra_module = THIS_MODULE,
1454 },
1455 .init = otx_cpt_aead_cbc_aes_sha384_init,
1456 .exit = otx_cpt_aead_exit,
1457 .setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1458 .setauthsize = otx_cpt_aead_set_authsize,
1459 .encrypt = otx_cpt_aead_encrypt,
1460 .decrypt = otx_cpt_aead_decrypt,
1461 .ivsize = AES_BLOCK_SIZE,
1462 .maxauthsize = SHA384_DIGEST_SIZE,
1463 }, {
1464 .base = {
1465 .cra_name = "authenc(hmac(sha512),cbc(aes))",
1466 .cra_driver_name = "cpt_hmac_sha512_cbc_aes",
1467 .cra_blocksize = AES_BLOCK_SIZE,
1468 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1469 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1470 .cra_priority = 4001,
1471 .cra_alignmask = 0,
1472 .cra_module = THIS_MODULE,
1473 },
1474 .init = otx_cpt_aead_cbc_aes_sha512_init,
1475 .exit = otx_cpt_aead_exit,
1476 .setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1477 .setauthsize = otx_cpt_aead_set_authsize,
1478 .encrypt = otx_cpt_aead_encrypt,
1479 .decrypt = otx_cpt_aead_decrypt,
1480 .ivsize = AES_BLOCK_SIZE,
1481 .maxauthsize = SHA512_DIGEST_SIZE,
1482 }, {
1483 .base = {
1484 .cra_name = "authenc(hmac(sha1),ecb(cipher_null))",
1485 .cra_driver_name = "cpt_hmac_sha1_ecb_null",
1486 .cra_blocksize = 1,
1487 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1488 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1489 .cra_priority = 4001,
1490 .cra_alignmask = 0,
1491 .cra_module = THIS_MODULE,
1492 },
1493 .init = otx_cpt_aead_ecb_null_sha1_init,
1494 .exit = otx_cpt_aead_exit,
1495 .setkey = otx_cpt_aead_ecb_null_sha_setkey,
1496 .setauthsize = otx_cpt_aead_set_authsize,
1497 .encrypt = otx_cpt_aead_null_encrypt,
1498 .decrypt = otx_cpt_aead_null_decrypt,
1499 .ivsize = 0,
1500 .maxauthsize = SHA1_DIGEST_SIZE,
1501 }, {
1502 .base = {
1503 .cra_name = "authenc(hmac(sha256),ecb(cipher_null))",
1504 .cra_driver_name = "cpt_hmac_sha256_ecb_null",
1505 .cra_blocksize = 1,
1506 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1507 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1508 .cra_priority = 4001,
1509 .cra_alignmask = 0,
1510 .cra_module = THIS_MODULE,
1511 },
1512 .init = otx_cpt_aead_ecb_null_sha256_init,
1513 .exit = otx_cpt_aead_exit,
1514 .setkey = otx_cpt_aead_ecb_null_sha_setkey,
1515 .setauthsize = otx_cpt_aead_set_authsize,
1516 .encrypt = otx_cpt_aead_null_encrypt,
1517 .decrypt = otx_cpt_aead_null_decrypt,
1518 .ivsize = 0,
1519 .maxauthsize = SHA256_DIGEST_SIZE,
1520 }, {
1521 .base = {
1522 .cra_name = "authenc(hmac(sha384),ecb(cipher_null))",
1523 .cra_driver_name = "cpt_hmac_sha384_ecb_null",
1524 .cra_blocksize = 1,
1525 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1526 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1527 .cra_priority = 4001,
1528 .cra_alignmask = 0,
1529 .cra_module = THIS_MODULE,
1530 },
1531 .init = otx_cpt_aead_ecb_null_sha384_init,
1532 .exit = otx_cpt_aead_exit,
1533 .setkey = otx_cpt_aead_ecb_null_sha_setkey,
1534 .setauthsize = otx_cpt_aead_set_authsize,
1535 .encrypt = otx_cpt_aead_null_encrypt,
1536 .decrypt = otx_cpt_aead_null_decrypt,
1537 .ivsize = 0,
1538 .maxauthsize = SHA384_DIGEST_SIZE,
1539 }, {
1540 .base = {
1541 .cra_name = "authenc(hmac(sha512),ecb(cipher_null))",
1542 .cra_driver_name = "cpt_hmac_sha512_ecb_null",
1543 .cra_blocksize = 1,
1544 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1545 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1546 .cra_priority = 4001,
1547 .cra_alignmask = 0,
1548 .cra_module = THIS_MODULE,
1549 },
1550 .init = otx_cpt_aead_ecb_null_sha512_init,
1551 .exit = otx_cpt_aead_exit,
1552 .setkey = otx_cpt_aead_ecb_null_sha_setkey,
1553 .setauthsize = otx_cpt_aead_set_authsize,
1554 .encrypt = otx_cpt_aead_null_encrypt,
1555 .decrypt = otx_cpt_aead_null_decrypt,
1556 .ivsize = 0,
1557 .maxauthsize = SHA512_DIGEST_SIZE,
1558 }, {
1559 .base = {
1560 .cra_name = "rfc4106(gcm(aes))",
1561 .cra_driver_name = "cpt_rfc4106_gcm_aes",
1562 .cra_blocksize = 1,
1563 .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1564 .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1565 .cra_priority = 4001,
1566 .cra_alignmask = 0,
1567 .cra_module = THIS_MODULE,
1568 },
1569 .init = otx_cpt_aead_gcm_aes_init,
1570 .exit = otx_cpt_aead_exit,
1571 .setkey = otx_cpt_aead_gcm_aes_setkey,
1572 .setauthsize = otx_cpt_aead_set_authsize,
1573 .encrypt = otx_cpt_aead_encrypt,
1574 .decrypt = otx_cpt_aead_decrypt,
1575 .ivsize = AES_GCM_IV_SIZE,
1576 .maxauthsize = AES_GCM_ICV_SIZE,
1577 } };
1578
is_any_alg_used(void)1579 static inline int is_any_alg_used(void)
1580 {
1581 int i;
1582
1583 for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1584 if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1)
1585 return true;
1586 for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1587 if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1)
1588 return true;
1589 return false;
1590 }
1591
cpt_register_algs(void)1592 static inline int cpt_register_algs(void)
1593 {
1594 int i, err = 0;
1595
1596 if (!IS_ENABLED(CONFIG_DM_CRYPT)) {
1597 for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1598 otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1599
1600 err = crypto_register_skciphers(otx_cpt_skciphers,
1601 ARRAY_SIZE(otx_cpt_skciphers));
1602 if (err)
1603 return err;
1604 }
1605
1606 for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1607 otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1608
1609 err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1610 if (err) {
1611 crypto_unregister_skciphers(otx_cpt_skciphers,
1612 ARRAY_SIZE(otx_cpt_skciphers));
1613 return err;
1614 }
1615
1616 return 0;
1617 }
1618
cpt_unregister_algs(void)1619 static inline void cpt_unregister_algs(void)
1620 {
1621 crypto_unregister_skciphers(otx_cpt_skciphers,
1622 ARRAY_SIZE(otx_cpt_skciphers));
1623 crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1624 }
1625
compare_func(const void * lptr,const void * rptr)1626 static int compare_func(const void *lptr, const void *rptr)
1627 {
1628 struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1629 struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1630
1631 if (ldesc->dev->devfn < rdesc->dev->devfn)
1632 return -1;
1633 if (ldesc->dev->devfn > rdesc->dev->devfn)
1634 return 1;
1635 return 0;
1636 }
1637
swap_func(void * lptr,void * rptr,int size)1638 static void swap_func(void *lptr, void *rptr, int size)
1639 {
1640 struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1641 struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1642
1643 swap(*ldesc, *rdesc);
1644 }
1645
otx_cpt_crypto_init(struct pci_dev * pdev,struct module * mod,enum otx_cptpf_type pf_type,enum otx_cptvf_type engine_type,int num_queues,int num_devices)1646 int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod,
1647 enum otx_cptpf_type pf_type,
1648 enum otx_cptvf_type engine_type,
1649 int num_queues, int num_devices)
1650 {
1651 int ret = 0;
1652 int count;
1653
1654 mutex_lock(&mutex);
1655 switch (engine_type) {
1656 case OTX_CPT_SE_TYPES:
1657 count = atomic_read(&se_devices.count);
1658 if (count >= CPT_MAX_VF_NUM) {
1659 dev_err(&pdev->dev, "No space to add a new device\n");
1660 ret = -ENOSPC;
1661 goto err;
1662 }
1663 se_devices.desc[count].pf_type = pf_type;
1664 se_devices.desc[count].num_queues = num_queues;
1665 se_devices.desc[count++].dev = pdev;
1666 atomic_inc(&se_devices.count);
1667
1668 if (atomic_read(&se_devices.count) == num_devices &&
1669 is_crypto_registered == false) {
1670 if (cpt_register_algs()) {
1671 dev_err(&pdev->dev,
1672 "Error in registering crypto algorithms\n");
1673 ret = -EINVAL;
1674 goto err;
1675 }
1676 try_module_get(mod);
1677 is_crypto_registered = true;
1678 }
1679 sort(se_devices.desc, count, sizeof(struct cpt_device_desc),
1680 compare_func, swap_func);
1681 break;
1682
1683 case OTX_CPT_AE_TYPES:
1684 count = atomic_read(&ae_devices.count);
1685 if (count >= CPT_MAX_VF_NUM) {
1686 dev_err(&pdev->dev, "No space to a add new device\n");
1687 ret = -ENOSPC;
1688 goto err;
1689 }
1690 ae_devices.desc[count].pf_type = pf_type;
1691 ae_devices.desc[count].num_queues = num_queues;
1692 ae_devices.desc[count++].dev = pdev;
1693 atomic_inc(&ae_devices.count);
1694 sort(ae_devices.desc, count, sizeof(struct cpt_device_desc),
1695 compare_func, swap_func);
1696 break;
1697
1698 default:
1699 dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type);
1700 ret = BAD_OTX_CPTVF_TYPE;
1701 }
1702 err:
1703 mutex_unlock(&mutex);
1704 return ret;
1705 }
1706
otx_cpt_crypto_exit(struct pci_dev * pdev,struct module * mod,enum otx_cptvf_type engine_type)1707 void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod,
1708 enum otx_cptvf_type engine_type)
1709 {
1710 struct cpt_device_table *dev_tbl;
1711 bool dev_found = false;
1712 int i, j, count;
1713
1714 mutex_lock(&mutex);
1715
1716 dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices;
1717 count = atomic_read(&dev_tbl->count);
1718 for (i = 0; i < count; i++)
1719 if (pdev == dev_tbl->desc[i].dev) {
1720 for (j = i; j < count-1; j++)
1721 dev_tbl->desc[j] = dev_tbl->desc[j+1];
1722 dev_found = true;
1723 break;
1724 }
1725
1726 if (!dev_found) {
1727 dev_err(&pdev->dev, "%s device not found\n", __func__);
1728 goto exit;
1729 }
1730
1731 if (engine_type != OTX_CPT_AE_TYPES) {
1732 if (atomic_dec_and_test(&se_devices.count) &&
1733 !is_any_alg_used()) {
1734 cpt_unregister_algs();
1735 module_put(mod);
1736 is_crypto_registered = false;
1737 }
1738 } else
1739 atomic_dec(&ae_devices.count);
1740 exit:
1741 mutex_unlock(&mutex);
1742 }
1743