1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2021 Aspeed Technology Inc.
4 */
5
6 #include "aspeed-hace.h"
7
8 #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
9 #define AHASH_DBG(h, fmt, ...) \
10 dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
11 #else
12 #define AHASH_DBG(h, fmt, ...) \
13 dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
14 #endif
15
16 /* Initialization Vectors for SHA-family */
17 static const __be32 sha1_iv[8] = {
18 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
19 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
20 cpu_to_be32(SHA1_H4), 0, 0, 0
21 };
22
23 static const __be32 sha224_iv[8] = {
24 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
25 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
26 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
27 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
28 };
29
30 static const __be32 sha256_iv[8] = {
31 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
32 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
33 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
34 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
35 };
36
37 static const __be64 sha384_iv[8] = {
38 cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
39 cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
40 cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
41 cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7)
42 };
43
44 static const __be64 sha512_iv[8] = {
45 cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
46 cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
47 cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
48 cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7)
49 };
50
51 static const __be32 sha512_224_iv[16] = {
52 cpu_to_be32(0xC8373D8CUL), cpu_to_be32(0xA24D5419UL),
53 cpu_to_be32(0x6699E173UL), cpu_to_be32(0xD6D4DC89UL),
54 cpu_to_be32(0xAEB7FA1DUL), cpu_to_be32(0x829CFF32UL),
55 cpu_to_be32(0x14D59D67UL), cpu_to_be32(0xCF9F2F58UL),
56 cpu_to_be32(0x692B6D0FUL), cpu_to_be32(0xA84DD47BUL),
57 cpu_to_be32(0x736FE377UL), cpu_to_be32(0x4289C404UL),
58 cpu_to_be32(0xA8859D3FUL), cpu_to_be32(0xC8361D6AUL),
59 cpu_to_be32(0xADE61211UL), cpu_to_be32(0xA192D691UL)
60 };
61
62 static const __be32 sha512_256_iv[16] = {
63 cpu_to_be32(0x94213122UL), cpu_to_be32(0x2CF72BFCUL),
64 cpu_to_be32(0xA35F559FUL), cpu_to_be32(0xC2644CC8UL),
65 cpu_to_be32(0x6BB89323UL), cpu_to_be32(0x51B1536FUL),
66 cpu_to_be32(0x19773896UL), cpu_to_be32(0xBDEA4059UL),
67 cpu_to_be32(0xE23E2896UL), cpu_to_be32(0xE3FF8EA8UL),
68 cpu_to_be32(0x251E5EBEUL), cpu_to_be32(0x92398653UL),
69 cpu_to_be32(0xFC99012BUL), cpu_to_be32(0xAAB8852CUL),
70 cpu_to_be32(0xDC2DB70EUL), cpu_to_be32(0xA22CC581UL)
71 };
72
73 /* The purpose of this padding is to ensure that the padded message is a
74 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
75 * The bit "1" is appended at the end of the message followed by
76 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
77 * 128 bits block (SHA384/SHA512) equals to the message length in bits
78 * is appended.
79 *
80 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
81 * - if message length < 56 bytes then padlen = 56 - message length
82 * - else padlen = 64 + 56 - message length
83 *
84 * For SHA384/SHA512, padlen is calculated as followed:
85 * - if message length < 112 bytes then padlen = 112 - message length
86 * - else padlen = 128 + 112 - message length
87 */
aspeed_ahash_fill_padding(struct aspeed_hace_dev * hace_dev,struct aspeed_sham_reqctx * rctx)88 static void aspeed_ahash_fill_padding(struct aspeed_hace_dev *hace_dev,
89 struct aspeed_sham_reqctx *rctx)
90 {
91 unsigned int index, padlen;
92 __be64 bits[2];
93
94 AHASH_DBG(hace_dev, "rctx flags:0x%x\n", (u32)rctx->flags);
95
96 switch (rctx->flags & SHA_FLAGS_MASK) {
97 case SHA_FLAGS_SHA1:
98 case SHA_FLAGS_SHA224:
99 case SHA_FLAGS_SHA256:
100 bits[0] = cpu_to_be64(rctx->digcnt[0] << 3);
101 index = rctx->bufcnt & 0x3f;
102 padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
103 *(rctx->buffer + rctx->bufcnt) = 0x80;
104 memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1);
105 memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 8);
106 rctx->bufcnt += padlen + 8;
107 break;
108 default:
109 bits[1] = cpu_to_be64(rctx->digcnt[0] << 3);
110 bits[0] = cpu_to_be64(rctx->digcnt[1] << 3 |
111 rctx->digcnt[0] >> 61);
112 index = rctx->bufcnt & 0x7f;
113 padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
114 *(rctx->buffer + rctx->bufcnt) = 0x80;
115 memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1);
116 memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 16);
117 rctx->bufcnt += padlen + 16;
118 break;
119 }
120 }
121
122 /*
123 * Prepare DMA buffer before hardware engine
124 * processing.
125 */
aspeed_ahash_dma_prepare(struct aspeed_hace_dev * hace_dev)126 static int aspeed_ahash_dma_prepare(struct aspeed_hace_dev *hace_dev)
127 {
128 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
129 struct ahash_request *req = hash_engine->req;
130 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
131 int length, remain;
132
133 length = rctx->total + rctx->bufcnt;
134 remain = length % rctx->block_size;
135
136 AHASH_DBG(hace_dev, "length:0x%x, remain:0x%x\n", length, remain);
137
138 if (rctx->bufcnt)
139 memcpy(hash_engine->ahash_src_addr, rctx->buffer, rctx->bufcnt);
140
141 if (rctx->total + rctx->bufcnt < ASPEED_CRYPTO_SRC_DMA_BUF_LEN) {
142 scatterwalk_map_and_copy(hash_engine->ahash_src_addr +
143 rctx->bufcnt, rctx->src_sg,
144 rctx->offset, rctx->total - remain, 0);
145 rctx->offset += rctx->total - remain;
146
147 } else {
148 dev_warn(hace_dev->dev, "Hash data length is too large\n");
149 return -EINVAL;
150 }
151
152 scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg,
153 rctx->offset, remain, 0);
154
155 rctx->bufcnt = remain;
156 rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
157 SHA512_DIGEST_SIZE,
158 DMA_BIDIRECTIONAL);
159 if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
160 dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
161 return -ENOMEM;
162 }
163
164 hash_engine->src_length = length - remain;
165 hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
166 hash_engine->digest_dma = rctx->digest_dma_addr;
167
168 return 0;
169 }
170
171 /*
172 * Prepare DMA buffer as SG list buffer before
173 * hardware engine processing.
174 */
aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev * hace_dev)175 static int aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev *hace_dev)
176 {
177 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
178 struct ahash_request *req = hash_engine->req;
179 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
180 struct aspeed_sg_list *src_list;
181 struct scatterlist *s;
182 int length, remain, sg_len, i;
183 int rc = 0;
184
185 remain = (rctx->total + rctx->bufcnt) % rctx->block_size;
186 length = rctx->total + rctx->bufcnt - remain;
187
188 AHASH_DBG(hace_dev, "%s:0x%x, %s:%zu, %s:0x%x, %s:0x%x\n",
189 "rctx total", rctx->total, "bufcnt", rctx->bufcnt,
190 "length", length, "remain", remain);
191
192 sg_len = dma_map_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
193 DMA_TO_DEVICE);
194 if (!sg_len) {
195 dev_warn(hace_dev->dev, "dma_map_sg() src error\n");
196 rc = -ENOMEM;
197 goto end;
198 }
199
200 src_list = (struct aspeed_sg_list *)hash_engine->ahash_src_addr;
201 rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
202 SHA512_DIGEST_SIZE,
203 DMA_BIDIRECTIONAL);
204 if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
205 dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
206 rc = -ENOMEM;
207 goto free_src_sg;
208 }
209
210 if (rctx->bufcnt != 0) {
211 u32 phy_addr;
212 u32 len;
213
214 rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
215 rctx->buffer,
216 rctx->block_size * 2,
217 DMA_TO_DEVICE);
218 if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
219 dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
220 rc = -ENOMEM;
221 goto free_rctx_digest;
222 }
223
224 phy_addr = rctx->buffer_dma_addr;
225 len = rctx->bufcnt;
226 length -= len;
227
228 /* Last sg list */
229 if (length == 0)
230 len |= HASH_SG_LAST_LIST;
231
232 src_list[0].phy_addr = cpu_to_le32(phy_addr);
233 src_list[0].len = cpu_to_le32(len);
234 src_list++;
235 }
236
237 if (length != 0) {
238 for_each_sg(rctx->src_sg, s, sg_len, i) {
239 u32 phy_addr = sg_dma_address(s);
240 u32 len = sg_dma_len(s);
241
242 if (length > len)
243 length -= len;
244 else {
245 /* Last sg list */
246 len = length;
247 len |= HASH_SG_LAST_LIST;
248 length = 0;
249 }
250
251 src_list[i].phy_addr = cpu_to_le32(phy_addr);
252 src_list[i].len = cpu_to_le32(len);
253 }
254 }
255
256 if (length != 0) {
257 rc = -EINVAL;
258 goto free_rctx_buffer;
259 }
260
261 rctx->offset = rctx->total - remain;
262 hash_engine->src_length = rctx->total + rctx->bufcnt - remain;
263 hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
264 hash_engine->digest_dma = rctx->digest_dma_addr;
265
266 return 0;
267
268 free_rctx_buffer:
269 if (rctx->bufcnt != 0)
270 dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
271 rctx->block_size * 2, DMA_TO_DEVICE);
272 free_rctx_digest:
273 dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
274 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
275 free_src_sg:
276 dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
277 DMA_TO_DEVICE);
278 end:
279 return rc;
280 }
281
aspeed_ahash_complete(struct aspeed_hace_dev * hace_dev)282 static int aspeed_ahash_complete(struct aspeed_hace_dev *hace_dev)
283 {
284 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
285 struct ahash_request *req = hash_engine->req;
286
287 AHASH_DBG(hace_dev, "\n");
288
289 hash_engine->flags &= ~CRYPTO_FLAGS_BUSY;
290
291 crypto_finalize_hash_request(hace_dev->crypt_engine_hash, req, 0);
292
293 return 0;
294 }
295
296 /*
297 * Copy digest to the corresponding request result.
298 * This function will be called at final() stage.
299 */
aspeed_ahash_transfer(struct aspeed_hace_dev * hace_dev)300 static int aspeed_ahash_transfer(struct aspeed_hace_dev *hace_dev)
301 {
302 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
303 struct ahash_request *req = hash_engine->req;
304 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
305
306 AHASH_DBG(hace_dev, "\n");
307
308 dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
309 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
310
311 dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
312 rctx->block_size * 2, DMA_TO_DEVICE);
313
314 memcpy(req->result, rctx->digest, rctx->digsize);
315
316 return aspeed_ahash_complete(hace_dev);
317 }
318
319 /*
320 * Trigger hardware engines to do the math.
321 */
aspeed_hace_ahash_trigger(struct aspeed_hace_dev * hace_dev,aspeed_hace_fn_t resume)322 static int aspeed_hace_ahash_trigger(struct aspeed_hace_dev *hace_dev,
323 aspeed_hace_fn_t resume)
324 {
325 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
326 struct ahash_request *req = hash_engine->req;
327 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
328
329 AHASH_DBG(hace_dev, "src_dma:%pad, digest_dma:%pad, length:%zu\n",
330 &hash_engine->src_dma, &hash_engine->digest_dma,
331 hash_engine->src_length);
332
333 rctx->cmd |= HASH_CMD_INT_ENABLE;
334 hash_engine->resume = resume;
335
336 ast_hace_write(hace_dev, hash_engine->src_dma, ASPEED_HACE_HASH_SRC);
337 ast_hace_write(hace_dev, hash_engine->digest_dma,
338 ASPEED_HACE_HASH_DIGEST_BUFF);
339 ast_hace_write(hace_dev, hash_engine->digest_dma,
340 ASPEED_HACE_HASH_KEY_BUFF);
341 ast_hace_write(hace_dev, hash_engine->src_length,
342 ASPEED_HACE_HASH_DATA_LEN);
343
344 /* Memory barrier to ensure all data setup before engine starts */
345 mb();
346
347 ast_hace_write(hace_dev, rctx->cmd, ASPEED_HACE_HASH_CMD);
348
349 return -EINPROGRESS;
350 }
351
352 /*
353 * HMAC resume aims to do the second pass produces
354 * the final HMAC code derived from the inner hash
355 * result and the outer key.
356 */
aspeed_ahash_hmac_resume(struct aspeed_hace_dev * hace_dev)357 static int aspeed_ahash_hmac_resume(struct aspeed_hace_dev *hace_dev)
358 {
359 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
360 struct ahash_request *req = hash_engine->req;
361 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
362 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
363 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
364 struct aspeed_sha_hmac_ctx *bctx = tctx->base;
365 int rc = 0;
366
367 AHASH_DBG(hace_dev, "\n");
368
369 dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
370 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
371
372 dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
373 rctx->block_size * 2, DMA_TO_DEVICE);
374
375 /* o key pad + hash sum 1 */
376 memcpy(rctx->buffer, bctx->opad, rctx->block_size);
377 memcpy(rctx->buffer + rctx->block_size, rctx->digest, rctx->digsize);
378
379 rctx->bufcnt = rctx->block_size + rctx->digsize;
380 rctx->digcnt[0] = rctx->block_size + rctx->digsize;
381
382 aspeed_ahash_fill_padding(hace_dev, rctx);
383 memcpy(rctx->digest, rctx->sha_iv, rctx->ivsize);
384
385 rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
386 SHA512_DIGEST_SIZE,
387 DMA_BIDIRECTIONAL);
388 if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
389 dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
390 rc = -ENOMEM;
391 goto end;
392 }
393
394 rctx->buffer_dma_addr = dma_map_single(hace_dev->dev, rctx->buffer,
395 rctx->block_size * 2,
396 DMA_TO_DEVICE);
397 if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
398 dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
399 rc = -ENOMEM;
400 goto free_rctx_digest;
401 }
402
403 hash_engine->src_dma = rctx->buffer_dma_addr;
404 hash_engine->src_length = rctx->bufcnt;
405 hash_engine->digest_dma = rctx->digest_dma_addr;
406
407 return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer);
408
409 free_rctx_digest:
410 dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
411 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
412 end:
413 return rc;
414 }
415
aspeed_ahash_req_final(struct aspeed_hace_dev * hace_dev)416 static int aspeed_ahash_req_final(struct aspeed_hace_dev *hace_dev)
417 {
418 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
419 struct ahash_request *req = hash_engine->req;
420 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
421 int rc = 0;
422
423 AHASH_DBG(hace_dev, "\n");
424
425 aspeed_ahash_fill_padding(hace_dev, rctx);
426
427 rctx->digest_dma_addr = dma_map_single(hace_dev->dev,
428 rctx->digest,
429 SHA512_DIGEST_SIZE,
430 DMA_BIDIRECTIONAL);
431 if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
432 dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
433 rc = -ENOMEM;
434 goto end;
435 }
436
437 rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
438 rctx->buffer,
439 rctx->block_size * 2,
440 DMA_TO_DEVICE);
441 if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
442 dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
443 rc = -ENOMEM;
444 goto free_rctx_digest;
445 }
446
447 hash_engine->src_dma = rctx->buffer_dma_addr;
448 hash_engine->src_length = rctx->bufcnt;
449 hash_engine->digest_dma = rctx->digest_dma_addr;
450
451 if (rctx->flags & SHA_FLAGS_HMAC)
452 return aspeed_hace_ahash_trigger(hace_dev,
453 aspeed_ahash_hmac_resume);
454
455 return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer);
456
457 free_rctx_digest:
458 dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
459 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
460 end:
461 return rc;
462 }
463
aspeed_ahash_update_resume_sg(struct aspeed_hace_dev * hace_dev)464 static int aspeed_ahash_update_resume_sg(struct aspeed_hace_dev *hace_dev)
465 {
466 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
467 struct ahash_request *req = hash_engine->req;
468 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
469
470 AHASH_DBG(hace_dev, "\n");
471
472 dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
473 DMA_TO_DEVICE);
474
475 if (rctx->bufcnt != 0)
476 dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
477 rctx->block_size * 2,
478 DMA_TO_DEVICE);
479
480 dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
481 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
482
483 scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg, rctx->offset,
484 rctx->total - rctx->offset, 0);
485
486 rctx->bufcnt = rctx->total - rctx->offset;
487 rctx->cmd &= ~HASH_CMD_HASH_SRC_SG_CTRL;
488
489 if (rctx->flags & SHA_FLAGS_FINUP)
490 return aspeed_ahash_req_final(hace_dev);
491
492 return aspeed_ahash_complete(hace_dev);
493 }
494
aspeed_ahash_update_resume(struct aspeed_hace_dev * hace_dev)495 static int aspeed_ahash_update_resume(struct aspeed_hace_dev *hace_dev)
496 {
497 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
498 struct ahash_request *req = hash_engine->req;
499 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
500
501 AHASH_DBG(hace_dev, "\n");
502
503 dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
504 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
505
506 if (rctx->flags & SHA_FLAGS_FINUP)
507 return aspeed_ahash_req_final(hace_dev);
508
509 return aspeed_ahash_complete(hace_dev);
510 }
511
aspeed_ahash_req_update(struct aspeed_hace_dev * hace_dev)512 static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev)
513 {
514 struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
515 struct ahash_request *req = hash_engine->req;
516 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
517 aspeed_hace_fn_t resume;
518 int ret;
519
520 AHASH_DBG(hace_dev, "\n");
521
522 if (hace_dev->version == AST2600_VERSION) {
523 rctx->cmd |= HASH_CMD_HASH_SRC_SG_CTRL;
524 resume = aspeed_ahash_update_resume_sg;
525
526 } else {
527 resume = aspeed_ahash_update_resume;
528 }
529
530 ret = hash_engine->dma_prepare(hace_dev);
531 if (ret)
532 return ret;
533
534 return aspeed_hace_ahash_trigger(hace_dev, resume);
535 }
536
aspeed_hace_hash_handle_queue(struct aspeed_hace_dev * hace_dev,struct ahash_request * req)537 static int aspeed_hace_hash_handle_queue(struct aspeed_hace_dev *hace_dev,
538 struct ahash_request *req)
539 {
540 return crypto_transfer_hash_request_to_engine(
541 hace_dev->crypt_engine_hash, req);
542 }
543
aspeed_ahash_do_request(struct crypto_engine * engine,void * areq)544 static int aspeed_ahash_do_request(struct crypto_engine *engine, void *areq)
545 {
546 struct ahash_request *req = ahash_request_cast(areq);
547 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
548 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
549 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
550 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
551 struct aspeed_engine_hash *hash_engine;
552 int ret = 0;
553
554 hash_engine = &hace_dev->hash_engine;
555 hash_engine->flags |= CRYPTO_FLAGS_BUSY;
556
557 if (rctx->op == SHA_OP_UPDATE)
558 ret = aspeed_ahash_req_update(hace_dev);
559 else if (rctx->op == SHA_OP_FINAL)
560 ret = aspeed_ahash_req_final(hace_dev);
561
562 if (ret != -EINPROGRESS)
563 return ret;
564
565 return 0;
566 }
567
aspeed_ahash_prepare_request(struct crypto_engine * engine,void * areq)568 static int aspeed_ahash_prepare_request(struct crypto_engine *engine,
569 void *areq)
570 {
571 struct ahash_request *req = ahash_request_cast(areq);
572 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
573 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
574 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
575 struct aspeed_engine_hash *hash_engine;
576
577 hash_engine = &hace_dev->hash_engine;
578 hash_engine->req = req;
579
580 if (hace_dev->version == AST2600_VERSION)
581 hash_engine->dma_prepare = aspeed_ahash_dma_prepare_sg;
582 else
583 hash_engine->dma_prepare = aspeed_ahash_dma_prepare;
584
585 return 0;
586 }
587
aspeed_sham_update(struct ahash_request * req)588 static int aspeed_sham_update(struct ahash_request *req)
589 {
590 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
591 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
592 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
593 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
594
595 AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
596
597 rctx->total = req->nbytes;
598 rctx->src_sg = req->src;
599 rctx->offset = 0;
600 rctx->src_nents = sg_nents(req->src);
601 rctx->op = SHA_OP_UPDATE;
602
603 rctx->digcnt[0] += rctx->total;
604 if (rctx->digcnt[0] < rctx->total)
605 rctx->digcnt[1]++;
606
607 if (rctx->bufcnt + rctx->total < rctx->block_size) {
608 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt,
609 rctx->src_sg, rctx->offset,
610 rctx->total, 0);
611 rctx->bufcnt += rctx->total;
612
613 return 0;
614 }
615
616 return aspeed_hace_hash_handle_queue(hace_dev, req);
617 }
618
aspeed_sham_shash_digest(struct crypto_shash * tfm,u32 flags,const u8 * data,unsigned int len,u8 * out)619 static int aspeed_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
620 const u8 *data, unsigned int len, u8 *out)
621 {
622 SHASH_DESC_ON_STACK(shash, tfm);
623
624 shash->tfm = tfm;
625
626 return crypto_shash_digest(shash, data, len, out);
627 }
628
aspeed_sham_final(struct ahash_request * req)629 static int aspeed_sham_final(struct ahash_request *req)
630 {
631 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
632 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
634 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
635
636 AHASH_DBG(hace_dev, "req->nbytes:%d, rctx->total:%d\n",
637 req->nbytes, rctx->total);
638 rctx->op = SHA_OP_FINAL;
639
640 return aspeed_hace_hash_handle_queue(hace_dev, req);
641 }
642
aspeed_sham_finup(struct ahash_request * req)643 static int aspeed_sham_finup(struct ahash_request *req)
644 {
645 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
646 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
647 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
648 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
649 int rc1, rc2;
650
651 AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
652
653 rctx->flags |= SHA_FLAGS_FINUP;
654
655 rc1 = aspeed_sham_update(req);
656 if (rc1 == -EINPROGRESS || rc1 == -EBUSY)
657 return rc1;
658
659 /*
660 * final() has to be always called to cleanup resources
661 * even if update() failed, except EINPROGRESS
662 */
663 rc2 = aspeed_sham_final(req);
664
665 return rc1 ? : rc2;
666 }
667
aspeed_sham_init(struct ahash_request * req)668 static int aspeed_sham_init(struct ahash_request *req)
669 {
670 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
671 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
672 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
673 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
674 struct aspeed_sha_hmac_ctx *bctx = tctx->base;
675
676 AHASH_DBG(hace_dev, "%s: digest size:%d\n",
677 crypto_tfm_alg_name(&tfm->base),
678 crypto_ahash_digestsize(tfm));
679
680 rctx->cmd = HASH_CMD_ACC_MODE;
681 rctx->flags = 0;
682
683 switch (crypto_ahash_digestsize(tfm)) {
684 case SHA1_DIGEST_SIZE:
685 rctx->cmd |= HASH_CMD_SHA1 | HASH_CMD_SHA_SWAP;
686 rctx->flags |= SHA_FLAGS_SHA1;
687 rctx->digsize = SHA1_DIGEST_SIZE;
688 rctx->block_size = SHA1_BLOCK_SIZE;
689 rctx->sha_iv = sha1_iv;
690 rctx->ivsize = 32;
691 memcpy(rctx->digest, sha1_iv, rctx->ivsize);
692 break;
693 case SHA224_DIGEST_SIZE:
694 rctx->cmd |= HASH_CMD_SHA224 | HASH_CMD_SHA_SWAP;
695 rctx->flags |= SHA_FLAGS_SHA224;
696 rctx->digsize = SHA224_DIGEST_SIZE;
697 rctx->block_size = SHA224_BLOCK_SIZE;
698 rctx->sha_iv = sha224_iv;
699 rctx->ivsize = 32;
700 memcpy(rctx->digest, sha224_iv, rctx->ivsize);
701 break;
702 case SHA256_DIGEST_SIZE:
703 rctx->cmd |= HASH_CMD_SHA256 | HASH_CMD_SHA_SWAP;
704 rctx->flags |= SHA_FLAGS_SHA256;
705 rctx->digsize = SHA256_DIGEST_SIZE;
706 rctx->block_size = SHA256_BLOCK_SIZE;
707 rctx->sha_iv = sha256_iv;
708 rctx->ivsize = 32;
709 memcpy(rctx->digest, sha256_iv, rctx->ivsize);
710 break;
711 case SHA384_DIGEST_SIZE:
712 rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA384 |
713 HASH_CMD_SHA_SWAP;
714 rctx->flags |= SHA_FLAGS_SHA384;
715 rctx->digsize = SHA384_DIGEST_SIZE;
716 rctx->block_size = SHA384_BLOCK_SIZE;
717 rctx->sha_iv = (const __be32 *)sha384_iv;
718 rctx->ivsize = 64;
719 memcpy(rctx->digest, sha384_iv, rctx->ivsize);
720 break;
721 case SHA512_DIGEST_SIZE:
722 rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512 |
723 HASH_CMD_SHA_SWAP;
724 rctx->flags |= SHA_FLAGS_SHA512;
725 rctx->digsize = SHA512_DIGEST_SIZE;
726 rctx->block_size = SHA512_BLOCK_SIZE;
727 rctx->sha_iv = (const __be32 *)sha512_iv;
728 rctx->ivsize = 64;
729 memcpy(rctx->digest, sha512_iv, rctx->ivsize);
730 break;
731 default:
732 dev_warn(tctx->hace_dev->dev, "digest size %d not support\n",
733 crypto_ahash_digestsize(tfm));
734 return -EINVAL;
735 }
736
737 rctx->bufcnt = 0;
738 rctx->total = 0;
739 rctx->digcnt[0] = 0;
740 rctx->digcnt[1] = 0;
741
742 /* HMAC init */
743 if (tctx->flags & SHA_FLAGS_HMAC) {
744 rctx->digcnt[0] = rctx->block_size;
745 rctx->bufcnt = rctx->block_size;
746 memcpy(rctx->buffer, bctx->ipad, rctx->block_size);
747 rctx->flags |= SHA_FLAGS_HMAC;
748 }
749
750 return 0;
751 }
752
aspeed_sha512s_init(struct ahash_request * req)753 static int aspeed_sha512s_init(struct ahash_request *req)
754 {
755 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
756 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
757 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
758 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
759 struct aspeed_sha_hmac_ctx *bctx = tctx->base;
760
761 AHASH_DBG(hace_dev, "digest size: %d\n", crypto_ahash_digestsize(tfm));
762
763 rctx->cmd = HASH_CMD_ACC_MODE;
764 rctx->flags = 0;
765
766 switch (crypto_ahash_digestsize(tfm)) {
767 case SHA224_DIGEST_SIZE:
768 rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512_224 |
769 HASH_CMD_SHA_SWAP;
770 rctx->flags |= SHA_FLAGS_SHA512_224;
771 rctx->digsize = SHA224_DIGEST_SIZE;
772 rctx->block_size = SHA512_BLOCK_SIZE;
773 rctx->sha_iv = sha512_224_iv;
774 rctx->ivsize = 64;
775 memcpy(rctx->digest, sha512_224_iv, rctx->ivsize);
776 break;
777 case SHA256_DIGEST_SIZE:
778 rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512_256 |
779 HASH_CMD_SHA_SWAP;
780 rctx->flags |= SHA_FLAGS_SHA512_256;
781 rctx->digsize = SHA256_DIGEST_SIZE;
782 rctx->block_size = SHA512_BLOCK_SIZE;
783 rctx->sha_iv = sha512_256_iv;
784 rctx->ivsize = 64;
785 memcpy(rctx->digest, sha512_256_iv, rctx->ivsize);
786 break;
787 default:
788 dev_warn(tctx->hace_dev->dev, "digest size %d not support\n",
789 crypto_ahash_digestsize(tfm));
790 return -EINVAL;
791 }
792
793 rctx->bufcnt = 0;
794 rctx->total = 0;
795 rctx->digcnt[0] = 0;
796 rctx->digcnt[1] = 0;
797
798 /* HMAC init */
799 if (tctx->flags & SHA_FLAGS_HMAC) {
800 rctx->digcnt[0] = rctx->block_size;
801 rctx->bufcnt = rctx->block_size;
802 memcpy(rctx->buffer, bctx->ipad, rctx->block_size);
803 rctx->flags |= SHA_FLAGS_HMAC;
804 }
805
806 return 0;
807 }
808
aspeed_sham_digest(struct ahash_request * req)809 static int aspeed_sham_digest(struct ahash_request *req)
810 {
811 return aspeed_sham_init(req) ? : aspeed_sham_finup(req);
812 }
813
aspeed_sham_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)814 static int aspeed_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
815 unsigned int keylen)
816 {
817 struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
818 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
819 struct aspeed_sha_hmac_ctx *bctx = tctx->base;
820 int ds = crypto_shash_digestsize(bctx->shash);
821 int bs = crypto_shash_blocksize(bctx->shash);
822 int err = 0;
823 int i;
824
825 AHASH_DBG(hace_dev, "%s: keylen:%d\n", crypto_tfm_alg_name(&tfm->base),
826 keylen);
827
828 if (keylen > bs) {
829 err = aspeed_sham_shash_digest(bctx->shash,
830 crypto_shash_get_flags(bctx->shash),
831 key, keylen, bctx->ipad);
832 if (err)
833 return err;
834 keylen = ds;
835
836 } else {
837 memcpy(bctx->ipad, key, keylen);
838 }
839
840 memset(bctx->ipad + keylen, 0, bs - keylen);
841 memcpy(bctx->opad, bctx->ipad, bs);
842
843 for (i = 0; i < bs; i++) {
844 bctx->ipad[i] ^= HMAC_IPAD_VALUE;
845 bctx->opad[i] ^= HMAC_OPAD_VALUE;
846 }
847
848 return err;
849 }
850
aspeed_sham_cra_init(struct crypto_tfm * tfm)851 static int aspeed_sham_cra_init(struct crypto_tfm *tfm)
852 {
853 struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
854 struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm);
855 struct aspeed_hace_alg *ast_alg;
856
857 ast_alg = container_of(alg, struct aspeed_hace_alg, alg.ahash);
858 tctx->hace_dev = ast_alg->hace_dev;
859 tctx->flags = 0;
860
861 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
862 sizeof(struct aspeed_sham_reqctx));
863
864 if (ast_alg->alg_base) {
865 /* hmac related */
866 struct aspeed_sha_hmac_ctx *bctx = tctx->base;
867
868 tctx->flags |= SHA_FLAGS_HMAC;
869 bctx->shash = crypto_alloc_shash(ast_alg->alg_base, 0,
870 CRYPTO_ALG_NEED_FALLBACK);
871 if (IS_ERR(bctx->shash)) {
872 dev_warn(ast_alg->hace_dev->dev,
873 "base driver '%s' could not be loaded.\n",
874 ast_alg->alg_base);
875 return PTR_ERR(bctx->shash);
876 }
877 }
878
879 tctx->enginectx.op.do_one_request = aspeed_ahash_do_request;
880 tctx->enginectx.op.prepare_request = aspeed_ahash_prepare_request;
881 tctx->enginectx.op.unprepare_request = NULL;
882
883 return 0;
884 }
885
aspeed_sham_cra_exit(struct crypto_tfm * tfm)886 static void aspeed_sham_cra_exit(struct crypto_tfm *tfm)
887 {
888 struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm);
889 struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
890
891 AHASH_DBG(hace_dev, "%s\n", crypto_tfm_alg_name(tfm));
892
893 if (tctx->flags & SHA_FLAGS_HMAC) {
894 struct aspeed_sha_hmac_ctx *bctx = tctx->base;
895
896 crypto_free_shash(bctx->shash);
897 }
898 }
899
aspeed_sham_export(struct ahash_request * req,void * out)900 static int aspeed_sham_export(struct ahash_request *req, void *out)
901 {
902 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
903
904 memcpy(out, rctx, sizeof(*rctx));
905
906 return 0;
907 }
908
aspeed_sham_import(struct ahash_request * req,const void * in)909 static int aspeed_sham_import(struct ahash_request *req, const void *in)
910 {
911 struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
912
913 memcpy(rctx, in, sizeof(*rctx));
914
915 return 0;
916 }
917
918 static struct aspeed_hace_alg aspeed_ahash_algs[] = {
919 {
920 .alg.ahash = {
921 .init = aspeed_sham_init,
922 .update = aspeed_sham_update,
923 .final = aspeed_sham_final,
924 .finup = aspeed_sham_finup,
925 .digest = aspeed_sham_digest,
926 .export = aspeed_sham_export,
927 .import = aspeed_sham_import,
928 .halg = {
929 .digestsize = SHA1_DIGEST_SIZE,
930 .statesize = sizeof(struct aspeed_sham_reqctx),
931 .base = {
932 .cra_name = "sha1",
933 .cra_driver_name = "aspeed-sha1",
934 .cra_priority = 300,
935 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
936 CRYPTO_ALG_ASYNC |
937 CRYPTO_ALG_KERN_DRIVER_ONLY,
938 .cra_blocksize = SHA1_BLOCK_SIZE,
939 .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
940 .cra_alignmask = 0,
941 .cra_module = THIS_MODULE,
942 .cra_init = aspeed_sham_cra_init,
943 .cra_exit = aspeed_sham_cra_exit,
944 }
945 }
946 },
947 },
948 {
949 .alg.ahash = {
950 .init = aspeed_sham_init,
951 .update = aspeed_sham_update,
952 .final = aspeed_sham_final,
953 .finup = aspeed_sham_finup,
954 .digest = aspeed_sham_digest,
955 .export = aspeed_sham_export,
956 .import = aspeed_sham_import,
957 .halg = {
958 .digestsize = SHA256_DIGEST_SIZE,
959 .statesize = sizeof(struct aspeed_sham_reqctx),
960 .base = {
961 .cra_name = "sha256",
962 .cra_driver_name = "aspeed-sha256",
963 .cra_priority = 300,
964 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
965 CRYPTO_ALG_ASYNC |
966 CRYPTO_ALG_KERN_DRIVER_ONLY,
967 .cra_blocksize = SHA256_BLOCK_SIZE,
968 .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
969 .cra_alignmask = 0,
970 .cra_module = THIS_MODULE,
971 .cra_init = aspeed_sham_cra_init,
972 .cra_exit = aspeed_sham_cra_exit,
973 }
974 }
975 },
976 },
977 {
978 .alg.ahash = {
979 .init = aspeed_sham_init,
980 .update = aspeed_sham_update,
981 .final = aspeed_sham_final,
982 .finup = aspeed_sham_finup,
983 .digest = aspeed_sham_digest,
984 .export = aspeed_sham_export,
985 .import = aspeed_sham_import,
986 .halg = {
987 .digestsize = SHA224_DIGEST_SIZE,
988 .statesize = sizeof(struct aspeed_sham_reqctx),
989 .base = {
990 .cra_name = "sha224",
991 .cra_driver_name = "aspeed-sha224",
992 .cra_priority = 300,
993 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
994 CRYPTO_ALG_ASYNC |
995 CRYPTO_ALG_KERN_DRIVER_ONLY,
996 .cra_blocksize = SHA224_BLOCK_SIZE,
997 .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
998 .cra_alignmask = 0,
999 .cra_module = THIS_MODULE,
1000 .cra_init = aspeed_sham_cra_init,
1001 .cra_exit = aspeed_sham_cra_exit,
1002 }
1003 }
1004 },
1005 },
1006 {
1007 .alg_base = "sha1",
1008 .alg.ahash = {
1009 .init = aspeed_sham_init,
1010 .update = aspeed_sham_update,
1011 .final = aspeed_sham_final,
1012 .finup = aspeed_sham_finup,
1013 .digest = aspeed_sham_digest,
1014 .setkey = aspeed_sham_setkey,
1015 .export = aspeed_sham_export,
1016 .import = aspeed_sham_import,
1017 .halg = {
1018 .digestsize = SHA1_DIGEST_SIZE,
1019 .statesize = sizeof(struct aspeed_sham_reqctx),
1020 .base = {
1021 .cra_name = "hmac(sha1)",
1022 .cra_driver_name = "aspeed-hmac-sha1",
1023 .cra_priority = 300,
1024 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1025 CRYPTO_ALG_ASYNC |
1026 CRYPTO_ALG_KERN_DRIVER_ONLY,
1027 .cra_blocksize = SHA1_BLOCK_SIZE,
1028 .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
1029 sizeof(struct aspeed_sha_hmac_ctx),
1030 .cra_alignmask = 0,
1031 .cra_module = THIS_MODULE,
1032 .cra_init = aspeed_sham_cra_init,
1033 .cra_exit = aspeed_sham_cra_exit,
1034 }
1035 }
1036 },
1037 },
1038 {
1039 .alg_base = "sha224",
1040 .alg.ahash = {
1041 .init = aspeed_sham_init,
1042 .update = aspeed_sham_update,
1043 .final = aspeed_sham_final,
1044 .finup = aspeed_sham_finup,
1045 .digest = aspeed_sham_digest,
1046 .setkey = aspeed_sham_setkey,
1047 .export = aspeed_sham_export,
1048 .import = aspeed_sham_import,
1049 .halg = {
1050 .digestsize = SHA224_DIGEST_SIZE,
1051 .statesize = sizeof(struct aspeed_sham_reqctx),
1052 .base = {
1053 .cra_name = "hmac(sha224)",
1054 .cra_driver_name = "aspeed-hmac-sha224",
1055 .cra_priority = 300,
1056 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1057 CRYPTO_ALG_ASYNC |
1058 CRYPTO_ALG_KERN_DRIVER_ONLY,
1059 .cra_blocksize = SHA224_BLOCK_SIZE,
1060 .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
1061 sizeof(struct aspeed_sha_hmac_ctx),
1062 .cra_alignmask = 0,
1063 .cra_module = THIS_MODULE,
1064 .cra_init = aspeed_sham_cra_init,
1065 .cra_exit = aspeed_sham_cra_exit,
1066 }
1067 }
1068 },
1069 },
1070 {
1071 .alg_base = "sha256",
1072 .alg.ahash = {
1073 .init = aspeed_sham_init,
1074 .update = aspeed_sham_update,
1075 .final = aspeed_sham_final,
1076 .finup = aspeed_sham_finup,
1077 .digest = aspeed_sham_digest,
1078 .setkey = aspeed_sham_setkey,
1079 .export = aspeed_sham_export,
1080 .import = aspeed_sham_import,
1081 .halg = {
1082 .digestsize = SHA256_DIGEST_SIZE,
1083 .statesize = sizeof(struct aspeed_sham_reqctx),
1084 .base = {
1085 .cra_name = "hmac(sha256)",
1086 .cra_driver_name = "aspeed-hmac-sha256",
1087 .cra_priority = 300,
1088 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1089 CRYPTO_ALG_ASYNC |
1090 CRYPTO_ALG_KERN_DRIVER_ONLY,
1091 .cra_blocksize = SHA256_BLOCK_SIZE,
1092 .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
1093 sizeof(struct aspeed_sha_hmac_ctx),
1094 .cra_alignmask = 0,
1095 .cra_module = THIS_MODULE,
1096 .cra_init = aspeed_sham_cra_init,
1097 .cra_exit = aspeed_sham_cra_exit,
1098 }
1099 }
1100 },
1101 },
1102 };
1103
1104 static struct aspeed_hace_alg aspeed_ahash_algs_g6[] = {
1105 {
1106 .alg.ahash = {
1107 .init = aspeed_sham_init,
1108 .update = aspeed_sham_update,
1109 .final = aspeed_sham_final,
1110 .finup = aspeed_sham_finup,
1111 .digest = aspeed_sham_digest,
1112 .export = aspeed_sham_export,
1113 .import = aspeed_sham_import,
1114 .halg = {
1115 .digestsize = SHA384_DIGEST_SIZE,
1116 .statesize = sizeof(struct aspeed_sham_reqctx),
1117 .base = {
1118 .cra_name = "sha384",
1119 .cra_driver_name = "aspeed-sha384",
1120 .cra_priority = 300,
1121 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1122 CRYPTO_ALG_ASYNC |
1123 CRYPTO_ALG_KERN_DRIVER_ONLY,
1124 .cra_blocksize = SHA384_BLOCK_SIZE,
1125 .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
1126 .cra_alignmask = 0,
1127 .cra_module = THIS_MODULE,
1128 .cra_init = aspeed_sham_cra_init,
1129 .cra_exit = aspeed_sham_cra_exit,
1130 }
1131 }
1132 },
1133 },
1134 {
1135 .alg.ahash = {
1136 .init = aspeed_sham_init,
1137 .update = aspeed_sham_update,
1138 .final = aspeed_sham_final,
1139 .finup = aspeed_sham_finup,
1140 .digest = aspeed_sham_digest,
1141 .export = aspeed_sham_export,
1142 .import = aspeed_sham_import,
1143 .halg = {
1144 .digestsize = SHA512_DIGEST_SIZE,
1145 .statesize = sizeof(struct aspeed_sham_reqctx),
1146 .base = {
1147 .cra_name = "sha512",
1148 .cra_driver_name = "aspeed-sha512",
1149 .cra_priority = 300,
1150 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1151 CRYPTO_ALG_ASYNC |
1152 CRYPTO_ALG_KERN_DRIVER_ONLY,
1153 .cra_blocksize = SHA512_BLOCK_SIZE,
1154 .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
1155 .cra_alignmask = 0,
1156 .cra_module = THIS_MODULE,
1157 .cra_init = aspeed_sham_cra_init,
1158 .cra_exit = aspeed_sham_cra_exit,
1159 }
1160 }
1161 },
1162 },
1163 {
1164 .alg.ahash = {
1165 .init = aspeed_sha512s_init,
1166 .update = aspeed_sham_update,
1167 .final = aspeed_sham_final,
1168 .finup = aspeed_sham_finup,
1169 .digest = aspeed_sham_digest,
1170 .export = aspeed_sham_export,
1171 .import = aspeed_sham_import,
1172 .halg = {
1173 .digestsize = SHA224_DIGEST_SIZE,
1174 .statesize = sizeof(struct aspeed_sham_reqctx),
1175 .base = {
1176 .cra_name = "sha512_224",
1177 .cra_driver_name = "aspeed-sha512_224",
1178 .cra_priority = 300,
1179 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1180 CRYPTO_ALG_ASYNC |
1181 CRYPTO_ALG_KERN_DRIVER_ONLY,
1182 .cra_blocksize = SHA512_BLOCK_SIZE,
1183 .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
1184 .cra_alignmask = 0,
1185 .cra_module = THIS_MODULE,
1186 .cra_init = aspeed_sham_cra_init,
1187 .cra_exit = aspeed_sham_cra_exit,
1188 }
1189 }
1190 },
1191 },
1192 {
1193 .alg.ahash = {
1194 .init = aspeed_sha512s_init,
1195 .update = aspeed_sham_update,
1196 .final = aspeed_sham_final,
1197 .finup = aspeed_sham_finup,
1198 .digest = aspeed_sham_digest,
1199 .export = aspeed_sham_export,
1200 .import = aspeed_sham_import,
1201 .halg = {
1202 .digestsize = SHA256_DIGEST_SIZE,
1203 .statesize = sizeof(struct aspeed_sham_reqctx),
1204 .base = {
1205 .cra_name = "sha512_256",
1206 .cra_driver_name = "aspeed-sha512_256",
1207 .cra_priority = 300,
1208 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1209 CRYPTO_ALG_ASYNC |
1210 CRYPTO_ALG_KERN_DRIVER_ONLY,
1211 .cra_blocksize = SHA512_BLOCK_SIZE,
1212 .cra_ctxsize = sizeof(struct aspeed_sham_ctx),
1213 .cra_alignmask = 0,
1214 .cra_module = THIS_MODULE,
1215 .cra_init = aspeed_sham_cra_init,
1216 .cra_exit = aspeed_sham_cra_exit,
1217 }
1218 }
1219 },
1220 },
1221 {
1222 .alg_base = "sha384",
1223 .alg.ahash = {
1224 .init = aspeed_sham_init,
1225 .update = aspeed_sham_update,
1226 .final = aspeed_sham_final,
1227 .finup = aspeed_sham_finup,
1228 .digest = aspeed_sham_digest,
1229 .setkey = aspeed_sham_setkey,
1230 .export = aspeed_sham_export,
1231 .import = aspeed_sham_import,
1232 .halg = {
1233 .digestsize = SHA384_DIGEST_SIZE,
1234 .statesize = sizeof(struct aspeed_sham_reqctx),
1235 .base = {
1236 .cra_name = "hmac(sha384)",
1237 .cra_driver_name = "aspeed-hmac-sha384",
1238 .cra_priority = 300,
1239 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1240 CRYPTO_ALG_ASYNC |
1241 CRYPTO_ALG_KERN_DRIVER_ONLY,
1242 .cra_blocksize = SHA384_BLOCK_SIZE,
1243 .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
1244 sizeof(struct aspeed_sha_hmac_ctx),
1245 .cra_alignmask = 0,
1246 .cra_module = THIS_MODULE,
1247 .cra_init = aspeed_sham_cra_init,
1248 .cra_exit = aspeed_sham_cra_exit,
1249 }
1250 }
1251 },
1252 },
1253 {
1254 .alg_base = "sha512",
1255 .alg.ahash = {
1256 .init = aspeed_sham_init,
1257 .update = aspeed_sham_update,
1258 .final = aspeed_sham_final,
1259 .finup = aspeed_sham_finup,
1260 .digest = aspeed_sham_digest,
1261 .setkey = aspeed_sham_setkey,
1262 .export = aspeed_sham_export,
1263 .import = aspeed_sham_import,
1264 .halg = {
1265 .digestsize = SHA512_DIGEST_SIZE,
1266 .statesize = sizeof(struct aspeed_sham_reqctx),
1267 .base = {
1268 .cra_name = "hmac(sha512)",
1269 .cra_driver_name = "aspeed-hmac-sha512",
1270 .cra_priority = 300,
1271 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1272 CRYPTO_ALG_ASYNC |
1273 CRYPTO_ALG_KERN_DRIVER_ONLY,
1274 .cra_blocksize = SHA512_BLOCK_SIZE,
1275 .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
1276 sizeof(struct aspeed_sha_hmac_ctx),
1277 .cra_alignmask = 0,
1278 .cra_module = THIS_MODULE,
1279 .cra_init = aspeed_sham_cra_init,
1280 .cra_exit = aspeed_sham_cra_exit,
1281 }
1282 }
1283 },
1284 },
1285 {
1286 .alg_base = "sha512_224",
1287 .alg.ahash = {
1288 .init = aspeed_sha512s_init,
1289 .update = aspeed_sham_update,
1290 .final = aspeed_sham_final,
1291 .finup = aspeed_sham_finup,
1292 .digest = aspeed_sham_digest,
1293 .setkey = aspeed_sham_setkey,
1294 .export = aspeed_sham_export,
1295 .import = aspeed_sham_import,
1296 .halg = {
1297 .digestsize = SHA224_DIGEST_SIZE,
1298 .statesize = sizeof(struct aspeed_sham_reqctx),
1299 .base = {
1300 .cra_name = "hmac(sha512_224)",
1301 .cra_driver_name = "aspeed-hmac-sha512_224",
1302 .cra_priority = 300,
1303 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1304 CRYPTO_ALG_ASYNC |
1305 CRYPTO_ALG_KERN_DRIVER_ONLY,
1306 .cra_blocksize = SHA512_BLOCK_SIZE,
1307 .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
1308 sizeof(struct aspeed_sha_hmac_ctx),
1309 .cra_alignmask = 0,
1310 .cra_module = THIS_MODULE,
1311 .cra_init = aspeed_sham_cra_init,
1312 .cra_exit = aspeed_sham_cra_exit,
1313 }
1314 }
1315 },
1316 },
1317 {
1318 .alg_base = "sha512_256",
1319 .alg.ahash = {
1320 .init = aspeed_sha512s_init,
1321 .update = aspeed_sham_update,
1322 .final = aspeed_sham_final,
1323 .finup = aspeed_sham_finup,
1324 .digest = aspeed_sham_digest,
1325 .setkey = aspeed_sham_setkey,
1326 .export = aspeed_sham_export,
1327 .import = aspeed_sham_import,
1328 .halg = {
1329 .digestsize = SHA256_DIGEST_SIZE,
1330 .statesize = sizeof(struct aspeed_sham_reqctx),
1331 .base = {
1332 .cra_name = "hmac(sha512_256)",
1333 .cra_driver_name = "aspeed-hmac-sha512_256",
1334 .cra_priority = 300,
1335 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1336 CRYPTO_ALG_ASYNC |
1337 CRYPTO_ALG_KERN_DRIVER_ONLY,
1338 .cra_blocksize = SHA512_BLOCK_SIZE,
1339 .cra_ctxsize = sizeof(struct aspeed_sham_ctx) +
1340 sizeof(struct aspeed_sha_hmac_ctx),
1341 .cra_alignmask = 0,
1342 .cra_module = THIS_MODULE,
1343 .cra_init = aspeed_sham_cra_init,
1344 .cra_exit = aspeed_sham_cra_exit,
1345 }
1346 }
1347 },
1348 },
1349 };
1350
aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev * hace_dev)1351 void aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
1352 {
1353 int i;
1354
1355 for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++)
1356 crypto_unregister_ahash(&aspeed_ahash_algs[i].alg.ahash);
1357
1358 if (hace_dev->version != AST2600_VERSION)
1359 return;
1360
1361 for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++)
1362 crypto_unregister_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
1363 }
1364
aspeed_register_hace_hash_algs(struct aspeed_hace_dev * hace_dev)1365 void aspeed_register_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
1366 {
1367 int rc, i;
1368
1369 AHASH_DBG(hace_dev, "\n");
1370
1371 for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) {
1372 aspeed_ahash_algs[i].hace_dev = hace_dev;
1373 rc = crypto_register_ahash(&aspeed_ahash_algs[i].alg.ahash);
1374 if (rc) {
1375 AHASH_DBG(hace_dev, "Failed to register %s\n",
1376 aspeed_ahash_algs[i].alg.ahash.halg.base.cra_name);
1377 }
1378 }
1379
1380 if (hace_dev->version != AST2600_VERSION)
1381 return;
1382
1383 for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) {
1384 aspeed_ahash_algs_g6[i].hace_dev = hace_dev;
1385 rc = crypto_register_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
1386 if (rc) {
1387 AHASH_DBG(hace_dev, "Failed to register %s\n",
1388 aspeed_ahash_algs_g6[i].alg.ahash.halg.base.cra_name);
1389 }
1390 }
1391 }
1392