1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MHI Endpoint bus stack
4 *
5 * Copyright (C) 2022 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19
20 #define M0_WAIT_DELAY_MS 100
21 #define M0_WAIT_COUNT 100
22
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27
mhi_ep_send_event(struct mhi_ep_cntrl * mhi_cntrl,u32 ring_idx,struct mhi_ring_element * el,bool bei)28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 struct mhi_ring_element *el, bool bei)
30 {
31 struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 union mhi_ep_ring_ctx *ctx;
33 struct mhi_ep_ring *ring;
34 int ret;
35
36 mutex_lock(&mhi_cntrl->event_lock);
37 ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 if (!ring->started) {
40 ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 if (ret) {
42 dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 goto err_unlock;
44 }
45 }
46
47 /* Add element to the event ring */
48 ret = mhi_ep_ring_add_element(ring, el);
49 if (ret) {
50 dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 goto err_unlock;
52 }
53
54 mutex_unlock(&mhi_cntrl->event_lock);
55
56 /*
57 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58 * set this flag for interrupt moderation as per MHI protocol.
59 */
60 if (!bei)
61 mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62
63 return 0;
64
65 err_unlock:
66 mutex_unlock(&mhi_cntrl->event_lock);
67
68 return ret;
69 }
70
mhi_ep_send_completion_event(struct mhi_ep_cntrl * mhi_cntrl,struct mhi_ep_ring * ring,struct mhi_ring_element * tre,u32 len,enum mhi_ev_ccs code)71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72 struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73 {
74 struct mhi_ring_element event = {};
75
76 event.ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
77 event.dword[0] = MHI_TRE_EV_DWORD0(code, len);
78 event.dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
79
80 return mhi_ep_send_event(mhi_cntrl, ring->er_index, &event, MHI_TRE_DATA_GET_BEI(tre));
81 }
82
mhi_ep_send_state_change_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_state state)83 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
84 {
85 struct mhi_ring_element event = {};
86
87 event.dword[0] = MHI_SC_EV_DWORD0(state);
88 event.dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
89
90 return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
91 }
92
mhi_ep_send_ee_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_ee_type exec_env)93 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
94 {
95 struct mhi_ring_element event = {};
96
97 event.dword[0] = MHI_EE_EV_DWORD0(exec_env);
98 event.dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
99
100 return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
101 }
102
mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_ev_ccs code)103 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
104 {
105 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
106 struct mhi_ring_element event = {};
107
108 event.ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
109 event.dword[0] = MHI_CC_EV_DWORD0(code);
110 event.dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
111
112 return mhi_ep_send_event(mhi_cntrl, 0, &event, 0);
113 }
114
mhi_ep_process_cmd_ring(struct mhi_ep_ring * ring,struct mhi_ring_element * el)115 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
116 {
117 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
118 struct device *dev = &mhi_cntrl->mhi_dev->dev;
119 struct mhi_result result = {};
120 struct mhi_ep_chan *mhi_chan;
121 struct mhi_ep_ring *ch_ring;
122 u32 tmp, ch_id;
123 int ret;
124
125 ch_id = MHI_TRE_GET_CMD_CHID(el);
126 mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
127 ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
128
129 switch (MHI_TRE_GET_CMD_TYPE(el)) {
130 case MHI_PKT_TYPE_START_CHAN_CMD:
131 dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
132
133 mutex_lock(&mhi_chan->lock);
134 /* Initialize and configure the corresponding channel ring */
135 if (!ch_ring->started) {
136 ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
137 (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
138 if (ret) {
139 dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
140 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
141 MHI_EV_CC_UNDEFINED_ERR);
142 if (ret)
143 dev_err(dev, "Error sending completion event: %d\n", ret);
144
145 goto err_unlock;
146 }
147 }
148
149 /* Set channel state to RUNNING */
150 mhi_chan->state = MHI_CH_STATE_RUNNING;
151 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
152 tmp &= ~CHAN_CTX_CHSTATE_MASK;
153 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
154 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
155
156 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
157 if (ret) {
158 dev_err(dev, "Error sending command completion event (%u)\n",
159 MHI_EV_CC_SUCCESS);
160 goto err_unlock;
161 }
162
163 mutex_unlock(&mhi_chan->lock);
164
165 /*
166 * Create MHI device only during UL channel start. Since the MHI
167 * channels operate in a pair, we'll associate both UL and DL
168 * channels to the same device.
169 *
170 * We also need to check for mhi_dev != NULL because, the host
171 * will issue START_CHAN command during resume and we don't
172 * destroy the device during suspend.
173 */
174 if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
175 ret = mhi_ep_create_device(mhi_cntrl, ch_id);
176 if (ret) {
177 dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
178 mhi_ep_handle_syserr(mhi_cntrl);
179 return ret;
180 }
181 }
182
183 /* Finally, enable DB for the channel */
184 mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
185
186 break;
187 case MHI_PKT_TYPE_STOP_CHAN_CMD:
188 dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
189 if (!ch_ring->started) {
190 dev_err(dev, "Channel (%u) not opened\n", ch_id);
191 return -ENODEV;
192 }
193
194 mutex_lock(&mhi_chan->lock);
195 /* Disable DB for the channel */
196 mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
197
198 /* Send channel disconnect status to client drivers */
199 result.transaction_status = -ENOTCONN;
200 result.bytes_xferd = 0;
201 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
202
203 /* Set channel state to STOP */
204 mhi_chan->state = MHI_CH_STATE_STOP;
205 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
206 tmp &= ~CHAN_CTX_CHSTATE_MASK;
207 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
208 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
209
210 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
211 if (ret) {
212 dev_err(dev, "Error sending command completion event (%u)\n",
213 MHI_EV_CC_SUCCESS);
214 goto err_unlock;
215 }
216
217 mutex_unlock(&mhi_chan->lock);
218 break;
219 case MHI_PKT_TYPE_RESET_CHAN_CMD:
220 dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
221 if (!ch_ring->started) {
222 dev_err(dev, "Channel (%u) not opened\n", ch_id);
223 return -ENODEV;
224 }
225
226 mutex_lock(&mhi_chan->lock);
227 /* Stop and reset the transfer ring */
228 mhi_ep_ring_reset(mhi_cntrl, ch_ring);
229
230 /* Send channel disconnect status to client driver */
231 result.transaction_status = -ENOTCONN;
232 result.bytes_xferd = 0;
233 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
234
235 /* Set channel state to DISABLED */
236 mhi_chan->state = MHI_CH_STATE_DISABLED;
237 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
238 tmp &= ~CHAN_CTX_CHSTATE_MASK;
239 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
240 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
241
242 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
243 if (ret) {
244 dev_err(dev, "Error sending command completion event (%u)\n",
245 MHI_EV_CC_SUCCESS);
246 goto err_unlock;
247 }
248
249 mutex_unlock(&mhi_chan->lock);
250 break;
251 default:
252 dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
253 MHI_TRE_GET_CMD_TYPE(el), ch_id);
254 return -EINVAL;
255 }
256
257 return 0;
258
259 err_unlock:
260 mutex_unlock(&mhi_chan->lock);
261
262 return ret;
263 }
264
mhi_ep_queue_is_empty(struct mhi_ep_device * mhi_dev,enum dma_data_direction dir)265 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
266 {
267 struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
268 mhi_dev->ul_chan;
269 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
270 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
271
272 return !!(ring->rd_offset == ring->wr_offset);
273 }
274 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
275
mhi_ep_read_channel(struct mhi_ep_cntrl * mhi_cntrl,struct mhi_ep_ring * ring,struct mhi_result * result,u32 len)276 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
277 struct mhi_ep_ring *ring,
278 struct mhi_result *result,
279 u32 len)
280 {
281 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
282 struct device *dev = &mhi_cntrl->mhi_dev->dev;
283 size_t tr_len, read_offset, write_offset;
284 struct mhi_ring_element *el;
285 bool tr_done = false;
286 void *write_addr;
287 u64 read_addr;
288 u32 buf_left;
289 int ret;
290
291 buf_left = len;
292
293 do {
294 /* Don't process the transfer ring if the channel is not in RUNNING state */
295 if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
296 dev_err(dev, "Channel not available\n");
297 return -ENODEV;
298 }
299
300 el = &ring->ring_cache[ring->rd_offset];
301
302 /* Check if there is data pending to be read from previous read operation */
303 if (mhi_chan->tre_bytes_left) {
304 dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
305 tr_len = min(buf_left, mhi_chan->tre_bytes_left);
306 } else {
307 mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
308 mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
309 mhi_chan->tre_bytes_left = mhi_chan->tre_size;
310
311 tr_len = min(buf_left, mhi_chan->tre_size);
312 }
313
314 read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
315 write_offset = len - buf_left;
316 read_addr = mhi_chan->tre_loc + read_offset;
317 write_addr = result->buf_addr + write_offset;
318
319 dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
320 ret = mhi_cntrl->read_from_host(mhi_cntrl, read_addr, write_addr, tr_len);
321 if (ret < 0) {
322 dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
323 return ret;
324 }
325
326 buf_left -= tr_len;
327 mhi_chan->tre_bytes_left -= tr_len;
328
329 /*
330 * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been
331 * read completely:
332 *
333 * 1. Send completion event to the host based on the flags set in TRE.
334 * 2. Increment the local read offset of the transfer ring.
335 */
336 if (!mhi_chan->tre_bytes_left) {
337 /*
338 * The host will split the data packet into multiple TREs if it can't fit
339 * the packet in a single TRE. In that case, CHAIN flag will be set by the
340 * host for all TREs except the last one.
341 */
342 if (MHI_TRE_DATA_GET_CHAIN(el)) {
343 /*
344 * IEOB (Interrupt on End of Block) flag will be set by the host if
345 * it expects the completion event for all TREs of a TD.
346 */
347 if (MHI_TRE_DATA_GET_IEOB(el)) {
348 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
349 MHI_TRE_DATA_GET_LEN(el),
350 MHI_EV_CC_EOB);
351 if (ret < 0) {
352 dev_err(&mhi_chan->mhi_dev->dev,
353 "Error sending transfer compl. event\n");
354 return ret;
355 }
356 }
357 } else {
358 /*
359 * IEOT (Interrupt on End of Transfer) flag will be set by the host
360 * for the last TRE of the TD and expects the completion event for
361 * the same.
362 */
363 if (MHI_TRE_DATA_GET_IEOT(el)) {
364 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
365 MHI_TRE_DATA_GET_LEN(el),
366 MHI_EV_CC_EOT);
367 if (ret < 0) {
368 dev_err(&mhi_chan->mhi_dev->dev,
369 "Error sending transfer compl. event\n");
370 return ret;
371 }
372 }
373
374 tr_done = true;
375 }
376
377 mhi_ep_ring_inc_index(ring);
378 }
379
380 result->bytes_xferd += tr_len;
381 } while (buf_left && !tr_done);
382
383 return 0;
384 }
385
mhi_ep_process_ch_ring(struct mhi_ep_ring * ring,struct mhi_ring_element * el)386 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
387 {
388 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
389 struct mhi_result result = {};
390 u32 len = MHI_EP_DEFAULT_MTU;
391 struct mhi_ep_chan *mhi_chan;
392 int ret;
393
394 mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
395
396 /*
397 * Bail out if transfer callback is not registered for the channel.
398 * This is most likely due to the client driver not loaded at this point.
399 */
400 if (!mhi_chan->xfer_cb) {
401 dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
402 return -ENODEV;
403 }
404
405 if (ring->ch_id % 2) {
406 /* DL channel */
407 result.dir = mhi_chan->dir;
408 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
409 } else {
410 /* UL channel */
411 result.buf_addr = kzalloc(len, GFP_KERNEL);
412 if (!result.buf_addr)
413 return -ENOMEM;
414
415 do {
416 ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len);
417 if (ret < 0) {
418 dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
419 kfree(result.buf_addr);
420 return ret;
421 }
422
423 result.dir = mhi_chan->dir;
424 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
425 result.bytes_xferd = 0;
426 memset(result.buf_addr, 0, len);
427
428 /* Read until the ring becomes empty */
429 } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
430
431 kfree(result.buf_addr);
432 }
433
434 return 0;
435 }
436
437 /* TODO: Handle partially formed TDs */
mhi_ep_queue_skb(struct mhi_ep_device * mhi_dev,struct sk_buff * skb)438 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
439 {
440 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
441 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
442 struct device *dev = &mhi_chan->mhi_dev->dev;
443 struct mhi_ring_element *el;
444 u32 buf_left, read_offset;
445 struct mhi_ep_ring *ring;
446 enum mhi_ev_ccs code;
447 void *read_addr;
448 u64 write_addr;
449 size_t tr_len;
450 u32 tre_len;
451 int ret;
452
453 buf_left = skb->len;
454 ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
455
456 mutex_lock(&mhi_chan->lock);
457
458 do {
459 /* Don't process the transfer ring if the channel is not in RUNNING state */
460 if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
461 dev_err(dev, "Channel not available\n");
462 ret = -ENODEV;
463 goto err_exit;
464 }
465
466 if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
467 dev_err(dev, "TRE not available!\n");
468 ret = -ENOSPC;
469 goto err_exit;
470 }
471
472 el = &ring->ring_cache[ring->rd_offset];
473 tre_len = MHI_TRE_DATA_GET_LEN(el);
474
475 tr_len = min(buf_left, tre_len);
476 read_offset = skb->len - buf_left;
477 read_addr = skb->data + read_offset;
478 write_addr = MHI_TRE_DATA_GET_PTR(el);
479
480 dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
481 ret = mhi_cntrl->write_to_host(mhi_cntrl, read_addr, write_addr, tr_len);
482 if (ret < 0) {
483 dev_err(dev, "Error writing to the channel\n");
484 goto err_exit;
485 }
486
487 buf_left -= tr_len;
488 /*
489 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
490 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
491 * the host so that the host can adjust the packet boundary to next TREs. Else send
492 * the EOT event to the host indicating the packet boundary.
493 */
494 if (buf_left)
495 code = MHI_EV_CC_OVERFLOW;
496 else
497 code = MHI_EV_CC_EOT;
498
499 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, tr_len, code);
500 if (ret) {
501 dev_err(dev, "Error sending transfer completion event\n");
502 goto err_exit;
503 }
504
505 mhi_ep_ring_inc_index(ring);
506 } while (buf_left);
507
508 mutex_unlock(&mhi_chan->lock);
509
510 return 0;
511
512 err_exit:
513 mutex_unlock(&mhi_chan->lock);
514
515 return ret;
516 }
517 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
518
mhi_ep_cache_host_cfg(struct mhi_ep_cntrl * mhi_cntrl)519 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
520 {
521 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
522 struct device *dev = &mhi_cntrl->mhi_dev->dev;
523 int ret;
524
525 /* Update the number of event rings (NER) programmed by the host */
526 mhi_ep_mmio_update_ner(mhi_cntrl);
527
528 dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
529 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
530
531 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
532 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
533 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
534
535 /* Get the channel context base pointer from host */
536 mhi_ep_mmio_get_chc_base(mhi_cntrl);
537
538 /* Allocate and map memory for caching host channel context */
539 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
540 &mhi_cntrl->ch_ctx_cache_phys,
541 (void __iomem **) &mhi_cntrl->ch_ctx_cache,
542 ch_ctx_host_size);
543 if (ret) {
544 dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
545 return ret;
546 }
547
548 /* Get the event context base pointer from host */
549 mhi_ep_mmio_get_erc_base(mhi_cntrl);
550
551 /* Allocate and map memory for caching host event context */
552 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
553 &mhi_cntrl->ev_ctx_cache_phys,
554 (void __iomem **) &mhi_cntrl->ev_ctx_cache,
555 ev_ctx_host_size);
556 if (ret) {
557 dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
558 goto err_ch_ctx;
559 }
560
561 /* Get the command context base pointer from host */
562 mhi_ep_mmio_get_crc_base(mhi_cntrl);
563
564 /* Allocate and map memory for caching host command context */
565 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
566 &mhi_cntrl->cmd_ctx_cache_phys,
567 (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
568 cmd_ctx_host_size);
569 if (ret) {
570 dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
571 goto err_ev_ctx;
572 }
573
574 /* Initialize command ring */
575 ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
576 (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
577 if (ret) {
578 dev_err(dev, "Failed to start the command ring\n");
579 goto err_cmd_ctx;
580 }
581
582 return ret;
583
584 err_cmd_ctx:
585 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
586 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
587
588 err_ev_ctx:
589 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
590 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
591
592 err_ch_ctx:
593 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
594 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
595
596 return ret;
597 }
598
mhi_ep_free_host_cfg(struct mhi_ep_cntrl * mhi_cntrl)599 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
600 {
601 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
602
603 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
604 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
605 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
606
607 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
608 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
609
610 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
611 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
612
613 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
614 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
615 }
616
mhi_ep_enable_int(struct mhi_ep_cntrl * mhi_cntrl)617 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
618 {
619 /*
620 * Doorbell interrupts are enabled when the corresponding channel gets started.
621 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
622 * associated with hw channels always get triggered.
623 */
624 mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
625 mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
626 }
627
mhi_ep_enable(struct mhi_ep_cntrl * mhi_cntrl)628 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
629 {
630 struct device *dev = &mhi_cntrl->mhi_dev->dev;
631 enum mhi_state state;
632 bool mhi_reset;
633 u32 count = 0;
634 int ret;
635
636 /* Wait for Host to set the M0 state */
637 do {
638 msleep(M0_WAIT_DELAY_MS);
639 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
640 if (mhi_reset) {
641 /* Clear the MHI reset if host is in reset state */
642 mhi_ep_mmio_clear_reset(mhi_cntrl);
643 dev_info(dev, "Detected Host reset while waiting for M0\n");
644 }
645 count++;
646 } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
647
648 if (state != MHI_STATE_M0) {
649 dev_err(dev, "Host failed to enter M0\n");
650 return -ETIMEDOUT;
651 }
652
653 ret = mhi_ep_cache_host_cfg(mhi_cntrl);
654 if (ret) {
655 dev_err(dev, "Failed to cache host config\n");
656 return ret;
657 }
658
659 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
660
661 /* Enable all interrupts now */
662 mhi_ep_enable_int(mhi_cntrl);
663
664 return 0;
665 }
666
mhi_ep_cmd_ring_worker(struct work_struct * work)667 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
668 {
669 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
670 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
671 struct device *dev = &mhi_cntrl->mhi_dev->dev;
672 struct mhi_ring_element *el;
673 int ret;
674
675 /* Update the write offset for the ring */
676 ret = mhi_ep_update_wr_offset(ring);
677 if (ret) {
678 dev_err(dev, "Error updating write offset for ring\n");
679 return;
680 }
681
682 /* Sanity check to make sure there are elements in the ring */
683 if (ring->rd_offset == ring->wr_offset)
684 return;
685
686 /*
687 * Process command ring element till write offset. In case of an error, just try to
688 * process next element.
689 */
690 while (ring->rd_offset != ring->wr_offset) {
691 el = &ring->ring_cache[ring->rd_offset];
692
693 ret = mhi_ep_process_cmd_ring(ring, el);
694 if (ret)
695 dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
696
697 mhi_ep_ring_inc_index(ring);
698 }
699 }
700
mhi_ep_ch_ring_worker(struct work_struct * work)701 static void mhi_ep_ch_ring_worker(struct work_struct *work)
702 {
703 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
704 struct device *dev = &mhi_cntrl->mhi_dev->dev;
705 struct mhi_ep_ring_item *itr, *tmp;
706 struct mhi_ring_element *el;
707 struct mhi_ep_ring *ring;
708 struct mhi_ep_chan *chan;
709 unsigned long flags;
710 LIST_HEAD(head);
711 int ret;
712
713 spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
714 list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
715 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
716
717 /* Process each queued channel ring. In case of an error, just process next element. */
718 list_for_each_entry_safe(itr, tmp, &head, node) {
719 list_del(&itr->node);
720 ring = itr->ring;
721
722 /* Update the write offset for the ring */
723 ret = mhi_ep_update_wr_offset(ring);
724 if (ret) {
725 dev_err(dev, "Error updating write offset for ring\n");
726 kfree(itr);
727 continue;
728 }
729
730 /* Sanity check to make sure there are elements in the ring */
731 if (ring->rd_offset == ring->wr_offset) {
732 kfree(itr);
733 continue;
734 }
735
736 el = &ring->ring_cache[ring->rd_offset];
737 chan = &mhi_cntrl->mhi_chan[ring->ch_id];
738
739 mutex_lock(&chan->lock);
740 dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
741 ret = mhi_ep_process_ch_ring(ring, el);
742 if (ret) {
743 dev_err(dev, "Error processing ring for channel (%u): %d\n",
744 ring->ch_id, ret);
745 mutex_unlock(&chan->lock);
746 kfree(itr);
747 continue;
748 }
749
750 mutex_unlock(&chan->lock);
751 kfree(itr);
752 }
753 }
754
mhi_ep_state_worker(struct work_struct * work)755 static void mhi_ep_state_worker(struct work_struct *work)
756 {
757 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
758 struct device *dev = &mhi_cntrl->mhi_dev->dev;
759 struct mhi_ep_state_transition *itr, *tmp;
760 unsigned long flags;
761 LIST_HEAD(head);
762 int ret;
763
764 spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
765 list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
766 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
767
768 list_for_each_entry_safe(itr, tmp, &head, node) {
769 list_del(&itr->node);
770 dev_dbg(dev, "Handling MHI state transition to %s\n",
771 mhi_state_str(itr->state));
772
773 switch (itr->state) {
774 case MHI_STATE_M0:
775 ret = mhi_ep_set_m0_state(mhi_cntrl);
776 if (ret)
777 dev_err(dev, "Failed to transition to M0 state\n");
778 break;
779 case MHI_STATE_M3:
780 ret = mhi_ep_set_m3_state(mhi_cntrl);
781 if (ret)
782 dev_err(dev, "Failed to transition to M3 state\n");
783 break;
784 default:
785 dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
786 break;
787 }
788 kfree(itr);
789 }
790 }
791
mhi_ep_queue_channel_db(struct mhi_ep_cntrl * mhi_cntrl,unsigned long ch_int,u32 ch_idx)792 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
793 u32 ch_idx)
794 {
795 struct mhi_ep_ring_item *item;
796 struct mhi_ep_ring *ring;
797 bool work = !!ch_int;
798 LIST_HEAD(head);
799 u32 i;
800
801 /* First add the ring items to a local list */
802 for_each_set_bit(i, &ch_int, 32) {
803 /* Channel index varies for each register: 0, 32, 64, 96 */
804 u32 ch_id = ch_idx + i;
805
806 ring = &mhi_cntrl->mhi_chan[ch_id].ring;
807 item = kzalloc(sizeof(*item), GFP_ATOMIC);
808 if (!item)
809 return;
810
811 item->ring = ring;
812 list_add_tail(&item->node, &head);
813 }
814
815 /* Now, splice the local list into ch_db_list and queue the work item */
816 if (work) {
817 spin_lock(&mhi_cntrl->list_lock);
818 list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
819 spin_unlock(&mhi_cntrl->list_lock);
820
821 queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
822 }
823 }
824
825 /*
826 * Channel interrupt statuses are contained in 4 registers each of 32bit length.
827 * For checking all interrupts, we need to loop through each registers and then
828 * check for bits set.
829 */
mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl * mhi_cntrl)830 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
831 {
832 u32 ch_int, ch_idx, i;
833
834 /* Bail out if there is no channel doorbell interrupt */
835 if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
836 return;
837
838 for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
839 ch_idx = i * MHI_MASK_CH_LEN;
840
841 /* Only process channel interrupt if the mask is enabled */
842 ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
843 if (ch_int) {
844 mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
845 mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
846 mhi_cntrl->chdb[i].status);
847 }
848 }
849 }
850
mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_state state)851 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
852 enum mhi_state state)
853 {
854 struct mhi_ep_state_transition *item;
855
856 item = kzalloc(sizeof(*item), GFP_ATOMIC);
857 if (!item)
858 return;
859
860 item->state = state;
861 spin_lock(&mhi_cntrl->list_lock);
862 list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
863 spin_unlock(&mhi_cntrl->list_lock);
864
865 queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
866 }
867
868 /*
869 * Interrupt handler that services interrupts raised by the host writing to
870 * MHICTRL and Command ring doorbell (CRDB) registers for state change and
871 * channel interrupts.
872 */
mhi_ep_irq(int irq,void * data)873 static irqreturn_t mhi_ep_irq(int irq, void *data)
874 {
875 struct mhi_ep_cntrl *mhi_cntrl = data;
876 struct device *dev = &mhi_cntrl->mhi_dev->dev;
877 enum mhi_state state;
878 u32 int_value;
879 bool mhi_reset;
880
881 /* Acknowledge the ctrl interrupt */
882 int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
883 mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
884
885 /* Check for ctrl interrupt */
886 if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
887 dev_dbg(dev, "Processing ctrl interrupt\n");
888 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
889 if (mhi_reset) {
890 dev_info(dev, "Host triggered MHI reset!\n");
891 disable_irq_nosync(mhi_cntrl->irq);
892 schedule_work(&mhi_cntrl->reset_work);
893 return IRQ_HANDLED;
894 }
895
896 mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
897 }
898
899 /* Check for command doorbell interrupt */
900 if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
901 dev_dbg(dev, "Processing command doorbell interrupt\n");
902 queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
903 }
904
905 /* Check for channel interrupts */
906 mhi_ep_check_channel_interrupt(mhi_cntrl);
907
908 return IRQ_HANDLED;
909 }
910
mhi_ep_abort_transfer(struct mhi_ep_cntrl * mhi_cntrl)911 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
912 {
913 struct mhi_ep_ring *ch_ring, *ev_ring;
914 struct mhi_result result = {};
915 struct mhi_ep_chan *mhi_chan;
916 int i;
917
918 /* Stop all the channels */
919 for (i = 0; i < mhi_cntrl->max_chan; i++) {
920 mhi_chan = &mhi_cntrl->mhi_chan[i];
921 if (!mhi_chan->ring.started)
922 continue;
923
924 mutex_lock(&mhi_chan->lock);
925 /* Send channel disconnect status to client drivers */
926 if (mhi_chan->xfer_cb) {
927 result.transaction_status = -ENOTCONN;
928 result.bytes_xferd = 0;
929 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
930 }
931
932 mhi_chan->state = MHI_CH_STATE_DISABLED;
933 mutex_unlock(&mhi_chan->lock);
934 }
935
936 flush_workqueue(mhi_cntrl->wq);
937
938 /* Destroy devices associated with all channels */
939 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
940
941 /* Stop and reset the transfer rings */
942 for (i = 0; i < mhi_cntrl->max_chan; i++) {
943 mhi_chan = &mhi_cntrl->mhi_chan[i];
944 if (!mhi_chan->ring.started)
945 continue;
946
947 ch_ring = &mhi_cntrl->mhi_chan[i].ring;
948 mutex_lock(&mhi_chan->lock);
949 mhi_ep_ring_reset(mhi_cntrl, ch_ring);
950 mutex_unlock(&mhi_chan->lock);
951 }
952
953 /* Stop and reset the event rings */
954 for (i = 0; i < mhi_cntrl->event_rings; i++) {
955 ev_ring = &mhi_cntrl->mhi_event[i].ring;
956 if (!ev_ring->started)
957 continue;
958
959 mutex_lock(&mhi_cntrl->event_lock);
960 mhi_ep_ring_reset(mhi_cntrl, ev_ring);
961 mutex_unlock(&mhi_cntrl->event_lock);
962 }
963
964 /* Stop and reset the command ring */
965 mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
966
967 mhi_ep_free_host_cfg(mhi_cntrl);
968 mhi_ep_mmio_mask_interrupts(mhi_cntrl);
969
970 mhi_cntrl->enabled = false;
971 }
972
mhi_ep_reset_worker(struct work_struct * work)973 static void mhi_ep_reset_worker(struct work_struct *work)
974 {
975 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
976 struct device *dev = &mhi_cntrl->mhi_dev->dev;
977 enum mhi_state cur_state;
978 int ret;
979
980 mhi_ep_abort_transfer(mhi_cntrl);
981
982 spin_lock_bh(&mhi_cntrl->state_lock);
983 /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
984 mhi_ep_mmio_reset(mhi_cntrl);
985 cur_state = mhi_cntrl->mhi_state;
986 spin_unlock_bh(&mhi_cntrl->state_lock);
987
988 /*
989 * Only proceed further if the reset is due to SYS_ERR. The host will
990 * issue reset during shutdown also and we don't need to do re-init in
991 * that case.
992 */
993 if (cur_state == MHI_STATE_SYS_ERR) {
994 mhi_ep_mmio_init(mhi_cntrl);
995
996 /* Set AMSS EE before signaling ready state */
997 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
998
999 /* All set, notify the host that we are ready */
1000 ret = mhi_ep_set_ready_state(mhi_cntrl);
1001 if (ret)
1002 return;
1003
1004 dev_dbg(dev, "READY state notification sent to the host\n");
1005
1006 ret = mhi_ep_enable(mhi_cntrl);
1007 if (ret) {
1008 dev_err(dev, "Failed to enable MHI endpoint: %d\n", ret);
1009 return;
1010 }
1011
1012 enable_irq(mhi_cntrl->irq);
1013 }
1014 }
1015
1016 /*
1017 * We don't need to do anything special other than setting the MHI SYS_ERR
1018 * state. The host will reset all contexts and issue MHI RESET so that we
1019 * could also recover from error state.
1020 */
mhi_ep_handle_syserr(struct mhi_ep_cntrl * mhi_cntrl)1021 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1022 {
1023 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1024 int ret;
1025
1026 ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1027 if (ret)
1028 return;
1029
1030 /* Signal host that the device went to SYS_ERR state */
1031 ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1032 if (ret)
1033 dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1034 }
1035
mhi_ep_power_up(struct mhi_ep_cntrl * mhi_cntrl)1036 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1037 {
1038 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1039 int ret, i;
1040
1041 /*
1042 * Mask all interrupts until the state machine is ready. Interrupts will
1043 * be enabled later with mhi_ep_enable().
1044 */
1045 mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1046 mhi_ep_mmio_init(mhi_cntrl);
1047
1048 mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1049 GFP_KERNEL);
1050 if (!mhi_cntrl->mhi_event)
1051 return -ENOMEM;
1052
1053 /* Initialize command, channel and event rings */
1054 mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1055 for (i = 0; i < mhi_cntrl->max_chan; i++)
1056 mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1057 for (i = 0; i < mhi_cntrl->event_rings; i++)
1058 mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1059
1060 mhi_cntrl->mhi_state = MHI_STATE_RESET;
1061
1062 /* Set AMSS EE before signaling ready state */
1063 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1064
1065 /* All set, notify the host that we are ready */
1066 ret = mhi_ep_set_ready_state(mhi_cntrl);
1067 if (ret)
1068 goto err_free_event;
1069
1070 dev_dbg(dev, "READY state notification sent to the host\n");
1071
1072 ret = mhi_ep_enable(mhi_cntrl);
1073 if (ret) {
1074 dev_err(dev, "Failed to enable MHI endpoint\n");
1075 goto err_free_event;
1076 }
1077
1078 enable_irq(mhi_cntrl->irq);
1079 mhi_cntrl->enabled = true;
1080
1081 return 0;
1082
1083 err_free_event:
1084 kfree(mhi_cntrl->mhi_event);
1085
1086 return ret;
1087 }
1088 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1089
mhi_ep_power_down(struct mhi_ep_cntrl * mhi_cntrl)1090 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1091 {
1092 if (mhi_cntrl->enabled)
1093 mhi_ep_abort_transfer(mhi_cntrl);
1094
1095 kfree(mhi_cntrl->mhi_event);
1096 disable_irq(mhi_cntrl->irq);
1097 }
1098 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1099
mhi_ep_suspend_channels(struct mhi_ep_cntrl * mhi_cntrl)1100 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1101 {
1102 struct mhi_ep_chan *mhi_chan;
1103 u32 tmp;
1104 int i;
1105
1106 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1107 mhi_chan = &mhi_cntrl->mhi_chan[i];
1108
1109 if (!mhi_chan->mhi_dev)
1110 continue;
1111
1112 mutex_lock(&mhi_chan->lock);
1113 /* Skip if the channel is not currently running */
1114 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1115 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1116 mutex_unlock(&mhi_chan->lock);
1117 continue;
1118 }
1119
1120 dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1121 /* Set channel state to SUSPENDED */
1122 tmp &= ~CHAN_CTX_CHSTATE_MASK;
1123 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1124 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1125 mutex_unlock(&mhi_chan->lock);
1126 }
1127 }
1128
mhi_ep_resume_channels(struct mhi_ep_cntrl * mhi_cntrl)1129 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1130 {
1131 struct mhi_ep_chan *mhi_chan;
1132 u32 tmp;
1133 int i;
1134
1135 for (i = 0; i < mhi_cntrl->max_chan; i++) {
1136 mhi_chan = &mhi_cntrl->mhi_chan[i];
1137
1138 if (!mhi_chan->mhi_dev)
1139 continue;
1140
1141 mutex_lock(&mhi_chan->lock);
1142 /* Skip if the channel is not currently suspended */
1143 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1144 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1145 mutex_unlock(&mhi_chan->lock);
1146 continue;
1147 }
1148
1149 dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1150 /* Set channel state to RUNNING */
1151 tmp &= ~CHAN_CTX_CHSTATE_MASK;
1152 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1153 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1154 mutex_unlock(&mhi_chan->lock);
1155 }
1156 }
1157
mhi_ep_release_device(struct device * dev)1158 static void mhi_ep_release_device(struct device *dev)
1159 {
1160 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1161
1162 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1163 mhi_dev->mhi_cntrl->mhi_dev = NULL;
1164
1165 /*
1166 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1167 * devices for the channels will only get created in mhi_ep_create_device()
1168 * if the mhi_dev associated with it is NULL.
1169 */
1170 if (mhi_dev->ul_chan)
1171 mhi_dev->ul_chan->mhi_dev = NULL;
1172
1173 if (mhi_dev->dl_chan)
1174 mhi_dev->dl_chan->mhi_dev = NULL;
1175
1176 kfree(mhi_dev);
1177 }
1178
mhi_ep_alloc_device(struct mhi_ep_cntrl * mhi_cntrl,enum mhi_device_type dev_type)1179 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1180 enum mhi_device_type dev_type)
1181 {
1182 struct mhi_ep_device *mhi_dev;
1183 struct device *dev;
1184
1185 mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1186 if (!mhi_dev)
1187 return ERR_PTR(-ENOMEM);
1188
1189 dev = &mhi_dev->dev;
1190 device_initialize(dev);
1191 dev->bus = &mhi_ep_bus_type;
1192 dev->release = mhi_ep_release_device;
1193
1194 /* Controller device is always allocated first */
1195 if (dev_type == MHI_DEVICE_CONTROLLER)
1196 /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1197 dev->parent = mhi_cntrl->cntrl_dev;
1198 else
1199 /* for MHI client devices, parent is the MHI controller device */
1200 dev->parent = &mhi_cntrl->mhi_dev->dev;
1201
1202 mhi_dev->mhi_cntrl = mhi_cntrl;
1203 mhi_dev->dev_type = dev_type;
1204
1205 return mhi_dev;
1206 }
1207
1208 /*
1209 * MHI channels are always defined in pairs with UL as the even numbered
1210 * channel and DL as odd numbered one. This function gets UL channel (primary)
1211 * as the ch_id and always looks after the next entry in channel list for
1212 * the corresponding DL channel (secondary).
1213 */
mhi_ep_create_device(struct mhi_ep_cntrl * mhi_cntrl,u32 ch_id)1214 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1215 {
1216 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1217 struct device *dev = mhi_cntrl->cntrl_dev;
1218 struct mhi_ep_device *mhi_dev;
1219 int ret;
1220
1221 /* Check if the channel name is same for both UL and DL */
1222 if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1223 dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1224 mhi_chan->name, mhi_chan[1].name);
1225 return -EINVAL;
1226 }
1227
1228 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1229 if (IS_ERR(mhi_dev))
1230 return PTR_ERR(mhi_dev);
1231
1232 /* Configure primary channel */
1233 mhi_dev->ul_chan = mhi_chan;
1234 get_device(&mhi_dev->dev);
1235 mhi_chan->mhi_dev = mhi_dev;
1236
1237 /* Configure secondary channel as well */
1238 mhi_chan++;
1239 mhi_dev->dl_chan = mhi_chan;
1240 get_device(&mhi_dev->dev);
1241 mhi_chan->mhi_dev = mhi_dev;
1242
1243 /* Channel name is same for both UL and DL */
1244 mhi_dev->name = mhi_chan->name;
1245 ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1246 dev_name(&mhi_cntrl->mhi_dev->dev),
1247 mhi_dev->name);
1248 if (ret) {
1249 put_device(&mhi_dev->dev);
1250 return ret;
1251 }
1252
1253 ret = device_add(&mhi_dev->dev);
1254 if (ret)
1255 put_device(&mhi_dev->dev);
1256
1257 return ret;
1258 }
1259
mhi_ep_destroy_device(struct device * dev,void * data)1260 static int mhi_ep_destroy_device(struct device *dev, void *data)
1261 {
1262 struct mhi_ep_device *mhi_dev;
1263 struct mhi_ep_cntrl *mhi_cntrl;
1264 struct mhi_ep_chan *ul_chan, *dl_chan;
1265
1266 if (dev->bus != &mhi_ep_bus_type)
1267 return 0;
1268
1269 mhi_dev = to_mhi_ep_device(dev);
1270 mhi_cntrl = mhi_dev->mhi_cntrl;
1271
1272 /* Only destroy devices created for channels */
1273 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1274 return 0;
1275
1276 ul_chan = mhi_dev->ul_chan;
1277 dl_chan = mhi_dev->dl_chan;
1278
1279 if (ul_chan)
1280 put_device(&ul_chan->mhi_dev->dev);
1281
1282 if (dl_chan)
1283 put_device(&dl_chan->mhi_dev->dev);
1284
1285 dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1286 mhi_dev->name);
1287
1288 /* Notify the client and remove the device from MHI bus */
1289 device_del(dev);
1290 put_device(dev);
1291
1292 return 0;
1293 }
1294
mhi_ep_chan_init(struct mhi_ep_cntrl * mhi_cntrl,const struct mhi_ep_cntrl_config * config)1295 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1296 const struct mhi_ep_cntrl_config *config)
1297 {
1298 const struct mhi_ep_channel_config *ch_cfg;
1299 struct device *dev = mhi_cntrl->cntrl_dev;
1300 u32 chan, i;
1301 int ret = -EINVAL;
1302
1303 mhi_cntrl->max_chan = config->max_channels;
1304
1305 /*
1306 * Allocate max_channels supported by the MHI endpoint and populate
1307 * only the defined channels
1308 */
1309 mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1310 GFP_KERNEL);
1311 if (!mhi_cntrl->mhi_chan)
1312 return -ENOMEM;
1313
1314 for (i = 0; i < config->num_channels; i++) {
1315 struct mhi_ep_chan *mhi_chan;
1316
1317 ch_cfg = &config->ch_cfg[i];
1318
1319 chan = ch_cfg->num;
1320 if (chan >= mhi_cntrl->max_chan) {
1321 dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1322 chan, mhi_cntrl->max_chan);
1323 goto error_chan_cfg;
1324 }
1325
1326 /* Bi-directional and direction less channels are not supported */
1327 if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1328 dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1329 ch_cfg->dir, chan);
1330 goto error_chan_cfg;
1331 }
1332
1333 mhi_chan = &mhi_cntrl->mhi_chan[chan];
1334 mhi_chan->name = ch_cfg->name;
1335 mhi_chan->chan = chan;
1336 mhi_chan->dir = ch_cfg->dir;
1337 mutex_init(&mhi_chan->lock);
1338 }
1339
1340 return 0;
1341
1342 error_chan_cfg:
1343 kfree(mhi_cntrl->mhi_chan);
1344
1345 return ret;
1346 }
1347
1348 /*
1349 * Allocate channel and command rings here. Event rings will be allocated
1350 * in mhi_ep_power_up() as the config comes from the host.
1351 */
mhi_ep_register_controller(struct mhi_ep_cntrl * mhi_cntrl,const struct mhi_ep_cntrl_config * config)1352 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1353 const struct mhi_ep_cntrl_config *config)
1354 {
1355 struct mhi_ep_device *mhi_dev;
1356 int ret;
1357
1358 if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1359 return -EINVAL;
1360
1361 ret = mhi_ep_chan_init(mhi_cntrl, config);
1362 if (ret)
1363 return ret;
1364
1365 mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1366 if (!mhi_cntrl->mhi_cmd) {
1367 ret = -ENOMEM;
1368 goto err_free_ch;
1369 }
1370
1371 INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1372 INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1373 INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1374 INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1375
1376 mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1377 if (!mhi_cntrl->wq) {
1378 ret = -ENOMEM;
1379 goto err_free_cmd;
1380 }
1381
1382 INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1383 INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1384 spin_lock_init(&mhi_cntrl->state_lock);
1385 spin_lock_init(&mhi_cntrl->list_lock);
1386 mutex_init(&mhi_cntrl->event_lock);
1387
1388 /* Set MHI version and AMSS EE before enumeration */
1389 mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1390 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1391
1392 /* Set controller index */
1393 ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1394 if (ret < 0)
1395 goto err_destroy_wq;
1396
1397 mhi_cntrl->index = ret;
1398
1399 irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1400 ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1401 "doorbell_irq", mhi_cntrl);
1402 if (ret) {
1403 dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1404 goto err_ida_free;
1405 }
1406
1407 /* Allocate the controller device */
1408 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1409 if (IS_ERR(mhi_dev)) {
1410 dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1411 ret = PTR_ERR(mhi_dev);
1412 goto err_free_irq;
1413 }
1414
1415 ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1416 if (ret)
1417 goto err_put_dev;
1418
1419 mhi_dev->name = dev_name(&mhi_dev->dev);
1420 mhi_cntrl->mhi_dev = mhi_dev;
1421
1422 ret = device_add(&mhi_dev->dev);
1423 if (ret)
1424 goto err_put_dev;
1425
1426 dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1427
1428 return 0;
1429
1430 err_put_dev:
1431 put_device(&mhi_dev->dev);
1432 err_free_irq:
1433 free_irq(mhi_cntrl->irq, mhi_cntrl);
1434 err_ida_free:
1435 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1436 err_destroy_wq:
1437 destroy_workqueue(mhi_cntrl->wq);
1438 err_free_cmd:
1439 kfree(mhi_cntrl->mhi_cmd);
1440 err_free_ch:
1441 kfree(mhi_cntrl->mhi_chan);
1442
1443 return ret;
1444 }
1445 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1446
1447 /*
1448 * It is expected that the controller drivers will power down the MHI EP stack
1449 * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1450 */
mhi_ep_unregister_controller(struct mhi_ep_cntrl * mhi_cntrl)1451 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1452 {
1453 struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1454
1455 destroy_workqueue(mhi_cntrl->wq);
1456
1457 free_irq(mhi_cntrl->irq, mhi_cntrl);
1458
1459 kfree(mhi_cntrl->mhi_cmd);
1460 kfree(mhi_cntrl->mhi_chan);
1461
1462 device_del(&mhi_dev->dev);
1463 put_device(&mhi_dev->dev);
1464
1465 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1466 }
1467 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1468
mhi_ep_driver_probe(struct device * dev)1469 static int mhi_ep_driver_probe(struct device *dev)
1470 {
1471 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1472 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1473 struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1474 struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1475
1476 ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1477 dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1478
1479 return mhi_drv->probe(mhi_dev, mhi_dev->id);
1480 }
1481
mhi_ep_driver_remove(struct device * dev)1482 static int mhi_ep_driver_remove(struct device *dev)
1483 {
1484 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1485 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1486 struct mhi_result result = {};
1487 struct mhi_ep_chan *mhi_chan;
1488 int dir;
1489
1490 /* Skip if it is a controller device */
1491 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1492 return 0;
1493
1494 /* Disconnect the channels associated with the driver */
1495 for (dir = 0; dir < 2; dir++) {
1496 mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1497
1498 if (!mhi_chan)
1499 continue;
1500
1501 mutex_lock(&mhi_chan->lock);
1502 /* Send channel disconnect status to the client driver */
1503 if (mhi_chan->xfer_cb) {
1504 result.transaction_status = -ENOTCONN;
1505 result.bytes_xferd = 0;
1506 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1507 }
1508
1509 mhi_chan->state = MHI_CH_STATE_DISABLED;
1510 mhi_chan->xfer_cb = NULL;
1511 mutex_unlock(&mhi_chan->lock);
1512 }
1513
1514 /* Remove the client driver now */
1515 mhi_drv->remove(mhi_dev);
1516
1517 return 0;
1518 }
1519
__mhi_ep_driver_register(struct mhi_ep_driver * mhi_drv,struct module * owner)1520 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1521 {
1522 struct device_driver *driver = &mhi_drv->driver;
1523
1524 if (!mhi_drv->probe || !mhi_drv->remove)
1525 return -EINVAL;
1526
1527 /* Client drivers should have callbacks defined for both channels */
1528 if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1529 return -EINVAL;
1530
1531 driver->bus = &mhi_ep_bus_type;
1532 driver->owner = owner;
1533 driver->probe = mhi_ep_driver_probe;
1534 driver->remove = mhi_ep_driver_remove;
1535
1536 return driver_register(driver);
1537 }
1538 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1539
mhi_ep_driver_unregister(struct mhi_ep_driver * mhi_drv)1540 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1541 {
1542 driver_unregister(&mhi_drv->driver);
1543 }
1544 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1545
mhi_ep_uevent(struct device * dev,struct kobj_uevent_env * env)1546 static int mhi_ep_uevent(struct device *dev, struct kobj_uevent_env *env)
1547 {
1548 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1549
1550 return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1551 mhi_dev->name);
1552 }
1553
mhi_ep_match(struct device * dev,struct device_driver * drv)1554 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1555 {
1556 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1557 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1558 const struct mhi_device_id *id;
1559
1560 /*
1561 * If the device is a controller type then there is no client driver
1562 * associated with it
1563 */
1564 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1565 return 0;
1566
1567 for (id = mhi_drv->id_table; id->chan[0]; id++)
1568 if (!strcmp(mhi_dev->name, id->chan)) {
1569 mhi_dev->id = id;
1570 return 1;
1571 }
1572
1573 return 0;
1574 };
1575
1576 struct bus_type mhi_ep_bus_type = {
1577 .name = "mhi_ep",
1578 .dev_name = "mhi_ep",
1579 .match = mhi_ep_match,
1580 .uevent = mhi_ep_uevent,
1581 };
1582
mhi_ep_init(void)1583 static int __init mhi_ep_init(void)
1584 {
1585 return bus_register(&mhi_ep_bus_type);
1586 }
1587
mhi_ep_exit(void)1588 static void __exit mhi_ep_exit(void)
1589 {
1590 bus_unregister(&mhi_ep_bus_type);
1591 }
1592
1593 postcore_initcall(mhi_ep_init);
1594 module_exit(mhi_ep_exit);
1595
1596 MODULE_LICENSE("GPL v2");
1597 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1598 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1599