1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 	{}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80 
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83 
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 			enable_unrestricted_guest, bool, S_IRUGO);
96 
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105 
106 module_param(enable_apicv, bool, S_IRUGO);
107 
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110 
111 /*
112  * If nested=1, nested virtualization is supported, i.e., guests may use
113  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114  * use VMX instructions.
115  */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118 
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121 
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124 
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127 
128 #define MSR_BITMAP_MODE_X2APIC		1
129 #define MSR_BITMAP_MODE_X2APIC_APICV	2
130 
131 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
132 
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139 
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142 
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON				\
146 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147 
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151 
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153 
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 	RTIT_STATUS_BYTECNT))
158 
159 /*
160  * List of MSRs that can be directly passed to the guest.
161  * In addition to these x2apic and PT MSRs are handled specially.
162  */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 	MSR_IA32_SPEC_CTRL,
165 	MSR_IA32_PRED_CMD,
166 	MSR_IA32_TSC,
167 #ifdef CONFIG_X86_64
168 	MSR_FS_BASE,
169 	MSR_GS_BASE,
170 	MSR_KERNEL_GS_BASE,
171 	MSR_IA32_XFD,
172 	MSR_IA32_XFD_ERR,
173 #endif
174 	MSR_IA32_SYSENTER_CS,
175 	MSR_IA32_SYSENTER_ESP,
176 	MSR_IA32_SYSENTER_EIP,
177 	MSR_CORE_C1_RES,
178 	MSR_CORE_C3_RESIDENCY,
179 	MSR_CORE_C6_RESIDENCY,
180 	MSR_CORE_C7_RESIDENCY,
181 };
182 
183 /*
184  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
185  * ple_gap:    upper bound on the amount of time between two successive
186  *             executions of PAUSE in a loop. Also indicate if ple enabled.
187  *             According to test, this time is usually smaller than 128 cycles.
188  * ple_window: upper bound on the amount of time a guest is allowed to execute
189  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
190  *             less than 2^12 cycles
191  * Time is measured based on a counter that runs at the same rate as the TSC,
192  * refer SDM volume 3b section 21.6.13 & 22.1.3.
193  */
194 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
195 module_param(ple_gap, uint, 0444);
196 
197 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
198 module_param(ple_window, uint, 0444);
199 
200 /* Default doubles per-vcpu window every exit. */
201 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
202 module_param(ple_window_grow, uint, 0444);
203 
204 /* Default resets per-vcpu window every exit to ple_window. */
205 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
206 module_param(ple_window_shrink, uint, 0444);
207 
208 /* Default is to compute the maximum so we can never overflow. */
209 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
210 module_param(ple_window_max, uint, 0444);
211 
212 /* Default is SYSTEM mode, 1 for host-guest mode */
213 int __read_mostly pt_mode = PT_MODE_SYSTEM;
214 module_param(pt_mode, int, S_IRUGO);
215 
216 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
218 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
219 
220 /* Storage for pre module init parameter parsing */
221 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
222 
223 static const struct {
224 	const char *option;
225 	bool for_parse;
226 } vmentry_l1d_param[] = {
227 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
228 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
229 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
230 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
231 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
232 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
233 };
234 
235 #define L1D_CACHE_ORDER 4
236 static void *vmx_l1d_flush_pages;
237 
238 /* Control for disabling CPU Fill buffer clear */
239 static bool __read_mostly vmx_fb_clear_ctrl_available;
240 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 	struct page *page;
244 	unsigned int i;
245 
246 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 		return 0;
249 	}
250 
251 	if (!enable_ept) {
252 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 		return 0;
254 	}
255 
256 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
257 		u64 msr;
258 
259 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
260 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
261 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
262 			return 0;
263 		}
264 	}
265 
266 	/* If set to auto use the default l1tf mitigation method */
267 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
268 		switch (l1tf_mitigation) {
269 		case L1TF_MITIGATION_OFF:
270 			l1tf = VMENTER_L1D_FLUSH_NEVER;
271 			break;
272 		case L1TF_MITIGATION_FLUSH_NOWARN:
273 		case L1TF_MITIGATION_FLUSH:
274 		case L1TF_MITIGATION_FLUSH_NOSMT:
275 			l1tf = VMENTER_L1D_FLUSH_COND;
276 			break;
277 		case L1TF_MITIGATION_FULL:
278 		case L1TF_MITIGATION_FULL_FORCE:
279 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
280 			break;
281 		}
282 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
283 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 	}
285 
286 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
287 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
288 		/*
289 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
290 		 * lifetime and so should not be charged to a memcg.
291 		 */
292 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
293 		if (!page)
294 			return -ENOMEM;
295 		vmx_l1d_flush_pages = page_address(page);
296 
297 		/*
298 		 * Initialize each page with a different pattern in
299 		 * order to protect against KSM in the nested
300 		 * virtualization case.
301 		 */
302 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
303 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
304 			       PAGE_SIZE);
305 		}
306 	}
307 
308 	l1tf_vmx_mitigation = l1tf;
309 
310 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
311 		static_branch_enable(&vmx_l1d_should_flush);
312 	else
313 		static_branch_disable(&vmx_l1d_should_flush);
314 
315 	if (l1tf == VMENTER_L1D_FLUSH_COND)
316 		static_branch_enable(&vmx_l1d_flush_cond);
317 	else
318 		static_branch_disable(&vmx_l1d_flush_cond);
319 	return 0;
320 }
321 
vmentry_l1d_flush_parse(const char * s)322 static int vmentry_l1d_flush_parse(const char *s)
323 {
324 	unsigned int i;
325 
326 	if (s) {
327 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
328 			if (vmentry_l1d_param[i].for_parse &&
329 			    sysfs_streq(s, vmentry_l1d_param[i].option))
330 				return i;
331 		}
332 	}
333 	return -EINVAL;
334 }
335 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)336 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
337 {
338 	int l1tf, ret;
339 
340 	l1tf = vmentry_l1d_flush_parse(s);
341 	if (l1tf < 0)
342 		return l1tf;
343 
344 	if (!boot_cpu_has(X86_BUG_L1TF))
345 		return 0;
346 
347 	/*
348 	 * Has vmx_init() run already? If not then this is the pre init
349 	 * parameter parsing. In that case just store the value and let
350 	 * vmx_init() do the proper setup after enable_ept has been
351 	 * established.
352 	 */
353 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
354 		vmentry_l1d_flush_param = l1tf;
355 		return 0;
356 	}
357 
358 	mutex_lock(&vmx_l1d_flush_mutex);
359 	ret = vmx_setup_l1d_flush(l1tf);
360 	mutex_unlock(&vmx_l1d_flush_mutex);
361 	return ret;
362 }
363 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)364 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
365 {
366 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
367 		return sprintf(s, "???\n");
368 
369 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
370 }
371 
vmx_setup_fb_clear_ctrl(void)372 static void vmx_setup_fb_clear_ctrl(void)
373 {
374 	u64 msr;
375 
376 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
377 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
378 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
379 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
380 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
381 			vmx_fb_clear_ctrl_available = true;
382 	}
383 }
384 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)385 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
386 {
387 	u64 msr;
388 
389 	if (!vmx->disable_fb_clear)
390 		return;
391 
392 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
393 	msr |= FB_CLEAR_DIS;
394 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
395 	/* Cache the MSR value to avoid reading it later */
396 	vmx->msr_ia32_mcu_opt_ctrl = msr;
397 }
398 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)399 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
400 {
401 	if (!vmx->disable_fb_clear)
402 		return;
403 
404 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
405 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
406 }
407 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)408 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
409 {
410 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
411 
412 	/*
413 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 	 * execute VERW.
416 	 */
417 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 		vmx->disable_fb_clear = false;
424 }
425 
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 	.set = vmentry_l1d_flush_set,
428 	.get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431 
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433 
434 void vmx_vmexit(void);
435 
436 #define vmx_insn_failed(fmt...)		\
437 do {					\
438 	WARN_ONCE(1, fmt);		\
439 	pr_warn_ratelimited(fmt);	\
440 } while (0)
441 
vmread_error(unsigned long field,bool fault)442 void vmread_error(unsigned long field, bool fault)
443 {
444 	if (fault)
445 		kvm_spurious_fault();
446 	else
447 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
448 }
449 
vmwrite_error(unsigned long field,unsigned long value)450 noinline void vmwrite_error(unsigned long field, unsigned long value)
451 {
452 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%u\n",
453 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
454 }
455 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)456 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
457 {
458 	vmx_insn_failed("kvm: vmclear failed: %p/%llx err=%u\n",
459 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
460 }
461 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)462 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
463 {
464 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx err=%u\n",
465 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)468 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
469 {
470 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
471 			ext, vpid, gva);
472 }
473 
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)474 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
475 {
476 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
477 			ext, eptp, gpa);
478 }
479 
480 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
481 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
482 /*
483  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
484  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
485  */
486 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
487 
488 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
489 static DEFINE_SPINLOCK(vmx_vpid_lock);
490 
491 struct vmcs_config vmcs_config;
492 struct vmx_capability vmx_capability;
493 
494 #define VMX_SEGMENT_FIELD(seg)					\
495 	[VCPU_SREG_##seg] = {                                   \
496 		.selector = GUEST_##seg##_SELECTOR,		\
497 		.base = GUEST_##seg##_BASE,		   	\
498 		.limit = GUEST_##seg##_LIMIT,		   	\
499 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
500 	}
501 
502 static const struct kvm_vmx_segment_field {
503 	unsigned selector;
504 	unsigned base;
505 	unsigned limit;
506 	unsigned ar_bytes;
507 } kvm_vmx_segment_fields[] = {
508 	VMX_SEGMENT_FIELD(CS),
509 	VMX_SEGMENT_FIELD(DS),
510 	VMX_SEGMENT_FIELD(ES),
511 	VMX_SEGMENT_FIELD(FS),
512 	VMX_SEGMENT_FIELD(GS),
513 	VMX_SEGMENT_FIELD(SS),
514 	VMX_SEGMENT_FIELD(TR),
515 	VMX_SEGMENT_FIELD(LDTR),
516 };
517 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)518 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
519 {
520 	vmx->segment_cache.bitmask = 0;
521 }
522 
523 static unsigned long host_idt_base;
524 
525 #if IS_ENABLED(CONFIG_HYPERV)
526 static bool __read_mostly enlightened_vmcs = true;
527 module_param(enlightened_vmcs, bool, 0444);
528 
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)529 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
530 {
531 	struct hv_enlightened_vmcs *evmcs;
532 	struct hv_partition_assist_pg **p_hv_pa_pg =
533 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
534 	/*
535 	 * Synthetic VM-Exit is not enabled in current code and so All
536 	 * evmcs in singe VM shares same assist page.
537 	 */
538 	if (!*p_hv_pa_pg)
539 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
540 
541 	if (!*p_hv_pa_pg)
542 		return -ENOMEM;
543 
544 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545 
546 	evmcs->partition_assist_page =
547 		__pa(*p_hv_pa_pg);
548 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550 
551 	return 0;
552 }
553 
554 #endif /* IS_ENABLED(CONFIG_HYPERV) */
555 
556 /*
557  * Comment's format: document - errata name - stepping - processor name.
558  * Refer from
559  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
560  */
561 static u32 vmx_preemption_cpu_tfms[] = {
562 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
563 0x000206E6,
564 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
565 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
566 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
567 0x00020652,
568 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
569 0x00020655,
570 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
571 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
572 /*
573  * 320767.pdf - AAP86  - B1 -
574  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
575  */
576 0x000106E5,
577 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
578 0x000106A0,
579 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
580 0x000106A1,
581 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
582 0x000106A4,
583  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
584  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
585  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
586 0x000106A5,
587  /* Xeon E3-1220 V2 */
588 0x000306A8,
589 };
590 
cpu_has_broken_vmx_preemption_timer(void)591 static inline bool cpu_has_broken_vmx_preemption_timer(void)
592 {
593 	u32 eax = cpuid_eax(0x00000001), i;
594 
595 	/* Clear the reserved bits */
596 	eax &= ~(0x3U << 14 | 0xfU << 28);
597 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
598 		if (eax == vmx_preemption_cpu_tfms[i])
599 			return true;
600 
601 	return false;
602 }
603 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)604 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
605 {
606 	return flexpriority_enabled && lapic_in_kernel(vcpu);
607 }
608 
possible_passthrough_msr_slot(u32 msr)609 static int possible_passthrough_msr_slot(u32 msr)
610 {
611 	u32 i;
612 
613 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
614 		if (vmx_possible_passthrough_msrs[i] == msr)
615 			return i;
616 
617 	return -ENOENT;
618 }
619 
is_valid_passthrough_msr(u32 msr)620 static bool is_valid_passthrough_msr(u32 msr)
621 {
622 	bool r;
623 
624 	switch (msr) {
625 	case 0x800 ... 0x8ff:
626 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
627 		return true;
628 	case MSR_IA32_RTIT_STATUS:
629 	case MSR_IA32_RTIT_OUTPUT_BASE:
630 	case MSR_IA32_RTIT_OUTPUT_MASK:
631 	case MSR_IA32_RTIT_CR3_MATCH:
632 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
633 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
634 	case MSR_LBR_SELECT:
635 	case MSR_LBR_TOS:
636 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
637 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
638 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
639 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
640 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
641 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
642 		return true;
643 	}
644 
645 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
646 
647 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
648 
649 	return r;
650 }
651 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 	int i;
655 
656 	i = kvm_find_user_return_msr(msr);
657 	if (i >= 0)
658 		return &vmx->guest_uret_msrs[i];
659 	return NULL;
660 }
661 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 				  struct vmx_uret_msr *msr, u64 data)
664 {
665 	unsigned int slot = msr - vmx->guest_uret_msrs;
666 	int ret = 0;
667 
668 	if (msr->load_into_hardware) {
669 		preempt_disable();
670 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 		preempt_enable();
672 	}
673 	if (!ret)
674 		msr->data = data;
675 	return ret;
676 }
677 
678 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)679 static void crash_vmclear_local_loaded_vmcss(void)
680 {
681 	int cpu = raw_smp_processor_id();
682 	struct loaded_vmcs *v;
683 
684 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
685 			    loaded_vmcss_on_cpu_link)
686 		vmcs_clear(v->vmcs);
687 }
688 #endif /* CONFIG_KEXEC_CORE */
689 
__loaded_vmcs_clear(void * arg)690 static void __loaded_vmcs_clear(void *arg)
691 {
692 	struct loaded_vmcs *loaded_vmcs = arg;
693 	int cpu = raw_smp_processor_id();
694 
695 	if (loaded_vmcs->cpu != cpu)
696 		return; /* vcpu migration can race with cpu offline */
697 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 		per_cpu(current_vmcs, cpu) = NULL;
699 
700 	vmcs_clear(loaded_vmcs->vmcs);
701 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
702 		vmcs_clear(loaded_vmcs->shadow_vmcs);
703 
704 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
705 
706 	/*
707 	 * Ensure all writes to loaded_vmcs, including deleting it from its
708 	 * current percpu list, complete before setting loaded_vmcs->cpu to
709 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
710 	 * and add loaded_vmcs to its percpu list before it's deleted from this
711 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
712 	 */
713 	smp_wmb();
714 
715 	loaded_vmcs->cpu = -1;
716 	loaded_vmcs->launched = 0;
717 }
718 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)719 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
720 {
721 	int cpu = loaded_vmcs->cpu;
722 
723 	if (cpu != -1)
724 		smp_call_function_single(cpu,
725 			 __loaded_vmcs_clear, loaded_vmcs, 1);
726 }
727 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)728 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
729 				       unsigned field)
730 {
731 	bool ret;
732 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
733 
734 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
735 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
736 		vmx->segment_cache.bitmask = 0;
737 	}
738 	ret = vmx->segment_cache.bitmask & mask;
739 	vmx->segment_cache.bitmask |= mask;
740 	return ret;
741 }
742 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)743 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 	u16 *p = &vmx->segment_cache.seg[seg].selector;
746 
747 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
748 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
749 	return *p;
750 }
751 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)752 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 	ulong *p = &vmx->segment_cache.seg[seg].base;
755 
756 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
757 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
758 	return *p;
759 }
760 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)761 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
762 {
763 	u32 *p = &vmx->segment_cache.seg[seg].limit;
764 
765 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
766 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
767 	return *p;
768 }
769 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)770 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
771 {
772 	u32 *p = &vmx->segment_cache.seg[seg].ar;
773 
774 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
775 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
776 	return *p;
777 }
778 
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)779 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
780 {
781 	u32 eb;
782 
783 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
784 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
785 	/*
786 	 * Guest access to VMware backdoor ports could legitimately
787 	 * trigger #GP because of TSS I/O permission bitmap.
788 	 * We intercept those #GP and allow access to them anyway
789 	 * as VMware does.
790 	 */
791 	if (enable_vmware_backdoor)
792 		eb |= (1u << GP_VECTOR);
793 	if ((vcpu->guest_debug &
794 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
795 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
796 		eb |= 1u << BP_VECTOR;
797 	if (to_vmx(vcpu)->rmode.vm86_active)
798 		eb = ~0;
799 	if (!vmx_need_pf_intercept(vcpu))
800 		eb &= ~(1u << PF_VECTOR);
801 
802 	/* When we are running a nested L2 guest and L1 specified for it a
803 	 * certain exception bitmap, we must trap the same exceptions and pass
804 	 * them to L1. When running L2, we will only handle the exceptions
805 	 * specified above if L1 did not want them.
806 	 */
807 	if (is_guest_mode(vcpu))
808 		eb |= get_vmcs12(vcpu)->exception_bitmap;
809         else {
810 		int mask = 0, match = 0;
811 
812 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
813 			/*
814 			 * If EPT is enabled, #PF is currently only intercepted
815 			 * if MAXPHYADDR is smaller on the guest than on the
816 			 * host.  In that case we only care about present,
817 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
818 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
819 			 */
820 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
821 			match = PFERR_PRESENT_MASK;
822 		}
823 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
824 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
825 	}
826 
827 	/*
828 	 * Disabling xfd interception indicates that dynamic xfeatures
829 	 * might be used in the guest. Always trap #NM in this case
830 	 * to save guest xfd_err timely.
831 	 */
832 	if (vcpu->arch.xfd_no_write_intercept)
833 		eb |= (1u << NM_VECTOR);
834 
835 	vmcs_write32(EXCEPTION_BITMAP, eb);
836 }
837 
838 /*
839  * Check if MSR is intercepted for currently loaded MSR bitmap.
840  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)841 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
842 {
843 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
844 		return true;
845 
846 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
847 }
848 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)849 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
850 {
851 	unsigned int flags = 0;
852 
853 	if (vmx->loaded_vmcs->launched)
854 		flags |= VMX_RUN_VMRESUME;
855 
856 	/*
857 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
858 	 * to change it directly without causing a vmexit.  In that case read
859 	 * it after vmexit and store it in vmx->spec_ctrl.
860 	 */
861 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
862 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
863 
864 	return flags;
865 }
866 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)867 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
868 		unsigned long entry, unsigned long exit)
869 {
870 	vm_entry_controls_clearbit(vmx, entry);
871 	vm_exit_controls_clearbit(vmx, exit);
872 }
873 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)874 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
875 {
876 	unsigned int i;
877 
878 	for (i = 0; i < m->nr; ++i) {
879 		if (m->val[i].index == msr)
880 			return i;
881 	}
882 	return -ENOENT;
883 }
884 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)885 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
886 {
887 	int i;
888 	struct msr_autoload *m = &vmx->msr_autoload;
889 
890 	switch (msr) {
891 	case MSR_EFER:
892 		if (cpu_has_load_ia32_efer()) {
893 			clear_atomic_switch_msr_special(vmx,
894 					VM_ENTRY_LOAD_IA32_EFER,
895 					VM_EXIT_LOAD_IA32_EFER);
896 			return;
897 		}
898 		break;
899 	case MSR_CORE_PERF_GLOBAL_CTRL:
900 		if (cpu_has_load_perf_global_ctrl()) {
901 			clear_atomic_switch_msr_special(vmx,
902 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
903 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
904 			return;
905 		}
906 		break;
907 	}
908 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
909 	if (i < 0)
910 		goto skip_guest;
911 	--m->guest.nr;
912 	m->guest.val[i] = m->guest.val[m->guest.nr];
913 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914 
915 skip_guest:
916 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
917 	if (i < 0)
918 		return;
919 
920 	--m->host.nr;
921 	m->host.val[i] = m->host.val[m->host.nr];
922 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 }
924 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)925 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
926 		unsigned long entry, unsigned long exit,
927 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
928 		u64 guest_val, u64 host_val)
929 {
930 	vmcs_write64(guest_val_vmcs, guest_val);
931 	if (host_val_vmcs != HOST_IA32_EFER)
932 		vmcs_write64(host_val_vmcs, host_val);
933 	vm_entry_controls_setbit(vmx, entry);
934 	vm_exit_controls_setbit(vmx, exit);
935 }
936 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)937 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
938 				  u64 guest_val, u64 host_val, bool entry_only)
939 {
940 	int i, j = 0;
941 	struct msr_autoload *m = &vmx->msr_autoload;
942 
943 	switch (msr) {
944 	case MSR_EFER:
945 		if (cpu_has_load_ia32_efer()) {
946 			add_atomic_switch_msr_special(vmx,
947 					VM_ENTRY_LOAD_IA32_EFER,
948 					VM_EXIT_LOAD_IA32_EFER,
949 					GUEST_IA32_EFER,
950 					HOST_IA32_EFER,
951 					guest_val, host_val);
952 			return;
953 		}
954 		break;
955 	case MSR_CORE_PERF_GLOBAL_CTRL:
956 		if (cpu_has_load_perf_global_ctrl()) {
957 			add_atomic_switch_msr_special(vmx,
958 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
959 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
960 					GUEST_IA32_PERF_GLOBAL_CTRL,
961 					HOST_IA32_PERF_GLOBAL_CTRL,
962 					guest_val, host_val);
963 			return;
964 		}
965 		break;
966 	case MSR_IA32_PEBS_ENABLE:
967 		/* PEBS needs a quiescent period after being disabled (to write
968 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
969 		 * provide that period, so a CPU could write host's record into
970 		 * guest's memory.
971 		 */
972 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
973 	}
974 
975 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
976 	if (!entry_only)
977 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
978 
979 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
980 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
981 		printk_once(KERN_WARNING "Not enough msr switch entries. "
982 				"Can't add msr %x\n", msr);
983 		return;
984 	}
985 	if (i < 0) {
986 		i = m->guest.nr++;
987 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
988 	}
989 	m->guest.val[i].index = msr;
990 	m->guest.val[i].value = guest_val;
991 
992 	if (entry_only)
993 		return;
994 
995 	if (j < 0) {
996 		j = m->host.nr++;
997 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
998 	}
999 	m->host.val[j].index = msr;
1000 	m->host.val[j].value = host_val;
1001 }
1002 
update_transition_efer(struct vcpu_vmx * vmx)1003 static bool update_transition_efer(struct vcpu_vmx *vmx)
1004 {
1005 	u64 guest_efer = vmx->vcpu.arch.efer;
1006 	u64 ignore_bits = 0;
1007 	int i;
1008 
1009 	/* Shadow paging assumes NX to be available.  */
1010 	if (!enable_ept)
1011 		guest_efer |= EFER_NX;
1012 
1013 	/*
1014 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1015 	 */
1016 	ignore_bits |= EFER_SCE;
1017 #ifdef CONFIG_X86_64
1018 	ignore_bits |= EFER_LMA | EFER_LME;
1019 	/* SCE is meaningful only in long mode on Intel */
1020 	if (guest_efer & EFER_LMA)
1021 		ignore_bits &= ~(u64)EFER_SCE;
1022 #endif
1023 
1024 	/*
1025 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1026 	 * On CPUs that support "load IA32_EFER", always switch EFER
1027 	 * atomically, since it's faster than switching it manually.
1028 	 */
1029 	if (cpu_has_load_ia32_efer() ||
1030 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1031 		if (!(guest_efer & EFER_LMA))
1032 			guest_efer &= ~EFER_LME;
1033 		if (guest_efer != host_efer)
1034 			add_atomic_switch_msr(vmx, MSR_EFER,
1035 					      guest_efer, host_efer, false);
1036 		else
1037 			clear_atomic_switch_msr(vmx, MSR_EFER);
1038 		return false;
1039 	}
1040 
1041 	i = kvm_find_user_return_msr(MSR_EFER);
1042 	if (i < 0)
1043 		return false;
1044 
1045 	clear_atomic_switch_msr(vmx, MSR_EFER);
1046 
1047 	guest_efer &= ~ignore_bits;
1048 	guest_efer |= host_efer & ignore_bits;
1049 
1050 	vmx->guest_uret_msrs[i].data = guest_efer;
1051 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1052 
1053 	return true;
1054 }
1055 
1056 #ifdef CONFIG_X86_32
1057 /*
1058  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1059  * VMCS rather than the segment table.  KVM uses this helper to figure
1060  * out the current bases to poke them into the VMCS before entry.
1061  */
segment_base(u16 selector)1062 static unsigned long segment_base(u16 selector)
1063 {
1064 	struct desc_struct *table;
1065 	unsigned long v;
1066 
1067 	if (!(selector & ~SEGMENT_RPL_MASK))
1068 		return 0;
1069 
1070 	table = get_current_gdt_ro();
1071 
1072 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1073 		u16 ldt_selector = kvm_read_ldt();
1074 
1075 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1076 			return 0;
1077 
1078 		table = (struct desc_struct *)segment_base(ldt_selector);
1079 	}
1080 	v = get_desc_base(&table[selector >> 3]);
1081 	return v;
1082 }
1083 #endif
1084 
pt_can_write_msr(struct vcpu_vmx * vmx)1085 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1086 {
1087 	return vmx_pt_mode_is_host_guest() &&
1088 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1089 }
1090 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1091 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1092 {
1093 	/* The base must be 128-byte aligned and a legal physical address. */
1094 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1095 }
1096 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1097 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1098 {
1099 	u32 i;
1100 
1101 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1102 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1103 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1104 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1105 	for (i = 0; i < addr_range; i++) {
1106 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1107 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1108 	}
1109 }
1110 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1111 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1112 {
1113 	u32 i;
1114 
1115 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1116 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1117 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1118 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1119 	for (i = 0; i < addr_range; i++) {
1120 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1121 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1122 	}
1123 }
1124 
pt_guest_enter(struct vcpu_vmx * vmx)1125 static void pt_guest_enter(struct vcpu_vmx *vmx)
1126 {
1127 	if (vmx_pt_mode_is_system())
1128 		return;
1129 
1130 	/*
1131 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1132 	 * Save host state before VM entry.
1133 	 */
1134 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1135 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1136 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1137 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1138 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1139 	}
1140 }
1141 
pt_guest_exit(struct vcpu_vmx * vmx)1142 static void pt_guest_exit(struct vcpu_vmx *vmx)
1143 {
1144 	if (vmx_pt_mode_is_system())
1145 		return;
1146 
1147 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1149 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1150 	}
1151 
1152 	/*
1153 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1154 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1155 	 */
1156 	if (vmx->pt_desc.host.ctl)
1157 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1158 }
1159 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1160 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1161 			unsigned long fs_base, unsigned long gs_base)
1162 {
1163 	if (unlikely(fs_sel != host->fs_sel)) {
1164 		if (!(fs_sel & 7))
1165 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1166 		else
1167 			vmcs_write16(HOST_FS_SELECTOR, 0);
1168 		host->fs_sel = fs_sel;
1169 	}
1170 	if (unlikely(gs_sel != host->gs_sel)) {
1171 		if (!(gs_sel & 7))
1172 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1173 		else
1174 			vmcs_write16(HOST_GS_SELECTOR, 0);
1175 		host->gs_sel = gs_sel;
1176 	}
1177 	if (unlikely(fs_base != host->fs_base)) {
1178 		vmcs_writel(HOST_FS_BASE, fs_base);
1179 		host->fs_base = fs_base;
1180 	}
1181 	if (unlikely(gs_base != host->gs_base)) {
1182 		vmcs_writel(HOST_GS_BASE, gs_base);
1183 		host->gs_base = gs_base;
1184 	}
1185 }
1186 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1187 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1188 {
1189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1190 	struct vmcs_host_state *host_state;
1191 #ifdef CONFIG_X86_64
1192 	int cpu = raw_smp_processor_id();
1193 #endif
1194 	unsigned long fs_base, gs_base;
1195 	u16 fs_sel, gs_sel;
1196 	int i;
1197 
1198 	vmx->req_immediate_exit = false;
1199 
1200 	/*
1201 	 * Note that guest MSRs to be saved/restored can also be changed
1202 	 * when guest state is loaded. This happens when guest transitions
1203 	 * to/from long-mode by setting MSR_EFER.LMA.
1204 	 */
1205 	if (!vmx->guest_uret_msrs_loaded) {
1206 		vmx->guest_uret_msrs_loaded = true;
1207 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1208 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1209 				continue;
1210 
1211 			kvm_set_user_return_msr(i,
1212 						vmx->guest_uret_msrs[i].data,
1213 						vmx->guest_uret_msrs[i].mask);
1214 		}
1215 	}
1216 
1217     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1218 		nested_sync_vmcs12_to_shadow(vcpu);
1219 
1220 	if (vmx->guest_state_loaded)
1221 		return;
1222 
1223 	host_state = &vmx->loaded_vmcs->host_state;
1224 
1225 	/*
1226 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1227 	 * allow segment selectors with cpl > 0 or ti == 1.
1228 	 */
1229 	host_state->ldt_sel = kvm_read_ldt();
1230 
1231 #ifdef CONFIG_X86_64
1232 	savesegment(ds, host_state->ds_sel);
1233 	savesegment(es, host_state->es_sel);
1234 
1235 	gs_base = cpu_kernelmode_gs_base(cpu);
1236 	if (likely(is_64bit_mm(current->mm))) {
1237 		current_save_fsgs();
1238 		fs_sel = current->thread.fsindex;
1239 		gs_sel = current->thread.gsindex;
1240 		fs_base = current->thread.fsbase;
1241 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1242 	} else {
1243 		savesegment(fs, fs_sel);
1244 		savesegment(gs, gs_sel);
1245 		fs_base = read_msr(MSR_FS_BASE);
1246 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1247 	}
1248 
1249 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1250 #else
1251 	savesegment(fs, fs_sel);
1252 	savesegment(gs, gs_sel);
1253 	fs_base = segment_base(fs_sel);
1254 	gs_base = segment_base(gs_sel);
1255 #endif
1256 
1257 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1258 	vmx->guest_state_loaded = true;
1259 }
1260 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1261 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1262 {
1263 	struct vmcs_host_state *host_state;
1264 
1265 	if (!vmx->guest_state_loaded)
1266 		return;
1267 
1268 	host_state = &vmx->loaded_vmcs->host_state;
1269 
1270 	++vmx->vcpu.stat.host_state_reload;
1271 
1272 #ifdef CONFIG_X86_64
1273 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1274 #endif
1275 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1276 		kvm_load_ldt(host_state->ldt_sel);
1277 #ifdef CONFIG_X86_64
1278 		load_gs_index(host_state->gs_sel);
1279 #else
1280 		loadsegment(gs, host_state->gs_sel);
1281 #endif
1282 	}
1283 	if (host_state->fs_sel & 7)
1284 		loadsegment(fs, host_state->fs_sel);
1285 #ifdef CONFIG_X86_64
1286 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1287 		loadsegment(ds, host_state->ds_sel);
1288 		loadsegment(es, host_state->es_sel);
1289 	}
1290 #endif
1291 	invalidate_tss_limit();
1292 #ifdef CONFIG_X86_64
1293 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1294 #endif
1295 	load_fixmap_gdt(raw_smp_processor_id());
1296 	vmx->guest_state_loaded = false;
1297 	vmx->guest_uret_msrs_loaded = false;
1298 }
1299 
1300 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1301 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1302 {
1303 	preempt_disable();
1304 	if (vmx->guest_state_loaded)
1305 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1306 	preempt_enable();
1307 	return vmx->msr_guest_kernel_gs_base;
1308 }
1309 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1310 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1311 {
1312 	preempt_disable();
1313 	if (vmx->guest_state_loaded)
1314 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1315 	preempt_enable();
1316 	vmx->msr_guest_kernel_gs_base = data;
1317 }
1318 #endif
1319 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1321 			struct loaded_vmcs *buddy)
1322 {
1323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1324 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1325 	struct vmcs *prev;
1326 
1327 	if (!already_loaded) {
1328 		loaded_vmcs_clear(vmx->loaded_vmcs);
1329 		local_irq_disable();
1330 
1331 		/*
1332 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1333 		 * this cpu's percpu list, otherwise it may not yet be deleted
1334 		 * from its previous cpu's percpu list.  Pairs with the
1335 		 * smb_wmb() in __loaded_vmcs_clear().
1336 		 */
1337 		smp_rmb();
1338 
1339 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1340 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1341 		local_irq_enable();
1342 	}
1343 
1344 	prev = per_cpu(current_vmcs, cpu);
1345 	if (prev != vmx->loaded_vmcs->vmcs) {
1346 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1347 		vmcs_load(vmx->loaded_vmcs->vmcs);
1348 
1349 		/*
1350 		 * No indirect branch prediction barrier needed when switching
1351 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1352 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1353 		 */
1354 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1355 			indirect_branch_prediction_barrier();
1356 	}
1357 
1358 	if (!already_loaded) {
1359 		void *gdt = get_current_gdt_ro();
1360 
1361 		/*
1362 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1363 		 * TLB entries from its previous association with the vCPU.
1364 		 */
1365 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1366 
1367 		/*
1368 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1369 		 * processors.  See 22.2.4.
1370 		 */
1371 		vmcs_writel(HOST_TR_BASE,
1372 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1373 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1374 
1375 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1376 			/* 22.2.3 */
1377 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1378 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1379 		}
1380 
1381 		vmx->loaded_vmcs->cpu = cpu;
1382 	}
1383 }
1384 
1385 /*
1386  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1387  * vcpu mutex is already taken.
1388  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1389 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1390 {
1391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1392 
1393 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1394 
1395 	vmx_vcpu_pi_load(vcpu, cpu);
1396 
1397 	vmx->host_debugctlmsr = get_debugctlmsr();
1398 }
1399 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1400 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1401 {
1402 	vmx_vcpu_pi_put(vcpu);
1403 
1404 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1405 }
1406 
vmx_emulation_required(struct kvm_vcpu * vcpu)1407 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1408 {
1409 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1410 }
1411 
vmx_get_rflags(struct kvm_vcpu * vcpu)1412 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1413 {
1414 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1415 	unsigned long rflags, save_rflags;
1416 
1417 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1418 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1419 		rflags = vmcs_readl(GUEST_RFLAGS);
1420 		if (vmx->rmode.vm86_active) {
1421 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1422 			save_rflags = vmx->rmode.save_rflags;
1423 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1424 		}
1425 		vmx->rflags = rflags;
1426 	}
1427 	return vmx->rflags;
1428 }
1429 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1430 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1431 {
1432 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1433 	unsigned long old_rflags;
1434 
1435 	if (is_unrestricted_guest(vcpu)) {
1436 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1437 		vmx->rflags = rflags;
1438 		vmcs_writel(GUEST_RFLAGS, rflags);
1439 		return;
1440 	}
1441 
1442 	old_rflags = vmx_get_rflags(vcpu);
1443 	vmx->rflags = rflags;
1444 	if (vmx->rmode.vm86_active) {
1445 		vmx->rmode.save_rflags = rflags;
1446 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1447 	}
1448 	vmcs_writel(GUEST_RFLAGS, rflags);
1449 
1450 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1451 		vmx->emulation_required = vmx_emulation_required(vcpu);
1452 }
1453 
vmx_get_if_flag(struct kvm_vcpu * vcpu)1454 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1455 {
1456 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1457 }
1458 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1459 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1460 {
1461 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462 	int ret = 0;
1463 
1464 	if (interruptibility & GUEST_INTR_STATE_STI)
1465 		ret |= KVM_X86_SHADOW_INT_STI;
1466 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1467 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1468 
1469 	return ret;
1470 }
1471 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1472 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1473 {
1474 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1475 	u32 interruptibility = interruptibility_old;
1476 
1477 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1478 
1479 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1480 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1481 	else if (mask & KVM_X86_SHADOW_INT_STI)
1482 		interruptibility |= GUEST_INTR_STATE_STI;
1483 
1484 	if ((interruptibility != interruptibility_old))
1485 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1486 }
1487 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1488 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1489 {
1490 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1491 	unsigned long value;
1492 
1493 	/*
1494 	 * Any MSR write that attempts to change bits marked reserved will
1495 	 * case a #GP fault.
1496 	 */
1497 	if (data & vmx->pt_desc.ctl_bitmask)
1498 		return 1;
1499 
1500 	/*
1501 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1502 	 * result in a #GP unless the same write also clears TraceEn.
1503 	 */
1504 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1505 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1506 		return 1;
1507 
1508 	/*
1509 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1510 	 * and FabricEn would cause #GP, if
1511 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1512 	 */
1513 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1514 		!(data & RTIT_CTL_FABRIC_EN) &&
1515 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1516 					PT_CAP_single_range_output))
1517 		return 1;
1518 
1519 	/*
1520 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1521 	 * utilize encodings marked reserved will cause a #GP fault.
1522 	 */
1523 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1524 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1525 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1526 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1527 		return 1;
1528 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1529 						PT_CAP_cycle_thresholds);
1530 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1531 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1532 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1533 		return 1;
1534 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1535 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1536 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1537 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1538 		return 1;
1539 
1540 	/*
1541 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1542 	 * cause a #GP fault.
1543 	 */
1544 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1545 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1546 		return 1;
1547 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1548 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1549 		return 1;
1550 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1551 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1552 		return 1;
1553 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1554 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1555 		return 1;
1556 
1557 	return 0;
1558 }
1559 
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1560 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1561 					void *insn, int insn_len)
1562 {
1563 	/*
1564 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1565 	 * not point at the failing instruction, and even if it did, the code
1566 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1567 	 * so that guest userspace can't DoS the guest simply by triggering
1568 	 * emulation (enclaves are CPL3 only).
1569 	 */
1570 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1571 		kvm_queue_exception(vcpu, UD_VECTOR);
1572 		return false;
1573 	}
1574 	return true;
1575 }
1576 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1577 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1578 {
1579 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1580 	unsigned long rip, orig_rip;
1581 	u32 instr_len;
1582 
1583 	/*
1584 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1585 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1586 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1587 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1588 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1589 	 * i.e. we end up advancing IP with some random value.
1590 	 */
1591 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1592 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1593 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1594 
1595 		/*
1596 		 * Emulating an enclave's instructions isn't supported as KVM
1597 		 * cannot access the enclave's memory or its true RIP, e.g. the
1598 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1599 		 * the RIP that actually triggered the VM-Exit.  But, because
1600 		 * most instructions that cause VM-Exit will #UD in an enclave,
1601 		 * most instruction-based VM-Exits simply do not occur.
1602 		 *
1603 		 * There are a few exceptions, notably the debug instructions
1604 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1605 		 * and generate #DB/#BP as expected, which KVM might intercept.
1606 		 * But again, the CPU does the dirty work and saves an instr
1607 		 * length of zero so VMMs don't shoot themselves in the foot.
1608 		 * WARN if KVM tries to skip a non-zero length instruction on
1609 		 * a VM-Exit from an enclave.
1610 		 */
1611 		if (!instr_len)
1612 			goto rip_updated;
1613 
1614 		WARN(exit_reason.enclave_mode,
1615 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1616 
1617 		orig_rip = kvm_rip_read(vcpu);
1618 		rip = orig_rip + instr_len;
1619 #ifdef CONFIG_X86_64
1620 		/*
1621 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1622 		 * mode, but just finding out that we are in 64-bit mode is
1623 		 * quite expensive.  Only do it if there was a carry.
1624 		 */
1625 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1626 			rip = (u32)rip;
1627 #endif
1628 		kvm_rip_write(vcpu, rip);
1629 	} else {
1630 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1631 			return 0;
1632 	}
1633 
1634 rip_updated:
1635 	/* skipping an emulated instruction also counts */
1636 	vmx_set_interrupt_shadow(vcpu, 0);
1637 
1638 	return 1;
1639 }
1640 
1641 /*
1642  * Recognizes a pending MTF VM-exit and records the nested state for later
1643  * delivery.
1644  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1645 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1646 {
1647 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1648 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1649 
1650 	if (!is_guest_mode(vcpu))
1651 		return;
1652 
1653 	/*
1654 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1655 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1656 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1657 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1658 	 * as ICEBP is higher priority than both.  As instruction emulation is
1659 	 * completed at this point (i.e. KVM is at the instruction boundary),
1660 	 * any #DB exception pending delivery must be a debug-trap of lower
1661 	 * priority than MTF.  Record the pending MTF state to be delivered in
1662 	 * vmx_check_nested_events().
1663 	 */
1664 	if (nested_cpu_has_mtf(vmcs12) &&
1665 	    (!vcpu->arch.exception.pending ||
1666 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1667 	    (!vcpu->arch.exception_vmexit.pending ||
1668 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1669 		vmx->nested.mtf_pending = true;
1670 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1671 	} else {
1672 		vmx->nested.mtf_pending = false;
1673 	}
1674 }
1675 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1676 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1677 {
1678 	vmx_update_emulated_instruction(vcpu);
1679 	return skip_emulated_instruction(vcpu);
1680 }
1681 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1682 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1683 {
1684 	/*
1685 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1686 	 * explicitly skip the instruction because if the HLT state is set,
1687 	 * then the instruction is already executing and RIP has already been
1688 	 * advanced.
1689 	 */
1690 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1691 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1692 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1693 }
1694 
vmx_inject_exception(struct kvm_vcpu * vcpu)1695 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1696 {
1697 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1698 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1700 
1701 	kvm_deliver_exception_payload(vcpu, ex);
1702 
1703 	if (ex->has_error_code) {
1704 		/*
1705 		 * Despite the error code being architecturally defined as 32
1706 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1707 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1708 		 * will (should) never provide a bogus error code, but AMD CPUs
1709 		 * do generate error codes with bits 31:16 set, and so KVM's
1710 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1711 		 * the upper bits to avoid VM-Fail, losing information that
1712 		 * does't really exist is preferable to killing the VM.
1713 		 */
1714 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1715 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1716 	}
1717 
1718 	if (vmx->rmode.vm86_active) {
1719 		int inc_eip = 0;
1720 		if (kvm_exception_is_soft(ex->vector))
1721 			inc_eip = vcpu->arch.event_exit_inst_len;
1722 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1723 		return;
1724 	}
1725 
1726 	WARN_ON_ONCE(vmx->emulation_required);
1727 
1728 	if (kvm_exception_is_soft(ex->vector)) {
1729 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1730 			     vmx->vcpu.arch.event_exit_inst_len);
1731 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1732 	} else
1733 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1734 
1735 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1736 
1737 	vmx_clear_hlt(vcpu);
1738 }
1739 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1740 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1741 			       bool load_into_hardware)
1742 {
1743 	struct vmx_uret_msr *uret_msr;
1744 
1745 	uret_msr = vmx_find_uret_msr(vmx, msr);
1746 	if (!uret_msr)
1747 		return;
1748 
1749 	uret_msr->load_into_hardware = load_into_hardware;
1750 }
1751 
1752 /*
1753  * Configuring user return MSRs to automatically save, load, and restore MSRs
1754  * that need to be shoved into hardware when running the guest.  Note, omitting
1755  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1756  * loaded into hardware when running the guest.
1757  */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1758 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1759 {
1760 #ifdef CONFIG_X86_64
1761 	bool load_syscall_msrs;
1762 
1763 	/*
1764 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1765 	 * when EFER.SCE is set.
1766 	 */
1767 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1768 			    (vmx->vcpu.arch.efer & EFER_SCE);
1769 
1770 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1771 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1772 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1773 #endif
1774 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1775 
1776 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1777 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1778 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1779 
1780 	/*
1781 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1782 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1783 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1784 	 * so that TSX remains always disabled.
1785 	 */
1786 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1787 
1788 	/*
1789 	 * The set of MSRs to load may have changed, reload MSRs before the
1790 	 * next VM-Enter.
1791 	 */
1792 	vmx->guest_uret_msrs_loaded = false;
1793 }
1794 
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1795 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1796 {
1797 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1798 
1799 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1800 		return vmcs12->tsc_offset;
1801 
1802 	return 0;
1803 }
1804 
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1805 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1806 {
1807 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1808 
1809 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1810 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1811 		return vmcs12->tsc_multiplier;
1812 
1813 	return kvm_caps.default_tsc_scaling_ratio;
1814 }
1815 
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1816 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1817 {
1818 	vmcs_write64(TSC_OFFSET, offset);
1819 }
1820 
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 multiplier)1821 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1822 {
1823 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1824 }
1825 
1826 /*
1827  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1828  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1829  * all guests if the "nested" module option is off, and can also be disabled
1830  * for a single guest by disabling its VMX cpuid bit.
1831  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1832 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1833 {
1834 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1835 }
1836 
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1837 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1838 						 uint64_t val)
1839 {
1840 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1841 
1842 	return !(val & ~valid_bits);
1843 }
1844 
vmx_get_msr_feature(struct kvm_msr_entry * msr)1845 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1846 {
1847 	switch (msr->index) {
1848 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1849 		if (!nested)
1850 			return 1;
1851 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1852 	case MSR_IA32_PERF_CAPABILITIES:
1853 		msr->data = vmx_get_perf_capabilities();
1854 		return 0;
1855 	default:
1856 		return KVM_MSR_RET_INVALID;
1857 	}
1858 }
1859 
1860 /*
1861  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1862  * Returns 0 on success, non-0 otherwise.
1863  * Assumes vcpu_load() was already called.
1864  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1865 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1866 {
1867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1868 	struct vmx_uret_msr *msr;
1869 	u32 index;
1870 
1871 	switch (msr_info->index) {
1872 #ifdef CONFIG_X86_64
1873 	case MSR_FS_BASE:
1874 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1875 		break;
1876 	case MSR_GS_BASE:
1877 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1878 		break;
1879 	case MSR_KERNEL_GS_BASE:
1880 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1881 		break;
1882 #endif
1883 	case MSR_EFER:
1884 		return kvm_get_msr_common(vcpu, msr_info);
1885 	case MSR_IA32_TSX_CTRL:
1886 		if (!msr_info->host_initiated &&
1887 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1888 			return 1;
1889 		goto find_uret_msr;
1890 	case MSR_IA32_UMWAIT_CONTROL:
1891 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1892 			return 1;
1893 
1894 		msr_info->data = vmx->msr_ia32_umwait_control;
1895 		break;
1896 	case MSR_IA32_SPEC_CTRL:
1897 		if (!msr_info->host_initiated &&
1898 		    !guest_has_spec_ctrl_msr(vcpu))
1899 			return 1;
1900 
1901 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1902 		break;
1903 	case MSR_IA32_SYSENTER_CS:
1904 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1905 		break;
1906 	case MSR_IA32_SYSENTER_EIP:
1907 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1908 		break;
1909 	case MSR_IA32_SYSENTER_ESP:
1910 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1911 		break;
1912 	case MSR_IA32_BNDCFGS:
1913 		if (!kvm_mpx_supported() ||
1914 		    (!msr_info->host_initiated &&
1915 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1916 			return 1;
1917 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1918 		break;
1919 	case MSR_IA32_MCG_EXT_CTL:
1920 		if (!msr_info->host_initiated &&
1921 		    !(vmx->msr_ia32_feature_control &
1922 		      FEAT_CTL_LMCE_ENABLED))
1923 			return 1;
1924 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1925 		break;
1926 	case MSR_IA32_FEAT_CTL:
1927 		msr_info->data = vmx->msr_ia32_feature_control;
1928 		break;
1929 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1930 		if (!msr_info->host_initiated &&
1931 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1932 			return 1;
1933 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1934 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1935 		break;
1936 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1937 		if (!nested_vmx_allowed(vcpu))
1938 			return 1;
1939 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1940 				    &msr_info->data))
1941 			return 1;
1942 		/*
1943 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1944 		 * instead of just ignoring the features, different Hyper-V
1945 		 * versions are either trying to use them and fail or do some
1946 		 * sanity checking and refuse to boot. Filter all unsupported
1947 		 * features out.
1948 		 */
1949 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
1950 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
1951 							&msr_info->data);
1952 		break;
1953 	case MSR_IA32_RTIT_CTL:
1954 		if (!vmx_pt_mode_is_host_guest())
1955 			return 1;
1956 		msr_info->data = vmx->pt_desc.guest.ctl;
1957 		break;
1958 	case MSR_IA32_RTIT_STATUS:
1959 		if (!vmx_pt_mode_is_host_guest())
1960 			return 1;
1961 		msr_info->data = vmx->pt_desc.guest.status;
1962 		break;
1963 	case MSR_IA32_RTIT_CR3_MATCH:
1964 		if (!vmx_pt_mode_is_host_guest() ||
1965 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1966 						PT_CAP_cr3_filtering))
1967 			return 1;
1968 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1969 		break;
1970 	case MSR_IA32_RTIT_OUTPUT_BASE:
1971 		if (!vmx_pt_mode_is_host_guest() ||
1972 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1973 					PT_CAP_topa_output) &&
1974 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1975 					PT_CAP_single_range_output)))
1976 			return 1;
1977 		msr_info->data = vmx->pt_desc.guest.output_base;
1978 		break;
1979 	case MSR_IA32_RTIT_OUTPUT_MASK:
1980 		if (!vmx_pt_mode_is_host_guest() ||
1981 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1982 					PT_CAP_topa_output) &&
1983 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1984 					PT_CAP_single_range_output)))
1985 			return 1;
1986 		msr_info->data = vmx->pt_desc.guest.output_mask;
1987 		break;
1988 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1989 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1990 		if (!vmx_pt_mode_is_host_guest() ||
1991 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1992 			return 1;
1993 		if (index % 2)
1994 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1995 		else
1996 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1997 		break;
1998 	case MSR_IA32_DEBUGCTLMSR:
1999 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2000 		break;
2001 	default:
2002 	find_uret_msr:
2003 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2004 		if (msr) {
2005 			msr_info->data = msr->data;
2006 			break;
2007 		}
2008 		return kvm_get_msr_common(vcpu, msr_info);
2009 	}
2010 
2011 	return 0;
2012 }
2013 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2014 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2015 						    u64 data)
2016 {
2017 #ifdef CONFIG_X86_64
2018 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2019 		return (u32)data;
2020 #endif
2021 	return (unsigned long)data;
2022 }
2023 
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2024 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2025 {
2026 	u64 debugctl = 0;
2027 
2028 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2029 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2030 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2031 
2032 	if ((vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT) &&
2033 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2034 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2035 
2036 	return debugctl;
2037 }
2038 
2039 /*
2040  * Writes msr value into the appropriate "register".
2041  * Returns 0 on success, non-0 otherwise.
2042  * Assumes vcpu_load() was already called.
2043  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2044 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2045 {
2046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2047 	struct vmx_uret_msr *msr;
2048 	int ret = 0;
2049 	u32 msr_index = msr_info->index;
2050 	u64 data = msr_info->data;
2051 	u32 index;
2052 
2053 	switch (msr_index) {
2054 	case MSR_EFER:
2055 		ret = kvm_set_msr_common(vcpu, msr_info);
2056 		break;
2057 #ifdef CONFIG_X86_64
2058 	case MSR_FS_BASE:
2059 		vmx_segment_cache_clear(vmx);
2060 		vmcs_writel(GUEST_FS_BASE, data);
2061 		break;
2062 	case MSR_GS_BASE:
2063 		vmx_segment_cache_clear(vmx);
2064 		vmcs_writel(GUEST_GS_BASE, data);
2065 		break;
2066 	case MSR_KERNEL_GS_BASE:
2067 		vmx_write_guest_kernel_gs_base(vmx, data);
2068 		break;
2069 	case MSR_IA32_XFD:
2070 		ret = kvm_set_msr_common(vcpu, msr_info);
2071 		/*
2072 		 * Always intercepting WRMSR could incur non-negligible
2073 		 * overhead given xfd might be changed frequently in
2074 		 * guest context switch. Disable write interception
2075 		 * upon the first write with a non-zero value (indicating
2076 		 * potential usage on dynamic xfeatures). Also update
2077 		 * exception bitmap to trap #NM for proper virtualization
2078 		 * of guest xfd_err.
2079 		 */
2080 		if (!ret && data) {
2081 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2082 						      MSR_TYPE_RW);
2083 			vcpu->arch.xfd_no_write_intercept = true;
2084 			vmx_update_exception_bitmap(vcpu);
2085 		}
2086 		break;
2087 #endif
2088 	case MSR_IA32_SYSENTER_CS:
2089 		if (is_guest_mode(vcpu))
2090 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2091 		vmcs_write32(GUEST_SYSENTER_CS, data);
2092 		break;
2093 	case MSR_IA32_SYSENTER_EIP:
2094 		if (is_guest_mode(vcpu)) {
2095 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2096 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2097 		}
2098 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2099 		break;
2100 	case MSR_IA32_SYSENTER_ESP:
2101 		if (is_guest_mode(vcpu)) {
2102 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2103 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2104 		}
2105 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2106 		break;
2107 	case MSR_IA32_DEBUGCTLMSR: {
2108 		u64 invalid;
2109 
2110 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2111 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2112 			if (report_ignored_msrs)
2113 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2114 					    __func__, data);
2115 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2116 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2117 		}
2118 
2119 		if (invalid)
2120 			return 1;
2121 
2122 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2123 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2124 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2125 
2126 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2127 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2128 		    (data & DEBUGCTLMSR_LBR))
2129 			intel_pmu_create_guest_lbr_event(vcpu);
2130 		return 0;
2131 	}
2132 	case MSR_IA32_BNDCFGS:
2133 		if (!kvm_mpx_supported() ||
2134 		    (!msr_info->host_initiated &&
2135 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2136 			return 1;
2137 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2138 		    (data & MSR_IA32_BNDCFGS_RSVD))
2139 			return 1;
2140 
2141 		if (is_guest_mode(vcpu) &&
2142 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2143 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2144 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2145 
2146 		vmcs_write64(GUEST_BNDCFGS, data);
2147 		break;
2148 	case MSR_IA32_UMWAIT_CONTROL:
2149 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2150 			return 1;
2151 
2152 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2153 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2154 			return 1;
2155 
2156 		vmx->msr_ia32_umwait_control = data;
2157 		break;
2158 	case MSR_IA32_SPEC_CTRL:
2159 		if (!msr_info->host_initiated &&
2160 		    !guest_has_spec_ctrl_msr(vcpu))
2161 			return 1;
2162 
2163 		if (kvm_spec_ctrl_test_value(data))
2164 			return 1;
2165 
2166 		vmx->spec_ctrl = data;
2167 		if (!data)
2168 			break;
2169 
2170 		/*
2171 		 * For non-nested:
2172 		 * When it's written (to non-zero) for the first time, pass
2173 		 * it through.
2174 		 *
2175 		 * For nested:
2176 		 * The handling of the MSR bitmap for L2 guests is done in
2177 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2178 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2179 		 * in the merging. We update the vmcs01 here for L1 as well
2180 		 * since it will end up touching the MSR anyway now.
2181 		 */
2182 		vmx_disable_intercept_for_msr(vcpu,
2183 					      MSR_IA32_SPEC_CTRL,
2184 					      MSR_TYPE_RW);
2185 		break;
2186 	case MSR_IA32_TSX_CTRL:
2187 		if (!msr_info->host_initiated &&
2188 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2189 			return 1;
2190 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2191 			return 1;
2192 		goto find_uret_msr;
2193 	case MSR_IA32_PRED_CMD:
2194 		if (!msr_info->host_initiated &&
2195 		    !guest_has_pred_cmd_msr(vcpu))
2196 			return 1;
2197 
2198 		if (data & ~PRED_CMD_IBPB)
2199 			return 1;
2200 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2201 			return 1;
2202 		if (!data)
2203 			break;
2204 
2205 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2206 
2207 		/*
2208 		 * For non-nested:
2209 		 * When it's written (to non-zero) for the first time, pass
2210 		 * it through.
2211 		 *
2212 		 * For nested:
2213 		 * The handling of the MSR bitmap for L2 guests is done in
2214 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2215 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2216 		 * in the merging.
2217 		 */
2218 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2219 		break;
2220 	case MSR_IA32_CR_PAT:
2221 		if (!kvm_pat_valid(data))
2222 			return 1;
2223 
2224 		if (is_guest_mode(vcpu) &&
2225 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2226 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2227 
2228 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2229 			vmcs_write64(GUEST_IA32_PAT, data);
2230 			vcpu->arch.pat = data;
2231 			break;
2232 		}
2233 		ret = kvm_set_msr_common(vcpu, msr_info);
2234 		break;
2235 	case MSR_IA32_MCG_EXT_CTL:
2236 		if ((!msr_info->host_initiated &&
2237 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2238 		       FEAT_CTL_LMCE_ENABLED)) ||
2239 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2240 			return 1;
2241 		vcpu->arch.mcg_ext_ctl = data;
2242 		break;
2243 	case MSR_IA32_FEAT_CTL:
2244 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2245 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2246 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2247 			return 1;
2248 		vmx->msr_ia32_feature_control = data;
2249 		if (msr_info->host_initiated && data == 0)
2250 			vmx_leave_nested(vcpu);
2251 
2252 		/* SGX may be enabled/disabled by guest's firmware */
2253 		vmx_write_encls_bitmap(vcpu, NULL);
2254 		break;
2255 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2256 		/*
2257 		 * On real hardware, the LE hash MSRs are writable before
2258 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2259 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2260 		 * become writable.
2261 		 *
2262 		 * KVM does not emulate SGX activation for simplicity, so
2263 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2264 		 * is unlocked.  This is technically not architectural
2265 		 * behavior, but it's close enough.
2266 		 */
2267 		if (!msr_info->host_initiated &&
2268 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2269 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2270 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2271 			return 1;
2272 		vmx->msr_ia32_sgxlepubkeyhash
2273 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2274 		break;
2275 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2276 		if (!msr_info->host_initiated)
2277 			return 1; /* they are read-only */
2278 		if (!nested_vmx_allowed(vcpu))
2279 			return 1;
2280 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2281 	case MSR_IA32_RTIT_CTL:
2282 		if (!vmx_pt_mode_is_host_guest() ||
2283 			vmx_rtit_ctl_check(vcpu, data) ||
2284 			vmx->nested.vmxon)
2285 			return 1;
2286 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2287 		vmx->pt_desc.guest.ctl = data;
2288 		pt_update_intercept_for_msr(vcpu);
2289 		break;
2290 	case MSR_IA32_RTIT_STATUS:
2291 		if (!pt_can_write_msr(vmx))
2292 			return 1;
2293 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2294 			return 1;
2295 		vmx->pt_desc.guest.status = data;
2296 		break;
2297 	case MSR_IA32_RTIT_CR3_MATCH:
2298 		if (!pt_can_write_msr(vmx))
2299 			return 1;
2300 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2301 					   PT_CAP_cr3_filtering))
2302 			return 1;
2303 		vmx->pt_desc.guest.cr3_match = data;
2304 		break;
2305 	case MSR_IA32_RTIT_OUTPUT_BASE:
2306 		if (!pt_can_write_msr(vmx))
2307 			return 1;
2308 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2309 					   PT_CAP_topa_output) &&
2310 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2311 					   PT_CAP_single_range_output))
2312 			return 1;
2313 		if (!pt_output_base_valid(vcpu, data))
2314 			return 1;
2315 		vmx->pt_desc.guest.output_base = data;
2316 		break;
2317 	case MSR_IA32_RTIT_OUTPUT_MASK:
2318 		if (!pt_can_write_msr(vmx))
2319 			return 1;
2320 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2321 					   PT_CAP_topa_output) &&
2322 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2323 					   PT_CAP_single_range_output))
2324 			return 1;
2325 		vmx->pt_desc.guest.output_mask = data;
2326 		break;
2327 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2328 		if (!pt_can_write_msr(vmx))
2329 			return 1;
2330 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2331 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2332 			return 1;
2333 		if (is_noncanonical_address(data, vcpu))
2334 			return 1;
2335 		if (index % 2)
2336 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2337 		else
2338 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2339 		break;
2340 	case MSR_IA32_PERF_CAPABILITIES:
2341 		if (data && !vcpu_to_pmu(vcpu)->version)
2342 			return 1;
2343 		if (data & PMU_CAP_LBR_FMT) {
2344 			if ((data & PMU_CAP_LBR_FMT) !=
2345 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2346 				return 1;
2347 			if (!cpuid_model_is_consistent(vcpu))
2348 				return 1;
2349 		}
2350 		if (data & PERF_CAP_PEBS_FORMAT) {
2351 			if ((data & PERF_CAP_PEBS_MASK) !=
2352 			    (vmx_get_perf_capabilities() & PERF_CAP_PEBS_MASK))
2353 				return 1;
2354 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2355 				return 1;
2356 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2357 				return 1;
2358 			if (!cpuid_model_is_consistent(vcpu))
2359 				return 1;
2360 		}
2361 		ret = kvm_set_msr_common(vcpu, msr_info);
2362 		break;
2363 
2364 	default:
2365 	find_uret_msr:
2366 		msr = vmx_find_uret_msr(vmx, msr_index);
2367 		if (msr)
2368 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2369 		else
2370 			ret = kvm_set_msr_common(vcpu, msr_info);
2371 	}
2372 
2373 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2374 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2375 		vmx_update_fb_clear_dis(vcpu, vmx);
2376 
2377 	return ret;
2378 }
2379 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2380 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2381 {
2382 	unsigned long guest_owned_bits;
2383 
2384 	kvm_register_mark_available(vcpu, reg);
2385 
2386 	switch (reg) {
2387 	case VCPU_REGS_RSP:
2388 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2389 		break;
2390 	case VCPU_REGS_RIP:
2391 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2392 		break;
2393 	case VCPU_EXREG_PDPTR:
2394 		if (enable_ept)
2395 			ept_save_pdptrs(vcpu);
2396 		break;
2397 	case VCPU_EXREG_CR0:
2398 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2399 
2400 		vcpu->arch.cr0 &= ~guest_owned_bits;
2401 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2402 		break;
2403 	case VCPU_EXREG_CR3:
2404 		/*
2405 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2406 		 * CR3 is loaded into hardware, not the guest's CR3.
2407 		 */
2408 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2409 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2410 		break;
2411 	case VCPU_EXREG_CR4:
2412 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2413 
2414 		vcpu->arch.cr4 &= ~guest_owned_bits;
2415 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2416 		break;
2417 	default:
2418 		KVM_BUG_ON(1, vcpu->kvm);
2419 		break;
2420 	}
2421 }
2422 
cpu_has_kvm_support(void)2423 static __init int cpu_has_kvm_support(void)
2424 {
2425 	return cpu_has_vmx();
2426 }
2427 
vmx_disabled_by_bios(void)2428 static __init int vmx_disabled_by_bios(void)
2429 {
2430 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2431 	       !boot_cpu_has(X86_FEATURE_VMX);
2432 }
2433 
kvm_cpu_vmxon(u64 vmxon_pointer)2434 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2435 {
2436 	u64 msr;
2437 
2438 	cr4_set_bits(X86_CR4_VMXE);
2439 
2440 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2441 			  _ASM_EXTABLE(1b, %l[fault])
2442 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2443 			  : : fault);
2444 	return 0;
2445 
2446 fault:
2447 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2448 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2449 	cr4_clear_bits(X86_CR4_VMXE);
2450 
2451 	return -EFAULT;
2452 }
2453 
vmx_hardware_enable(void)2454 static int vmx_hardware_enable(void)
2455 {
2456 	int cpu = raw_smp_processor_id();
2457 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2458 	int r;
2459 
2460 	if (cr4_read_shadow() & X86_CR4_VMXE)
2461 		return -EBUSY;
2462 
2463 	/*
2464 	 * This can happen if we hot-added a CPU but failed to allocate
2465 	 * VP assist page for it.
2466 	 */
2467 	if (static_branch_unlikely(&enable_evmcs) &&
2468 	    !hv_get_vp_assist_page(cpu))
2469 		return -EFAULT;
2470 
2471 	intel_pt_handle_vmx(1);
2472 
2473 	r = kvm_cpu_vmxon(phys_addr);
2474 	if (r) {
2475 		intel_pt_handle_vmx(0);
2476 		return r;
2477 	}
2478 
2479 	if (enable_ept)
2480 		ept_sync_global();
2481 
2482 	return 0;
2483 }
2484 
vmclear_local_loaded_vmcss(void)2485 static void vmclear_local_loaded_vmcss(void)
2486 {
2487 	int cpu = raw_smp_processor_id();
2488 	struct loaded_vmcs *v, *n;
2489 
2490 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2491 				 loaded_vmcss_on_cpu_link)
2492 		__loaded_vmcs_clear(v);
2493 }
2494 
vmx_hardware_disable(void)2495 static void vmx_hardware_disable(void)
2496 {
2497 	vmclear_local_loaded_vmcss();
2498 
2499 	if (cpu_vmxoff())
2500 		kvm_spurious_fault();
2501 
2502 	intel_pt_handle_vmx(0);
2503 }
2504 
2505 /*
2506  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2507  * directly instead of going through cpu_has(), to ensure KVM is trapping
2508  * ENCLS whenever it's supported in hardware.  It does not matter whether
2509  * the host OS supports or has enabled SGX.
2510  */
cpu_has_sgx(void)2511 static bool cpu_has_sgx(void)
2512 {
2513 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2514 }
2515 
2516 /*
2517  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2518  * can't be used due to errata where VM Exit may incorrectly clear
2519  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2520  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2521  */
cpu_has_perf_global_ctrl_bug(void)2522 static bool cpu_has_perf_global_ctrl_bug(void)
2523 {
2524 	if (boot_cpu_data.x86 == 0x6) {
2525 		switch (boot_cpu_data.x86_model) {
2526 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2527 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2528 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2529 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2530 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2531 			return true;
2532 		default:
2533 			break;
2534 		}
2535 	}
2536 
2537 	return false;
2538 }
2539 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2540 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2541 				      u32 msr, u32 *result)
2542 {
2543 	u32 vmx_msr_low, vmx_msr_high;
2544 	u32 ctl = ctl_min | ctl_opt;
2545 
2546 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2547 
2548 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2549 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2550 
2551 	/* Ensure minimum (required) set of control bits are supported. */
2552 	if (ctl_min & ~ctl)
2553 		return -EIO;
2554 
2555 	*result = ctl;
2556 	return 0;
2557 }
2558 
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2559 static __init u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2560 {
2561 	u64 allowed;
2562 
2563 	rdmsrl(msr, allowed);
2564 
2565 	return  ctl_opt & allowed;
2566 }
2567 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2568 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2569 				    struct vmx_capability *vmx_cap)
2570 {
2571 	u32 vmx_msr_low, vmx_msr_high;
2572 	u32 _pin_based_exec_control = 0;
2573 	u32 _cpu_based_exec_control = 0;
2574 	u32 _cpu_based_2nd_exec_control = 0;
2575 	u64 _cpu_based_3rd_exec_control = 0;
2576 	u32 _vmexit_control = 0;
2577 	u32 _vmentry_control = 0;
2578 	u64 misc_msr;
2579 	int i;
2580 
2581 	/*
2582 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2583 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2584 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2585 	 */
2586 	struct {
2587 		u32 entry_control;
2588 		u32 exit_control;
2589 	} const vmcs_entry_exit_pairs[] = {
2590 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2591 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2592 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2593 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2594 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2595 	};
2596 
2597 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2598 
2599 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2600 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2601 				MSR_IA32_VMX_PROCBASED_CTLS,
2602 				&_cpu_based_exec_control))
2603 		return -EIO;
2604 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2605 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2606 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2607 					MSR_IA32_VMX_PROCBASED_CTLS2,
2608 					&_cpu_based_2nd_exec_control))
2609 			return -EIO;
2610 	}
2611 #ifndef CONFIG_X86_64
2612 	if (!(_cpu_based_2nd_exec_control &
2613 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2614 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2615 #endif
2616 
2617 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2618 		_cpu_based_2nd_exec_control &= ~(
2619 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2620 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2621 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2622 
2623 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2624 		&vmx_cap->ept, &vmx_cap->vpid);
2625 
2626 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2627 	    vmx_cap->ept) {
2628 		pr_warn_once("EPT CAP should not exist if not support "
2629 				"1-setting enable EPT VM-execution control\n");
2630 
2631 		if (error_on_inconsistent_vmcs_config)
2632 			return -EIO;
2633 
2634 		vmx_cap->ept = 0;
2635 	}
2636 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2637 	    vmx_cap->vpid) {
2638 		pr_warn_once("VPID CAP should not exist if not support "
2639 				"1-setting enable VPID VM-execution control\n");
2640 
2641 		if (error_on_inconsistent_vmcs_config)
2642 			return -EIO;
2643 
2644 		vmx_cap->vpid = 0;
2645 	}
2646 
2647 	if (!cpu_has_sgx())
2648 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2649 
2650 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2651 		_cpu_based_3rd_exec_control =
2652 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2653 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2654 
2655 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2656 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2657 				MSR_IA32_VMX_EXIT_CTLS,
2658 				&_vmexit_control))
2659 		return -EIO;
2660 
2661 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2662 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2663 				MSR_IA32_VMX_PINBASED_CTLS,
2664 				&_pin_based_exec_control))
2665 		return -EIO;
2666 
2667 	if (cpu_has_broken_vmx_preemption_timer())
2668 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2669 	if (!(_cpu_based_2nd_exec_control &
2670 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2671 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2672 
2673 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2674 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2675 				MSR_IA32_VMX_ENTRY_CTLS,
2676 				&_vmentry_control))
2677 		return -EIO;
2678 
2679 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2680 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2681 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2682 
2683 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2684 			continue;
2685 
2686 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2687 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2688 
2689 		if (error_on_inconsistent_vmcs_config)
2690 			return -EIO;
2691 
2692 		_vmentry_control &= ~n_ctrl;
2693 		_vmexit_control &= ~x_ctrl;
2694 	}
2695 
2696 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2697 
2698 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2699 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2700 		return -EIO;
2701 
2702 #ifdef CONFIG_X86_64
2703 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2704 	if (vmx_msr_high & (1u<<16))
2705 		return -EIO;
2706 #endif
2707 
2708 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2709 	if (((vmx_msr_high >> 18) & 15) != 6)
2710 		return -EIO;
2711 
2712 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2713 
2714 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2715 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2716 
2717 	vmcs_conf->revision_id = vmx_msr_low;
2718 
2719 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2720 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2721 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2722 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2723 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2724 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2725 	vmcs_conf->misc	= misc_msr;
2726 
2727 	return 0;
2728 }
2729 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2730 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2731 {
2732 	int node = cpu_to_node(cpu);
2733 	struct page *pages;
2734 	struct vmcs *vmcs;
2735 
2736 	pages = __alloc_pages_node(node, flags, 0);
2737 	if (!pages)
2738 		return NULL;
2739 	vmcs = page_address(pages);
2740 	memset(vmcs, 0, vmcs_config.size);
2741 
2742 	/* KVM supports Enlightened VMCS v1 only */
2743 	if (static_branch_unlikely(&enable_evmcs))
2744 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2745 	else
2746 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2747 
2748 	if (shadow)
2749 		vmcs->hdr.shadow_vmcs = 1;
2750 	return vmcs;
2751 }
2752 
free_vmcs(struct vmcs * vmcs)2753 void free_vmcs(struct vmcs *vmcs)
2754 {
2755 	free_page((unsigned long)vmcs);
2756 }
2757 
2758 /*
2759  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2760  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2761 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2762 {
2763 	if (!loaded_vmcs->vmcs)
2764 		return;
2765 	loaded_vmcs_clear(loaded_vmcs);
2766 	free_vmcs(loaded_vmcs->vmcs);
2767 	loaded_vmcs->vmcs = NULL;
2768 	if (loaded_vmcs->msr_bitmap)
2769 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2770 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2771 }
2772 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2773 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2774 {
2775 	loaded_vmcs->vmcs = alloc_vmcs(false);
2776 	if (!loaded_vmcs->vmcs)
2777 		return -ENOMEM;
2778 
2779 	vmcs_clear(loaded_vmcs->vmcs);
2780 
2781 	loaded_vmcs->shadow_vmcs = NULL;
2782 	loaded_vmcs->hv_timer_soft_disabled = false;
2783 	loaded_vmcs->cpu = -1;
2784 	loaded_vmcs->launched = 0;
2785 
2786 	if (cpu_has_vmx_msr_bitmap()) {
2787 		loaded_vmcs->msr_bitmap = (unsigned long *)
2788 				__get_free_page(GFP_KERNEL_ACCOUNT);
2789 		if (!loaded_vmcs->msr_bitmap)
2790 			goto out_vmcs;
2791 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2792 	}
2793 
2794 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2795 	memset(&loaded_vmcs->controls_shadow, 0,
2796 		sizeof(struct vmcs_controls_shadow));
2797 
2798 	return 0;
2799 
2800 out_vmcs:
2801 	free_loaded_vmcs(loaded_vmcs);
2802 	return -ENOMEM;
2803 }
2804 
free_kvm_area(void)2805 static void free_kvm_area(void)
2806 {
2807 	int cpu;
2808 
2809 	for_each_possible_cpu(cpu) {
2810 		free_vmcs(per_cpu(vmxarea, cpu));
2811 		per_cpu(vmxarea, cpu) = NULL;
2812 	}
2813 }
2814 
alloc_kvm_area(void)2815 static __init int alloc_kvm_area(void)
2816 {
2817 	int cpu;
2818 
2819 	for_each_possible_cpu(cpu) {
2820 		struct vmcs *vmcs;
2821 
2822 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2823 		if (!vmcs) {
2824 			free_kvm_area();
2825 			return -ENOMEM;
2826 		}
2827 
2828 		/*
2829 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2830 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2831 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2832 		 *
2833 		 * However, even though not explicitly documented by
2834 		 * TLFS, VMXArea passed as VMXON argument should
2835 		 * still be marked with revision_id reported by
2836 		 * physical CPU.
2837 		 */
2838 		if (static_branch_unlikely(&enable_evmcs))
2839 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2840 
2841 		per_cpu(vmxarea, cpu) = vmcs;
2842 	}
2843 	return 0;
2844 }
2845 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2846 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2847 		struct kvm_segment *save)
2848 {
2849 	if (!emulate_invalid_guest_state) {
2850 		/*
2851 		 * CS and SS RPL should be equal during guest entry according
2852 		 * to VMX spec, but in reality it is not always so. Since vcpu
2853 		 * is in the middle of the transition from real mode to
2854 		 * protected mode it is safe to assume that RPL 0 is a good
2855 		 * default value.
2856 		 */
2857 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2858 			save->selector &= ~SEGMENT_RPL_MASK;
2859 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2860 		save->s = 1;
2861 	}
2862 	__vmx_set_segment(vcpu, save, seg);
2863 }
2864 
enter_pmode(struct kvm_vcpu * vcpu)2865 static void enter_pmode(struct kvm_vcpu *vcpu)
2866 {
2867 	unsigned long flags;
2868 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2869 
2870 	/*
2871 	 * Update real mode segment cache. It may be not up-to-date if segment
2872 	 * register was written while vcpu was in a guest mode.
2873 	 */
2874 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2875 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2876 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2877 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2878 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2879 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2880 
2881 	vmx->rmode.vm86_active = 0;
2882 
2883 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2884 
2885 	flags = vmcs_readl(GUEST_RFLAGS);
2886 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2887 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2888 	vmcs_writel(GUEST_RFLAGS, flags);
2889 
2890 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2891 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2892 
2893 	vmx_update_exception_bitmap(vcpu);
2894 
2895 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2896 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2897 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2898 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2899 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2900 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2901 }
2902 
fix_rmode_seg(int seg,struct kvm_segment * save)2903 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2904 {
2905 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2906 	struct kvm_segment var = *save;
2907 
2908 	var.dpl = 0x3;
2909 	if (seg == VCPU_SREG_CS)
2910 		var.type = 0x3;
2911 
2912 	if (!emulate_invalid_guest_state) {
2913 		var.selector = var.base >> 4;
2914 		var.base = var.base & 0xffff0;
2915 		var.limit = 0xffff;
2916 		var.g = 0;
2917 		var.db = 0;
2918 		var.present = 1;
2919 		var.s = 1;
2920 		var.l = 0;
2921 		var.unusable = 0;
2922 		var.type = 0x3;
2923 		var.avl = 0;
2924 		if (save->base & 0xf)
2925 			printk_once(KERN_WARNING "kvm: segment base is not "
2926 					"paragraph aligned when entering "
2927 					"protected mode (seg=%d)", seg);
2928 	}
2929 
2930 	vmcs_write16(sf->selector, var.selector);
2931 	vmcs_writel(sf->base, var.base);
2932 	vmcs_write32(sf->limit, var.limit);
2933 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2934 }
2935 
enter_rmode(struct kvm_vcpu * vcpu)2936 static void enter_rmode(struct kvm_vcpu *vcpu)
2937 {
2938 	unsigned long flags;
2939 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2940 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2941 
2942 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2943 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2944 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2945 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2946 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2947 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2948 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2949 
2950 	vmx->rmode.vm86_active = 1;
2951 
2952 	/*
2953 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2954 	 * vcpu. Warn the user that an update is overdue.
2955 	 */
2956 	if (!kvm_vmx->tss_addr)
2957 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2958 			     "called before entering vcpu\n");
2959 
2960 	vmx_segment_cache_clear(vmx);
2961 
2962 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2963 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2964 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2965 
2966 	flags = vmcs_readl(GUEST_RFLAGS);
2967 	vmx->rmode.save_rflags = flags;
2968 
2969 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2970 
2971 	vmcs_writel(GUEST_RFLAGS, flags);
2972 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2973 	vmx_update_exception_bitmap(vcpu);
2974 
2975 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2976 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2977 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2978 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2979 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2980 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2981 }
2982 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2983 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2984 {
2985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2986 
2987 	/* Nothing to do if hardware doesn't support EFER. */
2988 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
2989 		return 0;
2990 
2991 	vcpu->arch.efer = efer;
2992 #ifdef CONFIG_X86_64
2993 	if (efer & EFER_LMA)
2994 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
2995 	else
2996 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
2997 #else
2998 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
2999 		return 1;
3000 #endif
3001 
3002 	vmx_setup_uret_msrs(vmx);
3003 	return 0;
3004 }
3005 
3006 #ifdef CONFIG_X86_64
3007 
enter_lmode(struct kvm_vcpu * vcpu)3008 static void enter_lmode(struct kvm_vcpu *vcpu)
3009 {
3010 	u32 guest_tr_ar;
3011 
3012 	vmx_segment_cache_clear(to_vmx(vcpu));
3013 
3014 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3015 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3016 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3017 				     __func__);
3018 		vmcs_write32(GUEST_TR_AR_BYTES,
3019 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3020 			     | VMX_AR_TYPE_BUSY_64_TSS);
3021 	}
3022 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3023 }
3024 
exit_lmode(struct kvm_vcpu * vcpu)3025 static void exit_lmode(struct kvm_vcpu *vcpu)
3026 {
3027 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3028 }
3029 
3030 #endif
3031 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3032 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3033 {
3034 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3035 
3036 	/*
3037 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3038 	 * the CPU is not required to invalidate guest-physical mappings on
3039 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3040 	 * associated with the root EPT structure and not any particular VPID
3041 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3042 	 */
3043 	if (enable_ept) {
3044 		ept_sync_global();
3045 	} else if (enable_vpid) {
3046 		if (cpu_has_vmx_invvpid_global()) {
3047 			vpid_sync_vcpu_global();
3048 		} else {
3049 			vpid_sync_vcpu_single(vmx->vpid);
3050 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3051 		}
3052 	}
3053 }
3054 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3055 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3056 {
3057 	if (is_guest_mode(vcpu))
3058 		return nested_get_vpid02(vcpu);
3059 	return to_vmx(vcpu)->vpid;
3060 }
3061 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3062 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3063 {
3064 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3065 	u64 root_hpa = mmu->root.hpa;
3066 
3067 	/* No flush required if the current context is invalid. */
3068 	if (!VALID_PAGE(root_hpa))
3069 		return;
3070 
3071 	if (enable_ept)
3072 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3073 						mmu->root_role.level));
3074 	else
3075 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3076 }
3077 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3078 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3079 {
3080 	/*
3081 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3082 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3083 	 */
3084 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3085 }
3086 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3087 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3088 {
3089 	/*
3090 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3091 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3092 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3093 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3094 	 * i.e. no explicit INVVPID is necessary.
3095 	 */
3096 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3097 }
3098 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3099 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3100 {
3101 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3102 
3103 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3104 		return;
3105 
3106 	if (is_pae_paging(vcpu)) {
3107 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3108 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3109 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3110 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3111 	}
3112 }
3113 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3114 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3115 {
3116 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3117 
3118 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3119 		return;
3120 
3121 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3122 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3123 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3124 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3125 
3126 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3127 }
3128 
3129 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3130 			  CPU_BASED_CR3_STORE_EXITING)
3131 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3132 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3133 {
3134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3135 	unsigned long hw_cr0, old_cr0_pg;
3136 	u32 tmp;
3137 
3138 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3139 
3140 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3141 	if (is_unrestricted_guest(vcpu))
3142 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3143 	else {
3144 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3145 		if (!enable_ept)
3146 			hw_cr0 |= X86_CR0_WP;
3147 
3148 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3149 			enter_pmode(vcpu);
3150 
3151 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3152 			enter_rmode(vcpu);
3153 	}
3154 
3155 	vmcs_writel(CR0_READ_SHADOW, cr0);
3156 	vmcs_writel(GUEST_CR0, hw_cr0);
3157 	vcpu->arch.cr0 = cr0;
3158 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3159 
3160 #ifdef CONFIG_X86_64
3161 	if (vcpu->arch.efer & EFER_LME) {
3162 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3163 			enter_lmode(vcpu);
3164 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3165 			exit_lmode(vcpu);
3166 	}
3167 #endif
3168 
3169 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3170 		/*
3171 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3172 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3173 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3174 		 * KVM's CR3 is installed.
3175 		 */
3176 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3177 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3178 
3179 		/*
3180 		 * When running with EPT but not unrestricted guest, KVM must
3181 		 * intercept CR3 accesses when paging is _disabled_.  This is
3182 		 * necessary because restricted guests can't actually run with
3183 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3184 		 * run the guest when identity mapped page tables.
3185 		 *
3186 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3187 		 * update, it may be stale with respect to CR3 interception,
3188 		 * e.g. after nested VM-Enter.
3189 		 *
3190 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3191 		 * stores to forward them to L1, even if KVM does not need to
3192 		 * intercept them to preserve its identity mapped page tables.
3193 		 */
3194 		if (!(cr0 & X86_CR0_PG)) {
3195 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3196 		} else if (!is_guest_mode(vcpu)) {
3197 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3198 		} else {
3199 			tmp = exec_controls_get(vmx);
3200 			tmp &= ~CR3_EXITING_BITS;
3201 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3202 			exec_controls_set(vmx, tmp);
3203 		}
3204 
3205 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3206 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3207 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3208 
3209 		/*
3210 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3211 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3212 		 */
3213 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3214 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3215 	}
3216 
3217 	/* depends on vcpu->arch.cr0 to be set to a new value */
3218 	vmx->emulation_required = vmx_emulation_required(vcpu);
3219 }
3220 
vmx_get_max_tdp_level(void)3221 static int vmx_get_max_tdp_level(void)
3222 {
3223 	if (cpu_has_vmx_ept_5levels())
3224 		return 5;
3225 	return 4;
3226 }
3227 
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3228 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3229 {
3230 	u64 eptp = VMX_EPTP_MT_WB;
3231 
3232 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3233 
3234 	if (enable_ept_ad_bits &&
3235 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3236 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3237 	eptp |= root_hpa;
3238 
3239 	return eptp;
3240 }
3241 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3242 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3243 			     int root_level)
3244 {
3245 	struct kvm *kvm = vcpu->kvm;
3246 	bool update_guest_cr3 = true;
3247 	unsigned long guest_cr3;
3248 	u64 eptp;
3249 
3250 	if (enable_ept) {
3251 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3252 		vmcs_write64(EPT_POINTER, eptp);
3253 
3254 		hv_track_root_tdp(vcpu, root_hpa);
3255 
3256 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3257 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3258 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3259 			guest_cr3 = vcpu->arch.cr3;
3260 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3261 			update_guest_cr3 = false;
3262 		vmx_ept_load_pdptrs(vcpu);
3263 	} else {
3264 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3265 	}
3266 
3267 	if (update_guest_cr3)
3268 		vmcs_writel(GUEST_CR3, guest_cr3);
3269 }
3270 
3271 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3272 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3273 {
3274 	/*
3275 	 * We operate under the default treatment of SMM, so VMX cannot be
3276 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3277 	 * i.e. is a reserved bit, is handled by common x86 code.
3278 	 */
3279 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3280 		return false;
3281 
3282 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3283 		return false;
3284 
3285 	return true;
3286 }
3287 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3288 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3289 {
3290 	unsigned long old_cr4 = vcpu->arch.cr4;
3291 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3292 	/*
3293 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3294 	 * is in force while we are in guest mode.  Do not let guests control
3295 	 * this bit, even if host CR4.MCE == 0.
3296 	 */
3297 	unsigned long hw_cr4;
3298 
3299 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3300 	if (is_unrestricted_guest(vcpu))
3301 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3302 	else if (vmx->rmode.vm86_active)
3303 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3304 	else
3305 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3306 
3307 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3308 		if (cr4 & X86_CR4_UMIP) {
3309 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3310 			hw_cr4 &= ~X86_CR4_UMIP;
3311 		} else if (!is_guest_mode(vcpu) ||
3312 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3313 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3314 		}
3315 	}
3316 
3317 	vcpu->arch.cr4 = cr4;
3318 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3319 
3320 	if (!is_unrestricted_guest(vcpu)) {
3321 		if (enable_ept) {
3322 			if (!is_paging(vcpu)) {
3323 				hw_cr4 &= ~X86_CR4_PAE;
3324 				hw_cr4 |= X86_CR4_PSE;
3325 			} else if (!(cr4 & X86_CR4_PAE)) {
3326 				hw_cr4 &= ~X86_CR4_PAE;
3327 			}
3328 		}
3329 
3330 		/*
3331 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3332 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3333 		 * to be manually disabled when guest switches to non-paging
3334 		 * mode.
3335 		 *
3336 		 * If !enable_unrestricted_guest, the CPU is always running
3337 		 * with CR0.PG=1 and CR4 needs to be modified.
3338 		 * If enable_unrestricted_guest, the CPU automatically
3339 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3340 		 */
3341 		if (!is_paging(vcpu))
3342 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3343 	}
3344 
3345 	vmcs_writel(CR4_READ_SHADOW, cr4);
3346 	vmcs_writel(GUEST_CR4, hw_cr4);
3347 
3348 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3349 		kvm_update_cpuid_runtime(vcpu);
3350 }
3351 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3352 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3353 {
3354 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3355 	u32 ar;
3356 
3357 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3358 		*var = vmx->rmode.segs[seg];
3359 		if (seg == VCPU_SREG_TR
3360 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3361 			return;
3362 		var->base = vmx_read_guest_seg_base(vmx, seg);
3363 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3364 		return;
3365 	}
3366 	var->base = vmx_read_guest_seg_base(vmx, seg);
3367 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3368 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3369 	ar = vmx_read_guest_seg_ar(vmx, seg);
3370 	var->unusable = (ar >> 16) & 1;
3371 	var->type = ar & 15;
3372 	var->s = (ar >> 4) & 1;
3373 	var->dpl = (ar >> 5) & 3;
3374 	/*
3375 	 * Some userspaces do not preserve unusable property. Since usable
3376 	 * segment has to be present according to VMX spec we can use present
3377 	 * property to amend userspace bug by making unusable segment always
3378 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3379 	 * segment as unusable.
3380 	 */
3381 	var->present = !var->unusable;
3382 	var->avl = (ar >> 12) & 1;
3383 	var->l = (ar >> 13) & 1;
3384 	var->db = (ar >> 14) & 1;
3385 	var->g = (ar >> 15) & 1;
3386 }
3387 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3388 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3389 {
3390 	struct kvm_segment s;
3391 
3392 	if (to_vmx(vcpu)->rmode.vm86_active) {
3393 		vmx_get_segment(vcpu, &s, seg);
3394 		return s.base;
3395 	}
3396 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3397 }
3398 
vmx_get_cpl(struct kvm_vcpu * vcpu)3399 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3400 {
3401 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3402 
3403 	if (unlikely(vmx->rmode.vm86_active))
3404 		return 0;
3405 	else {
3406 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3407 		return VMX_AR_DPL(ar);
3408 	}
3409 }
3410 
vmx_segment_access_rights(struct kvm_segment * var)3411 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3412 {
3413 	u32 ar;
3414 
3415 	ar = var->type & 15;
3416 	ar |= (var->s & 1) << 4;
3417 	ar |= (var->dpl & 3) << 5;
3418 	ar |= (var->present & 1) << 7;
3419 	ar |= (var->avl & 1) << 12;
3420 	ar |= (var->l & 1) << 13;
3421 	ar |= (var->db & 1) << 14;
3422 	ar |= (var->g & 1) << 15;
3423 	ar |= (var->unusable || !var->present) << 16;
3424 
3425 	return ar;
3426 }
3427 
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3428 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3429 {
3430 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3431 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3432 
3433 	vmx_segment_cache_clear(vmx);
3434 
3435 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3436 		vmx->rmode.segs[seg] = *var;
3437 		if (seg == VCPU_SREG_TR)
3438 			vmcs_write16(sf->selector, var->selector);
3439 		else if (var->s)
3440 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3441 		return;
3442 	}
3443 
3444 	vmcs_writel(sf->base, var->base);
3445 	vmcs_write32(sf->limit, var->limit);
3446 	vmcs_write16(sf->selector, var->selector);
3447 
3448 	/*
3449 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3450 	 * qemu binaries.
3451 	 *   IA32 arch specifies that at the time of processor reset the
3452 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3453 	 * is setting it to 0 in the userland code. This causes invalid guest
3454 	 * state vmexit when "unrestricted guest" mode is turned on.
3455 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3456 	 * tree. Newer qemu binaries with that qemu fix would not need this
3457 	 * kvm hack.
3458 	 */
3459 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3460 		var->type |= 0x1; /* Accessed */
3461 
3462 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3463 }
3464 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3465 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3466 {
3467 	__vmx_set_segment(vcpu, var, seg);
3468 
3469 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3470 }
3471 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3472 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3473 {
3474 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3475 
3476 	*db = (ar >> 14) & 1;
3477 	*l = (ar >> 13) & 1;
3478 }
3479 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3480 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3481 {
3482 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3483 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3484 }
3485 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3486 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3487 {
3488 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3489 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3490 }
3491 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3492 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3493 {
3494 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3495 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3496 }
3497 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3498 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3499 {
3500 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3501 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3502 }
3503 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3504 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3505 {
3506 	struct kvm_segment var;
3507 	u32 ar;
3508 
3509 	vmx_get_segment(vcpu, &var, seg);
3510 	var.dpl = 0x3;
3511 	if (seg == VCPU_SREG_CS)
3512 		var.type = 0x3;
3513 	ar = vmx_segment_access_rights(&var);
3514 
3515 	if (var.base != (var.selector << 4))
3516 		return false;
3517 	if (var.limit != 0xffff)
3518 		return false;
3519 	if (ar != 0xf3)
3520 		return false;
3521 
3522 	return true;
3523 }
3524 
code_segment_valid(struct kvm_vcpu * vcpu)3525 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3526 {
3527 	struct kvm_segment cs;
3528 	unsigned int cs_rpl;
3529 
3530 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3531 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3532 
3533 	if (cs.unusable)
3534 		return false;
3535 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3536 		return false;
3537 	if (!cs.s)
3538 		return false;
3539 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3540 		if (cs.dpl > cs_rpl)
3541 			return false;
3542 	} else {
3543 		if (cs.dpl != cs_rpl)
3544 			return false;
3545 	}
3546 	if (!cs.present)
3547 		return false;
3548 
3549 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3550 	return true;
3551 }
3552 
stack_segment_valid(struct kvm_vcpu * vcpu)3553 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3554 {
3555 	struct kvm_segment ss;
3556 	unsigned int ss_rpl;
3557 
3558 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3559 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3560 
3561 	if (ss.unusable)
3562 		return true;
3563 	if (ss.type != 3 && ss.type != 7)
3564 		return false;
3565 	if (!ss.s)
3566 		return false;
3567 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3568 		return false;
3569 	if (!ss.present)
3570 		return false;
3571 
3572 	return true;
3573 }
3574 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3575 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3576 {
3577 	struct kvm_segment var;
3578 	unsigned int rpl;
3579 
3580 	vmx_get_segment(vcpu, &var, seg);
3581 	rpl = var.selector & SEGMENT_RPL_MASK;
3582 
3583 	if (var.unusable)
3584 		return true;
3585 	if (!var.s)
3586 		return false;
3587 	if (!var.present)
3588 		return false;
3589 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3590 		if (var.dpl < rpl) /* DPL < RPL */
3591 			return false;
3592 	}
3593 
3594 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3595 	 * rights flags
3596 	 */
3597 	return true;
3598 }
3599 
tr_valid(struct kvm_vcpu * vcpu)3600 static bool tr_valid(struct kvm_vcpu *vcpu)
3601 {
3602 	struct kvm_segment tr;
3603 
3604 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3605 
3606 	if (tr.unusable)
3607 		return false;
3608 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3609 		return false;
3610 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3611 		return false;
3612 	if (!tr.present)
3613 		return false;
3614 
3615 	return true;
3616 }
3617 
ldtr_valid(struct kvm_vcpu * vcpu)3618 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3619 {
3620 	struct kvm_segment ldtr;
3621 
3622 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3623 
3624 	if (ldtr.unusable)
3625 		return true;
3626 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3627 		return false;
3628 	if (ldtr.type != 2)
3629 		return false;
3630 	if (!ldtr.present)
3631 		return false;
3632 
3633 	return true;
3634 }
3635 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3636 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3637 {
3638 	struct kvm_segment cs, ss;
3639 
3640 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3641 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3642 
3643 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3644 		 (ss.selector & SEGMENT_RPL_MASK));
3645 }
3646 
3647 /*
3648  * Check if guest state is valid. Returns true if valid, false if
3649  * not.
3650  * We assume that registers are always usable
3651  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3652 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3653 {
3654 	/* real mode guest state checks */
3655 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3656 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3657 			return false;
3658 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3659 			return false;
3660 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3661 			return false;
3662 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3663 			return false;
3664 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3665 			return false;
3666 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3667 			return false;
3668 	} else {
3669 	/* protected mode guest state checks */
3670 		if (!cs_ss_rpl_check(vcpu))
3671 			return false;
3672 		if (!code_segment_valid(vcpu))
3673 			return false;
3674 		if (!stack_segment_valid(vcpu))
3675 			return false;
3676 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3677 			return false;
3678 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3679 			return false;
3680 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3681 			return false;
3682 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3683 			return false;
3684 		if (!tr_valid(vcpu))
3685 			return false;
3686 		if (!ldtr_valid(vcpu))
3687 			return false;
3688 	}
3689 	/* TODO:
3690 	 * - Add checks on RIP
3691 	 * - Add checks on RFLAGS
3692 	 */
3693 
3694 	return true;
3695 }
3696 
init_rmode_tss(struct kvm * kvm,void __user * ua)3697 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3698 {
3699 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3700 	u16 data;
3701 	int i;
3702 
3703 	for (i = 0; i < 3; i++) {
3704 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3705 			return -EFAULT;
3706 	}
3707 
3708 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3709 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3710 		return -EFAULT;
3711 
3712 	data = ~0;
3713 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3714 		return -EFAULT;
3715 
3716 	return 0;
3717 }
3718 
init_rmode_identity_map(struct kvm * kvm)3719 static int init_rmode_identity_map(struct kvm *kvm)
3720 {
3721 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3722 	int i, r = 0;
3723 	void __user *uaddr;
3724 	u32 tmp;
3725 
3726 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3727 	mutex_lock(&kvm->slots_lock);
3728 
3729 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3730 		goto out;
3731 
3732 	if (!kvm_vmx->ept_identity_map_addr)
3733 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3734 
3735 	uaddr = __x86_set_memory_region(kvm,
3736 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3737 					kvm_vmx->ept_identity_map_addr,
3738 					PAGE_SIZE);
3739 	if (IS_ERR(uaddr)) {
3740 		r = PTR_ERR(uaddr);
3741 		goto out;
3742 	}
3743 
3744 	/* Set up identity-mapping pagetable for EPT in real mode */
3745 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3746 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3747 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3748 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3749 			r = -EFAULT;
3750 			goto out;
3751 		}
3752 	}
3753 	kvm_vmx->ept_identity_pagetable_done = true;
3754 
3755 out:
3756 	mutex_unlock(&kvm->slots_lock);
3757 	return r;
3758 }
3759 
seg_setup(int seg)3760 static void seg_setup(int seg)
3761 {
3762 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3763 	unsigned int ar;
3764 
3765 	vmcs_write16(sf->selector, 0);
3766 	vmcs_writel(sf->base, 0);
3767 	vmcs_write32(sf->limit, 0xffff);
3768 	ar = 0x93;
3769 	if (seg == VCPU_SREG_CS)
3770 		ar |= 0x08; /* code segment */
3771 
3772 	vmcs_write32(sf->ar_bytes, ar);
3773 }
3774 
alloc_apic_access_page(struct kvm * kvm)3775 static int alloc_apic_access_page(struct kvm *kvm)
3776 {
3777 	struct page *page;
3778 	void __user *hva;
3779 	int ret = 0;
3780 
3781 	mutex_lock(&kvm->slots_lock);
3782 	if (kvm->arch.apic_access_memslot_enabled)
3783 		goto out;
3784 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3785 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3786 	if (IS_ERR(hva)) {
3787 		ret = PTR_ERR(hva);
3788 		goto out;
3789 	}
3790 
3791 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3792 	if (is_error_page(page)) {
3793 		ret = -EFAULT;
3794 		goto out;
3795 	}
3796 
3797 	/*
3798 	 * Do not pin the page in memory, so that memory hot-unplug
3799 	 * is able to migrate it.
3800 	 */
3801 	put_page(page);
3802 	kvm->arch.apic_access_memslot_enabled = true;
3803 out:
3804 	mutex_unlock(&kvm->slots_lock);
3805 	return ret;
3806 }
3807 
allocate_vpid(void)3808 int allocate_vpid(void)
3809 {
3810 	int vpid;
3811 
3812 	if (!enable_vpid)
3813 		return 0;
3814 	spin_lock(&vmx_vpid_lock);
3815 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3816 	if (vpid < VMX_NR_VPIDS)
3817 		__set_bit(vpid, vmx_vpid_bitmap);
3818 	else
3819 		vpid = 0;
3820 	spin_unlock(&vmx_vpid_lock);
3821 	return vpid;
3822 }
3823 
free_vpid(int vpid)3824 void free_vpid(int vpid)
3825 {
3826 	if (!enable_vpid || vpid == 0)
3827 		return;
3828 	spin_lock(&vmx_vpid_lock);
3829 	__clear_bit(vpid, vmx_vpid_bitmap);
3830 	spin_unlock(&vmx_vpid_lock);
3831 }
3832 
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3833 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3834 {
3835 	/*
3836 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3837 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3838 	 * bitmap has changed.
3839 	 */
3840 	if (static_branch_unlikely(&enable_evmcs))
3841 		evmcs_touch_msr_bitmap();
3842 
3843 	vmx->nested.force_msr_bitmap_recalc = true;
3844 }
3845 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3846 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3847 {
3848 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3849 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3850 
3851 	if (!cpu_has_vmx_msr_bitmap())
3852 		return;
3853 
3854 	vmx_msr_bitmap_l01_changed(vmx);
3855 
3856 	/*
3857 	 * Mark the desired intercept state in shadow bitmap, this is needed
3858 	 * for resync when the MSR filters change.
3859 	*/
3860 	if (is_valid_passthrough_msr(msr)) {
3861 		int idx = possible_passthrough_msr_slot(msr);
3862 
3863 		if (idx != -ENOENT) {
3864 			if (type & MSR_TYPE_R)
3865 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3866 			if (type & MSR_TYPE_W)
3867 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3868 		}
3869 	}
3870 
3871 	if ((type & MSR_TYPE_R) &&
3872 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3873 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3874 		type &= ~MSR_TYPE_R;
3875 	}
3876 
3877 	if ((type & MSR_TYPE_W) &&
3878 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3879 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3880 		type &= ~MSR_TYPE_W;
3881 	}
3882 
3883 	if (type & MSR_TYPE_R)
3884 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3885 
3886 	if (type & MSR_TYPE_W)
3887 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3888 }
3889 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3890 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3891 {
3892 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3893 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3894 
3895 	if (!cpu_has_vmx_msr_bitmap())
3896 		return;
3897 
3898 	vmx_msr_bitmap_l01_changed(vmx);
3899 
3900 	/*
3901 	 * Mark the desired intercept state in shadow bitmap, this is needed
3902 	 * for resync when the MSR filter changes.
3903 	*/
3904 	if (is_valid_passthrough_msr(msr)) {
3905 		int idx = possible_passthrough_msr_slot(msr);
3906 
3907 		if (idx != -ENOENT) {
3908 			if (type & MSR_TYPE_R)
3909 				set_bit(idx, vmx->shadow_msr_intercept.read);
3910 			if (type & MSR_TYPE_W)
3911 				set_bit(idx, vmx->shadow_msr_intercept.write);
3912 		}
3913 	}
3914 
3915 	if (type & MSR_TYPE_R)
3916 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3917 
3918 	if (type & MSR_TYPE_W)
3919 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3920 }
3921 
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3922 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3923 {
3924 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3925 	unsigned long read_intercept;
3926 	int msr;
3927 
3928 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3929 
3930 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3931 		unsigned int read_idx = msr / BITS_PER_LONG;
3932 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3933 
3934 		msr_bitmap[read_idx] = read_intercept;
3935 		msr_bitmap[write_idx] = ~0ul;
3936 	}
3937 }
3938 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)3939 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3940 {
3941 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3942 	u8 mode;
3943 
3944 	if (!cpu_has_vmx_msr_bitmap())
3945 		return;
3946 
3947 	if (cpu_has_secondary_exec_ctrls() &&
3948 	    (secondary_exec_controls_get(vmx) &
3949 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3950 		mode = MSR_BITMAP_MODE_X2APIC;
3951 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3952 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3953 	} else {
3954 		mode = 0;
3955 	}
3956 
3957 	if (mode == vmx->x2apic_msr_bitmap_mode)
3958 		return;
3959 
3960 	vmx->x2apic_msr_bitmap_mode = mode;
3961 
3962 	vmx_reset_x2apic_msrs(vcpu, mode);
3963 
3964 	/*
3965 	 * TPR reads and writes can be virtualized even if virtual interrupt
3966 	 * delivery is not in use.
3967 	 */
3968 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3969 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3970 
3971 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3972 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3973 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3974 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3975 		if (enable_ipiv)
3976 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
3977 	}
3978 }
3979 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3980 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3981 {
3982 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3983 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3984 	u32 i;
3985 
3986 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3987 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3988 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3989 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3990 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3991 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3992 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3993 	}
3994 }
3995 
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3996 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3997 {
3998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3999 	void *vapic_page;
4000 	u32 vppr;
4001 	int rvi;
4002 
4003 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4004 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4005 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4006 		return false;
4007 
4008 	rvi = vmx_get_rvi();
4009 
4010 	vapic_page = vmx->nested.virtual_apic_map.hva;
4011 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4012 
4013 	return ((rvi & 0xf0) > (vppr & 0xf0));
4014 }
4015 
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4016 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4017 {
4018 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4019 	u32 i;
4020 
4021 	/*
4022 	 * Redo intercept permissions for MSRs that KVM is passing through to
4023 	 * the guest.  Disabling interception will check the new MSR filter and
4024 	 * ensure that KVM enables interception if usersepace wants to filter
4025 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4026 	 * refreshed since KVM is going to intercept them regardless of what
4027 	 * userspace wants.
4028 	 */
4029 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4030 		u32 msr = vmx_possible_passthrough_msrs[i];
4031 
4032 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4033 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4034 
4035 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4036 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4037 	}
4038 
4039 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4040 	if (vmx_pt_mode_is_host_guest())
4041 		pt_update_intercept_for_msr(vcpu);
4042 }
4043 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4044 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4045 						     int pi_vec)
4046 {
4047 #ifdef CONFIG_SMP
4048 	if (vcpu->mode == IN_GUEST_MODE) {
4049 		/*
4050 		 * The vector of the virtual has already been set in the PIR.
4051 		 * Send a notification event to deliver the virtual interrupt
4052 		 * unless the vCPU is the currently running vCPU, i.e. the
4053 		 * event is being sent from a fastpath VM-Exit handler, in
4054 		 * which case the PIR will be synced to the vIRR before
4055 		 * re-entering the guest.
4056 		 *
4057 		 * When the target is not the running vCPU, the following
4058 		 * possibilities emerge:
4059 		 *
4060 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4061 		 * event posts the interrupt to the vCPU.
4062 		 *
4063 		 * Case 2: vCPU exits to root mode and is still runnable. The
4064 		 * PIR will be synced to the vIRR before re-entering the guest.
4065 		 * Sending a notification event is ok as the host IRQ handler
4066 		 * will ignore the spurious event.
4067 		 *
4068 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4069 		 * has already synced PIR to vIRR and never blocks the vCPU if
4070 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4071 		 * not wait for any requested interrupts in PIR, and sending a
4072 		 * notification event also results in a benign, spurious event.
4073 		 */
4074 
4075 		if (vcpu != kvm_get_running_vcpu())
4076 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4077 		return;
4078 	}
4079 #endif
4080 	/*
4081 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4082 	 * otherwise do nothing as KVM will grab the highest priority pending
4083 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4084 	 */
4085 	kvm_vcpu_wake_up(vcpu);
4086 }
4087 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4088 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4089 						int vector)
4090 {
4091 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4092 
4093 	if (is_guest_mode(vcpu) &&
4094 	    vector == vmx->nested.posted_intr_nv) {
4095 		/*
4096 		 * If a posted intr is not recognized by hardware,
4097 		 * we will accomplish it in the next vmentry.
4098 		 */
4099 		vmx->nested.pi_pending = true;
4100 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4101 
4102 		/*
4103 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4104 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4105 		 * request if triggering a posted interrupt "fails" because
4106 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4107 		 * the smb_wmb() in kvm_make_request() only ensures everything
4108 		 * done before making the request is visible when the request
4109 		 * is visible, it doesn't ensure ordering between the store to
4110 		 * vcpu->requests and the load from vcpu->mode.
4111 		 */
4112 		smp_mb__after_atomic();
4113 
4114 		/* the PIR and ON have been set by L1. */
4115 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4116 		return 0;
4117 	}
4118 	return -1;
4119 }
4120 /*
4121  * Send interrupt to vcpu via posted interrupt way.
4122  * 1. If target vcpu is running(non-root mode), send posted interrupt
4123  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4124  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4125  * interrupt from PIR in next vmentry.
4126  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4127 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4128 {
4129 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4130 	int r;
4131 
4132 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4133 	if (!r)
4134 		return 0;
4135 
4136 	/* Note, this is called iff the local APIC is in-kernel. */
4137 	if (!vcpu->arch.apic->apicv_active)
4138 		return -1;
4139 
4140 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4141 		return 0;
4142 
4143 	/* If a previous notification has sent the IPI, nothing to do.  */
4144 	if (pi_test_and_set_on(&vmx->pi_desc))
4145 		return 0;
4146 
4147 	/*
4148 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4149 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4150 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4151 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4152 	 */
4153 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4154 	return 0;
4155 }
4156 
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4157 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4158 				  int trig_mode, int vector)
4159 {
4160 	struct kvm_vcpu *vcpu = apic->vcpu;
4161 
4162 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4163 		kvm_lapic_set_irr(vector, apic);
4164 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4165 		kvm_vcpu_kick(vcpu);
4166 	} else {
4167 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4168 					   trig_mode, vector);
4169 	}
4170 }
4171 
4172 /*
4173  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4174  * will not change in the lifetime of the guest.
4175  * Note that host-state that does change is set elsewhere. E.g., host-state
4176  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4177  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4178 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4179 {
4180 	u32 low32, high32;
4181 	unsigned long tmpl;
4182 	unsigned long cr0, cr3, cr4;
4183 
4184 	cr0 = read_cr0();
4185 	WARN_ON(cr0 & X86_CR0_TS);
4186 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4187 
4188 	/*
4189 	 * Save the most likely value for this task's CR3 in the VMCS.
4190 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4191 	 */
4192 	cr3 = __read_cr3();
4193 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4194 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4195 
4196 	/* Save the most likely value for this task's CR4 in the VMCS. */
4197 	cr4 = cr4_read_shadow();
4198 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4199 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4200 
4201 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4202 #ifdef CONFIG_X86_64
4203 	/*
4204 	 * Load null selectors, so we can avoid reloading them in
4205 	 * vmx_prepare_switch_to_host(), in case userspace uses
4206 	 * the null selectors too (the expected case).
4207 	 */
4208 	vmcs_write16(HOST_DS_SELECTOR, 0);
4209 	vmcs_write16(HOST_ES_SELECTOR, 0);
4210 #else
4211 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4212 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4213 #endif
4214 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4215 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4216 
4217 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4218 
4219 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4220 
4221 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4222 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4223 
4224 	/*
4225 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4226 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4227 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4228 	 * have already done so!).
4229 	 */
4230 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4231 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4232 
4233 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4234 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4235 
4236 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4237 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4238 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4239 	}
4240 
4241 	if (cpu_has_load_ia32_efer())
4242 		vmcs_write64(HOST_IA32_EFER, host_efer);
4243 }
4244 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4245 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4246 {
4247 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4248 
4249 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4250 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4251 	if (!enable_ept) {
4252 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4253 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4254 	}
4255 	if (is_guest_mode(&vmx->vcpu))
4256 		vcpu->arch.cr4_guest_owned_bits &=
4257 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4258 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4259 }
4260 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4261 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4262 {
4263 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4264 
4265 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4266 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4267 
4268 	if (!enable_vnmi)
4269 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4270 
4271 	if (!enable_preemption_timer)
4272 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4273 
4274 	return pin_based_exec_ctrl;
4275 }
4276 
vmx_vmentry_ctrl(void)4277 static u32 vmx_vmentry_ctrl(void)
4278 {
4279 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4280 
4281 	if (vmx_pt_mode_is_system())
4282 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4283 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4284 	/*
4285 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4286 	 */
4287 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4288 			  VM_ENTRY_LOAD_IA32_EFER |
4289 			  VM_ENTRY_IA32E_MODE);
4290 
4291 	if (cpu_has_perf_global_ctrl_bug())
4292 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4293 
4294 	return vmentry_ctrl;
4295 }
4296 
vmx_vmexit_ctrl(void)4297 static u32 vmx_vmexit_ctrl(void)
4298 {
4299 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4300 
4301 	/*
4302 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4303 	 * nested virtualization and thus allowed to be set in vmcs12.
4304 	 */
4305 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4306 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4307 
4308 	if (vmx_pt_mode_is_system())
4309 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4310 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4311 
4312 	if (cpu_has_perf_global_ctrl_bug())
4313 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4314 
4315 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4316 	return vmexit_ctrl &
4317 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4318 }
4319 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4320 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4321 {
4322 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4323 
4324 	if (is_guest_mode(vcpu)) {
4325 		vmx->nested.update_vmcs01_apicv_status = true;
4326 		return;
4327 	}
4328 
4329 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4330 
4331 	if (kvm_vcpu_apicv_active(vcpu)) {
4332 		secondary_exec_controls_setbit(vmx,
4333 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4334 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4335 		if (enable_ipiv)
4336 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4337 	} else {
4338 		secondary_exec_controls_clearbit(vmx,
4339 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4340 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4341 		if (enable_ipiv)
4342 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4343 	}
4344 
4345 	vmx_update_msr_bitmap_x2apic(vcpu);
4346 }
4347 
vmx_exec_control(struct vcpu_vmx * vmx)4348 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4349 {
4350 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4351 
4352 	/*
4353 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4354 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4355 	 */
4356 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4357 			  CPU_BASED_USE_IO_BITMAPS |
4358 			  CPU_BASED_MONITOR_TRAP_FLAG |
4359 			  CPU_BASED_PAUSE_EXITING);
4360 
4361 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4362 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4363 			  CPU_BASED_NMI_WINDOW_EXITING);
4364 
4365 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4366 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4367 
4368 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4369 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4370 
4371 #ifdef CONFIG_X86_64
4372 	if (exec_control & CPU_BASED_TPR_SHADOW)
4373 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4374 				  CPU_BASED_CR8_STORE_EXITING);
4375 	else
4376 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4377 				CPU_BASED_CR8_LOAD_EXITING;
4378 #endif
4379 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4380 	if (enable_ept)
4381 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4382 				  CPU_BASED_CR3_STORE_EXITING |
4383 				  CPU_BASED_INVLPG_EXITING);
4384 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4385 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4386 				CPU_BASED_MONITOR_EXITING);
4387 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4388 		exec_control &= ~CPU_BASED_HLT_EXITING;
4389 	return exec_control;
4390 }
4391 
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4392 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4393 {
4394 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4395 
4396 	/*
4397 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4398 	 * APICv is inhibited.
4399 	 */
4400 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4401 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4402 
4403 	return exec_control;
4404 }
4405 
4406 /*
4407  * Adjust a single secondary execution control bit to intercept/allow an
4408  * instruction in the guest.  This is usually done based on whether or not a
4409  * feature has been exposed to the guest in order to correctly emulate faults.
4410  */
4411 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4412 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4413 				  u32 control, bool enabled, bool exiting)
4414 {
4415 	/*
4416 	 * If the control is for an opt-in feature, clear the control if the
4417 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4418 	 * control is opt-out, i.e. an exiting control, clear the control if
4419 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4420 	 * disabled for the associated instruction.  Note, the caller is
4421 	 * responsible presetting exec_control to set all supported bits.
4422 	 */
4423 	if (enabled == exiting)
4424 		*exec_control &= ~control;
4425 
4426 	/*
4427 	 * Update the nested MSR settings so that a nested VMM can/can't set
4428 	 * controls for features that are/aren't exposed to the guest.
4429 	 */
4430 	if (nested) {
4431 		if (enabled)
4432 			vmx->nested.msrs.secondary_ctls_high |= control;
4433 		else
4434 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4435 	}
4436 }
4437 
4438 /*
4439  * Wrapper macro for the common case of adjusting a secondary execution control
4440  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4441  * verifies that the control is actually supported by KVM and hardware.
4442  */
4443 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4444 ({									 \
4445 	bool __enabled;							 \
4446 									 \
4447 	if (cpu_has_vmx_##name()) {					 \
4448 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4449 					    X86_FEATURE_##feat_name);	 \
4450 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4451 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4452 	}								 \
4453 })
4454 
4455 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4456 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4457 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4458 
4459 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4460 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4461 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4462 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4463 {
4464 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4465 
4466 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4467 
4468 	if (vmx_pt_mode_is_system())
4469 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4470 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4471 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4472 	if (vmx->vpid == 0)
4473 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4474 	if (!enable_ept) {
4475 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4476 		enable_unrestricted_guest = 0;
4477 	}
4478 	if (!enable_unrestricted_guest)
4479 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4480 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4481 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4482 	if (!kvm_vcpu_apicv_active(vcpu))
4483 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4484 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4485 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4486 
4487 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4488 	 * in vmx_set_cr4.  */
4489 	exec_control &= ~SECONDARY_EXEC_DESC;
4490 
4491 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4492 	   (handle_vmptrld).
4493 	   We can NOT enable shadow_vmcs here because we don't have yet
4494 	   a current VMCS12
4495 	*/
4496 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4497 
4498 	/*
4499 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4500 	 * it needs to be set here when dirty logging is already active, e.g.
4501 	 * if this vCPU was created after dirty logging was enabled.
4502 	 */
4503 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4504 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4505 
4506 	if (cpu_has_vmx_xsaves()) {
4507 		/* Exposing XSAVES only when XSAVE is exposed */
4508 		bool xsaves_enabled =
4509 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4510 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4511 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4512 
4513 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4514 
4515 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4516 						  SECONDARY_EXEC_XSAVES,
4517 						  xsaves_enabled, false);
4518 	}
4519 
4520 	/*
4521 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4522 	 * feature is exposed to the guest.  This creates a virtualization hole
4523 	 * if both are supported in hardware but only one is exposed to the
4524 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4525 	 * is advertised is preferable to emulating the advertised instruction
4526 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4527 	 */
4528 	if (cpu_has_vmx_rdtscp()) {
4529 		bool rdpid_or_rdtscp_enabled =
4530 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4531 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4532 
4533 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4534 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4535 						  rdpid_or_rdtscp_enabled, false);
4536 	}
4537 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4538 
4539 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4540 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4541 
4542 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4543 				    ENABLE_USR_WAIT_PAUSE, false);
4544 
4545 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4546 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4547 
4548 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4549 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4550 
4551 	return exec_control;
4552 }
4553 
vmx_get_pid_table_order(struct kvm * kvm)4554 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4555 {
4556 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4557 }
4558 
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4559 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4560 {
4561 	struct page *pages;
4562 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4563 
4564 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4565 		return 0;
4566 
4567 	if (kvm_vmx->pid_table)
4568 		return 0;
4569 
4570 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4571 	if (!pages)
4572 		return -ENOMEM;
4573 
4574 	kvm_vmx->pid_table = (void *)page_address(pages);
4575 	return 0;
4576 }
4577 
vmx_vcpu_precreate(struct kvm * kvm)4578 static int vmx_vcpu_precreate(struct kvm *kvm)
4579 {
4580 	return vmx_alloc_ipiv_pid_table(kvm);
4581 }
4582 
4583 #define VMX_XSS_EXIT_BITMAP 0
4584 
init_vmcs(struct vcpu_vmx * vmx)4585 static void init_vmcs(struct vcpu_vmx *vmx)
4586 {
4587 	struct kvm *kvm = vmx->vcpu.kvm;
4588 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4589 
4590 	if (nested)
4591 		nested_vmx_set_vmcs_shadowing_bitmap();
4592 
4593 	if (cpu_has_vmx_msr_bitmap())
4594 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4595 
4596 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4597 
4598 	/* Control */
4599 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4600 
4601 	exec_controls_set(vmx, vmx_exec_control(vmx));
4602 
4603 	if (cpu_has_secondary_exec_ctrls())
4604 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4605 
4606 	if (cpu_has_tertiary_exec_ctrls())
4607 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4608 
4609 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4610 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4611 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4612 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4613 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4614 
4615 		vmcs_write16(GUEST_INTR_STATUS, 0);
4616 
4617 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4618 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4619 	}
4620 
4621 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4622 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4623 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4624 	}
4625 
4626 	if (!kvm_pause_in_guest(kvm)) {
4627 		vmcs_write32(PLE_GAP, ple_gap);
4628 		vmx->ple_window = ple_window;
4629 		vmx->ple_window_dirty = true;
4630 	}
4631 
4632 	if (kvm_notify_vmexit_enabled(kvm))
4633 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4634 
4635 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4636 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4637 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4638 
4639 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4640 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4641 	vmx_set_constant_host_state(vmx);
4642 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4643 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4644 
4645 	if (cpu_has_vmx_vmfunc())
4646 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4647 
4648 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4649 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4650 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4651 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4652 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4653 
4654 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4655 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4656 
4657 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4658 
4659 	/* 22.2.1, 20.8.1 */
4660 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4661 
4662 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4663 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4664 
4665 	set_cr4_guest_host_mask(vmx);
4666 
4667 	if (vmx->vpid != 0)
4668 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4669 
4670 	if (cpu_has_vmx_xsaves())
4671 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4672 
4673 	if (enable_pml) {
4674 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4675 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4676 	}
4677 
4678 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4679 
4680 	if (vmx_pt_mode_is_host_guest()) {
4681 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4682 		/* Bit[6~0] are forced to 1, writes are ignored. */
4683 		vmx->pt_desc.guest.output_mask = 0x7F;
4684 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4685 	}
4686 
4687 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4688 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4689 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4690 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4691 
4692 	if (cpu_has_vmx_tpr_shadow()) {
4693 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4694 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4695 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4696 				     __pa(vmx->vcpu.arch.apic->regs));
4697 		vmcs_write32(TPR_THRESHOLD, 0);
4698 	}
4699 
4700 	vmx_setup_uret_msrs(vmx);
4701 }
4702 
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4703 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4704 {
4705 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4706 
4707 	init_vmcs(vmx);
4708 
4709 	if (nested)
4710 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4711 
4712 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4713 
4714 	vmx->nested.posted_intr_nv = -1;
4715 	vmx->nested.vmxon_ptr = INVALID_GPA;
4716 	vmx->nested.current_vmptr = INVALID_GPA;
4717 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4718 
4719 	vcpu->arch.microcode_version = 0x100000000ULL;
4720 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4721 
4722 	/*
4723 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4724 	 * or POSTED_INTR_WAKEUP_VECTOR.
4725 	 */
4726 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4727 	vmx->pi_desc.sn = 1;
4728 }
4729 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4730 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4731 {
4732 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4733 
4734 	if (!init_event)
4735 		__vmx_vcpu_reset(vcpu);
4736 
4737 	vmx->rmode.vm86_active = 0;
4738 	vmx->spec_ctrl = 0;
4739 
4740 	vmx->msr_ia32_umwait_control = 0;
4741 
4742 	vmx->hv_deadline_tsc = -1;
4743 	kvm_set_cr8(vcpu, 0);
4744 
4745 	vmx_segment_cache_clear(vmx);
4746 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4747 
4748 	seg_setup(VCPU_SREG_CS);
4749 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4750 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4751 
4752 	seg_setup(VCPU_SREG_DS);
4753 	seg_setup(VCPU_SREG_ES);
4754 	seg_setup(VCPU_SREG_FS);
4755 	seg_setup(VCPU_SREG_GS);
4756 	seg_setup(VCPU_SREG_SS);
4757 
4758 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4759 	vmcs_writel(GUEST_TR_BASE, 0);
4760 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4761 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4762 
4763 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4764 	vmcs_writel(GUEST_LDTR_BASE, 0);
4765 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4766 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4767 
4768 	vmcs_writel(GUEST_GDTR_BASE, 0);
4769 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4770 
4771 	vmcs_writel(GUEST_IDTR_BASE, 0);
4772 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4773 
4774 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4775 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4776 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4777 	if (kvm_mpx_supported())
4778 		vmcs_write64(GUEST_BNDCFGS, 0);
4779 
4780 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4781 
4782 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4783 
4784 	vpid_sync_context(vmx->vpid);
4785 
4786 	vmx_update_fb_clear_dis(vcpu, vmx);
4787 }
4788 
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4789 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4790 {
4791 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4792 }
4793 
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4794 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4795 {
4796 	if (!enable_vnmi ||
4797 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4798 		vmx_enable_irq_window(vcpu);
4799 		return;
4800 	}
4801 
4802 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4803 }
4804 
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4805 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4806 {
4807 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4808 	uint32_t intr;
4809 	int irq = vcpu->arch.interrupt.nr;
4810 
4811 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4812 
4813 	++vcpu->stat.irq_injections;
4814 	if (vmx->rmode.vm86_active) {
4815 		int inc_eip = 0;
4816 		if (vcpu->arch.interrupt.soft)
4817 			inc_eip = vcpu->arch.event_exit_inst_len;
4818 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4819 		return;
4820 	}
4821 	intr = irq | INTR_INFO_VALID_MASK;
4822 	if (vcpu->arch.interrupt.soft) {
4823 		intr |= INTR_TYPE_SOFT_INTR;
4824 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4825 			     vmx->vcpu.arch.event_exit_inst_len);
4826 	} else
4827 		intr |= INTR_TYPE_EXT_INTR;
4828 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4829 
4830 	vmx_clear_hlt(vcpu);
4831 }
4832 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4833 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4834 {
4835 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4836 
4837 	if (!enable_vnmi) {
4838 		/*
4839 		 * Tracking the NMI-blocked state in software is built upon
4840 		 * finding the next open IRQ window. This, in turn, depends on
4841 		 * well-behaving guests: They have to keep IRQs disabled at
4842 		 * least as long as the NMI handler runs. Otherwise we may
4843 		 * cause NMI nesting, maybe breaking the guest. But as this is
4844 		 * highly unlikely, we can live with the residual risk.
4845 		 */
4846 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4847 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4848 	}
4849 
4850 	++vcpu->stat.nmi_injections;
4851 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4852 
4853 	if (vmx->rmode.vm86_active) {
4854 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4855 		return;
4856 	}
4857 
4858 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4859 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4860 
4861 	vmx_clear_hlt(vcpu);
4862 }
4863 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4864 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4865 {
4866 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4867 	bool masked;
4868 
4869 	if (!enable_vnmi)
4870 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4871 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4872 		return false;
4873 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4874 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4875 	return masked;
4876 }
4877 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4878 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4879 {
4880 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4881 
4882 	if (!enable_vnmi) {
4883 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4884 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4885 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4886 		}
4887 	} else {
4888 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4889 		if (masked)
4890 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4891 				      GUEST_INTR_STATE_NMI);
4892 		else
4893 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4894 					GUEST_INTR_STATE_NMI);
4895 	}
4896 }
4897 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4898 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4899 {
4900 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4901 		return false;
4902 
4903 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4904 		return true;
4905 
4906 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4907 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4908 		 GUEST_INTR_STATE_NMI));
4909 }
4910 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4911 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4912 {
4913 	if (to_vmx(vcpu)->nested.nested_run_pending)
4914 		return -EBUSY;
4915 
4916 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4917 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4918 		return -EBUSY;
4919 
4920 	return !vmx_nmi_blocked(vcpu);
4921 }
4922 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4923 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4924 {
4925 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4926 		return false;
4927 
4928 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4929 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4930 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4931 }
4932 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4933 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4934 {
4935 	if (to_vmx(vcpu)->nested.nested_run_pending)
4936 		return -EBUSY;
4937 
4938        /*
4939         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4940         * e.g. if the IRQ arrived asynchronously after checking nested events.
4941         */
4942 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4943 		return -EBUSY;
4944 
4945 	return !vmx_interrupt_blocked(vcpu);
4946 }
4947 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4948 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4949 {
4950 	void __user *ret;
4951 
4952 	if (enable_unrestricted_guest)
4953 		return 0;
4954 
4955 	mutex_lock(&kvm->slots_lock);
4956 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4957 				      PAGE_SIZE * 3);
4958 	mutex_unlock(&kvm->slots_lock);
4959 
4960 	if (IS_ERR(ret))
4961 		return PTR_ERR(ret);
4962 
4963 	to_kvm_vmx(kvm)->tss_addr = addr;
4964 
4965 	return init_rmode_tss(kvm, ret);
4966 }
4967 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4968 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4969 {
4970 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4971 	return 0;
4972 }
4973 
rmode_exception(struct kvm_vcpu * vcpu,int vec)4974 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4975 {
4976 	switch (vec) {
4977 	case BP_VECTOR:
4978 		/*
4979 		 * Update instruction length as we may reinject the exception
4980 		 * from user space while in guest debugging mode.
4981 		 */
4982 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4983 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4984 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4985 			return false;
4986 		fallthrough;
4987 	case DB_VECTOR:
4988 		return !(vcpu->guest_debug &
4989 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4990 	case DE_VECTOR:
4991 	case OF_VECTOR:
4992 	case BR_VECTOR:
4993 	case UD_VECTOR:
4994 	case DF_VECTOR:
4995 	case SS_VECTOR:
4996 	case GP_VECTOR:
4997 	case MF_VECTOR:
4998 		return true;
4999 	}
5000 	return false;
5001 }
5002 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5003 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5004 				  int vec, u32 err_code)
5005 {
5006 	/*
5007 	 * Instruction with address size override prefix opcode 0x67
5008 	 * Cause the #SS fault with 0 error code in VM86 mode.
5009 	 */
5010 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5011 		if (kvm_emulate_instruction(vcpu, 0)) {
5012 			if (vcpu->arch.halt_request) {
5013 				vcpu->arch.halt_request = 0;
5014 				return kvm_emulate_halt_noskip(vcpu);
5015 			}
5016 			return 1;
5017 		}
5018 		return 0;
5019 	}
5020 
5021 	/*
5022 	 * Forward all other exceptions that are valid in real mode.
5023 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5024 	 *        the required debugging infrastructure rework.
5025 	 */
5026 	kvm_queue_exception(vcpu, vec);
5027 	return 1;
5028 }
5029 
handle_machine_check(struct kvm_vcpu * vcpu)5030 static int handle_machine_check(struct kvm_vcpu *vcpu)
5031 {
5032 	/* handled by vmx_vcpu_run() */
5033 	return 1;
5034 }
5035 
5036 /*
5037  * If the host has split lock detection disabled, then #AC is
5038  * unconditionally injected into the guest, which is the pre split lock
5039  * detection behaviour.
5040  *
5041  * If the host has split lock detection enabled then #AC is
5042  * only injected into the guest when:
5043  *  - Guest CPL == 3 (user mode)
5044  *  - Guest has #AC detection enabled in CR0
5045  *  - Guest EFLAGS has AC bit set
5046  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5047 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5048 {
5049 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5050 		return true;
5051 
5052 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
5053 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5054 }
5055 
handle_exception_nmi(struct kvm_vcpu * vcpu)5056 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5057 {
5058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5059 	struct kvm_run *kvm_run = vcpu->run;
5060 	u32 intr_info, ex_no, error_code;
5061 	unsigned long cr2, dr6;
5062 	u32 vect_info;
5063 
5064 	vect_info = vmx->idt_vectoring_info;
5065 	intr_info = vmx_get_intr_info(vcpu);
5066 
5067 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5068 		return 1; /* handled by handle_exception_nmi_irqoff() */
5069 
5070 	/*
5071 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5072 	 * This ensures the nested_vmx check is not skipped so vmexit can
5073 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5074 	 * point.
5075 	 */
5076 	if (is_nm_fault(intr_info)) {
5077 		kvm_queue_exception(vcpu, NM_VECTOR);
5078 		return 1;
5079 	}
5080 
5081 	if (is_invalid_opcode(intr_info))
5082 		return handle_ud(vcpu);
5083 
5084 	error_code = 0;
5085 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5086 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5087 
5088 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5089 		WARN_ON_ONCE(!enable_vmware_backdoor);
5090 
5091 		/*
5092 		 * VMware backdoor emulation on #GP interception only handles
5093 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5094 		 * error code on #GP.
5095 		 */
5096 		if (error_code) {
5097 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5098 			return 1;
5099 		}
5100 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5101 	}
5102 
5103 	/*
5104 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5105 	 * MMIO, it is better to report an internal error.
5106 	 * See the comments in vmx_handle_exit.
5107 	 */
5108 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5109 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5110 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5111 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5112 		vcpu->run->internal.ndata = 4;
5113 		vcpu->run->internal.data[0] = vect_info;
5114 		vcpu->run->internal.data[1] = intr_info;
5115 		vcpu->run->internal.data[2] = error_code;
5116 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5117 		return 0;
5118 	}
5119 
5120 	if (is_page_fault(intr_info)) {
5121 		cr2 = vmx_get_exit_qual(vcpu);
5122 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5123 			/*
5124 			 * EPT will cause page fault only if we need to
5125 			 * detect illegal GPAs.
5126 			 */
5127 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5128 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5129 			return 1;
5130 		} else
5131 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5132 	}
5133 
5134 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5135 
5136 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5137 		return handle_rmode_exception(vcpu, ex_no, error_code);
5138 
5139 	switch (ex_no) {
5140 	case DB_VECTOR:
5141 		dr6 = vmx_get_exit_qual(vcpu);
5142 		if (!(vcpu->guest_debug &
5143 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5144 			/*
5145 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5146 			 * instruction.  ICEBP generates a trap-like #DB, but
5147 			 * despite its interception control being tied to #DB,
5148 			 * is an instruction intercept, i.e. the VM-Exit occurs
5149 			 * on the ICEBP itself.  Use the inner "skip" helper to
5150 			 * avoid single-step #DB and MTF updates, as ICEBP is
5151 			 * higher priority.  Note, skipping ICEBP still clears
5152 			 * STI and MOVSS blocking.
5153 			 *
5154 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5155 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5156 			 * blocking is active, as the CPU doesn't set the bit
5157 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5158 			 * consistency check that a single-step #DB is pending
5159 			 * in this scenario as the previous instruction cannot
5160 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5161 			 * don't modify RFLAGS), therefore the one instruction
5162 			 * delay when activating single-step breakpoints must
5163 			 * have already expired.  Note, the CPU sets/clears BS
5164 			 * as appropriate for all other VM-Exits types.
5165 			 */
5166 			if (is_icebp(intr_info))
5167 				WARN_ON(!skip_emulated_instruction(vcpu));
5168 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5169 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5170 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5171 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5172 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5173 
5174 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5175 			return 1;
5176 		}
5177 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5178 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5179 		fallthrough;
5180 	case BP_VECTOR:
5181 		/*
5182 		 * Update instruction length as we may reinject #BP from
5183 		 * user space while in guest debugging mode. Reading it for
5184 		 * #DB as well causes no harm, it is not used in that case.
5185 		 */
5186 		vmx->vcpu.arch.event_exit_inst_len =
5187 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5188 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5189 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5190 		kvm_run->debug.arch.exception = ex_no;
5191 		break;
5192 	case AC_VECTOR:
5193 		if (vmx_guest_inject_ac(vcpu)) {
5194 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5195 			return 1;
5196 		}
5197 
5198 		/*
5199 		 * Handle split lock. Depending on detection mode this will
5200 		 * either warn and disable split lock detection for this
5201 		 * task or force SIGBUS on it.
5202 		 */
5203 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5204 			return 1;
5205 		fallthrough;
5206 	default:
5207 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5208 		kvm_run->ex.exception = ex_no;
5209 		kvm_run->ex.error_code = error_code;
5210 		break;
5211 	}
5212 	return 0;
5213 }
5214 
handle_external_interrupt(struct kvm_vcpu * vcpu)5215 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5216 {
5217 	++vcpu->stat.irq_exits;
5218 	return 1;
5219 }
5220 
handle_triple_fault(struct kvm_vcpu * vcpu)5221 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5222 {
5223 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5224 	vcpu->mmio_needed = 0;
5225 	return 0;
5226 }
5227 
handle_io(struct kvm_vcpu * vcpu)5228 static int handle_io(struct kvm_vcpu *vcpu)
5229 {
5230 	unsigned long exit_qualification;
5231 	int size, in, string;
5232 	unsigned port;
5233 
5234 	exit_qualification = vmx_get_exit_qual(vcpu);
5235 	string = (exit_qualification & 16) != 0;
5236 
5237 	++vcpu->stat.io_exits;
5238 
5239 	if (string)
5240 		return kvm_emulate_instruction(vcpu, 0);
5241 
5242 	port = exit_qualification >> 16;
5243 	size = (exit_qualification & 7) + 1;
5244 	in = (exit_qualification & 8) != 0;
5245 
5246 	return kvm_fast_pio(vcpu, size, port, in);
5247 }
5248 
5249 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5250 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5251 {
5252 	/*
5253 	 * Patch in the VMCALL instruction:
5254 	 */
5255 	hypercall[0] = 0x0f;
5256 	hypercall[1] = 0x01;
5257 	hypercall[2] = 0xc1;
5258 }
5259 
5260 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5261 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5262 {
5263 	if (is_guest_mode(vcpu)) {
5264 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5265 		unsigned long orig_val = val;
5266 
5267 		/*
5268 		 * We get here when L2 changed cr0 in a way that did not change
5269 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5270 		 * but did change L0 shadowed bits. So we first calculate the
5271 		 * effective cr0 value that L1 would like to write into the
5272 		 * hardware. It consists of the L2-owned bits from the new
5273 		 * value combined with the L1-owned bits from L1's guest_cr0.
5274 		 */
5275 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5276 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5277 
5278 		if (!nested_guest_cr0_valid(vcpu, val))
5279 			return 1;
5280 
5281 		if (kvm_set_cr0(vcpu, val))
5282 			return 1;
5283 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5284 		return 0;
5285 	} else {
5286 		if (to_vmx(vcpu)->nested.vmxon &&
5287 		    !nested_host_cr0_valid(vcpu, val))
5288 			return 1;
5289 
5290 		return kvm_set_cr0(vcpu, val);
5291 	}
5292 }
5293 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5294 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5295 {
5296 	if (is_guest_mode(vcpu)) {
5297 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5298 		unsigned long orig_val = val;
5299 
5300 		/* analogously to handle_set_cr0 */
5301 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5302 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5303 		if (kvm_set_cr4(vcpu, val))
5304 			return 1;
5305 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5306 		return 0;
5307 	} else
5308 		return kvm_set_cr4(vcpu, val);
5309 }
5310 
handle_desc(struct kvm_vcpu * vcpu)5311 static int handle_desc(struct kvm_vcpu *vcpu)
5312 {
5313 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5314 	return kvm_emulate_instruction(vcpu, 0);
5315 }
5316 
handle_cr(struct kvm_vcpu * vcpu)5317 static int handle_cr(struct kvm_vcpu *vcpu)
5318 {
5319 	unsigned long exit_qualification, val;
5320 	int cr;
5321 	int reg;
5322 	int err;
5323 	int ret;
5324 
5325 	exit_qualification = vmx_get_exit_qual(vcpu);
5326 	cr = exit_qualification & 15;
5327 	reg = (exit_qualification >> 8) & 15;
5328 	switch ((exit_qualification >> 4) & 3) {
5329 	case 0: /* mov to cr */
5330 		val = kvm_register_read(vcpu, reg);
5331 		trace_kvm_cr_write(cr, val);
5332 		switch (cr) {
5333 		case 0:
5334 			err = handle_set_cr0(vcpu, val);
5335 			return kvm_complete_insn_gp(vcpu, err);
5336 		case 3:
5337 			WARN_ON_ONCE(enable_unrestricted_guest);
5338 
5339 			err = kvm_set_cr3(vcpu, val);
5340 			return kvm_complete_insn_gp(vcpu, err);
5341 		case 4:
5342 			err = handle_set_cr4(vcpu, val);
5343 			return kvm_complete_insn_gp(vcpu, err);
5344 		case 8: {
5345 				u8 cr8_prev = kvm_get_cr8(vcpu);
5346 				u8 cr8 = (u8)val;
5347 				err = kvm_set_cr8(vcpu, cr8);
5348 				ret = kvm_complete_insn_gp(vcpu, err);
5349 				if (lapic_in_kernel(vcpu))
5350 					return ret;
5351 				if (cr8_prev <= cr8)
5352 					return ret;
5353 				/*
5354 				 * TODO: we might be squashing a
5355 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5356 				 * KVM_EXIT_DEBUG here.
5357 				 */
5358 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5359 				return 0;
5360 			}
5361 		}
5362 		break;
5363 	case 2: /* clts */
5364 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5365 		return -EIO;
5366 	case 1: /*mov from cr*/
5367 		switch (cr) {
5368 		case 3:
5369 			WARN_ON_ONCE(enable_unrestricted_guest);
5370 
5371 			val = kvm_read_cr3(vcpu);
5372 			kvm_register_write(vcpu, reg, val);
5373 			trace_kvm_cr_read(cr, val);
5374 			return kvm_skip_emulated_instruction(vcpu);
5375 		case 8:
5376 			val = kvm_get_cr8(vcpu);
5377 			kvm_register_write(vcpu, reg, val);
5378 			trace_kvm_cr_read(cr, val);
5379 			return kvm_skip_emulated_instruction(vcpu);
5380 		}
5381 		break;
5382 	case 3: /* lmsw */
5383 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5384 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5385 		kvm_lmsw(vcpu, val);
5386 
5387 		return kvm_skip_emulated_instruction(vcpu);
5388 	default:
5389 		break;
5390 	}
5391 	vcpu->run->exit_reason = 0;
5392 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5393 	       (int)(exit_qualification >> 4) & 3, cr);
5394 	return 0;
5395 }
5396 
handle_dr(struct kvm_vcpu * vcpu)5397 static int handle_dr(struct kvm_vcpu *vcpu)
5398 {
5399 	unsigned long exit_qualification;
5400 	int dr, dr7, reg;
5401 	int err = 1;
5402 
5403 	exit_qualification = vmx_get_exit_qual(vcpu);
5404 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5405 
5406 	/* First, if DR does not exist, trigger UD */
5407 	if (!kvm_require_dr(vcpu, dr))
5408 		return 1;
5409 
5410 	if (vmx_get_cpl(vcpu) > 0)
5411 		goto out;
5412 
5413 	dr7 = vmcs_readl(GUEST_DR7);
5414 	if (dr7 & DR7_GD) {
5415 		/*
5416 		 * As the vm-exit takes precedence over the debug trap, we
5417 		 * need to emulate the latter, either for the host or the
5418 		 * guest debugging itself.
5419 		 */
5420 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5421 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5422 			vcpu->run->debug.arch.dr7 = dr7;
5423 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5424 			vcpu->run->debug.arch.exception = DB_VECTOR;
5425 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5426 			return 0;
5427 		} else {
5428 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5429 			return 1;
5430 		}
5431 	}
5432 
5433 	if (vcpu->guest_debug == 0) {
5434 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5435 
5436 		/*
5437 		 * No more DR vmexits; force a reload of the debug registers
5438 		 * and reenter on this instruction.  The next vmexit will
5439 		 * retrieve the full state of the debug registers.
5440 		 */
5441 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5442 		return 1;
5443 	}
5444 
5445 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5446 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5447 		unsigned long val;
5448 
5449 		kvm_get_dr(vcpu, dr, &val);
5450 		kvm_register_write(vcpu, reg, val);
5451 		err = 0;
5452 	} else {
5453 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5454 	}
5455 
5456 out:
5457 	return kvm_complete_insn_gp(vcpu, err);
5458 }
5459 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5460 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5461 {
5462 	get_debugreg(vcpu->arch.db[0], 0);
5463 	get_debugreg(vcpu->arch.db[1], 1);
5464 	get_debugreg(vcpu->arch.db[2], 2);
5465 	get_debugreg(vcpu->arch.db[3], 3);
5466 	get_debugreg(vcpu->arch.dr6, 6);
5467 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5468 
5469 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5470 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5471 
5472 	/*
5473 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5474 	 * a stale dr6 from the guest.
5475 	 */
5476 	set_debugreg(DR6_RESERVED, 6);
5477 }
5478 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5479 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5480 {
5481 	vmcs_writel(GUEST_DR7, val);
5482 }
5483 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5484 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5485 {
5486 	kvm_apic_update_ppr(vcpu);
5487 	return 1;
5488 }
5489 
handle_interrupt_window(struct kvm_vcpu * vcpu)5490 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5491 {
5492 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5493 
5494 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5495 
5496 	++vcpu->stat.irq_window_exits;
5497 	return 1;
5498 }
5499 
handle_invlpg(struct kvm_vcpu * vcpu)5500 static int handle_invlpg(struct kvm_vcpu *vcpu)
5501 {
5502 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5503 
5504 	kvm_mmu_invlpg(vcpu, exit_qualification);
5505 	return kvm_skip_emulated_instruction(vcpu);
5506 }
5507 
handle_apic_access(struct kvm_vcpu * vcpu)5508 static int handle_apic_access(struct kvm_vcpu *vcpu)
5509 {
5510 	if (likely(fasteoi)) {
5511 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5512 		int access_type, offset;
5513 
5514 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5515 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5516 		/*
5517 		 * Sane guest uses MOV to write EOI, with written value
5518 		 * not cared. So make a short-circuit here by avoiding
5519 		 * heavy instruction emulation.
5520 		 */
5521 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5522 		    (offset == APIC_EOI)) {
5523 			kvm_lapic_set_eoi(vcpu);
5524 			return kvm_skip_emulated_instruction(vcpu);
5525 		}
5526 	}
5527 	return kvm_emulate_instruction(vcpu, 0);
5528 }
5529 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5530 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5531 {
5532 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5533 	int vector = exit_qualification & 0xff;
5534 
5535 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5536 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5537 	return 1;
5538 }
5539 
handle_apic_write(struct kvm_vcpu * vcpu)5540 static int handle_apic_write(struct kvm_vcpu *vcpu)
5541 {
5542 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5543 
5544 	/*
5545 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5546 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5547 	 * for the access.  I.e. the correct value has already been  written to
5548 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5549 	 * retrieve the register value and emulate the access.
5550 	 */
5551 	u32 offset = exit_qualification & 0xff0;
5552 
5553 	kvm_apic_write_nodecode(vcpu, offset);
5554 	return 1;
5555 }
5556 
handle_task_switch(struct kvm_vcpu * vcpu)5557 static int handle_task_switch(struct kvm_vcpu *vcpu)
5558 {
5559 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5560 	unsigned long exit_qualification;
5561 	bool has_error_code = false;
5562 	u32 error_code = 0;
5563 	u16 tss_selector;
5564 	int reason, type, idt_v, idt_index;
5565 
5566 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5567 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5568 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5569 
5570 	exit_qualification = vmx_get_exit_qual(vcpu);
5571 
5572 	reason = (u32)exit_qualification >> 30;
5573 	if (reason == TASK_SWITCH_GATE && idt_v) {
5574 		switch (type) {
5575 		case INTR_TYPE_NMI_INTR:
5576 			vcpu->arch.nmi_injected = false;
5577 			vmx_set_nmi_mask(vcpu, true);
5578 			break;
5579 		case INTR_TYPE_EXT_INTR:
5580 		case INTR_TYPE_SOFT_INTR:
5581 			kvm_clear_interrupt_queue(vcpu);
5582 			break;
5583 		case INTR_TYPE_HARD_EXCEPTION:
5584 			if (vmx->idt_vectoring_info &
5585 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5586 				has_error_code = true;
5587 				error_code =
5588 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5589 			}
5590 			fallthrough;
5591 		case INTR_TYPE_SOFT_EXCEPTION:
5592 			kvm_clear_exception_queue(vcpu);
5593 			break;
5594 		default:
5595 			break;
5596 		}
5597 	}
5598 	tss_selector = exit_qualification;
5599 
5600 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5601 		       type != INTR_TYPE_EXT_INTR &&
5602 		       type != INTR_TYPE_NMI_INTR))
5603 		WARN_ON(!skip_emulated_instruction(vcpu));
5604 
5605 	/*
5606 	 * TODO: What about debug traps on tss switch?
5607 	 *       Are we supposed to inject them and update dr6?
5608 	 */
5609 	return kvm_task_switch(vcpu, tss_selector,
5610 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5611 			       reason, has_error_code, error_code);
5612 }
5613 
handle_ept_violation(struct kvm_vcpu * vcpu)5614 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5615 {
5616 	unsigned long exit_qualification;
5617 	gpa_t gpa;
5618 	u64 error_code;
5619 
5620 	exit_qualification = vmx_get_exit_qual(vcpu);
5621 
5622 	/*
5623 	 * EPT violation happened while executing iret from NMI,
5624 	 * "blocked by NMI" bit has to be set before next VM entry.
5625 	 * There are errata that may cause this bit to not be set:
5626 	 * AAK134, BY25.
5627 	 */
5628 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5629 			enable_vnmi &&
5630 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5631 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5632 
5633 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5634 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5635 
5636 	/* Is it a read fault? */
5637 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5638 		     ? PFERR_USER_MASK : 0;
5639 	/* Is it a write fault? */
5640 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5641 		      ? PFERR_WRITE_MASK : 0;
5642 	/* Is it a fetch fault? */
5643 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5644 		      ? PFERR_FETCH_MASK : 0;
5645 	/* ept page table entry is present? */
5646 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5647 		      ? PFERR_PRESENT_MASK : 0;
5648 
5649 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5650 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5651 
5652 	vcpu->arch.exit_qualification = exit_qualification;
5653 
5654 	/*
5655 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5656 	 * a guest page fault.  We have to emulate the instruction here, because
5657 	 * if the illegal address is that of a paging structure, then
5658 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5659 	 * would also use advanced VM-exit information for EPT violations to
5660 	 * reconstruct the page fault error code.
5661 	 */
5662 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5663 		return kvm_emulate_instruction(vcpu, 0);
5664 
5665 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5666 }
5667 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5668 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5669 {
5670 	gpa_t gpa;
5671 
5672 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5673 		return 1;
5674 
5675 	/*
5676 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5677 	 * nGPA here instead of the required GPA.
5678 	 */
5679 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5680 	if (!is_guest_mode(vcpu) &&
5681 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5682 		trace_kvm_fast_mmio(gpa);
5683 		return kvm_skip_emulated_instruction(vcpu);
5684 	}
5685 
5686 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5687 }
5688 
handle_nmi_window(struct kvm_vcpu * vcpu)5689 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5690 {
5691 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5692 		return -EIO;
5693 
5694 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5695 	++vcpu->stat.nmi_window_exits;
5696 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5697 
5698 	return 1;
5699 }
5700 
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5701 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5702 {
5703 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5704 
5705 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5706 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5707 }
5708 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5709 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5710 {
5711 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5712 	bool intr_window_requested;
5713 	unsigned count = 130;
5714 
5715 	intr_window_requested = exec_controls_get(vmx) &
5716 				CPU_BASED_INTR_WINDOW_EXITING;
5717 
5718 	while (vmx->emulation_required && count-- != 0) {
5719 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5720 			return handle_interrupt_window(&vmx->vcpu);
5721 
5722 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5723 			return 1;
5724 
5725 		if (!kvm_emulate_instruction(vcpu, 0))
5726 			return 0;
5727 
5728 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5729 			kvm_prepare_emulation_failure_exit(vcpu);
5730 			return 0;
5731 		}
5732 
5733 		if (vcpu->arch.halt_request) {
5734 			vcpu->arch.halt_request = 0;
5735 			return kvm_emulate_halt_noskip(vcpu);
5736 		}
5737 
5738 		/*
5739 		 * Note, return 1 and not 0, vcpu_run() will invoke
5740 		 * xfer_to_guest_mode() which will create a proper return
5741 		 * code.
5742 		 */
5743 		if (__xfer_to_guest_mode_work_pending())
5744 			return 1;
5745 	}
5746 
5747 	return 1;
5748 }
5749 
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5750 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5751 {
5752 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5753 		kvm_prepare_emulation_failure_exit(vcpu);
5754 		return 0;
5755 	}
5756 
5757 	return 1;
5758 }
5759 
grow_ple_window(struct kvm_vcpu * vcpu)5760 static void grow_ple_window(struct kvm_vcpu *vcpu)
5761 {
5762 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5763 	unsigned int old = vmx->ple_window;
5764 
5765 	vmx->ple_window = __grow_ple_window(old, ple_window,
5766 					    ple_window_grow,
5767 					    ple_window_max);
5768 
5769 	if (vmx->ple_window != old) {
5770 		vmx->ple_window_dirty = true;
5771 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5772 					    vmx->ple_window, old);
5773 	}
5774 }
5775 
shrink_ple_window(struct kvm_vcpu * vcpu)5776 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5777 {
5778 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5779 	unsigned int old = vmx->ple_window;
5780 
5781 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5782 					      ple_window_shrink,
5783 					      ple_window);
5784 
5785 	if (vmx->ple_window != old) {
5786 		vmx->ple_window_dirty = true;
5787 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5788 					    vmx->ple_window, old);
5789 	}
5790 }
5791 
5792 /*
5793  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5794  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5795  */
handle_pause(struct kvm_vcpu * vcpu)5796 static int handle_pause(struct kvm_vcpu *vcpu)
5797 {
5798 	if (!kvm_pause_in_guest(vcpu->kvm))
5799 		grow_ple_window(vcpu);
5800 
5801 	/*
5802 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5803 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5804 	 * never set PAUSE_EXITING and just set PLE if supported,
5805 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5806 	 */
5807 	kvm_vcpu_on_spin(vcpu, true);
5808 	return kvm_skip_emulated_instruction(vcpu);
5809 }
5810 
handle_monitor_trap(struct kvm_vcpu * vcpu)5811 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5812 {
5813 	return 1;
5814 }
5815 
handle_invpcid(struct kvm_vcpu * vcpu)5816 static int handle_invpcid(struct kvm_vcpu *vcpu)
5817 {
5818 	u32 vmx_instruction_info;
5819 	unsigned long type;
5820 	gva_t gva;
5821 	struct {
5822 		u64 pcid;
5823 		u64 gla;
5824 	} operand;
5825 	int gpr_index;
5826 
5827 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5828 		kvm_queue_exception(vcpu, UD_VECTOR);
5829 		return 1;
5830 	}
5831 
5832 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5833 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5834 	type = kvm_register_read(vcpu, gpr_index);
5835 
5836 	/* According to the Intel instruction reference, the memory operand
5837 	 * is read even if it isn't needed (e.g., for type==all)
5838 	 */
5839 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5840 				vmx_instruction_info, false,
5841 				sizeof(operand), &gva))
5842 		return 1;
5843 
5844 	return kvm_handle_invpcid(vcpu, type, gva);
5845 }
5846 
handle_pml_full(struct kvm_vcpu * vcpu)5847 static int handle_pml_full(struct kvm_vcpu *vcpu)
5848 {
5849 	unsigned long exit_qualification;
5850 
5851 	trace_kvm_pml_full(vcpu->vcpu_id);
5852 
5853 	exit_qualification = vmx_get_exit_qual(vcpu);
5854 
5855 	/*
5856 	 * PML buffer FULL happened while executing iret from NMI,
5857 	 * "blocked by NMI" bit has to be set before next VM entry.
5858 	 */
5859 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5860 			enable_vnmi &&
5861 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5862 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5863 				GUEST_INTR_STATE_NMI);
5864 
5865 	/*
5866 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5867 	 * here.., and there's no userspace involvement needed for PML.
5868 	 */
5869 	return 1;
5870 }
5871 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5872 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5873 {
5874 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5875 
5876 	if (!vmx->req_immediate_exit &&
5877 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5878 		kvm_lapic_expired_hv_timer(vcpu);
5879 		return EXIT_FASTPATH_REENTER_GUEST;
5880 	}
5881 
5882 	return EXIT_FASTPATH_NONE;
5883 }
5884 
handle_preemption_timer(struct kvm_vcpu * vcpu)5885 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5886 {
5887 	handle_fastpath_preemption_timer(vcpu);
5888 	return 1;
5889 }
5890 
5891 /*
5892  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5893  * are overwritten by nested_vmx_setup() when nested=1.
5894  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5895 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5896 {
5897 	kvm_queue_exception(vcpu, UD_VECTOR);
5898 	return 1;
5899 }
5900 
5901 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)5902 static int handle_encls(struct kvm_vcpu *vcpu)
5903 {
5904 	/*
5905 	 * SGX virtualization is disabled.  There is no software enable bit for
5906 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5907 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5908 	 */
5909 	kvm_queue_exception(vcpu, UD_VECTOR);
5910 	return 1;
5911 }
5912 #endif /* CONFIG_X86_SGX_KVM */
5913 
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)5914 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5915 {
5916 	/*
5917 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5918 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5919 	 * vmx_handle_exit().
5920 	 */
5921 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5922 	return 1;
5923 }
5924 
handle_notify(struct kvm_vcpu * vcpu)5925 static int handle_notify(struct kvm_vcpu *vcpu)
5926 {
5927 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5928 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5929 
5930 	++vcpu->stat.notify_window_exits;
5931 
5932 	/*
5933 	 * Notify VM exit happened while executing iret from NMI,
5934 	 * "blocked by NMI" bit has to be set before next VM entry.
5935 	 */
5936 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5937 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5938 			      GUEST_INTR_STATE_NMI);
5939 
5940 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5941 	    context_invalid) {
5942 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5943 		vcpu->run->notify.flags = context_invalid ?
5944 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
5945 		return 0;
5946 	}
5947 
5948 	return 1;
5949 }
5950 
5951 /*
5952  * The exit handlers return 1 if the exit was handled fully and guest execution
5953  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5954  * to be done to userspace and return 0.
5955  */
5956 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5957 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5958 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5959 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5960 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5961 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5962 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5963 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5964 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5965 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5966 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5967 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5968 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5969 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5970 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5971 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5972 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5973 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5974 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5975 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5976 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5977 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5978 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5979 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5980 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5981 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5982 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5983 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5984 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5985 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5986 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5987 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5988 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5989 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5990 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5991 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5992 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5993 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5994 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5995 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5996 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5997 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5998 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5999 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6000 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6001 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6002 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6003 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6004 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6005 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6006 	[EXIT_REASON_ENCLS]		      = handle_encls,
6007 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6008 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6009 };
6010 
6011 static const int kvm_vmx_max_exit_handlers =
6012 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6013 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6014 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6015 			      u64 *info1, u64 *info2,
6016 			      u32 *intr_info, u32 *error_code)
6017 {
6018 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6019 
6020 	*reason = vmx->exit_reason.full;
6021 	*info1 = vmx_get_exit_qual(vcpu);
6022 	if (!(vmx->exit_reason.failed_vmentry)) {
6023 		*info2 = vmx->idt_vectoring_info;
6024 		*intr_info = vmx_get_intr_info(vcpu);
6025 		if (is_exception_with_error_code(*intr_info))
6026 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6027 		else
6028 			*error_code = 0;
6029 	} else {
6030 		*info2 = 0;
6031 		*intr_info = 0;
6032 		*error_code = 0;
6033 	}
6034 }
6035 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6036 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6037 {
6038 	if (vmx->pml_pg) {
6039 		__free_page(vmx->pml_pg);
6040 		vmx->pml_pg = NULL;
6041 	}
6042 }
6043 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6044 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6045 {
6046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6047 	u64 *pml_buf;
6048 	u16 pml_idx;
6049 
6050 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6051 
6052 	/* Do nothing if PML buffer is empty */
6053 	if (pml_idx == (PML_ENTITY_NUM - 1))
6054 		return;
6055 
6056 	/* PML index always points to next available PML buffer entity */
6057 	if (pml_idx >= PML_ENTITY_NUM)
6058 		pml_idx = 0;
6059 	else
6060 		pml_idx++;
6061 
6062 	pml_buf = page_address(vmx->pml_pg);
6063 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6064 		u64 gpa;
6065 
6066 		gpa = pml_buf[pml_idx];
6067 		WARN_ON(gpa & (PAGE_SIZE - 1));
6068 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6069 	}
6070 
6071 	/* reset PML index */
6072 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6073 }
6074 
vmx_dump_sel(char * name,uint32_t sel)6075 static void vmx_dump_sel(char *name, uint32_t sel)
6076 {
6077 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6078 	       name, vmcs_read16(sel),
6079 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6080 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6081 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6082 }
6083 
vmx_dump_dtsel(char * name,uint32_t limit)6084 static void vmx_dump_dtsel(char *name, uint32_t limit)
6085 {
6086 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6087 	       name, vmcs_read32(limit),
6088 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6089 }
6090 
vmx_dump_msrs(char * name,struct vmx_msrs * m)6091 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6092 {
6093 	unsigned int i;
6094 	struct vmx_msr_entry *e;
6095 
6096 	pr_err("MSR %s:\n", name);
6097 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6098 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6099 }
6100 
dump_vmcs(struct kvm_vcpu * vcpu)6101 void dump_vmcs(struct kvm_vcpu *vcpu)
6102 {
6103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6104 	u32 vmentry_ctl, vmexit_ctl;
6105 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6106 	u64 tertiary_exec_control;
6107 	unsigned long cr4;
6108 	int efer_slot;
6109 
6110 	if (!dump_invalid_vmcs) {
6111 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6112 		return;
6113 	}
6114 
6115 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6116 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6117 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6118 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6119 	cr4 = vmcs_readl(GUEST_CR4);
6120 
6121 	if (cpu_has_secondary_exec_ctrls())
6122 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6123 	else
6124 		secondary_exec_control = 0;
6125 
6126 	if (cpu_has_tertiary_exec_ctrls())
6127 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6128 	else
6129 		tertiary_exec_control = 0;
6130 
6131 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6132 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6133 	pr_err("*** Guest State ***\n");
6134 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6135 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6136 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6137 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6138 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6139 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6140 	if (cpu_has_vmx_ept()) {
6141 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6142 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6143 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6144 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6145 	}
6146 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6147 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6148 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6149 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6150 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6151 	       vmcs_readl(GUEST_SYSENTER_ESP),
6152 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6153 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6154 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6155 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6156 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6157 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6158 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6159 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6160 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6161 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6162 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6163 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6164 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6165 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6166 	else if (efer_slot >= 0)
6167 		pr_err("EFER= 0x%016llx (autoload)\n",
6168 		       vmx->msr_autoload.guest.val[efer_slot].value);
6169 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6170 		pr_err("EFER= 0x%016llx (effective)\n",
6171 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6172 	else
6173 		pr_err("EFER= 0x%016llx (effective)\n",
6174 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6175 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6176 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6177 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6178 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6179 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6180 	if (cpu_has_load_perf_global_ctrl() &&
6181 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6182 		pr_err("PerfGlobCtl = 0x%016llx\n",
6183 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6184 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6185 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6186 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6187 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6188 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6189 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6190 		pr_err("InterruptStatus = %04x\n",
6191 		       vmcs_read16(GUEST_INTR_STATUS));
6192 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6193 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6194 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6195 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6196 
6197 	pr_err("*** Host State ***\n");
6198 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6199 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6200 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6201 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6202 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6203 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6204 	       vmcs_read16(HOST_TR_SELECTOR));
6205 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6206 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6207 	       vmcs_readl(HOST_TR_BASE));
6208 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6209 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6210 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6211 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6212 	       vmcs_readl(HOST_CR4));
6213 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6214 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6215 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6216 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6217 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6218 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6219 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6220 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6221 	if (cpu_has_load_perf_global_ctrl() &&
6222 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6223 		pr_err("PerfGlobCtl = 0x%016llx\n",
6224 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6225 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6226 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6227 
6228 	pr_err("*** Control State ***\n");
6229 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6230 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6231 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6232 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6233 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6234 	       vmcs_read32(EXCEPTION_BITMAP),
6235 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6236 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6237 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6238 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6239 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6240 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6241 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6242 	       vmcs_read32(VM_EXIT_INTR_INFO),
6243 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6244 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6245 	pr_err("        reason=%08x qualification=%016lx\n",
6246 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6247 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6248 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6249 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6250 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6251 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6252 		pr_err("TSC Multiplier = 0x%016llx\n",
6253 		       vmcs_read64(TSC_MULTIPLIER));
6254 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6255 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6256 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6257 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6258 		}
6259 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6260 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6261 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6262 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6263 	}
6264 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6265 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6266 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6267 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6268 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6269 		pr_err("PLE Gap=%08x Window=%08x\n",
6270 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6271 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6272 		pr_err("Virtual processor ID = 0x%04x\n",
6273 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6274 }
6275 
6276 /*
6277  * The guest has exited.  See if we can fix it or if we need userspace
6278  * assistance.
6279  */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6280 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6281 {
6282 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6283 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6284 	u32 vectoring_info = vmx->idt_vectoring_info;
6285 	u16 exit_handler_index;
6286 
6287 	/*
6288 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6289 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6290 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6291 	 * mode as if vcpus is in root mode, the PML buffer must has been
6292 	 * flushed already.  Note, PML is never enabled in hardware while
6293 	 * running L2.
6294 	 */
6295 	if (enable_pml && !is_guest_mode(vcpu))
6296 		vmx_flush_pml_buffer(vcpu);
6297 
6298 	/*
6299 	 * KVM should never reach this point with a pending nested VM-Enter.
6300 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6301 	 * invalid guest state should never happen as that means KVM knowingly
6302 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6303 	 */
6304 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6305 		return -EIO;
6306 
6307 	if (is_guest_mode(vcpu)) {
6308 		/*
6309 		 * PML is never enabled when running L2, bail immediately if a
6310 		 * PML full exit occurs as something is horribly wrong.
6311 		 */
6312 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6313 			goto unexpected_vmexit;
6314 
6315 		/*
6316 		 * The host physical addresses of some pages of guest memory
6317 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6318 		 * Page). The CPU may write to these pages via their host
6319 		 * physical address while L2 is running, bypassing any
6320 		 * address-translation-based dirty tracking (e.g. EPT write
6321 		 * protection).
6322 		 *
6323 		 * Mark them dirty on every exit from L2 to prevent them from
6324 		 * getting out of sync with dirty tracking.
6325 		 */
6326 		nested_mark_vmcs12_pages_dirty(vcpu);
6327 
6328 		/*
6329 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6330 		 * operation, nested VM-Enter rejects any attempt to enter L2
6331 		 * with invalid state.  However, those checks are skipped if
6332 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6333 		 * L2 state is invalid, it means either L1 modified SMRAM state
6334 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6335 		 * doing so is architecturally allowed in the RSM case, and is
6336 		 * the least awful solution for the userspace case without
6337 		 * risking false positives.
6338 		 */
6339 		if (vmx->emulation_required) {
6340 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6341 			return 1;
6342 		}
6343 
6344 		if (nested_vmx_reflect_vmexit(vcpu))
6345 			return 1;
6346 	}
6347 
6348 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6349 	if (vmx->emulation_required)
6350 		return handle_invalid_guest_state(vcpu);
6351 
6352 	if (exit_reason.failed_vmentry) {
6353 		dump_vmcs(vcpu);
6354 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6355 		vcpu->run->fail_entry.hardware_entry_failure_reason
6356 			= exit_reason.full;
6357 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6358 		return 0;
6359 	}
6360 
6361 	if (unlikely(vmx->fail)) {
6362 		dump_vmcs(vcpu);
6363 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6364 		vcpu->run->fail_entry.hardware_entry_failure_reason
6365 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6366 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6367 		return 0;
6368 	}
6369 
6370 	/*
6371 	 * Note:
6372 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6373 	 * delivery event since it indicates guest is accessing MMIO.
6374 	 * The vm-exit can be triggered again after return to guest that
6375 	 * will cause infinite loop.
6376 	 */
6377 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6378 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6379 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6380 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6381 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6382 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6383 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6384 		int ndata = 3;
6385 
6386 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6387 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6388 		vcpu->run->internal.data[0] = vectoring_info;
6389 		vcpu->run->internal.data[1] = exit_reason.full;
6390 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6391 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6392 			vcpu->run->internal.data[ndata++] =
6393 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6394 		}
6395 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6396 		vcpu->run->internal.ndata = ndata;
6397 		return 0;
6398 	}
6399 
6400 	if (unlikely(!enable_vnmi &&
6401 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6402 		if (!vmx_interrupt_blocked(vcpu)) {
6403 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6404 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6405 			   vcpu->arch.nmi_pending) {
6406 			/*
6407 			 * This CPU don't support us in finding the end of an
6408 			 * NMI-blocked window if the guest runs with IRQs
6409 			 * disabled. So we pull the trigger after 1 s of
6410 			 * futile waiting, but inform the user about this.
6411 			 */
6412 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6413 			       "state on VCPU %d after 1 s timeout\n",
6414 			       __func__, vcpu->vcpu_id);
6415 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6416 		}
6417 	}
6418 
6419 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6420 		return 1;
6421 
6422 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6423 		goto unexpected_vmexit;
6424 #ifdef CONFIG_RETPOLINE
6425 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6426 		return kvm_emulate_wrmsr(vcpu);
6427 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6428 		return handle_preemption_timer(vcpu);
6429 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6430 		return handle_interrupt_window(vcpu);
6431 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6432 		return handle_external_interrupt(vcpu);
6433 	else if (exit_reason.basic == EXIT_REASON_HLT)
6434 		return kvm_emulate_halt(vcpu);
6435 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6436 		return handle_ept_misconfig(vcpu);
6437 #endif
6438 
6439 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6440 						kvm_vmx_max_exit_handlers);
6441 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6442 		goto unexpected_vmexit;
6443 
6444 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6445 
6446 unexpected_vmexit:
6447 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6448 		    exit_reason.full);
6449 	dump_vmcs(vcpu);
6450 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6451 	vcpu->run->internal.suberror =
6452 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6453 	vcpu->run->internal.ndata = 2;
6454 	vcpu->run->internal.data[0] = exit_reason.full;
6455 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6456 	return 0;
6457 }
6458 
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6459 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6460 {
6461 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6462 
6463 	/*
6464 	 * Exit to user space when bus lock detected to inform that there is
6465 	 * a bus lock in guest.
6466 	 */
6467 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6468 		if (ret > 0)
6469 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6470 
6471 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6472 		return 0;
6473 	}
6474 	return ret;
6475 }
6476 
6477 /*
6478  * Software based L1D cache flush which is used when microcode providing
6479  * the cache control MSR is not loaded.
6480  *
6481  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6482  * flush it is required to read in 64 KiB because the replacement algorithm
6483  * is not exactly LRU. This could be sized at runtime via topology
6484  * information but as all relevant affected CPUs have 32KiB L1D cache size
6485  * there is no point in doing so.
6486  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6487 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6488 {
6489 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6490 
6491 	/*
6492 	 * This code is only executed when the flush mode is 'cond' or
6493 	 * 'always'
6494 	 */
6495 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6496 		bool flush_l1d;
6497 
6498 		/*
6499 		 * Clear the per-vcpu flush bit, it gets set again
6500 		 * either from vcpu_run() or from one of the unsafe
6501 		 * VMEXIT handlers.
6502 		 */
6503 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6504 		vcpu->arch.l1tf_flush_l1d = false;
6505 
6506 		/*
6507 		 * Clear the per-cpu flush bit, it gets set again from
6508 		 * the interrupt handlers.
6509 		 */
6510 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6511 		kvm_clear_cpu_l1tf_flush_l1d();
6512 
6513 		if (!flush_l1d)
6514 			return;
6515 	}
6516 
6517 	vcpu->stat.l1d_flush++;
6518 
6519 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6520 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6521 		return;
6522 	}
6523 
6524 	asm volatile(
6525 		/* First ensure the pages are in the TLB */
6526 		"xorl	%%eax, %%eax\n"
6527 		".Lpopulate_tlb:\n\t"
6528 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6529 		"addl	$4096, %%eax\n\t"
6530 		"cmpl	%%eax, %[size]\n\t"
6531 		"jne	.Lpopulate_tlb\n\t"
6532 		"xorl	%%eax, %%eax\n\t"
6533 		"cpuid\n\t"
6534 		/* Now fill the cache */
6535 		"xorl	%%eax, %%eax\n"
6536 		".Lfill_cache:\n"
6537 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6538 		"addl	$64, %%eax\n\t"
6539 		"cmpl	%%eax, %[size]\n\t"
6540 		"jne	.Lfill_cache\n\t"
6541 		"lfence\n"
6542 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6543 		    [size] "r" (size)
6544 		: "eax", "ebx", "ecx", "edx");
6545 }
6546 
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6547 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6548 {
6549 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6550 	int tpr_threshold;
6551 
6552 	if (is_guest_mode(vcpu) &&
6553 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6554 		return;
6555 
6556 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6557 	if (is_guest_mode(vcpu))
6558 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6559 	else
6560 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6561 }
6562 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6563 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6564 {
6565 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6566 	u32 sec_exec_control;
6567 
6568 	if (!lapic_in_kernel(vcpu))
6569 		return;
6570 
6571 	if (!flexpriority_enabled &&
6572 	    !cpu_has_vmx_virtualize_x2apic_mode())
6573 		return;
6574 
6575 	/* Postpone execution until vmcs01 is the current VMCS. */
6576 	if (is_guest_mode(vcpu)) {
6577 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6578 		return;
6579 	}
6580 
6581 	sec_exec_control = secondary_exec_controls_get(vmx);
6582 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6583 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6584 
6585 	switch (kvm_get_apic_mode(vcpu)) {
6586 	case LAPIC_MODE_INVALID:
6587 		WARN_ONCE(true, "Invalid local APIC state");
6588 		break;
6589 	case LAPIC_MODE_DISABLED:
6590 		break;
6591 	case LAPIC_MODE_XAPIC:
6592 		if (flexpriority_enabled) {
6593 			sec_exec_control |=
6594 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6595 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6596 
6597 			/*
6598 			 * Flush the TLB, reloading the APIC access page will
6599 			 * only do so if its physical address has changed, but
6600 			 * the guest may have inserted a non-APIC mapping into
6601 			 * the TLB while the APIC access page was disabled.
6602 			 */
6603 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6604 		}
6605 		break;
6606 	case LAPIC_MODE_X2APIC:
6607 		if (cpu_has_vmx_virtualize_x2apic_mode())
6608 			sec_exec_control |=
6609 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6610 		break;
6611 	}
6612 	secondary_exec_controls_set(vmx, sec_exec_control);
6613 
6614 	vmx_update_msr_bitmap_x2apic(vcpu);
6615 }
6616 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6617 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6618 {
6619 	struct page *page;
6620 
6621 	/* Defer reload until vmcs01 is the current VMCS. */
6622 	if (is_guest_mode(vcpu)) {
6623 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6624 		return;
6625 	}
6626 
6627 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6628 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6629 		return;
6630 
6631 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6632 	if (is_error_page(page))
6633 		return;
6634 
6635 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6636 	vmx_flush_tlb_current(vcpu);
6637 
6638 	/*
6639 	 * Do not pin apic access page in memory, the MMU notifier
6640 	 * will call us again if it is migrated or swapped out.
6641 	 */
6642 	put_page(page);
6643 }
6644 
vmx_hwapic_isr_update(int max_isr)6645 static void vmx_hwapic_isr_update(int max_isr)
6646 {
6647 	u16 status;
6648 	u8 old;
6649 
6650 	if (max_isr == -1)
6651 		max_isr = 0;
6652 
6653 	status = vmcs_read16(GUEST_INTR_STATUS);
6654 	old = status >> 8;
6655 	if (max_isr != old) {
6656 		status &= 0xff;
6657 		status |= max_isr << 8;
6658 		vmcs_write16(GUEST_INTR_STATUS, status);
6659 	}
6660 }
6661 
vmx_set_rvi(int vector)6662 static void vmx_set_rvi(int vector)
6663 {
6664 	u16 status;
6665 	u8 old;
6666 
6667 	if (vector == -1)
6668 		vector = 0;
6669 
6670 	status = vmcs_read16(GUEST_INTR_STATUS);
6671 	old = (u8)status & 0xff;
6672 	if ((u8)vector != old) {
6673 		status &= ~0xff;
6674 		status |= (u8)vector;
6675 		vmcs_write16(GUEST_INTR_STATUS, status);
6676 	}
6677 }
6678 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6679 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6680 {
6681 	/*
6682 	 * When running L2, updating RVI is only relevant when
6683 	 * vmcs12 virtual-interrupt-delivery enabled.
6684 	 * However, it can be enabled only when L1 also
6685 	 * intercepts external-interrupts and in that case
6686 	 * we should not update vmcs02 RVI but instead intercept
6687 	 * interrupt. Therefore, do nothing when running L2.
6688 	 */
6689 	if (!is_guest_mode(vcpu))
6690 		vmx_set_rvi(max_irr);
6691 }
6692 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6693 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6694 {
6695 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6696 	int max_irr;
6697 	bool got_posted_interrupt;
6698 
6699 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6700 		return -EIO;
6701 
6702 	if (pi_test_on(&vmx->pi_desc)) {
6703 		pi_clear_on(&vmx->pi_desc);
6704 		/*
6705 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6706 		 * But on x86 this is just a compiler barrier anyway.
6707 		 */
6708 		smp_mb__after_atomic();
6709 		got_posted_interrupt =
6710 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6711 	} else {
6712 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6713 		got_posted_interrupt = false;
6714 	}
6715 
6716 	/*
6717 	 * Newly recognized interrupts are injected via either virtual interrupt
6718 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6719 	 * disabled in two cases:
6720 	 *
6721 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6722 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6723 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6724 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6725 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6726 	 *
6727 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6728 	 * attempt to post interrupts.  The posted interrupt vector will cause
6729 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6730 	 */
6731 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6732 		vmx_set_rvi(max_irr);
6733 	else if (got_posted_interrupt)
6734 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6735 
6736 	return max_irr;
6737 }
6738 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6739 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6740 {
6741 	if (!kvm_vcpu_apicv_active(vcpu))
6742 		return;
6743 
6744 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6745 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6746 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6747 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6748 }
6749 
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6750 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6751 {
6752 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6753 
6754 	pi_clear_on(&vmx->pi_desc);
6755 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6756 }
6757 
6758 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6759 
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6760 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6761 					unsigned long entry)
6762 {
6763 	bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6764 
6765 	kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6766 	vmx_do_interrupt_nmi_irqoff(entry);
6767 	kvm_after_interrupt(vcpu);
6768 }
6769 
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6770 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6771 {
6772 	/*
6773 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6774 	 * MSR value is not clobbered by the host activity before the guest
6775 	 * has chance to consume it.
6776 	 *
6777 	 * Do not blindly read xfd_err here, since this exception might
6778 	 * be caused by L1 interception on a platform which doesn't
6779 	 * support xfd at all.
6780 	 *
6781 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6782 	 * only when xfd contains a non-zero value.
6783 	 *
6784 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6785 	 */
6786 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6787 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6788 }
6789 
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6790 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6791 {
6792 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6793 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6794 
6795 	/* if exit due to PF check for async PF */
6796 	if (is_page_fault(intr_info))
6797 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6798 	/* if exit due to NM, handle before interrupts are enabled */
6799 	else if (is_nm_fault(intr_info))
6800 		handle_nm_fault_irqoff(&vmx->vcpu);
6801 	/* Handle machine checks before interrupts are enabled */
6802 	else if (is_machine_check(intr_info))
6803 		kvm_machine_check();
6804 	/* We need to handle NMIs before interrupts are enabled */
6805 	else if (is_nmi(intr_info))
6806 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6807 }
6808 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6809 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6810 {
6811 	u32 intr_info = vmx_get_intr_info(vcpu);
6812 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6813 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6814 
6815 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6816 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6817 		return;
6818 
6819 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6820 	vcpu->arch.at_instruction_boundary = true;
6821 }
6822 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6823 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6824 {
6825 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6826 
6827 	if (vmx->emulation_required)
6828 		return;
6829 
6830 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6831 		handle_external_interrupt_irqoff(vcpu);
6832 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6833 		handle_exception_nmi_irqoff(vmx);
6834 }
6835 
6836 /*
6837  * The kvm parameter can be NULL (module initialization, or invocation before
6838  * VM creation). Be sure to check the kvm parameter before using it.
6839  */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)6840 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6841 {
6842 	switch (index) {
6843 	case MSR_IA32_SMBASE:
6844 		/*
6845 		 * We cannot do SMM unless we can run the guest in big
6846 		 * real mode.
6847 		 */
6848 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6849 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6850 		return nested;
6851 	case MSR_AMD64_VIRT_SPEC_CTRL:
6852 	case MSR_AMD64_TSC_RATIO:
6853 		/* This is AMD only.  */
6854 		return false;
6855 	default:
6856 		return true;
6857 	}
6858 }
6859 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6860 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6861 {
6862 	u32 exit_intr_info;
6863 	bool unblock_nmi;
6864 	u8 vector;
6865 	bool idtv_info_valid;
6866 
6867 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6868 
6869 	if (enable_vnmi) {
6870 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6871 			return;
6872 
6873 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6874 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6875 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6876 		/*
6877 		 * SDM 3: 27.7.1.2 (September 2008)
6878 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6879 		 * a guest IRET fault.
6880 		 * SDM 3: 23.2.2 (September 2008)
6881 		 * Bit 12 is undefined in any of the following cases:
6882 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6883 		 *   information field.
6884 		 *  If the VM exit is due to a double fault.
6885 		 */
6886 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6887 		    vector != DF_VECTOR && !idtv_info_valid)
6888 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6889 				      GUEST_INTR_STATE_NMI);
6890 		else
6891 			vmx->loaded_vmcs->nmi_known_unmasked =
6892 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6893 				  & GUEST_INTR_STATE_NMI);
6894 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6895 		vmx->loaded_vmcs->vnmi_blocked_time +=
6896 			ktime_to_ns(ktime_sub(ktime_get(),
6897 					      vmx->loaded_vmcs->entry_time));
6898 }
6899 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6900 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6901 				      u32 idt_vectoring_info,
6902 				      int instr_len_field,
6903 				      int error_code_field)
6904 {
6905 	u8 vector;
6906 	int type;
6907 	bool idtv_info_valid;
6908 
6909 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6910 
6911 	vcpu->arch.nmi_injected = false;
6912 	kvm_clear_exception_queue(vcpu);
6913 	kvm_clear_interrupt_queue(vcpu);
6914 
6915 	if (!idtv_info_valid)
6916 		return;
6917 
6918 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6919 
6920 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6921 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6922 
6923 	switch (type) {
6924 	case INTR_TYPE_NMI_INTR:
6925 		vcpu->arch.nmi_injected = true;
6926 		/*
6927 		 * SDM 3: 27.7.1.2 (September 2008)
6928 		 * Clear bit "block by NMI" before VM entry if a NMI
6929 		 * delivery faulted.
6930 		 */
6931 		vmx_set_nmi_mask(vcpu, false);
6932 		break;
6933 	case INTR_TYPE_SOFT_EXCEPTION:
6934 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6935 		fallthrough;
6936 	case INTR_TYPE_HARD_EXCEPTION:
6937 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6938 			u32 err = vmcs_read32(error_code_field);
6939 			kvm_requeue_exception_e(vcpu, vector, err);
6940 		} else
6941 			kvm_requeue_exception(vcpu, vector);
6942 		break;
6943 	case INTR_TYPE_SOFT_INTR:
6944 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6945 		fallthrough;
6946 	case INTR_TYPE_EXT_INTR:
6947 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6948 		break;
6949 	default:
6950 		break;
6951 	}
6952 }
6953 
vmx_complete_interrupts(struct vcpu_vmx * vmx)6954 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6955 {
6956 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6957 				  VM_EXIT_INSTRUCTION_LEN,
6958 				  IDT_VECTORING_ERROR_CODE);
6959 }
6960 
vmx_cancel_injection(struct kvm_vcpu * vcpu)6961 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6962 {
6963 	__vmx_complete_interrupts(vcpu,
6964 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6965 				  VM_ENTRY_INSTRUCTION_LEN,
6966 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6967 
6968 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6969 }
6970 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6971 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6972 {
6973 	int i, nr_msrs;
6974 	struct perf_guest_switch_msr *msrs;
6975 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
6976 
6977 	pmu->host_cross_mapped_mask = 0;
6978 	if (pmu->pebs_enable & pmu->global_ctrl)
6979 		intel_pmu_cross_mapped_check(pmu);
6980 
6981 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6982 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
6983 	if (!msrs)
6984 		return;
6985 
6986 	for (i = 0; i < nr_msrs; i++)
6987 		if (msrs[i].host == msrs[i].guest)
6988 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6989 		else
6990 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6991 					msrs[i].host, false);
6992 }
6993 
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6994 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6995 {
6996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6997 	u64 tscl;
6998 	u32 delta_tsc;
6999 
7000 	if (vmx->req_immediate_exit) {
7001 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7002 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7003 	} else if (vmx->hv_deadline_tsc != -1) {
7004 		tscl = rdtsc();
7005 		if (vmx->hv_deadline_tsc > tscl)
7006 			/* set_hv_timer ensures the delta fits in 32-bits */
7007 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7008 				cpu_preemption_timer_multi);
7009 		else
7010 			delta_tsc = 0;
7011 
7012 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7013 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7014 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7015 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7016 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7017 	}
7018 }
7019 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7020 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7021 {
7022 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7023 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7024 		vmcs_writel(HOST_RSP, host_rsp);
7025 	}
7026 }
7027 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7028 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7029 					unsigned int flags)
7030 {
7031 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7032 
7033 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7034 		return;
7035 
7036 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7037 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7038 
7039 	/*
7040 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7041 	 *
7042 	 * For legacy IBRS, the IBRS bit always needs to be written after
7043 	 * transitioning from a less privileged predictor mode, regardless of
7044 	 * whether the guest/host values differ.
7045 	 */
7046 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7047 	    vmx->spec_ctrl != hostval)
7048 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7049 
7050 	barrier_nospec();
7051 }
7052 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7053 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7054 {
7055 	switch (to_vmx(vcpu)->exit_reason.basic) {
7056 	case EXIT_REASON_MSR_WRITE:
7057 		return handle_fastpath_set_msr_irqoff(vcpu);
7058 	case EXIT_REASON_PREEMPTION_TIMER:
7059 		return handle_fastpath_preemption_timer(vcpu);
7060 	default:
7061 		return EXIT_FASTPATH_NONE;
7062 	}
7063 }
7064 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)7065 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7066 					struct vcpu_vmx *vmx,
7067 					unsigned long flags)
7068 {
7069 	guest_state_enter_irqoff();
7070 
7071 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
7072 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7073 		vmx_l1d_flush(vcpu);
7074 	else if (static_branch_unlikely(&mds_user_clear))
7075 		mds_clear_cpu_buffers();
7076 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7077 		 kvm_arch_has_assigned_device(vcpu->kvm))
7078 		mds_clear_cpu_buffers();
7079 
7080 	vmx_disable_fb_clear(vmx);
7081 
7082 	if (vcpu->arch.cr2 != native_read_cr2())
7083 		native_write_cr2(vcpu->arch.cr2);
7084 
7085 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7086 				   flags);
7087 
7088 	vcpu->arch.cr2 = native_read_cr2();
7089 
7090 	vmx_enable_fb_clear(vmx);
7091 
7092 	guest_state_exit_irqoff();
7093 }
7094 
vmx_vcpu_run(struct kvm_vcpu * vcpu)7095 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7096 {
7097 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7098 	unsigned long cr3, cr4;
7099 
7100 	/* Record the guest's net vcpu time for enforced NMI injections. */
7101 	if (unlikely(!enable_vnmi &&
7102 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7103 		vmx->loaded_vmcs->entry_time = ktime_get();
7104 
7105 	/*
7106 	 * Don't enter VMX if guest state is invalid, let the exit handler
7107 	 * start emulation until we arrive back to a valid state.  Synthesize a
7108 	 * consistency check VM-Exit due to invalid guest state and bail.
7109 	 */
7110 	if (unlikely(vmx->emulation_required)) {
7111 		vmx->fail = 0;
7112 
7113 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7114 		vmx->exit_reason.failed_vmentry = 1;
7115 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7116 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7117 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7118 		vmx->exit_intr_info = 0;
7119 		return EXIT_FASTPATH_NONE;
7120 	}
7121 
7122 	trace_kvm_entry(vcpu);
7123 
7124 	if (vmx->ple_window_dirty) {
7125 		vmx->ple_window_dirty = false;
7126 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7127 	}
7128 
7129 	/*
7130 	 * We did this in prepare_switch_to_guest, because it needs to
7131 	 * be within srcu_read_lock.
7132 	 */
7133 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7134 
7135 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7136 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7137 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7138 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7139 	vcpu->arch.regs_dirty = 0;
7140 
7141 	/*
7142 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7143 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7144 	 * it switches back to the current->mm, which can occur in KVM context
7145 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7146 	 * toggles a static key while handling a VM-Exit.
7147 	 */
7148 	cr3 = __get_current_cr3_fast();
7149 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7150 		vmcs_writel(HOST_CR3, cr3);
7151 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7152 	}
7153 
7154 	cr4 = cr4_read_shadow();
7155 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7156 		vmcs_writel(HOST_CR4, cr4);
7157 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7158 	}
7159 
7160 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7161 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7162 		set_debugreg(vcpu->arch.dr6, 6);
7163 
7164 	/* When single-stepping over STI and MOV SS, we must clear the
7165 	 * corresponding interruptibility bits in the guest state. Otherwise
7166 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7167 	 * exceptions being set, but that's not correct for the guest debugging
7168 	 * case. */
7169 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7170 		vmx_set_interrupt_shadow(vcpu, 0);
7171 
7172 	kvm_load_guest_xsave_state(vcpu);
7173 
7174 	pt_guest_enter(vmx);
7175 
7176 	atomic_switch_perf_msrs(vmx);
7177 	if (intel_pmu_lbr_is_enabled(vcpu))
7178 		vmx_passthrough_lbr_msrs(vcpu);
7179 
7180 	if (enable_preemption_timer)
7181 		vmx_update_hv_timer(vcpu);
7182 
7183 	kvm_wait_lapic_expire(vcpu);
7184 
7185 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7186 	vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
7187 
7188 	/* All fields are clean at this point */
7189 	if (static_branch_unlikely(&enable_evmcs)) {
7190 		current_evmcs->hv_clean_fields |=
7191 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7192 
7193 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7194 	}
7195 
7196 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7197 	if (vmx->host_debugctlmsr)
7198 		update_debugctlmsr(vmx->host_debugctlmsr);
7199 
7200 #ifndef CONFIG_X86_64
7201 	/*
7202 	 * The sysexit path does not restore ds/es, so we must set them to
7203 	 * a reasonable value ourselves.
7204 	 *
7205 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7206 	 * function may be executed in interrupt context, which saves and
7207 	 * restore segments around it, nullifying its effect.
7208 	 */
7209 	loadsegment(ds, __USER_DS);
7210 	loadsegment(es, __USER_DS);
7211 #endif
7212 
7213 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7214 
7215 	pt_guest_exit(vmx);
7216 
7217 	kvm_load_host_xsave_state(vcpu);
7218 
7219 	if (is_guest_mode(vcpu)) {
7220 		/*
7221 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7222 		 * checking.
7223 		 */
7224 		if (vmx->nested.nested_run_pending &&
7225 		    !vmx->exit_reason.failed_vmentry)
7226 			++vcpu->stat.nested_run;
7227 
7228 		vmx->nested.nested_run_pending = 0;
7229 	}
7230 
7231 	vmx->idt_vectoring_info = 0;
7232 
7233 	if (unlikely(vmx->fail)) {
7234 		vmx->exit_reason.full = 0xdead;
7235 		return EXIT_FASTPATH_NONE;
7236 	}
7237 
7238 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7239 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7240 		kvm_machine_check();
7241 
7242 	if (likely(!vmx->exit_reason.failed_vmentry))
7243 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7244 
7245 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7246 
7247 	if (unlikely(vmx->exit_reason.failed_vmentry))
7248 		return EXIT_FASTPATH_NONE;
7249 
7250 	vmx->loaded_vmcs->launched = 1;
7251 
7252 	vmx_recover_nmi_blocking(vmx);
7253 	vmx_complete_interrupts(vmx);
7254 
7255 	if (is_guest_mode(vcpu))
7256 		return EXIT_FASTPATH_NONE;
7257 
7258 	return vmx_exit_handlers_fastpath(vcpu);
7259 }
7260 
vmx_vcpu_free(struct kvm_vcpu * vcpu)7261 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7262 {
7263 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7264 
7265 	if (enable_pml)
7266 		vmx_destroy_pml_buffer(vmx);
7267 	free_vpid(vmx->vpid);
7268 	nested_vmx_free_vcpu(vcpu);
7269 	free_loaded_vmcs(vmx->loaded_vmcs);
7270 }
7271 
vmx_vcpu_create(struct kvm_vcpu * vcpu)7272 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7273 {
7274 	struct vmx_uret_msr *tsx_ctrl;
7275 	struct vcpu_vmx *vmx;
7276 	int i, err;
7277 
7278 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7279 	vmx = to_vmx(vcpu);
7280 
7281 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7282 
7283 	err = -ENOMEM;
7284 
7285 	vmx->vpid = allocate_vpid();
7286 
7287 	/*
7288 	 * If PML is turned on, failure on enabling PML just results in failure
7289 	 * of creating the vcpu, therefore we can simplify PML logic (by
7290 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7291 	 * for the guest), etc.
7292 	 */
7293 	if (enable_pml) {
7294 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7295 		if (!vmx->pml_pg)
7296 			goto free_vpid;
7297 	}
7298 
7299 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7300 		vmx->guest_uret_msrs[i].mask = -1ull;
7301 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7302 		/*
7303 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7304 		 * Keep the host value unchanged to avoid changing CPUID bits
7305 		 * under the host kernel's feet.
7306 		 */
7307 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7308 		if (tsx_ctrl)
7309 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7310 	}
7311 
7312 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7313 	if (err < 0)
7314 		goto free_pml;
7315 
7316 	/*
7317 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7318 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7319 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7320 	 * performance benefits from enabling it for vmcs02.
7321 	 */
7322 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7323 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7324 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7325 
7326 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7327 	}
7328 
7329 	/* The MSR bitmap starts with all ones */
7330 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7331 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7332 
7333 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7334 #ifdef CONFIG_X86_64
7335 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7336 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7337 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7338 #endif
7339 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7340 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7341 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7342 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7343 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7344 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7345 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7346 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7347 	}
7348 
7349 	vmx->loaded_vmcs = &vmx->vmcs01;
7350 
7351 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7352 		err = alloc_apic_access_page(vcpu->kvm);
7353 		if (err)
7354 			goto free_vmcs;
7355 	}
7356 
7357 	if (enable_ept && !enable_unrestricted_guest) {
7358 		err = init_rmode_identity_map(vcpu->kvm);
7359 		if (err)
7360 			goto free_vmcs;
7361 	}
7362 
7363 	if (vmx_can_use_ipiv(vcpu))
7364 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7365 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7366 
7367 	return 0;
7368 
7369 free_vmcs:
7370 	free_loaded_vmcs(vmx->loaded_vmcs);
7371 free_pml:
7372 	vmx_destroy_pml_buffer(vmx);
7373 free_vpid:
7374 	free_vpid(vmx->vpid);
7375 	return err;
7376 }
7377 
7378 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7379 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7380 
vmx_vm_init(struct kvm * kvm)7381 static int vmx_vm_init(struct kvm *kvm)
7382 {
7383 	if (!ple_gap)
7384 		kvm->arch.pause_in_guest = true;
7385 
7386 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7387 		switch (l1tf_mitigation) {
7388 		case L1TF_MITIGATION_OFF:
7389 		case L1TF_MITIGATION_FLUSH_NOWARN:
7390 			/* 'I explicitly don't care' is set */
7391 			break;
7392 		case L1TF_MITIGATION_FLUSH:
7393 		case L1TF_MITIGATION_FLUSH_NOSMT:
7394 		case L1TF_MITIGATION_FULL:
7395 			/*
7396 			 * Warn upon starting the first VM in a potentially
7397 			 * insecure environment.
7398 			 */
7399 			if (sched_smt_active())
7400 				pr_warn_once(L1TF_MSG_SMT);
7401 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7402 				pr_warn_once(L1TF_MSG_L1D);
7403 			break;
7404 		case L1TF_MITIGATION_FULL_FORCE:
7405 			/* Flush is enforced */
7406 			break;
7407 		}
7408 	}
7409 	return 0;
7410 }
7411 
vmx_check_processor_compat(void)7412 static int __init vmx_check_processor_compat(void)
7413 {
7414 	struct vmcs_config vmcs_conf;
7415 	struct vmx_capability vmx_cap;
7416 
7417 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7418 	    !this_cpu_has(X86_FEATURE_VMX)) {
7419 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7420 		return -EIO;
7421 	}
7422 
7423 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7424 		return -EIO;
7425 	if (nested)
7426 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
7427 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7428 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7429 				smp_processor_id());
7430 		return -EIO;
7431 	}
7432 	return 0;
7433 }
7434 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7435 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7436 {
7437 	u8 cache;
7438 
7439 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7440 	 * memory aliases with conflicting memory types and sometimes MCEs.
7441 	 * We have to be careful as to what are honored and when.
7442 	 *
7443 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7444 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7445 	 * This was historically the source of MCEs and we want to be
7446 	 * conservative.
7447 	 *
7448 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7449 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7450 	 * EPT memory type is set to WB.  The effective memory type is forced
7451 	 * WB.
7452 	 *
7453 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7454 	 * EPT memory type is used to emulate guest CD/MTRR.
7455 	 */
7456 
7457 	if (is_mmio)
7458 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7459 
7460 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7461 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7462 
7463 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7464 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7465 			cache = MTRR_TYPE_WRBACK;
7466 		else
7467 			cache = MTRR_TYPE_UNCACHABLE;
7468 
7469 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7470 	}
7471 
7472 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7473 }
7474 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7475 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7476 {
7477 	/*
7478 	 * These bits in the secondary execution controls field
7479 	 * are dynamic, the others are mostly based on the hypervisor
7480 	 * architecture and the guest's CPUID.  Do not touch the
7481 	 * dynamic bits.
7482 	 */
7483 	u32 mask =
7484 		SECONDARY_EXEC_SHADOW_VMCS |
7485 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7486 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7487 		SECONDARY_EXEC_DESC;
7488 
7489 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7490 
7491 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7492 }
7493 
7494 /*
7495  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7496  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7497  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7498 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7499 {
7500 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7501 	struct kvm_cpuid_entry2 *entry;
7502 
7503 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7504 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7505 
7506 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7507 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7508 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7509 } while (0)
7510 
7511 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7512 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7513 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7514 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7515 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7516 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7517 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7518 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7519 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7520 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7521 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7522 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7523 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7524 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7525 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7526 
7527 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7528 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7529 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7530 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7531 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7532 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7533 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7534 
7535 #undef cr4_fixed1_update
7536 }
7537 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7538 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7539 {
7540 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7541 	struct kvm_cpuid_entry2 *best = NULL;
7542 	int i;
7543 
7544 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7545 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7546 		if (!best)
7547 			return;
7548 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7549 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7550 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7551 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7552 	}
7553 
7554 	/* Get the number of configurable Address Ranges for filtering */
7555 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7556 						PT_CAP_num_address_ranges);
7557 
7558 	/* Initialize and clear the no dependency bits */
7559 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7560 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7561 			RTIT_CTL_BRANCH_EN);
7562 
7563 	/*
7564 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7565 	 * will inject an #GP
7566 	 */
7567 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7568 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7569 
7570 	/*
7571 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7572 	 * PSBFreq can be set
7573 	 */
7574 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7575 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7576 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7577 
7578 	/*
7579 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7580 	 */
7581 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7582 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7583 					      RTIT_CTL_MTC_RANGE);
7584 
7585 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7586 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7587 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7588 							RTIT_CTL_PTW_EN);
7589 
7590 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7591 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7592 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7593 
7594 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7595 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7596 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7597 
7598 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7599 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7600 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7601 
7602 	/* unmask address range configure area */
7603 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7604 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7605 }
7606 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7607 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7608 {
7609 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7610 
7611 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7612 	vcpu->arch.xsaves_enabled = false;
7613 
7614 	vmx_setup_uret_msrs(vmx);
7615 
7616 	if (cpu_has_secondary_exec_ctrls())
7617 		vmcs_set_secondary_exec_control(vmx,
7618 						vmx_secondary_exec_control(vmx));
7619 
7620 	if (nested_vmx_allowed(vcpu))
7621 		vmx->msr_ia32_feature_control_valid_bits |=
7622 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7623 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7624 	else
7625 		vmx->msr_ia32_feature_control_valid_bits &=
7626 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7627 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7628 
7629 	if (nested_vmx_allowed(vcpu))
7630 		nested_vmx_cr_fixed1_bits_update(vcpu);
7631 
7632 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7633 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7634 		update_intel_pt_cfg(vcpu);
7635 
7636 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7637 		struct vmx_uret_msr *msr;
7638 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7639 		if (msr) {
7640 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7641 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7642 		}
7643 	}
7644 
7645 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7646 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7647 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7648 
7649 
7650 	set_cr4_guest_host_mask(vmx);
7651 
7652 	vmx_write_encls_bitmap(vcpu, NULL);
7653 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7654 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7655 	else
7656 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7657 
7658 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7659 		vmx->msr_ia32_feature_control_valid_bits |=
7660 			FEAT_CTL_SGX_LC_ENABLED;
7661 	else
7662 		vmx->msr_ia32_feature_control_valid_bits &=
7663 			~FEAT_CTL_SGX_LC_ENABLED;
7664 
7665 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7666 	vmx_update_exception_bitmap(vcpu);
7667 }
7668 
vmx_set_cpu_caps(void)7669 static __init void vmx_set_cpu_caps(void)
7670 {
7671 	kvm_set_cpu_caps();
7672 
7673 	/* CPUID 0x1 */
7674 	if (nested)
7675 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7676 
7677 	/* CPUID 0x7 */
7678 	if (kvm_mpx_supported())
7679 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7680 	if (!cpu_has_vmx_invpcid())
7681 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7682 	if (vmx_pt_mode_is_host_guest())
7683 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7684 	if (vmx_pebs_supported()) {
7685 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7686 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7687 	}
7688 
7689 	if (!enable_pmu)
7690 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7691 
7692 	if (!enable_sgx) {
7693 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7694 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7695 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7696 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7697 	}
7698 
7699 	if (vmx_umip_emulated())
7700 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7701 
7702 	/* CPUID 0xD.1 */
7703 	kvm_caps.supported_xss = 0;
7704 	if (!cpu_has_vmx_xsaves())
7705 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7706 
7707 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7708 	if (!cpu_has_vmx_rdtscp()) {
7709 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7710 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7711 	}
7712 
7713 	if (cpu_has_vmx_waitpkg())
7714 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7715 }
7716 
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7717 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7718 {
7719 	to_vmx(vcpu)->req_immediate_exit = true;
7720 }
7721 
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7722 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7723 				  struct x86_instruction_info *info)
7724 {
7725 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7726 	unsigned short port;
7727 	bool intercept;
7728 	int size;
7729 
7730 	if (info->intercept == x86_intercept_in ||
7731 	    info->intercept == x86_intercept_ins) {
7732 		port = info->src_val;
7733 		size = info->dst_bytes;
7734 	} else {
7735 		port = info->dst_val;
7736 		size = info->src_bytes;
7737 	}
7738 
7739 	/*
7740 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7741 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7742 	 * control.
7743 	 *
7744 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7745 	 */
7746 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7747 		intercept = nested_cpu_has(vmcs12,
7748 					   CPU_BASED_UNCOND_IO_EXITING);
7749 	else
7750 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7751 
7752 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7753 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7754 }
7755 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7756 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7757 			       struct x86_instruction_info *info,
7758 			       enum x86_intercept_stage stage,
7759 			       struct x86_exception *exception)
7760 {
7761 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7762 
7763 	switch (info->intercept) {
7764 	/*
7765 	 * RDPID causes #UD if disabled through secondary execution controls.
7766 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7767 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7768 	 */
7769 	case x86_intercept_rdpid:
7770 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7771 			exception->vector = UD_VECTOR;
7772 			exception->error_code_valid = false;
7773 			return X86EMUL_PROPAGATE_FAULT;
7774 		}
7775 		break;
7776 
7777 	case x86_intercept_in:
7778 	case x86_intercept_ins:
7779 	case x86_intercept_out:
7780 	case x86_intercept_outs:
7781 		return vmx_check_intercept_io(vcpu, info);
7782 
7783 	case x86_intercept_lgdt:
7784 	case x86_intercept_lidt:
7785 	case x86_intercept_lldt:
7786 	case x86_intercept_ltr:
7787 	case x86_intercept_sgdt:
7788 	case x86_intercept_sidt:
7789 	case x86_intercept_sldt:
7790 	case x86_intercept_str:
7791 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7792 			return X86EMUL_CONTINUE;
7793 
7794 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7795 		break;
7796 
7797 	/* TODO: check more intercepts... */
7798 	default:
7799 		break;
7800 	}
7801 
7802 	return X86EMUL_UNHANDLEABLE;
7803 }
7804 
7805 #ifdef CONFIG_X86_64
7806 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7807 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7808 				  u64 divisor, u64 *result)
7809 {
7810 	u64 low = a << shift, high = a >> (64 - shift);
7811 
7812 	/* To avoid the overflow on divq */
7813 	if (high >= divisor)
7814 		return 1;
7815 
7816 	/* Low hold the result, high hold rem which is discarded */
7817 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7818 	    "rm" (divisor), "0" (low), "1" (high));
7819 	*result = low;
7820 
7821 	return 0;
7822 }
7823 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7824 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7825 			    bool *expired)
7826 {
7827 	struct vcpu_vmx *vmx;
7828 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7829 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7830 
7831 	vmx = to_vmx(vcpu);
7832 	tscl = rdtsc();
7833 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7834 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7835 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7836 						    ktimer->timer_advance_ns);
7837 
7838 	if (delta_tsc > lapic_timer_advance_cycles)
7839 		delta_tsc -= lapic_timer_advance_cycles;
7840 	else
7841 		delta_tsc = 0;
7842 
7843 	/* Convert to host delta tsc if tsc scaling is enabled */
7844 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7845 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7846 				kvm_caps.tsc_scaling_ratio_frac_bits,
7847 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7848 		return -ERANGE;
7849 
7850 	/*
7851 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7852 	 * we can't use the preemption timer.
7853 	 * It's possible that it fits on later vmentries, but checking
7854 	 * on every vmentry is costly so we just use an hrtimer.
7855 	 */
7856 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7857 		return -ERANGE;
7858 
7859 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7860 	*expired = !delta_tsc;
7861 	return 0;
7862 }
7863 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7864 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7865 {
7866 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7867 }
7868 #endif
7869 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7870 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7871 {
7872 	if (!kvm_pause_in_guest(vcpu->kvm))
7873 		shrink_ple_window(vcpu);
7874 }
7875 
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)7876 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7877 {
7878 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7879 
7880 	if (is_guest_mode(vcpu)) {
7881 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7882 		return;
7883 	}
7884 
7885 	/*
7886 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7887 	 * code, but in that case another update request will be made and so
7888 	 * the guest will never run with a stale PML value.
7889 	 */
7890 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7891 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7892 	else
7893 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7894 }
7895 
vmx_setup_mce(struct kvm_vcpu * vcpu)7896 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7897 {
7898 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7899 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7900 			FEAT_CTL_LMCE_ENABLED;
7901 	else
7902 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7903 			~FEAT_CTL_LMCE_ENABLED;
7904 }
7905 
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7906 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7907 {
7908 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7909 	if (to_vmx(vcpu)->nested.nested_run_pending)
7910 		return -EBUSY;
7911 	return !is_smm(vcpu);
7912 }
7913 
vmx_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7914 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7915 {
7916 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7917 
7918 	/*
7919 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
7920 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
7921 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
7922 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
7923 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
7924 	 */
7925 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7926 	if (vmx->nested.smm.guest_mode)
7927 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7928 
7929 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7930 	vmx->nested.vmxon = false;
7931 	vmx_clear_hlt(vcpu);
7932 	return 0;
7933 }
7934 
vmx_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7935 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7936 {
7937 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7938 	int ret;
7939 
7940 	if (vmx->nested.smm.vmxon) {
7941 		vmx->nested.vmxon = true;
7942 		vmx->nested.smm.vmxon = false;
7943 	}
7944 
7945 	if (vmx->nested.smm.guest_mode) {
7946 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7947 		if (ret)
7948 			return ret;
7949 
7950 		vmx->nested.nested_run_pending = 1;
7951 		vmx->nested.smm.guest_mode = false;
7952 	}
7953 	return 0;
7954 }
7955 
vmx_enable_smi_window(struct kvm_vcpu * vcpu)7956 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7957 {
7958 	/* RSM will cause a vmexit anyway.  */
7959 }
7960 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7961 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7962 {
7963 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7964 }
7965 
vmx_migrate_timers(struct kvm_vcpu * vcpu)7966 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7967 {
7968 	if (is_guest_mode(vcpu)) {
7969 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7970 
7971 		if (hrtimer_try_to_cancel(timer) == 1)
7972 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7973 	}
7974 }
7975 
vmx_hardware_unsetup(void)7976 static void vmx_hardware_unsetup(void)
7977 {
7978 	kvm_set_posted_intr_wakeup_handler(NULL);
7979 
7980 	if (nested)
7981 		nested_vmx_hardware_unsetup();
7982 
7983 	free_kvm_area();
7984 }
7985 
vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)7986 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7987 {
7988 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7989 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7990 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7991 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
7992 			  BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
7993 			  BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
7994 
7995 	return supported & BIT(reason);
7996 }
7997 
vmx_vm_destroy(struct kvm * kvm)7998 static void vmx_vm_destroy(struct kvm *kvm)
7999 {
8000 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8001 
8002 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8003 }
8004 
8005 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8006 	.name = "kvm_intel",
8007 
8008 	.hardware_unsetup = vmx_hardware_unsetup,
8009 
8010 	.hardware_enable = vmx_hardware_enable,
8011 	.hardware_disable = vmx_hardware_disable,
8012 	.has_emulated_msr = vmx_has_emulated_msr,
8013 
8014 	.vm_size = sizeof(struct kvm_vmx),
8015 	.vm_init = vmx_vm_init,
8016 	.vm_destroy = vmx_vm_destroy,
8017 
8018 	.vcpu_precreate = vmx_vcpu_precreate,
8019 	.vcpu_create = vmx_vcpu_create,
8020 	.vcpu_free = vmx_vcpu_free,
8021 	.vcpu_reset = vmx_vcpu_reset,
8022 
8023 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8024 	.vcpu_load = vmx_vcpu_load,
8025 	.vcpu_put = vmx_vcpu_put,
8026 
8027 	.update_exception_bitmap = vmx_update_exception_bitmap,
8028 	.get_msr_feature = vmx_get_msr_feature,
8029 	.get_msr = vmx_get_msr,
8030 	.set_msr = vmx_set_msr,
8031 	.get_segment_base = vmx_get_segment_base,
8032 	.get_segment = vmx_get_segment,
8033 	.set_segment = vmx_set_segment,
8034 	.get_cpl = vmx_get_cpl,
8035 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8036 	.set_cr0 = vmx_set_cr0,
8037 	.is_valid_cr4 = vmx_is_valid_cr4,
8038 	.set_cr4 = vmx_set_cr4,
8039 	.set_efer = vmx_set_efer,
8040 	.get_idt = vmx_get_idt,
8041 	.set_idt = vmx_set_idt,
8042 	.get_gdt = vmx_get_gdt,
8043 	.set_gdt = vmx_set_gdt,
8044 	.set_dr7 = vmx_set_dr7,
8045 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8046 	.cache_reg = vmx_cache_reg,
8047 	.get_rflags = vmx_get_rflags,
8048 	.set_rflags = vmx_set_rflags,
8049 	.get_if_flag = vmx_get_if_flag,
8050 
8051 	.flush_tlb_all = vmx_flush_tlb_all,
8052 	.flush_tlb_current = vmx_flush_tlb_current,
8053 	.flush_tlb_gva = vmx_flush_tlb_gva,
8054 	.flush_tlb_guest = vmx_flush_tlb_guest,
8055 
8056 	.vcpu_pre_run = vmx_vcpu_pre_run,
8057 	.vcpu_run = vmx_vcpu_run,
8058 	.handle_exit = vmx_handle_exit,
8059 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8060 	.update_emulated_instruction = vmx_update_emulated_instruction,
8061 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8062 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8063 	.patch_hypercall = vmx_patch_hypercall,
8064 	.inject_irq = vmx_inject_irq,
8065 	.inject_nmi = vmx_inject_nmi,
8066 	.inject_exception = vmx_inject_exception,
8067 	.cancel_injection = vmx_cancel_injection,
8068 	.interrupt_allowed = vmx_interrupt_allowed,
8069 	.nmi_allowed = vmx_nmi_allowed,
8070 	.get_nmi_mask = vmx_get_nmi_mask,
8071 	.set_nmi_mask = vmx_set_nmi_mask,
8072 	.enable_nmi_window = vmx_enable_nmi_window,
8073 	.enable_irq_window = vmx_enable_irq_window,
8074 	.update_cr8_intercept = vmx_update_cr8_intercept,
8075 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8076 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8077 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8078 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8079 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
8080 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
8081 	.hwapic_irr_update = vmx_hwapic_irr_update,
8082 	.hwapic_isr_update = vmx_hwapic_isr_update,
8083 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8084 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8085 	.deliver_interrupt = vmx_deliver_interrupt,
8086 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8087 
8088 	.set_tss_addr = vmx_set_tss_addr,
8089 	.set_identity_map_addr = vmx_set_identity_map_addr,
8090 	.get_mt_mask = vmx_get_mt_mask,
8091 
8092 	.get_exit_info = vmx_get_exit_info,
8093 
8094 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8095 
8096 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8097 
8098 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8099 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8100 	.write_tsc_offset = vmx_write_tsc_offset,
8101 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8102 
8103 	.load_mmu_pgd = vmx_load_mmu_pgd,
8104 
8105 	.check_intercept = vmx_check_intercept,
8106 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8107 
8108 	.request_immediate_exit = vmx_request_immediate_exit,
8109 
8110 	.sched_in = vmx_sched_in,
8111 
8112 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8113 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8114 
8115 	.nested_ops = &vmx_nested_ops,
8116 
8117 	.pi_update_irte = vmx_pi_update_irte,
8118 	.pi_start_assignment = vmx_pi_start_assignment,
8119 
8120 #ifdef CONFIG_X86_64
8121 	.set_hv_timer = vmx_set_hv_timer,
8122 	.cancel_hv_timer = vmx_cancel_hv_timer,
8123 #endif
8124 
8125 	.setup_mce = vmx_setup_mce,
8126 
8127 	.smi_allowed = vmx_smi_allowed,
8128 	.enter_smm = vmx_enter_smm,
8129 	.leave_smm = vmx_leave_smm,
8130 	.enable_smi_window = vmx_enable_smi_window,
8131 
8132 	.can_emulate_instruction = vmx_can_emulate_instruction,
8133 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8134 	.migrate_timers = vmx_migrate_timers,
8135 
8136 	.msr_filter_changed = vmx_msr_filter_changed,
8137 	.complete_emulated_msr = kvm_complete_insn_gp,
8138 
8139 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8140 };
8141 
vmx_handle_intel_pt_intr(void)8142 static unsigned int vmx_handle_intel_pt_intr(void)
8143 {
8144 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8145 
8146 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8147 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8148 		return 0;
8149 
8150 	kvm_make_request(KVM_REQ_PMI, vcpu);
8151 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8152 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8153 	return 1;
8154 }
8155 
vmx_setup_user_return_msrs(void)8156 static __init void vmx_setup_user_return_msrs(void)
8157 {
8158 
8159 	/*
8160 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8161 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8162 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8163 	 * support this emulation, MSR_STAR is included in the list for i386,
8164 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8165 	 * into hardware and is here purely for emulation purposes.
8166 	 */
8167 	const u32 vmx_uret_msrs_list[] = {
8168 	#ifdef CONFIG_X86_64
8169 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8170 	#endif
8171 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8172 		MSR_IA32_TSX_CTRL,
8173 	};
8174 	int i;
8175 
8176 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8177 
8178 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8179 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8180 }
8181 
vmx_setup_me_spte_mask(void)8182 static void __init vmx_setup_me_spte_mask(void)
8183 {
8184 	u64 me_mask = 0;
8185 
8186 	/*
8187 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8188 	 * the former to avoid exposing shadow_phys_bits.
8189 	 *
8190 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8191 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8192 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8193 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8194 	 * reported by CPUID.  Those bits between are KeyID bits.
8195 	 */
8196 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8197 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8198 			kvm_get_shadow_phys_bits() - 1);
8199 	/*
8200 	 * Unlike SME, host kernel doesn't support setting up any
8201 	 * MKTME KeyID on Intel platforms.  No memory encryption
8202 	 * bits should be included into the SPTE.
8203 	 */
8204 	kvm_mmu_set_me_spte_mask(0, me_mask);
8205 }
8206 
8207 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8208 
hardware_setup(void)8209 static __init int hardware_setup(void)
8210 {
8211 	unsigned long host_bndcfgs;
8212 	struct desc_ptr dt;
8213 	int r;
8214 
8215 	store_idt(&dt);
8216 	host_idt_base = dt.address;
8217 
8218 	vmx_setup_user_return_msrs();
8219 
8220 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8221 		return -EIO;
8222 
8223 	if (cpu_has_perf_global_ctrl_bug())
8224 		pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8225 			     "does not work properly. Using workaround\n");
8226 
8227 	if (boot_cpu_has(X86_FEATURE_NX))
8228 		kvm_enable_efer_bits(EFER_NX);
8229 
8230 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8231 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8232 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8233 	}
8234 
8235 	if (!cpu_has_vmx_mpx())
8236 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8237 					     XFEATURE_MASK_BNDCSR);
8238 
8239 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8240 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8241 		enable_vpid = 0;
8242 
8243 	if (!cpu_has_vmx_ept() ||
8244 	    !cpu_has_vmx_ept_4levels() ||
8245 	    !cpu_has_vmx_ept_mt_wb() ||
8246 	    !cpu_has_vmx_invept_global())
8247 		enable_ept = 0;
8248 
8249 	/* NX support is required for shadow paging. */
8250 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8251 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8252 		return -EOPNOTSUPP;
8253 	}
8254 
8255 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8256 		enable_ept_ad_bits = 0;
8257 
8258 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8259 		enable_unrestricted_guest = 0;
8260 
8261 	if (!cpu_has_vmx_flexpriority())
8262 		flexpriority_enabled = 0;
8263 
8264 	if (!cpu_has_virtual_nmis())
8265 		enable_vnmi = 0;
8266 
8267 #ifdef CONFIG_X86_SGX_KVM
8268 	if (!cpu_has_vmx_encls_vmexit())
8269 		enable_sgx = false;
8270 #endif
8271 
8272 	/*
8273 	 * set_apic_access_page_addr() is used to reload apic access
8274 	 * page upon invalidation.  No need to do anything if not
8275 	 * using the APIC_ACCESS_ADDR VMCS field.
8276 	 */
8277 	if (!flexpriority_enabled)
8278 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8279 
8280 	if (!cpu_has_vmx_tpr_shadow())
8281 		vmx_x86_ops.update_cr8_intercept = NULL;
8282 
8283 #if IS_ENABLED(CONFIG_HYPERV)
8284 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8285 	    && enable_ept) {
8286 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8287 		vmx_x86_ops.tlb_remote_flush_with_range =
8288 				hv_remote_flush_tlb_with_range;
8289 	}
8290 #endif
8291 
8292 	if (!cpu_has_vmx_ple()) {
8293 		ple_gap = 0;
8294 		ple_window = 0;
8295 		ple_window_grow = 0;
8296 		ple_window_max = 0;
8297 		ple_window_shrink = 0;
8298 	}
8299 
8300 	if (!cpu_has_vmx_apicv())
8301 		enable_apicv = 0;
8302 	if (!enable_apicv)
8303 		vmx_x86_ops.sync_pir_to_irr = NULL;
8304 
8305 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8306 		enable_ipiv = false;
8307 
8308 	if (cpu_has_vmx_tsc_scaling())
8309 		kvm_caps.has_tsc_control = true;
8310 
8311 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8312 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8313 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8314 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8315 
8316 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8317 
8318 	if (enable_ept)
8319 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8320 				      cpu_has_vmx_ept_execute_only());
8321 
8322 	/*
8323 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8324 	 * bits to shadow_zero_check.
8325 	 */
8326 	vmx_setup_me_spte_mask();
8327 
8328 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8329 			  ept_caps_to_lpage_level(vmx_capability.ept));
8330 
8331 	/*
8332 	 * Only enable PML when hardware supports PML feature, and both EPT
8333 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8334 	 */
8335 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8336 		enable_pml = 0;
8337 
8338 	if (!enable_pml)
8339 		vmx_x86_ops.cpu_dirty_log_size = 0;
8340 
8341 	if (!cpu_has_vmx_preemption_timer())
8342 		enable_preemption_timer = false;
8343 
8344 	if (enable_preemption_timer) {
8345 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8346 
8347 		cpu_preemption_timer_multi =
8348 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8349 
8350 		if (tsc_khz)
8351 			use_timer_freq = (u64)tsc_khz * 1000;
8352 		use_timer_freq >>= cpu_preemption_timer_multi;
8353 
8354 		/*
8355 		 * KVM "disables" the preemption timer by setting it to its max
8356 		 * value.  Don't use the timer if it might cause spurious exits
8357 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8358 		 */
8359 		if (use_timer_freq > 0xffffffffu / 10)
8360 			enable_preemption_timer = false;
8361 	}
8362 
8363 	if (!enable_preemption_timer) {
8364 		vmx_x86_ops.set_hv_timer = NULL;
8365 		vmx_x86_ops.cancel_hv_timer = NULL;
8366 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8367 	}
8368 
8369 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8370 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8371 
8372 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8373 		return -EINVAL;
8374 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8375 		pt_mode = PT_MODE_SYSTEM;
8376 	if (pt_mode == PT_MODE_HOST_GUEST)
8377 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8378 	else
8379 		vmx_init_ops.handle_intel_pt_intr = NULL;
8380 
8381 	setup_default_sgx_lepubkeyhash();
8382 
8383 	if (nested) {
8384 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8385 
8386 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8387 		if (r)
8388 			return r;
8389 	}
8390 
8391 	vmx_set_cpu_caps();
8392 
8393 	r = alloc_kvm_area();
8394 	if (r && nested)
8395 		nested_vmx_hardware_unsetup();
8396 
8397 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8398 
8399 	return r;
8400 }
8401 
8402 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8403 	.cpu_has_kvm_support = cpu_has_kvm_support,
8404 	.disabled_by_bios = vmx_disabled_by_bios,
8405 	.check_processor_compatibility = vmx_check_processor_compat,
8406 	.hardware_setup = hardware_setup,
8407 	.handle_intel_pt_intr = NULL,
8408 
8409 	.runtime_ops = &vmx_x86_ops,
8410 	.pmu_ops = &intel_pmu_ops,
8411 };
8412 
vmx_cleanup_l1d_flush(void)8413 static void vmx_cleanup_l1d_flush(void)
8414 {
8415 	if (vmx_l1d_flush_pages) {
8416 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8417 		vmx_l1d_flush_pages = NULL;
8418 	}
8419 	/* Restore state so sysfs ignores VMX */
8420 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8421 }
8422 
vmx_exit(void)8423 static void vmx_exit(void)
8424 {
8425 #ifdef CONFIG_KEXEC_CORE
8426 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8427 	synchronize_rcu();
8428 #endif
8429 
8430 	kvm_exit();
8431 
8432 #if IS_ENABLED(CONFIG_HYPERV)
8433 	if (static_branch_unlikely(&enable_evmcs)) {
8434 		int cpu;
8435 		struct hv_vp_assist_page *vp_ap;
8436 		/*
8437 		 * Reset everything to support using non-enlightened VMCS
8438 		 * access later (e.g. when we reload the module with
8439 		 * enlightened_vmcs=0)
8440 		 */
8441 		for_each_online_cpu(cpu) {
8442 			vp_ap =	hv_get_vp_assist_page(cpu);
8443 
8444 			if (!vp_ap)
8445 				continue;
8446 
8447 			vp_ap->nested_control.features.directhypercall = 0;
8448 			vp_ap->current_nested_vmcs = 0;
8449 			vp_ap->enlighten_vmentry = 0;
8450 		}
8451 
8452 		static_branch_disable(&enable_evmcs);
8453 	}
8454 #endif
8455 	vmx_cleanup_l1d_flush();
8456 
8457 	allow_smaller_maxphyaddr = false;
8458 }
8459 module_exit(vmx_exit);
8460 
vmx_init(void)8461 static int __init vmx_init(void)
8462 {
8463 	int r, cpu;
8464 
8465 #if IS_ENABLED(CONFIG_HYPERV)
8466 	/*
8467 	 * Enlightened VMCS usage should be recommended and the host needs
8468 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8469 	 * with module parameter.
8470 	 */
8471 	if (enlightened_vmcs &&
8472 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8473 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8474 	    KVM_EVMCS_VERSION) {
8475 
8476 		/* Check that we have assist pages on all online CPUs */
8477 		for_each_online_cpu(cpu) {
8478 			if (!hv_get_vp_assist_page(cpu)) {
8479 				enlightened_vmcs = false;
8480 				break;
8481 			}
8482 		}
8483 
8484 		if (enlightened_vmcs) {
8485 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8486 			static_branch_enable(&enable_evmcs);
8487 		}
8488 
8489 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8490 			vmx_x86_ops.enable_direct_tlbflush
8491 				= hv_enable_direct_tlbflush;
8492 
8493 	} else {
8494 		enlightened_vmcs = false;
8495 	}
8496 #endif
8497 
8498 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8499 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8500 	if (r)
8501 		return r;
8502 
8503 	/*
8504 	 * Must be called after kvm_init() so enable_ept is properly set
8505 	 * up. Hand the parameter mitigation value in which was stored in
8506 	 * the pre module init parser. If no parameter was given, it will
8507 	 * contain 'auto' which will be turned into the default 'cond'
8508 	 * mitigation mode.
8509 	 */
8510 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8511 	if (r) {
8512 		vmx_exit();
8513 		return r;
8514 	}
8515 
8516 	vmx_setup_fb_clear_ctrl();
8517 
8518 	for_each_possible_cpu(cpu) {
8519 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8520 
8521 		pi_init_cpu(cpu);
8522 	}
8523 
8524 #ifdef CONFIG_KEXEC_CORE
8525 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8526 			   crash_vmclear_local_loaded_vmcss);
8527 #endif
8528 	vmx_check_vmcs12_offsets();
8529 
8530 	/*
8531 	 * Shadow paging doesn't have a (further) performance penalty
8532 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8533 	 * by default
8534 	 */
8535 	if (!enable_ept)
8536 		allow_smaller_maxphyaddr = true;
8537 
8538 	return 0;
8539 }
8540 module_init(vmx_init);
8541