1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 {}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 enable_unrestricted_guest, bool, S_IRUGO);
96
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105
106 module_param(enable_apicv, bool, S_IRUGO);
107
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110
111 /*
112 * If nested=1, nested virtualization is supported, i.e., guests may use
113 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114 * use VMX instructions.
115 */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127
128 #define MSR_BITMAP_MODE_X2APIC 1
129 #define MSR_BITMAP_MODE_X2APIC_APICV 2
130
131 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
132
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON \
146 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 RTIT_STATUS_BYTECNT))
158
159 /*
160 * List of MSRs that can be directly passed to the guest.
161 * In addition to these x2apic and PT MSRs are handled specially.
162 */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 MSR_IA32_SPEC_CTRL,
165 MSR_IA32_PRED_CMD,
166 MSR_IA32_TSC,
167 #ifdef CONFIG_X86_64
168 MSR_FS_BASE,
169 MSR_GS_BASE,
170 MSR_KERNEL_GS_BASE,
171 MSR_IA32_XFD,
172 MSR_IA32_XFD_ERR,
173 #endif
174 MSR_IA32_SYSENTER_CS,
175 MSR_IA32_SYSENTER_ESP,
176 MSR_IA32_SYSENTER_EIP,
177 MSR_CORE_C1_RES,
178 MSR_CORE_C3_RESIDENCY,
179 MSR_CORE_C6_RESIDENCY,
180 MSR_CORE_C7_RESIDENCY,
181 };
182
183 /*
184 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
185 * ple_gap: upper bound on the amount of time between two successive
186 * executions of PAUSE in a loop. Also indicate if ple enabled.
187 * According to test, this time is usually smaller than 128 cycles.
188 * ple_window: upper bound on the amount of time a guest is allowed to execute
189 * in a PAUSE loop. Tests indicate that most spinlocks are held for
190 * less than 2^12 cycles
191 * Time is measured based on a counter that runs at the same rate as the TSC,
192 * refer SDM volume 3b section 21.6.13 & 22.1.3.
193 */
194 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
195 module_param(ple_gap, uint, 0444);
196
197 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
198 module_param(ple_window, uint, 0444);
199
200 /* Default doubles per-vcpu window every exit. */
201 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
202 module_param(ple_window_grow, uint, 0444);
203
204 /* Default resets per-vcpu window every exit to ple_window. */
205 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
206 module_param(ple_window_shrink, uint, 0444);
207
208 /* Default is to compute the maximum so we can never overflow. */
209 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
210 module_param(ple_window_max, uint, 0444);
211
212 /* Default is SYSTEM mode, 1 for host-guest mode */
213 int __read_mostly pt_mode = PT_MODE_SYSTEM;
214 module_param(pt_mode, int, S_IRUGO);
215
216 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
218 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
219
220 /* Storage for pre module init parameter parsing */
221 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
222
223 static const struct {
224 const char *option;
225 bool for_parse;
226 } vmentry_l1d_param[] = {
227 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
228 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
229 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
230 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
231 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
232 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
233 };
234
235 #define L1D_CACHE_ORDER 4
236 static void *vmx_l1d_flush_pages;
237
238 /* Control for disabling CPU Fill buffer clear */
239 static bool __read_mostly vmx_fb_clear_ctrl_available;
240
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 struct page *page;
244 unsigned int i;
245
246 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 return 0;
249 }
250
251 if (!enable_ept) {
252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 return 0;
254 }
255
256 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
257 u64 msr;
258
259 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
260 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
262 return 0;
263 }
264 }
265
266 /* If set to auto use the default l1tf mitigation method */
267 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
268 switch (l1tf_mitigation) {
269 case L1TF_MITIGATION_OFF:
270 l1tf = VMENTER_L1D_FLUSH_NEVER;
271 break;
272 case L1TF_MITIGATION_FLUSH_NOWARN:
273 case L1TF_MITIGATION_FLUSH:
274 case L1TF_MITIGATION_FLUSH_NOSMT:
275 l1tf = VMENTER_L1D_FLUSH_COND;
276 break;
277 case L1TF_MITIGATION_FULL:
278 case L1TF_MITIGATION_FULL_FORCE:
279 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
280 break;
281 }
282 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
283 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 }
285
286 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
287 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
288 /*
289 * This allocation for vmx_l1d_flush_pages is not tied to a VM
290 * lifetime and so should not be charged to a memcg.
291 */
292 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
293 if (!page)
294 return -ENOMEM;
295 vmx_l1d_flush_pages = page_address(page);
296
297 /*
298 * Initialize each page with a different pattern in
299 * order to protect against KSM in the nested
300 * virtualization case.
301 */
302 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
303 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
304 PAGE_SIZE);
305 }
306 }
307
308 l1tf_vmx_mitigation = l1tf;
309
310 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
311 static_branch_enable(&vmx_l1d_should_flush);
312 else
313 static_branch_disable(&vmx_l1d_should_flush);
314
315 if (l1tf == VMENTER_L1D_FLUSH_COND)
316 static_branch_enable(&vmx_l1d_flush_cond);
317 else
318 static_branch_disable(&vmx_l1d_flush_cond);
319 return 0;
320 }
321
vmentry_l1d_flush_parse(const char * s)322 static int vmentry_l1d_flush_parse(const char *s)
323 {
324 unsigned int i;
325
326 if (s) {
327 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
328 if (vmentry_l1d_param[i].for_parse &&
329 sysfs_streq(s, vmentry_l1d_param[i].option))
330 return i;
331 }
332 }
333 return -EINVAL;
334 }
335
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)336 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
337 {
338 int l1tf, ret;
339
340 l1tf = vmentry_l1d_flush_parse(s);
341 if (l1tf < 0)
342 return l1tf;
343
344 if (!boot_cpu_has(X86_BUG_L1TF))
345 return 0;
346
347 /*
348 * Has vmx_init() run already? If not then this is the pre init
349 * parameter parsing. In that case just store the value and let
350 * vmx_init() do the proper setup after enable_ept has been
351 * established.
352 */
353 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
354 vmentry_l1d_flush_param = l1tf;
355 return 0;
356 }
357
358 mutex_lock(&vmx_l1d_flush_mutex);
359 ret = vmx_setup_l1d_flush(l1tf);
360 mutex_unlock(&vmx_l1d_flush_mutex);
361 return ret;
362 }
363
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)364 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
365 {
366 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
367 return sprintf(s, "???\n");
368
369 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
370 }
371
vmx_setup_fb_clear_ctrl(void)372 static void vmx_setup_fb_clear_ctrl(void)
373 {
374 u64 msr;
375
376 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
377 !boot_cpu_has_bug(X86_BUG_MDS) &&
378 !boot_cpu_has_bug(X86_BUG_TAA)) {
379 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
380 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
381 vmx_fb_clear_ctrl_available = true;
382 }
383 }
384
vmx_disable_fb_clear(struct vcpu_vmx * vmx)385 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
386 {
387 u64 msr;
388
389 if (!vmx->disable_fb_clear)
390 return;
391
392 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
393 msr |= FB_CLEAR_DIS;
394 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
395 /* Cache the MSR value to avoid reading it later */
396 vmx->msr_ia32_mcu_opt_ctrl = msr;
397 }
398
vmx_enable_fb_clear(struct vcpu_vmx * vmx)399 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
400 {
401 if (!vmx->disable_fb_clear)
402 return;
403
404 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
405 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
406 }
407
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)408 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
409 {
410 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
411
412 /*
413 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 * execute VERW.
416 */
417 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 vmx->disable_fb_clear = false;
424 }
425
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 .set = vmentry_l1d_flush_set,
428 .get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433
434 void vmx_vmexit(void);
435
436 #define vmx_insn_failed(fmt...) \
437 do { \
438 WARN_ONCE(1, fmt); \
439 pr_warn_ratelimited(fmt); \
440 } while (0)
441
vmread_error(unsigned long field,bool fault)442 void vmread_error(unsigned long field, bool fault)
443 {
444 if (fault)
445 kvm_spurious_fault();
446 else
447 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
448 }
449
vmwrite_error(unsigned long field,unsigned long value)450 noinline void vmwrite_error(unsigned long field, unsigned long value)
451 {
452 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%u\n",
453 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
454 }
455
vmclear_error(struct vmcs * vmcs,u64 phys_addr)456 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
457 {
458 vmx_insn_failed("kvm: vmclear failed: %p/%llx err=%u\n",
459 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
460 }
461
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)462 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
463 {
464 vmx_insn_failed("kvm: vmptrld failed: %p/%llx err=%u\n",
465 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)468 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
469 {
470 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
471 ext, vpid, gva);
472 }
473
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)474 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
475 {
476 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
477 ext, eptp, gpa);
478 }
479
480 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
481 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
482 /*
483 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
484 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
485 */
486 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
487
488 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
489 static DEFINE_SPINLOCK(vmx_vpid_lock);
490
491 struct vmcs_config vmcs_config;
492 struct vmx_capability vmx_capability;
493
494 #define VMX_SEGMENT_FIELD(seg) \
495 [VCPU_SREG_##seg] = { \
496 .selector = GUEST_##seg##_SELECTOR, \
497 .base = GUEST_##seg##_BASE, \
498 .limit = GUEST_##seg##_LIMIT, \
499 .ar_bytes = GUEST_##seg##_AR_BYTES, \
500 }
501
502 static const struct kvm_vmx_segment_field {
503 unsigned selector;
504 unsigned base;
505 unsigned limit;
506 unsigned ar_bytes;
507 } kvm_vmx_segment_fields[] = {
508 VMX_SEGMENT_FIELD(CS),
509 VMX_SEGMENT_FIELD(DS),
510 VMX_SEGMENT_FIELD(ES),
511 VMX_SEGMENT_FIELD(FS),
512 VMX_SEGMENT_FIELD(GS),
513 VMX_SEGMENT_FIELD(SS),
514 VMX_SEGMENT_FIELD(TR),
515 VMX_SEGMENT_FIELD(LDTR),
516 };
517
vmx_segment_cache_clear(struct vcpu_vmx * vmx)518 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
519 {
520 vmx->segment_cache.bitmask = 0;
521 }
522
523 static unsigned long host_idt_base;
524
525 #if IS_ENABLED(CONFIG_HYPERV)
526 static bool __read_mostly enlightened_vmcs = true;
527 module_param(enlightened_vmcs, bool, 0444);
528
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)529 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
530 {
531 struct hv_enlightened_vmcs *evmcs;
532 struct hv_partition_assist_pg **p_hv_pa_pg =
533 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
534 /*
535 * Synthetic VM-Exit is not enabled in current code and so All
536 * evmcs in singe VM shares same assist page.
537 */
538 if (!*p_hv_pa_pg)
539 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
540
541 if (!*p_hv_pa_pg)
542 return -ENOMEM;
543
544 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545
546 evmcs->partition_assist_page =
547 __pa(*p_hv_pa_pg);
548 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550
551 return 0;
552 }
553
554 #endif /* IS_ENABLED(CONFIG_HYPERV) */
555
556 /*
557 * Comment's format: document - errata name - stepping - processor name.
558 * Refer from
559 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
560 */
561 static u32 vmx_preemption_cpu_tfms[] = {
562 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
563 0x000206E6,
564 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
565 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
566 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
567 0x00020652,
568 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
569 0x00020655,
570 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
571 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
572 /*
573 * 320767.pdf - AAP86 - B1 -
574 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
575 */
576 0x000106E5,
577 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
578 0x000106A0,
579 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
580 0x000106A1,
581 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
582 0x000106A4,
583 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
584 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
585 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
586 0x000106A5,
587 /* Xeon E3-1220 V2 */
588 0x000306A8,
589 };
590
cpu_has_broken_vmx_preemption_timer(void)591 static inline bool cpu_has_broken_vmx_preemption_timer(void)
592 {
593 u32 eax = cpuid_eax(0x00000001), i;
594
595 /* Clear the reserved bits */
596 eax &= ~(0x3U << 14 | 0xfU << 28);
597 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
598 if (eax == vmx_preemption_cpu_tfms[i])
599 return true;
600
601 return false;
602 }
603
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)604 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
605 {
606 return flexpriority_enabled && lapic_in_kernel(vcpu);
607 }
608
possible_passthrough_msr_slot(u32 msr)609 static int possible_passthrough_msr_slot(u32 msr)
610 {
611 u32 i;
612
613 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
614 if (vmx_possible_passthrough_msrs[i] == msr)
615 return i;
616
617 return -ENOENT;
618 }
619
is_valid_passthrough_msr(u32 msr)620 static bool is_valid_passthrough_msr(u32 msr)
621 {
622 bool r;
623
624 switch (msr) {
625 case 0x800 ... 0x8ff:
626 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
627 return true;
628 case MSR_IA32_RTIT_STATUS:
629 case MSR_IA32_RTIT_OUTPUT_BASE:
630 case MSR_IA32_RTIT_OUTPUT_MASK:
631 case MSR_IA32_RTIT_CR3_MATCH:
632 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
633 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
634 case MSR_LBR_SELECT:
635 case MSR_LBR_TOS:
636 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
637 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
638 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
639 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
640 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
641 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
642 return true;
643 }
644
645 r = possible_passthrough_msr_slot(msr) != -ENOENT;
646
647 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
648
649 return r;
650 }
651
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 int i;
655
656 i = kvm_find_user_return_msr(msr);
657 if (i >= 0)
658 return &vmx->guest_uret_msrs[i];
659 return NULL;
660 }
661
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 struct vmx_uret_msr *msr, u64 data)
664 {
665 unsigned int slot = msr - vmx->guest_uret_msrs;
666 int ret = 0;
667
668 if (msr->load_into_hardware) {
669 preempt_disable();
670 ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 preempt_enable();
672 }
673 if (!ret)
674 msr->data = data;
675 return ret;
676 }
677
678 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)679 static void crash_vmclear_local_loaded_vmcss(void)
680 {
681 int cpu = raw_smp_processor_id();
682 struct loaded_vmcs *v;
683
684 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
685 loaded_vmcss_on_cpu_link)
686 vmcs_clear(v->vmcs);
687 }
688 #endif /* CONFIG_KEXEC_CORE */
689
__loaded_vmcs_clear(void * arg)690 static void __loaded_vmcs_clear(void *arg)
691 {
692 struct loaded_vmcs *loaded_vmcs = arg;
693 int cpu = raw_smp_processor_id();
694
695 if (loaded_vmcs->cpu != cpu)
696 return; /* vcpu migration can race with cpu offline */
697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 per_cpu(current_vmcs, cpu) = NULL;
699
700 vmcs_clear(loaded_vmcs->vmcs);
701 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
702 vmcs_clear(loaded_vmcs->shadow_vmcs);
703
704 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
705
706 /*
707 * Ensure all writes to loaded_vmcs, including deleting it from its
708 * current percpu list, complete before setting loaded_vmcs->cpu to
709 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
710 * and add loaded_vmcs to its percpu list before it's deleted from this
711 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
712 */
713 smp_wmb();
714
715 loaded_vmcs->cpu = -1;
716 loaded_vmcs->launched = 0;
717 }
718
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)719 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
720 {
721 int cpu = loaded_vmcs->cpu;
722
723 if (cpu != -1)
724 smp_call_function_single(cpu,
725 __loaded_vmcs_clear, loaded_vmcs, 1);
726 }
727
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)728 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
729 unsigned field)
730 {
731 bool ret;
732 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
733
734 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
735 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
736 vmx->segment_cache.bitmask = 0;
737 }
738 ret = vmx->segment_cache.bitmask & mask;
739 vmx->segment_cache.bitmask |= mask;
740 return ret;
741 }
742
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)743 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 u16 *p = &vmx->segment_cache.seg[seg].selector;
746
747 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
748 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
749 return *p;
750 }
751
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)752 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 ulong *p = &vmx->segment_cache.seg[seg].base;
755
756 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
757 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
758 return *p;
759 }
760
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)761 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
762 {
763 u32 *p = &vmx->segment_cache.seg[seg].limit;
764
765 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
766 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
767 return *p;
768 }
769
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)770 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
771 {
772 u32 *p = &vmx->segment_cache.seg[seg].ar;
773
774 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
775 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
776 return *p;
777 }
778
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)779 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
780 {
781 u32 eb;
782
783 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
784 (1u << DB_VECTOR) | (1u << AC_VECTOR);
785 /*
786 * Guest access to VMware backdoor ports could legitimately
787 * trigger #GP because of TSS I/O permission bitmap.
788 * We intercept those #GP and allow access to them anyway
789 * as VMware does.
790 */
791 if (enable_vmware_backdoor)
792 eb |= (1u << GP_VECTOR);
793 if ((vcpu->guest_debug &
794 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
795 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
796 eb |= 1u << BP_VECTOR;
797 if (to_vmx(vcpu)->rmode.vm86_active)
798 eb = ~0;
799 if (!vmx_need_pf_intercept(vcpu))
800 eb &= ~(1u << PF_VECTOR);
801
802 /* When we are running a nested L2 guest and L1 specified for it a
803 * certain exception bitmap, we must trap the same exceptions and pass
804 * them to L1. When running L2, we will only handle the exceptions
805 * specified above if L1 did not want them.
806 */
807 if (is_guest_mode(vcpu))
808 eb |= get_vmcs12(vcpu)->exception_bitmap;
809 else {
810 int mask = 0, match = 0;
811
812 if (enable_ept && (eb & (1u << PF_VECTOR))) {
813 /*
814 * If EPT is enabled, #PF is currently only intercepted
815 * if MAXPHYADDR is smaller on the guest than on the
816 * host. In that case we only care about present,
817 * non-reserved faults. For vmcs02, however, PFEC_MASK
818 * and PFEC_MATCH are set in prepare_vmcs02_rare.
819 */
820 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
821 match = PFERR_PRESENT_MASK;
822 }
823 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
824 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
825 }
826
827 /*
828 * Disabling xfd interception indicates that dynamic xfeatures
829 * might be used in the guest. Always trap #NM in this case
830 * to save guest xfd_err timely.
831 */
832 if (vcpu->arch.xfd_no_write_intercept)
833 eb |= (1u << NM_VECTOR);
834
835 vmcs_write32(EXCEPTION_BITMAP, eb);
836 }
837
838 /*
839 * Check if MSR is intercepted for currently loaded MSR bitmap.
840 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)841 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
842 {
843 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
844 return true;
845
846 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
847 }
848
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)849 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
850 {
851 unsigned int flags = 0;
852
853 if (vmx->loaded_vmcs->launched)
854 flags |= VMX_RUN_VMRESUME;
855
856 /*
857 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
858 * to change it directly without causing a vmexit. In that case read
859 * it after vmexit and store it in vmx->spec_ctrl.
860 */
861 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
862 flags |= VMX_RUN_SAVE_SPEC_CTRL;
863
864 return flags;
865 }
866
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)867 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
868 unsigned long entry, unsigned long exit)
869 {
870 vm_entry_controls_clearbit(vmx, entry);
871 vm_exit_controls_clearbit(vmx, exit);
872 }
873
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)874 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
875 {
876 unsigned int i;
877
878 for (i = 0; i < m->nr; ++i) {
879 if (m->val[i].index == msr)
880 return i;
881 }
882 return -ENOENT;
883 }
884
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)885 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
886 {
887 int i;
888 struct msr_autoload *m = &vmx->msr_autoload;
889
890 switch (msr) {
891 case MSR_EFER:
892 if (cpu_has_load_ia32_efer()) {
893 clear_atomic_switch_msr_special(vmx,
894 VM_ENTRY_LOAD_IA32_EFER,
895 VM_EXIT_LOAD_IA32_EFER);
896 return;
897 }
898 break;
899 case MSR_CORE_PERF_GLOBAL_CTRL:
900 if (cpu_has_load_perf_global_ctrl()) {
901 clear_atomic_switch_msr_special(vmx,
902 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
903 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
904 return;
905 }
906 break;
907 }
908 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
909 if (i < 0)
910 goto skip_guest;
911 --m->guest.nr;
912 m->guest.val[i] = m->guest.val[m->guest.nr];
913 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914
915 skip_guest:
916 i = vmx_find_loadstore_msr_slot(&m->host, msr);
917 if (i < 0)
918 return;
919
920 --m->host.nr;
921 m->host.val[i] = m->host.val[m->host.nr];
922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 }
924
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)925 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
926 unsigned long entry, unsigned long exit,
927 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
928 u64 guest_val, u64 host_val)
929 {
930 vmcs_write64(guest_val_vmcs, guest_val);
931 if (host_val_vmcs != HOST_IA32_EFER)
932 vmcs_write64(host_val_vmcs, host_val);
933 vm_entry_controls_setbit(vmx, entry);
934 vm_exit_controls_setbit(vmx, exit);
935 }
936
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)937 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
938 u64 guest_val, u64 host_val, bool entry_only)
939 {
940 int i, j = 0;
941 struct msr_autoload *m = &vmx->msr_autoload;
942
943 switch (msr) {
944 case MSR_EFER:
945 if (cpu_has_load_ia32_efer()) {
946 add_atomic_switch_msr_special(vmx,
947 VM_ENTRY_LOAD_IA32_EFER,
948 VM_EXIT_LOAD_IA32_EFER,
949 GUEST_IA32_EFER,
950 HOST_IA32_EFER,
951 guest_val, host_val);
952 return;
953 }
954 break;
955 case MSR_CORE_PERF_GLOBAL_CTRL:
956 if (cpu_has_load_perf_global_ctrl()) {
957 add_atomic_switch_msr_special(vmx,
958 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
959 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
960 GUEST_IA32_PERF_GLOBAL_CTRL,
961 HOST_IA32_PERF_GLOBAL_CTRL,
962 guest_val, host_val);
963 return;
964 }
965 break;
966 case MSR_IA32_PEBS_ENABLE:
967 /* PEBS needs a quiescent period after being disabled (to write
968 * a record). Disabling PEBS through VMX MSR swapping doesn't
969 * provide that period, so a CPU could write host's record into
970 * guest's memory.
971 */
972 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
973 }
974
975 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
976 if (!entry_only)
977 j = vmx_find_loadstore_msr_slot(&m->host, msr);
978
979 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
980 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
981 printk_once(KERN_WARNING "Not enough msr switch entries. "
982 "Can't add msr %x\n", msr);
983 return;
984 }
985 if (i < 0) {
986 i = m->guest.nr++;
987 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
988 }
989 m->guest.val[i].index = msr;
990 m->guest.val[i].value = guest_val;
991
992 if (entry_only)
993 return;
994
995 if (j < 0) {
996 j = m->host.nr++;
997 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
998 }
999 m->host.val[j].index = msr;
1000 m->host.val[j].value = host_val;
1001 }
1002
update_transition_efer(struct vcpu_vmx * vmx)1003 static bool update_transition_efer(struct vcpu_vmx *vmx)
1004 {
1005 u64 guest_efer = vmx->vcpu.arch.efer;
1006 u64 ignore_bits = 0;
1007 int i;
1008
1009 /* Shadow paging assumes NX to be available. */
1010 if (!enable_ept)
1011 guest_efer |= EFER_NX;
1012
1013 /*
1014 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1015 */
1016 ignore_bits |= EFER_SCE;
1017 #ifdef CONFIG_X86_64
1018 ignore_bits |= EFER_LMA | EFER_LME;
1019 /* SCE is meaningful only in long mode on Intel */
1020 if (guest_efer & EFER_LMA)
1021 ignore_bits &= ~(u64)EFER_SCE;
1022 #endif
1023
1024 /*
1025 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1026 * On CPUs that support "load IA32_EFER", always switch EFER
1027 * atomically, since it's faster than switching it manually.
1028 */
1029 if (cpu_has_load_ia32_efer() ||
1030 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1031 if (!(guest_efer & EFER_LMA))
1032 guest_efer &= ~EFER_LME;
1033 if (guest_efer != host_efer)
1034 add_atomic_switch_msr(vmx, MSR_EFER,
1035 guest_efer, host_efer, false);
1036 else
1037 clear_atomic_switch_msr(vmx, MSR_EFER);
1038 return false;
1039 }
1040
1041 i = kvm_find_user_return_msr(MSR_EFER);
1042 if (i < 0)
1043 return false;
1044
1045 clear_atomic_switch_msr(vmx, MSR_EFER);
1046
1047 guest_efer &= ~ignore_bits;
1048 guest_efer |= host_efer & ignore_bits;
1049
1050 vmx->guest_uret_msrs[i].data = guest_efer;
1051 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1052
1053 return true;
1054 }
1055
1056 #ifdef CONFIG_X86_32
1057 /*
1058 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1059 * VMCS rather than the segment table. KVM uses this helper to figure
1060 * out the current bases to poke them into the VMCS before entry.
1061 */
segment_base(u16 selector)1062 static unsigned long segment_base(u16 selector)
1063 {
1064 struct desc_struct *table;
1065 unsigned long v;
1066
1067 if (!(selector & ~SEGMENT_RPL_MASK))
1068 return 0;
1069
1070 table = get_current_gdt_ro();
1071
1072 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1073 u16 ldt_selector = kvm_read_ldt();
1074
1075 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1076 return 0;
1077
1078 table = (struct desc_struct *)segment_base(ldt_selector);
1079 }
1080 v = get_desc_base(&table[selector >> 3]);
1081 return v;
1082 }
1083 #endif
1084
pt_can_write_msr(struct vcpu_vmx * vmx)1085 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1086 {
1087 return vmx_pt_mode_is_host_guest() &&
1088 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1089 }
1090
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1091 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1092 {
1093 /* The base must be 128-byte aligned and a legal physical address. */
1094 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1095 }
1096
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1097 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1098 {
1099 u32 i;
1100
1101 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1102 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1103 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1104 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1105 for (i = 0; i < addr_range; i++) {
1106 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1107 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1108 }
1109 }
1110
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1111 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1112 {
1113 u32 i;
1114
1115 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1116 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1117 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1118 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1119 for (i = 0; i < addr_range; i++) {
1120 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1121 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1122 }
1123 }
1124
pt_guest_enter(struct vcpu_vmx * vmx)1125 static void pt_guest_enter(struct vcpu_vmx *vmx)
1126 {
1127 if (vmx_pt_mode_is_system())
1128 return;
1129
1130 /*
1131 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1132 * Save host state before VM entry.
1133 */
1134 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1135 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1136 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1137 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1138 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1139 }
1140 }
1141
pt_guest_exit(struct vcpu_vmx * vmx)1142 static void pt_guest_exit(struct vcpu_vmx *vmx)
1143 {
1144 if (vmx_pt_mode_is_system())
1145 return;
1146
1147 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1149 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1150 }
1151
1152 /*
1153 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1154 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1155 */
1156 if (vmx->pt_desc.host.ctl)
1157 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1158 }
1159
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1160 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1161 unsigned long fs_base, unsigned long gs_base)
1162 {
1163 if (unlikely(fs_sel != host->fs_sel)) {
1164 if (!(fs_sel & 7))
1165 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1166 else
1167 vmcs_write16(HOST_FS_SELECTOR, 0);
1168 host->fs_sel = fs_sel;
1169 }
1170 if (unlikely(gs_sel != host->gs_sel)) {
1171 if (!(gs_sel & 7))
1172 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1173 else
1174 vmcs_write16(HOST_GS_SELECTOR, 0);
1175 host->gs_sel = gs_sel;
1176 }
1177 if (unlikely(fs_base != host->fs_base)) {
1178 vmcs_writel(HOST_FS_BASE, fs_base);
1179 host->fs_base = fs_base;
1180 }
1181 if (unlikely(gs_base != host->gs_base)) {
1182 vmcs_writel(HOST_GS_BASE, gs_base);
1183 host->gs_base = gs_base;
1184 }
1185 }
1186
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1187 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1188 {
1189 struct vcpu_vmx *vmx = to_vmx(vcpu);
1190 struct vmcs_host_state *host_state;
1191 #ifdef CONFIG_X86_64
1192 int cpu = raw_smp_processor_id();
1193 #endif
1194 unsigned long fs_base, gs_base;
1195 u16 fs_sel, gs_sel;
1196 int i;
1197
1198 vmx->req_immediate_exit = false;
1199
1200 /*
1201 * Note that guest MSRs to be saved/restored can also be changed
1202 * when guest state is loaded. This happens when guest transitions
1203 * to/from long-mode by setting MSR_EFER.LMA.
1204 */
1205 if (!vmx->guest_uret_msrs_loaded) {
1206 vmx->guest_uret_msrs_loaded = true;
1207 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1208 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1209 continue;
1210
1211 kvm_set_user_return_msr(i,
1212 vmx->guest_uret_msrs[i].data,
1213 vmx->guest_uret_msrs[i].mask);
1214 }
1215 }
1216
1217 if (vmx->nested.need_vmcs12_to_shadow_sync)
1218 nested_sync_vmcs12_to_shadow(vcpu);
1219
1220 if (vmx->guest_state_loaded)
1221 return;
1222
1223 host_state = &vmx->loaded_vmcs->host_state;
1224
1225 /*
1226 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1227 * allow segment selectors with cpl > 0 or ti == 1.
1228 */
1229 host_state->ldt_sel = kvm_read_ldt();
1230
1231 #ifdef CONFIG_X86_64
1232 savesegment(ds, host_state->ds_sel);
1233 savesegment(es, host_state->es_sel);
1234
1235 gs_base = cpu_kernelmode_gs_base(cpu);
1236 if (likely(is_64bit_mm(current->mm))) {
1237 current_save_fsgs();
1238 fs_sel = current->thread.fsindex;
1239 gs_sel = current->thread.gsindex;
1240 fs_base = current->thread.fsbase;
1241 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1242 } else {
1243 savesegment(fs, fs_sel);
1244 savesegment(gs, gs_sel);
1245 fs_base = read_msr(MSR_FS_BASE);
1246 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1247 }
1248
1249 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1250 #else
1251 savesegment(fs, fs_sel);
1252 savesegment(gs, gs_sel);
1253 fs_base = segment_base(fs_sel);
1254 gs_base = segment_base(gs_sel);
1255 #endif
1256
1257 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1258 vmx->guest_state_loaded = true;
1259 }
1260
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1261 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1262 {
1263 struct vmcs_host_state *host_state;
1264
1265 if (!vmx->guest_state_loaded)
1266 return;
1267
1268 host_state = &vmx->loaded_vmcs->host_state;
1269
1270 ++vmx->vcpu.stat.host_state_reload;
1271
1272 #ifdef CONFIG_X86_64
1273 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1274 #endif
1275 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1276 kvm_load_ldt(host_state->ldt_sel);
1277 #ifdef CONFIG_X86_64
1278 load_gs_index(host_state->gs_sel);
1279 #else
1280 loadsegment(gs, host_state->gs_sel);
1281 #endif
1282 }
1283 if (host_state->fs_sel & 7)
1284 loadsegment(fs, host_state->fs_sel);
1285 #ifdef CONFIG_X86_64
1286 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1287 loadsegment(ds, host_state->ds_sel);
1288 loadsegment(es, host_state->es_sel);
1289 }
1290 #endif
1291 invalidate_tss_limit();
1292 #ifdef CONFIG_X86_64
1293 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1294 #endif
1295 load_fixmap_gdt(raw_smp_processor_id());
1296 vmx->guest_state_loaded = false;
1297 vmx->guest_uret_msrs_loaded = false;
1298 }
1299
1300 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1301 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1302 {
1303 preempt_disable();
1304 if (vmx->guest_state_loaded)
1305 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1306 preempt_enable();
1307 return vmx->msr_guest_kernel_gs_base;
1308 }
1309
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1310 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1311 {
1312 preempt_disable();
1313 if (vmx->guest_state_loaded)
1314 wrmsrl(MSR_KERNEL_GS_BASE, data);
1315 preempt_enable();
1316 vmx->msr_guest_kernel_gs_base = data;
1317 }
1318 #endif
1319
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1321 struct loaded_vmcs *buddy)
1322 {
1323 struct vcpu_vmx *vmx = to_vmx(vcpu);
1324 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1325 struct vmcs *prev;
1326
1327 if (!already_loaded) {
1328 loaded_vmcs_clear(vmx->loaded_vmcs);
1329 local_irq_disable();
1330
1331 /*
1332 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1333 * this cpu's percpu list, otherwise it may not yet be deleted
1334 * from its previous cpu's percpu list. Pairs with the
1335 * smb_wmb() in __loaded_vmcs_clear().
1336 */
1337 smp_rmb();
1338
1339 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1340 &per_cpu(loaded_vmcss_on_cpu, cpu));
1341 local_irq_enable();
1342 }
1343
1344 prev = per_cpu(current_vmcs, cpu);
1345 if (prev != vmx->loaded_vmcs->vmcs) {
1346 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1347 vmcs_load(vmx->loaded_vmcs->vmcs);
1348
1349 /*
1350 * No indirect branch prediction barrier needed when switching
1351 * the active VMCS within a guest, e.g. on nested VM-Enter.
1352 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1353 */
1354 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1355 indirect_branch_prediction_barrier();
1356 }
1357
1358 if (!already_loaded) {
1359 void *gdt = get_current_gdt_ro();
1360
1361 /*
1362 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1363 * TLB entries from its previous association with the vCPU.
1364 */
1365 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1366
1367 /*
1368 * Linux uses per-cpu TSS and GDT, so set these when switching
1369 * processors. See 22.2.4.
1370 */
1371 vmcs_writel(HOST_TR_BASE,
1372 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1373 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1374
1375 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1376 /* 22.2.3 */
1377 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1378 (unsigned long)(cpu_entry_stack(cpu) + 1));
1379 }
1380
1381 vmx->loaded_vmcs->cpu = cpu;
1382 }
1383 }
1384
1385 /*
1386 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1387 * vcpu mutex is already taken.
1388 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1389 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1390 {
1391 struct vcpu_vmx *vmx = to_vmx(vcpu);
1392
1393 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1394
1395 vmx_vcpu_pi_load(vcpu, cpu);
1396
1397 vmx->host_debugctlmsr = get_debugctlmsr();
1398 }
1399
vmx_vcpu_put(struct kvm_vcpu * vcpu)1400 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1401 {
1402 vmx_vcpu_pi_put(vcpu);
1403
1404 vmx_prepare_switch_to_host(to_vmx(vcpu));
1405 }
1406
vmx_emulation_required(struct kvm_vcpu * vcpu)1407 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1408 {
1409 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1410 }
1411
vmx_get_rflags(struct kvm_vcpu * vcpu)1412 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1413 {
1414 struct vcpu_vmx *vmx = to_vmx(vcpu);
1415 unsigned long rflags, save_rflags;
1416
1417 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1418 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1419 rflags = vmcs_readl(GUEST_RFLAGS);
1420 if (vmx->rmode.vm86_active) {
1421 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1422 save_rflags = vmx->rmode.save_rflags;
1423 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1424 }
1425 vmx->rflags = rflags;
1426 }
1427 return vmx->rflags;
1428 }
1429
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1430 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1431 {
1432 struct vcpu_vmx *vmx = to_vmx(vcpu);
1433 unsigned long old_rflags;
1434
1435 if (is_unrestricted_guest(vcpu)) {
1436 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1437 vmx->rflags = rflags;
1438 vmcs_writel(GUEST_RFLAGS, rflags);
1439 return;
1440 }
1441
1442 old_rflags = vmx_get_rflags(vcpu);
1443 vmx->rflags = rflags;
1444 if (vmx->rmode.vm86_active) {
1445 vmx->rmode.save_rflags = rflags;
1446 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1447 }
1448 vmcs_writel(GUEST_RFLAGS, rflags);
1449
1450 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1451 vmx->emulation_required = vmx_emulation_required(vcpu);
1452 }
1453
vmx_get_if_flag(struct kvm_vcpu * vcpu)1454 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1455 {
1456 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1457 }
1458
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1459 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1460 {
1461 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462 int ret = 0;
1463
1464 if (interruptibility & GUEST_INTR_STATE_STI)
1465 ret |= KVM_X86_SHADOW_INT_STI;
1466 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1467 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1468
1469 return ret;
1470 }
1471
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1472 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1473 {
1474 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1475 u32 interruptibility = interruptibility_old;
1476
1477 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1478
1479 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1480 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1481 else if (mask & KVM_X86_SHADOW_INT_STI)
1482 interruptibility |= GUEST_INTR_STATE_STI;
1483
1484 if ((interruptibility != interruptibility_old))
1485 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1486 }
1487
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1488 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1489 {
1490 struct vcpu_vmx *vmx = to_vmx(vcpu);
1491 unsigned long value;
1492
1493 /*
1494 * Any MSR write that attempts to change bits marked reserved will
1495 * case a #GP fault.
1496 */
1497 if (data & vmx->pt_desc.ctl_bitmask)
1498 return 1;
1499
1500 /*
1501 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1502 * result in a #GP unless the same write also clears TraceEn.
1503 */
1504 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1505 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1506 return 1;
1507
1508 /*
1509 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1510 * and FabricEn would cause #GP, if
1511 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1512 */
1513 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1514 !(data & RTIT_CTL_FABRIC_EN) &&
1515 !intel_pt_validate_cap(vmx->pt_desc.caps,
1516 PT_CAP_single_range_output))
1517 return 1;
1518
1519 /*
1520 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1521 * utilize encodings marked reserved will cause a #GP fault.
1522 */
1523 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1524 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1525 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1526 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1527 return 1;
1528 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1529 PT_CAP_cycle_thresholds);
1530 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1531 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1532 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1533 return 1;
1534 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1535 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1536 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1537 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1538 return 1;
1539
1540 /*
1541 * If ADDRx_CFG is reserved or the encodings is >2 will
1542 * cause a #GP fault.
1543 */
1544 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1545 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1546 return 1;
1547 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1548 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1549 return 1;
1550 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1551 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1552 return 1;
1553 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1554 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1555 return 1;
1556
1557 return 0;
1558 }
1559
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1560 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1561 void *insn, int insn_len)
1562 {
1563 /*
1564 * Emulation of instructions in SGX enclaves is impossible as RIP does
1565 * not point at the failing instruction, and even if it did, the code
1566 * stream is inaccessible. Inject #UD instead of exiting to userspace
1567 * so that guest userspace can't DoS the guest simply by triggering
1568 * emulation (enclaves are CPL3 only).
1569 */
1570 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1571 kvm_queue_exception(vcpu, UD_VECTOR);
1572 return false;
1573 }
1574 return true;
1575 }
1576
skip_emulated_instruction(struct kvm_vcpu * vcpu)1577 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1578 {
1579 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1580 unsigned long rip, orig_rip;
1581 u32 instr_len;
1582
1583 /*
1584 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1585 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1586 * set when EPT misconfig occurs. In practice, real hardware updates
1587 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1588 * (namely Hyper-V) don't set it due to it being undefined behavior,
1589 * i.e. we end up advancing IP with some random value.
1590 */
1591 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1592 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1593 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1594
1595 /*
1596 * Emulating an enclave's instructions isn't supported as KVM
1597 * cannot access the enclave's memory or its true RIP, e.g. the
1598 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1599 * the RIP that actually triggered the VM-Exit. But, because
1600 * most instructions that cause VM-Exit will #UD in an enclave,
1601 * most instruction-based VM-Exits simply do not occur.
1602 *
1603 * There are a few exceptions, notably the debug instructions
1604 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1605 * and generate #DB/#BP as expected, which KVM might intercept.
1606 * But again, the CPU does the dirty work and saves an instr
1607 * length of zero so VMMs don't shoot themselves in the foot.
1608 * WARN if KVM tries to skip a non-zero length instruction on
1609 * a VM-Exit from an enclave.
1610 */
1611 if (!instr_len)
1612 goto rip_updated;
1613
1614 WARN(exit_reason.enclave_mode,
1615 "KVM: skipping instruction after SGX enclave VM-Exit");
1616
1617 orig_rip = kvm_rip_read(vcpu);
1618 rip = orig_rip + instr_len;
1619 #ifdef CONFIG_X86_64
1620 /*
1621 * We need to mask out the high 32 bits of RIP if not in 64-bit
1622 * mode, but just finding out that we are in 64-bit mode is
1623 * quite expensive. Only do it if there was a carry.
1624 */
1625 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1626 rip = (u32)rip;
1627 #endif
1628 kvm_rip_write(vcpu, rip);
1629 } else {
1630 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1631 return 0;
1632 }
1633
1634 rip_updated:
1635 /* skipping an emulated instruction also counts */
1636 vmx_set_interrupt_shadow(vcpu, 0);
1637
1638 return 1;
1639 }
1640
1641 /*
1642 * Recognizes a pending MTF VM-exit and records the nested state for later
1643 * delivery.
1644 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1645 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1646 {
1647 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1648 struct vcpu_vmx *vmx = to_vmx(vcpu);
1649
1650 if (!is_guest_mode(vcpu))
1651 return;
1652
1653 /*
1654 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1655 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1656 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1657 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1658 * as ICEBP is higher priority than both. As instruction emulation is
1659 * completed at this point (i.e. KVM is at the instruction boundary),
1660 * any #DB exception pending delivery must be a debug-trap of lower
1661 * priority than MTF. Record the pending MTF state to be delivered in
1662 * vmx_check_nested_events().
1663 */
1664 if (nested_cpu_has_mtf(vmcs12) &&
1665 (!vcpu->arch.exception.pending ||
1666 vcpu->arch.exception.vector == DB_VECTOR) &&
1667 (!vcpu->arch.exception_vmexit.pending ||
1668 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1669 vmx->nested.mtf_pending = true;
1670 kvm_make_request(KVM_REQ_EVENT, vcpu);
1671 } else {
1672 vmx->nested.mtf_pending = false;
1673 }
1674 }
1675
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1676 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1677 {
1678 vmx_update_emulated_instruction(vcpu);
1679 return skip_emulated_instruction(vcpu);
1680 }
1681
vmx_clear_hlt(struct kvm_vcpu * vcpu)1682 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1683 {
1684 /*
1685 * Ensure that we clear the HLT state in the VMCS. We don't need to
1686 * explicitly skip the instruction because if the HLT state is set,
1687 * then the instruction is already executing and RIP has already been
1688 * advanced.
1689 */
1690 if (kvm_hlt_in_guest(vcpu->kvm) &&
1691 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1692 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1693 }
1694
vmx_inject_exception(struct kvm_vcpu * vcpu)1695 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1696 {
1697 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1698 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1699 struct vcpu_vmx *vmx = to_vmx(vcpu);
1700
1701 kvm_deliver_exception_payload(vcpu, ex);
1702
1703 if (ex->has_error_code) {
1704 /*
1705 * Despite the error code being architecturally defined as 32
1706 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1707 * VMX don't actually supporting setting bits 31:16. Hardware
1708 * will (should) never provide a bogus error code, but AMD CPUs
1709 * do generate error codes with bits 31:16 set, and so KVM's
1710 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1711 * the upper bits to avoid VM-Fail, losing information that
1712 * does't really exist is preferable to killing the VM.
1713 */
1714 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1715 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1716 }
1717
1718 if (vmx->rmode.vm86_active) {
1719 int inc_eip = 0;
1720 if (kvm_exception_is_soft(ex->vector))
1721 inc_eip = vcpu->arch.event_exit_inst_len;
1722 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1723 return;
1724 }
1725
1726 WARN_ON_ONCE(vmx->emulation_required);
1727
1728 if (kvm_exception_is_soft(ex->vector)) {
1729 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1730 vmx->vcpu.arch.event_exit_inst_len);
1731 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1732 } else
1733 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1734
1735 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1736
1737 vmx_clear_hlt(vcpu);
1738 }
1739
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1740 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1741 bool load_into_hardware)
1742 {
1743 struct vmx_uret_msr *uret_msr;
1744
1745 uret_msr = vmx_find_uret_msr(vmx, msr);
1746 if (!uret_msr)
1747 return;
1748
1749 uret_msr->load_into_hardware = load_into_hardware;
1750 }
1751
1752 /*
1753 * Configuring user return MSRs to automatically save, load, and restore MSRs
1754 * that need to be shoved into hardware when running the guest. Note, omitting
1755 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1756 * loaded into hardware when running the guest.
1757 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1758 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1759 {
1760 #ifdef CONFIG_X86_64
1761 bool load_syscall_msrs;
1762
1763 /*
1764 * The SYSCALL MSRs are only needed on long mode guests, and only
1765 * when EFER.SCE is set.
1766 */
1767 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1768 (vmx->vcpu.arch.efer & EFER_SCE);
1769
1770 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1771 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1772 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1773 #endif
1774 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1775
1776 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1777 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1778 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1779
1780 /*
1781 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1782 * kernel and old userspace. If those guests run on a tsx=off host, do
1783 * allow guests to use TSX_CTRL, but don't change the value in hardware
1784 * so that TSX remains always disabled.
1785 */
1786 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1787
1788 /*
1789 * The set of MSRs to load may have changed, reload MSRs before the
1790 * next VM-Enter.
1791 */
1792 vmx->guest_uret_msrs_loaded = false;
1793 }
1794
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1795 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1796 {
1797 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1798
1799 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1800 return vmcs12->tsc_offset;
1801
1802 return 0;
1803 }
1804
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1805 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1806 {
1807 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1808
1809 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1810 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1811 return vmcs12->tsc_multiplier;
1812
1813 return kvm_caps.default_tsc_scaling_ratio;
1814 }
1815
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1816 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1817 {
1818 vmcs_write64(TSC_OFFSET, offset);
1819 }
1820
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 multiplier)1821 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1822 {
1823 vmcs_write64(TSC_MULTIPLIER, multiplier);
1824 }
1825
1826 /*
1827 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1828 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1829 * all guests if the "nested" module option is off, and can also be disabled
1830 * for a single guest by disabling its VMX cpuid bit.
1831 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1832 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1833 {
1834 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1835 }
1836
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1837 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1838 uint64_t val)
1839 {
1840 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1841
1842 return !(val & ~valid_bits);
1843 }
1844
vmx_get_msr_feature(struct kvm_msr_entry * msr)1845 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1846 {
1847 switch (msr->index) {
1848 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1849 if (!nested)
1850 return 1;
1851 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1852 case MSR_IA32_PERF_CAPABILITIES:
1853 msr->data = vmx_get_perf_capabilities();
1854 return 0;
1855 default:
1856 return KVM_MSR_RET_INVALID;
1857 }
1858 }
1859
1860 /*
1861 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1862 * Returns 0 on success, non-0 otherwise.
1863 * Assumes vcpu_load() was already called.
1864 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1865 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1866 {
1867 struct vcpu_vmx *vmx = to_vmx(vcpu);
1868 struct vmx_uret_msr *msr;
1869 u32 index;
1870
1871 switch (msr_info->index) {
1872 #ifdef CONFIG_X86_64
1873 case MSR_FS_BASE:
1874 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1875 break;
1876 case MSR_GS_BASE:
1877 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1878 break;
1879 case MSR_KERNEL_GS_BASE:
1880 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1881 break;
1882 #endif
1883 case MSR_EFER:
1884 return kvm_get_msr_common(vcpu, msr_info);
1885 case MSR_IA32_TSX_CTRL:
1886 if (!msr_info->host_initiated &&
1887 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1888 return 1;
1889 goto find_uret_msr;
1890 case MSR_IA32_UMWAIT_CONTROL:
1891 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1892 return 1;
1893
1894 msr_info->data = vmx->msr_ia32_umwait_control;
1895 break;
1896 case MSR_IA32_SPEC_CTRL:
1897 if (!msr_info->host_initiated &&
1898 !guest_has_spec_ctrl_msr(vcpu))
1899 return 1;
1900
1901 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1902 break;
1903 case MSR_IA32_SYSENTER_CS:
1904 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1905 break;
1906 case MSR_IA32_SYSENTER_EIP:
1907 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1908 break;
1909 case MSR_IA32_SYSENTER_ESP:
1910 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1911 break;
1912 case MSR_IA32_BNDCFGS:
1913 if (!kvm_mpx_supported() ||
1914 (!msr_info->host_initiated &&
1915 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1916 return 1;
1917 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1918 break;
1919 case MSR_IA32_MCG_EXT_CTL:
1920 if (!msr_info->host_initiated &&
1921 !(vmx->msr_ia32_feature_control &
1922 FEAT_CTL_LMCE_ENABLED))
1923 return 1;
1924 msr_info->data = vcpu->arch.mcg_ext_ctl;
1925 break;
1926 case MSR_IA32_FEAT_CTL:
1927 msr_info->data = vmx->msr_ia32_feature_control;
1928 break;
1929 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1930 if (!msr_info->host_initiated &&
1931 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1932 return 1;
1933 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1934 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1935 break;
1936 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1937 if (!nested_vmx_allowed(vcpu))
1938 return 1;
1939 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1940 &msr_info->data))
1941 return 1;
1942 /*
1943 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1944 * instead of just ignoring the features, different Hyper-V
1945 * versions are either trying to use them and fail or do some
1946 * sanity checking and refuse to boot. Filter all unsupported
1947 * features out.
1948 */
1949 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
1950 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
1951 &msr_info->data);
1952 break;
1953 case MSR_IA32_RTIT_CTL:
1954 if (!vmx_pt_mode_is_host_guest())
1955 return 1;
1956 msr_info->data = vmx->pt_desc.guest.ctl;
1957 break;
1958 case MSR_IA32_RTIT_STATUS:
1959 if (!vmx_pt_mode_is_host_guest())
1960 return 1;
1961 msr_info->data = vmx->pt_desc.guest.status;
1962 break;
1963 case MSR_IA32_RTIT_CR3_MATCH:
1964 if (!vmx_pt_mode_is_host_guest() ||
1965 !intel_pt_validate_cap(vmx->pt_desc.caps,
1966 PT_CAP_cr3_filtering))
1967 return 1;
1968 msr_info->data = vmx->pt_desc.guest.cr3_match;
1969 break;
1970 case MSR_IA32_RTIT_OUTPUT_BASE:
1971 if (!vmx_pt_mode_is_host_guest() ||
1972 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1973 PT_CAP_topa_output) &&
1974 !intel_pt_validate_cap(vmx->pt_desc.caps,
1975 PT_CAP_single_range_output)))
1976 return 1;
1977 msr_info->data = vmx->pt_desc.guest.output_base;
1978 break;
1979 case MSR_IA32_RTIT_OUTPUT_MASK:
1980 if (!vmx_pt_mode_is_host_guest() ||
1981 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1982 PT_CAP_topa_output) &&
1983 !intel_pt_validate_cap(vmx->pt_desc.caps,
1984 PT_CAP_single_range_output)))
1985 return 1;
1986 msr_info->data = vmx->pt_desc.guest.output_mask;
1987 break;
1988 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1989 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1990 if (!vmx_pt_mode_is_host_guest() ||
1991 (index >= 2 * vmx->pt_desc.num_address_ranges))
1992 return 1;
1993 if (index % 2)
1994 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1995 else
1996 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1997 break;
1998 case MSR_IA32_DEBUGCTLMSR:
1999 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2000 break;
2001 default:
2002 find_uret_msr:
2003 msr = vmx_find_uret_msr(vmx, msr_info->index);
2004 if (msr) {
2005 msr_info->data = msr->data;
2006 break;
2007 }
2008 return kvm_get_msr_common(vcpu, msr_info);
2009 }
2010
2011 return 0;
2012 }
2013
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2014 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2015 u64 data)
2016 {
2017 #ifdef CONFIG_X86_64
2018 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2019 return (u32)data;
2020 #endif
2021 return (unsigned long)data;
2022 }
2023
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2024 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2025 {
2026 u64 debugctl = 0;
2027
2028 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2029 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2030 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2031
2032 if ((vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT) &&
2033 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2034 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2035
2036 return debugctl;
2037 }
2038
2039 /*
2040 * Writes msr value into the appropriate "register".
2041 * Returns 0 on success, non-0 otherwise.
2042 * Assumes vcpu_load() was already called.
2043 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2044 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2045 {
2046 struct vcpu_vmx *vmx = to_vmx(vcpu);
2047 struct vmx_uret_msr *msr;
2048 int ret = 0;
2049 u32 msr_index = msr_info->index;
2050 u64 data = msr_info->data;
2051 u32 index;
2052
2053 switch (msr_index) {
2054 case MSR_EFER:
2055 ret = kvm_set_msr_common(vcpu, msr_info);
2056 break;
2057 #ifdef CONFIG_X86_64
2058 case MSR_FS_BASE:
2059 vmx_segment_cache_clear(vmx);
2060 vmcs_writel(GUEST_FS_BASE, data);
2061 break;
2062 case MSR_GS_BASE:
2063 vmx_segment_cache_clear(vmx);
2064 vmcs_writel(GUEST_GS_BASE, data);
2065 break;
2066 case MSR_KERNEL_GS_BASE:
2067 vmx_write_guest_kernel_gs_base(vmx, data);
2068 break;
2069 case MSR_IA32_XFD:
2070 ret = kvm_set_msr_common(vcpu, msr_info);
2071 /*
2072 * Always intercepting WRMSR could incur non-negligible
2073 * overhead given xfd might be changed frequently in
2074 * guest context switch. Disable write interception
2075 * upon the first write with a non-zero value (indicating
2076 * potential usage on dynamic xfeatures). Also update
2077 * exception bitmap to trap #NM for proper virtualization
2078 * of guest xfd_err.
2079 */
2080 if (!ret && data) {
2081 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2082 MSR_TYPE_RW);
2083 vcpu->arch.xfd_no_write_intercept = true;
2084 vmx_update_exception_bitmap(vcpu);
2085 }
2086 break;
2087 #endif
2088 case MSR_IA32_SYSENTER_CS:
2089 if (is_guest_mode(vcpu))
2090 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2091 vmcs_write32(GUEST_SYSENTER_CS, data);
2092 break;
2093 case MSR_IA32_SYSENTER_EIP:
2094 if (is_guest_mode(vcpu)) {
2095 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2096 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2097 }
2098 vmcs_writel(GUEST_SYSENTER_EIP, data);
2099 break;
2100 case MSR_IA32_SYSENTER_ESP:
2101 if (is_guest_mode(vcpu)) {
2102 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2103 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2104 }
2105 vmcs_writel(GUEST_SYSENTER_ESP, data);
2106 break;
2107 case MSR_IA32_DEBUGCTLMSR: {
2108 u64 invalid;
2109
2110 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2111 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2112 if (report_ignored_msrs)
2113 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2114 __func__, data);
2115 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2116 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2117 }
2118
2119 if (invalid)
2120 return 1;
2121
2122 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2123 VM_EXIT_SAVE_DEBUG_CONTROLS)
2124 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2125
2126 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2127 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2128 (data & DEBUGCTLMSR_LBR))
2129 intel_pmu_create_guest_lbr_event(vcpu);
2130 return 0;
2131 }
2132 case MSR_IA32_BNDCFGS:
2133 if (!kvm_mpx_supported() ||
2134 (!msr_info->host_initiated &&
2135 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2136 return 1;
2137 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2138 (data & MSR_IA32_BNDCFGS_RSVD))
2139 return 1;
2140
2141 if (is_guest_mode(vcpu) &&
2142 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2143 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2144 get_vmcs12(vcpu)->guest_bndcfgs = data;
2145
2146 vmcs_write64(GUEST_BNDCFGS, data);
2147 break;
2148 case MSR_IA32_UMWAIT_CONTROL:
2149 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2150 return 1;
2151
2152 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2153 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2154 return 1;
2155
2156 vmx->msr_ia32_umwait_control = data;
2157 break;
2158 case MSR_IA32_SPEC_CTRL:
2159 if (!msr_info->host_initiated &&
2160 !guest_has_spec_ctrl_msr(vcpu))
2161 return 1;
2162
2163 if (kvm_spec_ctrl_test_value(data))
2164 return 1;
2165
2166 vmx->spec_ctrl = data;
2167 if (!data)
2168 break;
2169
2170 /*
2171 * For non-nested:
2172 * When it's written (to non-zero) for the first time, pass
2173 * it through.
2174 *
2175 * For nested:
2176 * The handling of the MSR bitmap for L2 guests is done in
2177 * nested_vmx_prepare_msr_bitmap. We should not touch the
2178 * vmcs02.msr_bitmap here since it gets completely overwritten
2179 * in the merging. We update the vmcs01 here for L1 as well
2180 * since it will end up touching the MSR anyway now.
2181 */
2182 vmx_disable_intercept_for_msr(vcpu,
2183 MSR_IA32_SPEC_CTRL,
2184 MSR_TYPE_RW);
2185 break;
2186 case MSR_IA32_TSX_CTRL:
2187 if (!msr_info->host_initiated &&
2188 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2189 return 1;
2190 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2191 return 1;
2192 goto find_uret_msr;
2193 case MSR_IA32_PRED_CMD:
2194 if (!msr_info->host_initiated &&
2195 !guest_has_pred_cmd_msr(vcpu))
2196 return 1;
2197
2198 if (data & ~PRED_CMD_IBPB)
2199 return 1;
2200 if (!boot_cpu_has(X86_FEATURE_IBPB))
2201 return 1;
2202 if (!data)
2203 break;
2204
2205 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2206
2207 /*
2208 * For non-nested:
2209 * When it's written (to non-zero) for the first time, pass
2210 * it through.
2211 *
2212 * For nested:
2213 * The handling of the MSR bitmap for L2 guests is done in
2214 * nested_vmx_prepare_msr_bitmap. We should not touch the
2215 * vmcs02.msr_bitmap here since it gets completely overwritten
2216 * in the merging.
2217 */
2218 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2219 break;
2220 case MSR_IA32_CR_PAT:
2221 if (!kvm_pat_valid(data))
2222 return 1;
2223
2224 if (is_guest_mode(vcpu) &&
2225 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2226 get_vmcs12(vcpu)->guest_ia32_pat = data;
2227
2228 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2229 vmcs_write64(GUEST_IA32_PAT, data);
2230 vcpu->arch.pat = data;
2231 break;
2232 }
2233 ret = kvm_set_msr_common(vcpu, msr_info);
2234 break;
2235 case MSR_IA32_MCG_EXT_CTL:
2236 if ((!msr_info->host_initiated &&
2237 !(to_vmx(vcpu)->msr_ia32_feature_control &
2238 FEAT_CTL_LMCE_ENABLED)) ||
2239 (data & ~MCG_EXT_CTL_LMCE_EN))
2240 return 1;
2241 vcpu->arch.mcg_ext_ctl = data;
2242 break;
2243 case MSR_IA32_FEAT_CTL:
2244 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2245 (to_vmx(vcpu)->msr_ia32_feature_control &
2246 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2247 return 1;
2248 vmx->msr_ia32_feature_control = data;
2249 if (msr_info->host_initiated && data == 0)
2250 vmx_leave_nested(vcpu);
2251
2252 /* SGX may be enabled/disabled by guest's firmware */
2253 vmx_write_encls_bitmap(vcpu, NULL);
2254 break;
2255 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2256 /*
2257 * On real hardware, the LE hash MSRs are writable before
2258 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2259 * at which point SGX related bits in IA32_FEATURE_CONTROL
2260 * become writable.
2261 *
2262 * KVM does not emulate SGX activation for simplicity, so
2263 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2264 * is unlocked. This is technically not architectural
2265 * behavior, but it's close enough.
2266 */
2267 if (!msr_info->host_initiated &&
2268 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2269 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2270 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2271 return 1;
2272 vmx->msr_ia32_sgxlepubkeyhash
2273 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2274 break;
2275 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2276 if (!msr_info->host_initiated)
2277 return 1; /* they are read-only */
2278 if (!nested_vmx_allowed(vcpu))
2279 return 1;
2280 return vmx_set_vmx_msr(vcpu, msr_index, data);
2281 case MSR_IA32_RTIT_CTL:
2282 if (!vmx_pt_mode_is_host_guest() ||
2283 vmx_rtit_ctl_check(vcpu, data) ||
2284 vmx->nested.vmxon)
2285 return 1;
2286 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2287 vmx->pt_desc.guest.ctl = data;
2288 pt_update_intercept_for_msr(vcpu);
2289 break;
2290 case MSR_IA32_RTIT_STATUS:
2291 if (!pt_can_write_msr(vmx))
2292 return 1;
2293 if (data & MSR_IA32_RTIT_STATUS_MASK)
2294 return 1;
2295 vmx->pt_desc.guest.status = data;
2296 break;
2297 case MSR_IA32_RTIT_CR3_MATCH:
2298 if (!pt_can_write_msr(vmx))
2299 return 1;
2300 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2301 PT_CAP_cr3_filtering))
2302 return 1;
2303 vmx->pt_desc.guest.cr3_match = data;
2304 break;
2305 case MSR_IA32_RTIT_OUTPUT_BASE:
2306 if (!pt_can_write_msr(vmx))
2307 return 1;
2308 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2309 PT_CAP_topa_output) &&
2310 !intel_pt_validate_cap(vmx->pt_desc.caps,
2311 PT_CAP_single_range_output))
2312 return 1;
2313 if (!pt_output_base_valid(vcpu, data))
2314 return 1;
2315 vmx->pt_desc.guest.output_base = data;
2316 break;
2317 case MSR_IA32_RTIT_OUTPUT_MASK:
2318 if (!pt_can_write_msr(vmx))
2319 return 1;
2320 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2321 PT_CAP_topa_output) &&
2322 !intel_pt_validate_cap(vmx->pt_desc.caps,
2323 PT_CAP_single_range_output))
2324 return 1;
2325 vmx->pt_desc.guest.output_mask = data;
2326 break;
2327 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2328 if (!pt_can_write_msr(vmx))
2329 return 1;
2330 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2331 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2332 return 1;
2333 if (is_noncanonical_address(data, vcpu))
2334 return 1;
2335 if (index % 2)
2336 vmx->pt_desc.guest.addr_b[index / 2] = data;
2337 else
2338 vmx->pt_desc.guest.addr_a[index / 2] = data;
2339 break;
2340 case MSR_IA32_PERF_CAPABILITIES:
2341 if (data && !vcpu_to_pmu(vcpu)->version)
2342 return 1;
2343 if (data & PMU_CAP_LBR_FMT) {
2344 if ((data & PMU_CAP_LBR_FMT) !=
2345 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2346 return 1;
2347 if (!cpuid_model_is_consistent(vcpu))
2348 return 1;
2349 }
2350 if (data & PERF_CAP_PEBS_FORMAT) {
2351 if ((data & PERF_CAP_PEBS_MASK) !=
2352 (vmx_get_perf_capabilities() & PERF_CAP_PEBS_MASK))
2353 return 1;
2354 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2355 return 1;
2356 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2357 return 1;
2358 if (!cpuid_model_is_consistent(vcpu))
2359 return 1;
2360 }
2361 ret = kvm_set_msr_common(vcpu, msr_info);
2362 break;
2363
2364 default:
2365 find_uret_msr:
2366 msr = vmx_find_uret_msr(vmx, msr_index);
2367 if (msr)
2368 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2369 else
2370 ret = kvm_set_msr_common(vcpu, msr_info);
2371 }
2372
2373 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2374 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2375 vmx_update_fb_clear_dis(vcpu, vmx);
2376
2377 return ret;
2378 }
2379
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2380 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2381 {
2382 unsigned long guest_owned_bits;
2383
2384 kvm_register_mark_available(vcpu, reg);
2385
2386 switch (reg) {
2387 case VCPU_REGS_RSP:
2388 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2389 break;
2390 case VCPU_REGS_RIP:
2391 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2392 break;
2393 case VCPU_EXREG_PDPTR:
2394 if (enable_ept)
2395 ept_save_pdptrs(vcpu);
2396 break;
2397 case VCPU_EXREG_CR0:
2398 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2399
2400 vcpu->arch.cr0 &= ~guest_owned_bits;
2401 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2402 break;
2403 case VCPU_EXREG_CR3:
2404 /*
2405 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2406 * CR3 is loaded into hardware, not the guest's CR3.
2407 */
2408 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2409 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2410 break;
2411 case VCPU_EXREG_CR4:
2412 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2413
2414 vcpu->arch.cr4 &= ~guest_owned_bits;
2415 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2416 break;
2417 default:
2418 KVM_BUG_ON(1, vcpu->kvm);
2419 break;
2420 }
2421 }
2422
cpu_has_kvm_support(void)2423 static __init int cpu_has_kvm_support(void)
2424 {
2425 return cpu_has_vmx();
2426 }
2427
vmx_disabled_by_bios(void)2428 static __init int vmx_disabled_by_bios(void)
2429 {
2430 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2431 !boot_cpu_has(X86_FEATURE_VMX);
2432 }
2433
kvm_cpu_vmxon(u64 vmxon_pointer)2434 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2435 {
2436 u64 msr;
2437
2438 cr4_set_bits(X86_CR4_VMXE);
2439
2440 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2441 _ASM_EXTABLE(1b, %l[fault])
2442 : : [vmxon_pointer] "m"(vmxon_pointer)
2443 : : fault);
2444 return 0;
2445
2446 fault:
2447 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2448 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2449 cr4_clear_bits(X86_CR4_VMXE);
2450
2451 return -EFAULT;
2452 }
2453
vmx_hardware_enable(void)2454 static int vmx_hardware_enable(void)
2455 {
2456 int cpu = raw_smp_processor_id();
2457 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2458 int r;
2459
2460 if (cr4_read_shadow() & X86_CR4_VMXE)
2461 return -EBUSY;
2462
2463 /*
2464 * This can happen if we hot-added a CPU but failed to allocate
2465 * VP assist page for it.
2466 */
2467 if (static_branch_unlikely(&enable_evmcs) &&
2468 !hv_get_vp_assist_page(cpu))
2469 return -EFAULT;
2470
2471 intel_pt_handle_vmx(1);
2472
2473 r = kvm_cpu_vmxon(phys_addr);
2474 if (r) {
2475 intel_pt_handle_vmx(0);
2476 return r;
2477 }
2478
2479 if (enable_ept)
2480 ept_sync_global();
2481
2482 return 0;
2483 }
2484
vmclear_local_loaded_vmcss(void)2485 static void vmclear_local_loaded_vmcss(void)
2486 {
2487 int cpu = raw_smp_processor_id();
2488 struct loaded_vmcs *v, *n;
2489
2490 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2491 loaded_vmcss_on_cpu_link)
2492 __loaded_vmcs_clear(v);
2493 }
2494
vmx_hardware_disable(void)2495 static void vmx_hardware_disable(void)
2496 {
2497 vmclear_local_loaded_vmcss();
2498
2499 if (cpu_vmxoff())
2500 kvm_spurious_fault();
2501
2502 intel_pt_handle_vmx(0);
2503 }
2504
2505 /*
2506 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2507 * directly instead of going through cpu_has(), to ensure KVM is trapping
2508 * ENCLS whenever it's supported in hardware. It does not matter whether
2509 * the host OS supports or has enabled SGX.
2510 */
cpu_has_sgx(void)2511 static bool cpu_has_sgx(void)
2512 {
2513 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2514 }
2515
2516 /*
2517 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2518 * can't be used due to errata where VM Exit may incorrectly clear
2519 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2520 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2521 */
cpu_has_perf_global_ctrl_bug(void)2522 static bool cpu_has_perf_global_ctrl_bug(void)
2523 {
2524 if (boot_cpu_data.x86 == 0x6) {
2525 switch (boot_cpu_data.x86_model) {
2526 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2527 case INTEL_FAM6_NEHALEM: /* AAP115 */
2528 case INTEL_FAM6_WESTMERE: /* AAT100 */
2529 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2530 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2531 return true;
2532 default:
2533 break;
2534 }
2535 }
2536
2537 return false;
2538 }
2539
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2540 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2541 u32 msr, u32 *result)
2542 {
2543 u32 vmx_msr_low, vmx_msr_high;
2544 u32 ctl = ctl_min | ctl_opt;
2545
2546 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2547
2548 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2549 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2550
2551 /* Ensure minimum (required) set of control bits are supported. */
2552 if (ctl_min & ~ctl)
2553 return -EIO;
2554
2555 *result = ctl;
2556 return 0;
2557 }
2558
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2559 static __init u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2560 {
2561 u64 allowed;
2562
2563 rdmsrl(msr, allowed);
2564
2565 return ctl_opt & allowed;
2566 }
2567
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2568 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2569 struct vmx_capability *vmx_cap)
2570 {
2571 u32 vmx_msr_low, vmx_msr_high;
2572 u32 _pin_based_exec_control = 0;
2573 u32 _cpu_based_exec_control = 0;
2574 u32 _cpu_based_2nd_exec_control = 0;
2575 u64 _cpu_based_3rd_exec_control = 0;
2576 u32 _vmexit_control = 0;
2577 u32 _vmentry_control = 0;
2578 u64 misc_msr;
2579 int i;
2580
2581 /*
2582 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2583 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2584 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2585 */
2586 struct {
2587 u32 entry_control;
2588 u32 exit_control;
2589 } const vmcs_entry_exit_pairs[] = {
2590 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2591 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2592 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2593 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2594 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2595 };
2596
2597 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2598
2599 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2600 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2601 MSR_IA32_VMX_PROCBASED_CTLS,
2602 &_cpu_based_exec_control))
2603 return -EIO;
2604 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2605 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2606 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2607 MSR_IA32_VMX_PROCBASED_CTLS2,
2608 &_cpu_based_2nd_exec_control))
2609 return -EIO;
2610 }
2611 #ifndef CONFIG_X86_64
2612 if (!(_cpu_based_2nd_exec_control &
2613 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2614 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2615 #endif
2616
2617 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2618 _cpu_based_2nd_exec_control &= ~(
2619 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2620 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2621 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2622
2623 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2624 &vmx_cap->ept, &vmx_cap->vpid);
2625
2626 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2627 vmx_cap->ept) {
2628 pr_warn_once("EPT CAP should not exist if not support "
2629 "1-setting enable EPT VM-execution control\n");
2630
2631 if (error_on_inconsistent_vmcs_config)
2632 return -EIO;
2633
2634 vmx_cap->ept = 0;
2635 }
2636 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2637 vmx_cap->vpid) {
2638 pr_warn_once("VPID CAP should not exist if not support "
2639 "1-setting enable VPID VM-execution control\n");
2640
2641 if (error_on_inconsistent_vmcs_config)
2642 return -EIO;
2643
2644 vmx_cap->vpid = 0;
2645 }
2646
2647 if (!cpu_has_sgx())
2648 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2649
2650 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2651 _cpu_based_3rd_exec_control =
2652 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2653 MSR_IA32_VMX_PROCBASED_CTLS3);
2654
2655 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2656 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2657 MSR_IA32_VMX_EXIT_CTLS,
2658 &_vmexit_control))
2659 return -EIO;
2660
2661 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2662 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2663 MSR_IA32_VMX_PINBASED_CTLS,
2664 &_pin_based_exec_control))
2665 return -EIO;
2666
2667 if (cpu_has_broken_vmx_preemption_timer())
2668 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2669 if (!(_cpu_based_2nd_exec_control &
2670 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2671 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2672
2673 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2674 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2675 MSR_IA32_VMX_ENTRY_CTLS,
2676 &_vmentry_control))
2677 return -EIO;
2678
2679 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2680 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2681 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2682
2683 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2684 continue;
2685
2686 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2687 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2688
2689 if (error_on_inconsistent_vmcs_config)
2690 return -EIO;
2691
2692 _vmentry_control &= ~n_ctrl;
2693 _vmexit_control &= ~x_ctrl;
2694 }
2695
2696 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2697
2698 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2699 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2700 return -EIO;
2701
2702 #ifdef CONFIG_X86_64
2703 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2704 if (vmx_msr_high & (1u<<16))
2705 return -EIO;
2706 #endif
2707
2708 /* Require Write-Back (WB) memory type for VMCS accesses. */
2709 if (((vmx_msr_high >> 18) & 15) != 6)
2710 return -EIO;
2711
2712 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2713
2714 vmcs_conf->size = vmx_msr_high & 0x1fff;
2715 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2716
2717 vmcs_conf->revision_id = vmx_msr_low;
2718
2719 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2720 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2721 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2722 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2723 vmcs_conf->vmexit_ctrl = _vmexit_control;
2724 vmcs_conf->vmentry_ctrl = _vmentry_control;
2725 vmcs_conf->misc = misc_msr;
2726
2727 return 0;
2728 }
2729
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2730 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2731 {
2732 int node = cpu_to_node(cpu);
2733 struct page *pages;
2734 struct vmcs *vmcs;
2735
2736 pages = __alloc_pages_node(node, flags, 0);
2737 if (!pages)
2738 return NULL;
2739 vmcs = page_address(pages);
2740 memset(vmcs, 0, vmcs_config.size);
2741
2742 /* KVM supports Enlightened VMCS v1 only */
2743 if (static_branch_unlikely(&enable_evmcs))
2744 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2745 else
2746 vmcs->hdr.revision_id = vmcs_config.revision_id;
2747
2748 if (shadow)
2749 vmcs->hdr.shadow_vmcs = 1;
2750 return vmcs;
2751 }
2752
free_vmcs(struct vmcs * vmcs)2753 void free_vmcs(struct vmcs *vmcs)
2754 {
2755 free_page((unsigned long)vmcs);
2756 }
2757
2758 /*
2759 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2760 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2761 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2762 {
2763 if (!loaded_vmcs->vmcs)
2764 return;
2765 loaded_vmcs_clear(loaded_vmcs);
2766 free_vmcs(loaded_vmcs->vmcs);
2767 loaded_vmcs->vmcs = NULL;
2768 if (loaded_vmcs->msr_bitmap)
2769 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2770 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2771 }
2772
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2773 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2774 {
2775 loaded_vmcs->vmcs = alloc_vmcs(false);
2776 if (!loaded_vmcs->vmcs)
2777 return -ENOMEM;
2778
2779 vmcs_clear(loaded_vmcs->vmcs);
2780
2781 loaded_vmcs->shadow_vmcs = NULL;
2782 loaded_vmcs->hv_timer_soft_disabled = false;
2783 loaded_vmcs->cpu = -1;
2784 loaded_vmcs->launched = 0;
2785
2786 if (cpu_has_vmx_msr_bitmap()) {
2787 loaded_vmcs->msr_bitmap = (unsigned long *)
2788 __get_free_page(GFP_KERNEL_ACCOUNT);
2789 if (!loaded_vmcs->msr_bitmap)
2790 goto out_vmcs;
2791 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2792 }
2793
2794 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2795 memset(&loaded_vmcs->controls_shadow, 0,
2796 sizeof(struct vmcs_controls_shadow));
2797
2798 return 0;
2799
2800 out_vmcs:
2801 free_loaded_vmcs(loaded_vmcs);
2802 return -ENOMEM;
2803 }
2804
free_kvm_area(void)2805 static void free_kvm_area(void)
2806 {
2807 int cpu;
2808
2809 for_each_possible_cpu(cpu) {
2810 free_vmcs(per_cpu(vmxarea, cpu));
2811 per_cpu(vmxarea, cpu) = NULL;
2812 }
2813 }
2814
alloc_kvm_area(void)2815 static __init int alloc_kvm_area(void)
2816 {
2817 int cpu;
2818
2819 for_each_possible_cpu(cpu) {
2820 struct vmcs *vmcs;
2821
2822 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2823 if (!vmcs) {
2824 free_kvm_area();
2825 return -ENOMEM;
2826 }
2827
2828 /*
2829 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2830 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2831 * revision_id reported by MSR_IA32_VMX_BASIC.
2832 *
2833 * However, even though not explicitly documented by
2834 * TLFS, VMXArea passed as VMXON argument should
2835 * still be marked with revision_id reported by
2836 * physical CPU.
2837 */
2838 if (static_branch_unlikely(&enable_evmcs))
2839 vmcs->hdr.revision_id = vmcs_config.revision_id;
2840
2841 per_cpu(vmxarea, cpu) = vmcs;
2842 }
2843 return 0;
2844 }
2845
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2846 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2847 struct kvm_segment *save)
2848 {
2849 if (!emulate_invalid_guest_state) {
2850 /*
2851 * CS and SS RPL should be equal during guest entry according
2852 * to VMX spec, but in reality it is not always so. Since vcpu
2853 * is in the middle of the transition from real mode to
2854 * protected mode it is safe to assume that RPL 0 is a good
2855 * default value.
2856 */
2857 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2858 save->selector &= ~SEGMENT_RPL_MASK;
2859 save->dpl = save->selector & SEGMENT_RPL_MASK;
2860 save->s = 1;
2861 }
2862 __vmx_set_segment(vcpu, save, seg);
2863 }
2864
enter_pmode(struct kvm_vcpu * vcpu)2865 static void enter_pmode(struct kvm_vcpu *vcpu)
2866 {
2867 unsigned long flags;
2868 struct vcpu_vmx *vmx = to_vmx(vcpu);
2869
2870 /*
2871 * Update real mode segment cache. It may be not up-to-date if segment
2872 * register was written while vcpu was in a guest mode.
2873 */
2874 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2875 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2876 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2877 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2878 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2879 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2880
2881 vmx->rmode.vm86_active = 0;
2882
2883 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2884
2885 flags = vmcs_readl(GUEST_RFLAGS);
2886 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2887 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2888 vmcs_writel(GUEST_RFLAGS, flags);
2889
2890 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2891 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2892
2893 vmx_update_exception_bitmap(vcpu);
2894
2895 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2896 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2897 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2898 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2899 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2900 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2901 }
2902
fix_rmode_seg(int seg,struct kvm_segment * save)2903 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2904 {
2905 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2906 struct kvm_segment var = *save;
2907
2908 var.dpl = 0x3;
2909 if (seg == VCPU_SREG_CS)
2910 var.type = 0x3;
2911
2912 if (!emulate_invalid_guest_state) {
2913 var.selector = var.base >> 4;
2914 var.base = var.base & 0xffff0;
2915 var.limit = 0xffff;
2916 var.g = 0;
2917 var.db = 0;
2918 var.present = 1;
2919 var.s = 1;
2920 var.l = 0;
2921 var.unusable = 0;
2922 var.type = 0x3;
2923 var.avl = 0;
2924 if (save->base & 0xf)
2925 printk_once(KERN_WARNING "kvm: segment base is not "
2926 "paragraph aligned when entering "
2927 "protected mode (seg=%d)", seg);
2928 }
2929
2930 vmcs_write16(sf->selector, var.selector);
2931 vmcs_writel(sf->base, var.base);
2932 vmcs_write32(sf->limit, var.limit);
2933 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2934 }
2935
enter_rmode(struct kvm_vcpu * vcpu)2936 static void enter_rmode(struct kvm_vcpu *vcpu)
2937 {
2938 unsigned long flags;
2939 struct vcpu_vmx *vmx = to_vmx(vcpu);
2940 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2941
2942 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2943 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2944 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2945 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2946 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2947 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2948 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2949
2950 vmx->rmode.vm86_active = 1;
2951
2952 /*
2953 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2954 * vcpu. Warn the user that an update is overdue.
2955 */
2956 if (!kvm_vmx->tss_addr)
2957 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2958 "called before entering vcpu\n");
2959
2960 vmx_segment_cache_clear(vmx);
2961
2962 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2963 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2964 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2965
2966 flags = vmcs_readl(GUEST_RFLAGS);
2967 vmx->rmode.save_rflags = flags;
2968
2969 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2970
2971 vmcs_writel(GUEST_RFLAGS, flags);
2972 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2973 vmx_update_exception_bitmap(vcpu);
2974
2975 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2976 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2977 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2978 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2979 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2980 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2981 }
2982
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2983 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2984 {
2985 struct vcpu_vmx *vmx = to_vmx(vcpu);
2986
2987 /* Nothing to do if hardware doesn't support EFER. */
2988 if (!vmx_find_uret_msr(vmx, MSR_EFER))
2989 return 0;
2990
2991 vcpu->arch.efer = efer;
2992 #ifdef CONFIG_X86_64
2993 if (efer & EFER_LMA)
2994 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
2995 else
2996 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
2997 #else
2998 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
2999 return 1;
3000 #endif
3001
3002 vmx_setup_uret_msrs(vmx);
3003 return 0;
3004 }
3005
3006 #ifdef CONFIG_X86_64
3007
enter_lmode(struct kvm_vcpu * vcpu)3008 static void enter_lmode(struct kvm_vcpu *vcpu)
3009 {
3010 u32 guest_tr_ar;
3011
3012 vmx_segment_cache_clear(to_vmx(vcpu));
3013
3014 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3015 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3016 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3017 __func__);
3018 vmcs_write32(GUEST_TR_AR_BYTES,
3019 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3020 | VMX_AR_TYPE_BUSY_64_TSS);
3021 }
3022 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3023 }
3024
exit_lmode(struct kvm_vcpu * vcpu)3025 static void exit_lmode(struct kvm_vcpu *vcpu)
3026 {
3027 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3028 }
3029
3030 #endif
3031
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3032 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3033 {
3034 struct vcpu_vmx *vmx = to_vmx(vcpu);
3035
3036 /*
3037 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3038 * the CPU is not required to invalidate guest-physical mappings on
3039 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3040 * associated with the root EPT structure and not any particular VPID
3041 * (INVVPID also isn't required to invalidate guest-physical mappings).
3042 */
3043 if (enable_ept) {
3044 ept_sync_global();
3045 } else if (enable_vpid) {
3046 if (cpu_has_vmx_invvpid_global()) {
3047 vpid_sync_vcpu_global();
3048 } else {
3049 vpid_sync_vcpu_single(vmx->vpid);
3050 vpid_sync_vcpu_single(vmx->nested.vpid02);
3051 }
3052 }
3053 }
3054
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3055 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3056 {
3057 if (is_guest_mode(vcpu))
3058 return nested_get_vpid02(vcpu);
3059 return to_vmx(vcpu)->vpid;
3060 }
3061
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3062 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3063 {
3064 struct kvm_mmu *mmu = vcpu->arch.mmu;
3065 u64 root_hpa = mmu->root.hpa;
3066
3067 /* No flush required if the current context is invalid. */
3068 if (!VALID_PAGE(root_hpa))
3069 return;
3070
3071 if (enable_ept)
3072 ept_sync_context(construct_eptp(vcpu, root_hpa,
3073 mmu->root_role.level));
3074 else
3075 vpid_sync_context(vmx_get_current_vpid(vcpu));
3076 }
3077
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3078 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3079 {
3080 /*
3081 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3082 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3083 */
3084 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3085 }
3086
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3087 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3088 {
3089 /*
3090 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3091 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3092 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3093 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3094 * i.e. no explicit INVVPID is necessary.
3095 */
3096 vpid_sync_context(vmx_get_current_vpid(vcpu));
3097 }
3098
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3099 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3100 {
3101 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3102
3103 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3104 return;
3105
3106 if (is_pae_paging(vcpu)) {
3107 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3108 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3109 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3110 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3111 }
3112 }
3113
ept_save_pdptrs(struct kvm_vcpu * vcpu)3114 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3115 {
3116 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3117
3118 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3119 return;
3120
3121 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3122 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3123 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3124 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3125
3126 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3127 }
3128
3129 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3130 CPU_BASED_CR3_STORE_EXITING)
3131
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3132 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3133 {
3134 struct vcpu_vmx *vmx = to_vmx(vcpu);
3135 unsigned long hw_cr0, old_cr0_pg;
3136 u32 tmp;
3137
3138 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3139
3140 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3141 if (is_unrestricted_guest(vcpu))
3142 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3143 else {
3144 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3145 if (!enable_ept)
3146 hw_cr0 |= X86_CR0_WP;
3147
3148 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3149 enter_pmode(vcpu);
3150
3151 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3152 enter_rmode(vcpu);
3153 }
3154
3155 vmcs_writel(CR0_READ_SHADOW, cr0);
3156 vmcs_writel(GUEST_CR0, hw_cr0);
3157 vcpu->arch.cr0 = cr0;
3158 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3159
3160 #ifdef CONFIG_X86_64
3161 if (vcpu->arch.efer & EFER_LME) {
3162 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3163 enter_lmode(vcpu);
3164 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3165 exit_lmode(vcpu);
3166 }
3167 #endif
3168
3169 if (enable_ept && !is_unrestricted_guest(vcpu)) {
3170 /*
3171 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3172 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3173 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3174 * KVM's CR3 is installed.
3175 */
3176 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3177 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3178
3179 /*
3180 * When running with EPT but not unrestricted guest, KVM must
3181 * intercept CR3 accesses when paging is _disabled_. This is
3182 * necessary because restricted guests can't actually run with
3183 * paging disabled, and so KVM stuffs its own CR3 in order to
3184 * run the guest when identity mapped page tables.
3185 *
3186 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3187 * update, it may be stale with respect to CR3 interception,
3188 * e.g. after nested VM-Enter.
3189 *
3190 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3191 * stores to forward them to L1, even if KVM does not need to
3192 * intercept them to preserve its identity mapped page tables.
3193 */
3194 if (!(cr0 & X86_CR0_PG)) {
3195 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3196 } else if (!is_guest_mode(vcpu)) {
3197 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3198 } else {
3199 tmp = exec_controls_get(vmx);
3200 tmp &= ~CR3_EXITING_BITS;
3201 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3202 exec_controls_set(vmx, tmp);
3203 }
3204
3205 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3206 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3207 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3208
3209 /*
3210 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3211 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3212 */
3213 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3214 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3215 }
3216
3217 /* depends on vcpu->arch.cr0 to be set to a new value */
3218 vmx->emulation_required = vmx_emulation_required(vcpu);
3219 }
3220
vmx_get_max_tdp_level(void)3221 static int vmx_get_max_tdp_level(void)
3222 {
3223 if (cpu_has_vmx_ept_5levels())
3224 return 5;
3225 return 4;
3226 }
3227
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3228 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3229 {
3230 u64 eptp = VMX_EPTP_MT_WB;
3231
3232 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3233
3234 if (enable_ept_ad_bits &&
3235 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3236 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3237 eptp |= root_hpa;
3238
3239 return eptp;
3240 }
3241
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3242 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3243 int root_level)
3244 {
3245 struct kvm *kvm = vcpu->kvm;
3246 bool update_guest_cr3 = true;
3247 unsigned long guest_cr3;
3248 u64 eptp;
3249
3250 if (enable_ept) {
3251 eptp = construct_eptp(vcpu, root_hpa, root_level);
3252 vmcs_write64(EPT_POINTER, eptp);
3253
3254 hv_track_root_tdp(vcpu, root_hpa);
3255
3256 if (!enable_unrestricted_guest && !is_paging(vcpu))
3257 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3258 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3259 guest_cr3 = vcpu->arch.cr3;
3260 else /* vmcs.GUEST_CR3 is already up-to-date. */
3261 update_guest_cr3 = false;
3262 vmx_ept_load_pdptrs(vcpu);
3263 } else {
3264 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3265 }
3266
3267 if (update_guest_cr3)
3268 vmcs_writel(GUEST_CR3, guest_cr3);
3269 }
3270
3271
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3272 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3273 {
3274 /*
3275 * We operate under the default treatment of SMM, so VMX cannot be
3276 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3277 * i.e. is a reserved bit, is handled by common x86 code.
3278 */
3279 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3280 return false;
3281
3282 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3283 return false;
3284
3285 return true;
3286 }
3287
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3288 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3289 {
3290 unsigned long old_cr4 = vcpu->arch.cr4;
3291 struct vcpu_vmx *vmx = to_vmx(vcpu);
3292 /*
3293 * Pass through host's Machine Check Enable value to hw_cr4, which
3294 * is in force while we are in guest mode. Do not let guests control
3295 * this bit, even if host CR4.MCE == 0.
3296 */
3297 unsigned long hw_cr4;
3298
3299 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3300 if (is_unrestricted_guest(vcpu))
3301 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3302 else if (vmx->rmode.vm86_active)
3303 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3304 else
3305 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3306
3307 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3308 if (cr4 & X86_CR4_UMIP) {
3309 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3310 hw_cr4 &= ~X86_CR4_UMIP;
3311 } else if (!is_guest_mode(vcpu) ||
3312 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3313 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3314 }
3315 }
3316
3317 vcpu->arch.cr4 = cr4;
3318 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3319
3320 if (!is_unrestricted_guest(vcpu)) {
3321 if (enable_ept) {
3322 if (!is_paging(vcpu)) {
3323 hw_cr4 &= ~X86_CR4_PAE;
3324 hw_cr4 |= X86_CR4_PSE;
3325 } else if (!(cr4 & X86_CR4_PAE)) {
3326 hw_cr4 &= ~X86_CR4_PAE;
3327 }
3328 }
3329
3330 /*
3331 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3332 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3333 * to be manually disabled when guest switches to non-paging
3334 * mode.
3335 *
3336 * If !enable_unrestricted_guest, the CPU is always running
3337 * with CR0.PG=1 and CR4 needs to be modified.
3338 * If enable_unrestricted_guest, the CPU automatically
3339 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3340 */
3341 if (!is_paging(vcpu))
3342 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3343 }
3344
3345 vmcs_writel(CR4_READ_SHADOW, cr4);
3346 vmcs_writel(GUEST_CR4, hw_cr4);
3347
3348 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3349 kvm_update_cpuid_runtime(vcpu);
3350 }
3351
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3352 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3353 {
3354 struct vcpu_vmx *vmx = to_vmx(vcpu);
3355 u32 ar;
3356
3357 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3358 *var = vmx->rmode.segs[seg];
3359 if (seg == VCPU_SREG_TR
3360 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3361 return;
3362 var->base = vmx_read_guest_seg_base(vmx, seg);
3363 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3364 return;
3365 }
3366 var->base = vmx_read_guest_seg_base(vmx, seg);
3367 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3368 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3369 ar = vmx_read_guest_seg_ar(vmx, seg);
3370 var->unusable = (ar >> 16) & 1;
3371 var->type = ar & 15;
3372 var->s = (ar >> 4) & 1;
3373 var->dpl = (ar >> 5) & 3;
3374 /*
3375 * Some userspaces do not preserve unusable property. Since usable
3376 * segment has to be present according to VMX spec we can use present
3377 * property to amend userspace bug by making unusable segment always
3378 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3379 * segment as unusable.
3380 */
3381 var->present = !var->unusable;
3382 var->avl = (ar >> 12) & 1;
3383 var->l = (ar >> 13) & 1;
3384 var->db = (ar >> 14) & 1;
3385 var->g = (ar >> 15) & 1;
3386 }
3387
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3388 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3389 {
3390 struct kvm_segment s;
3391
3392 if (to_vmx(vcpu)->rmode.vm86_active) {
3393 vmx_get_segment(vcpu, &s, seg);
3394 return s.base;
3395 }
3396 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3397 }
3398
vmx_get_cpl(struct kvm_vcpu * vcpu)3399 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3400 {
3401 struct vcpu_vmx *vmx = to_vmx(vcpu);
3402
3403 if (unlikely(vmx->rmode.vm86_active))
3404 return 0;
3405 else {
3406 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3407 return VMX_AR_DPL(ar);
3408 }
3409 }
3410
vmx_segment_access_rights(struct kvm_segment * var)3411 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3412 {
3413 u32 ar;
3414
3415 ar = var->type & 15;
3416 ar |= (var->s & 1) << 4;
3417 ar |= (var->dpl & 3) << 5;
3418 ar |= (var->present & 1) << 7;
3419 ar |= (var->avl & 1) << 12;
3420 ar |= (var->l & 1) << 13;
3421 ar |= (var->db & 1) << 14;
3422 ar |= (var->g & 1) << 15;
3423 ar |= (var->unusable || !var->present) << 16;
3424
3425 return ar;
3426 }
3427
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3428 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3429 {
3430 struct vcpu_vmx *vmx = to_vmx(vcpu);
3431 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3432
3433 vmx_segment_cache_clear(vmx);
3434
3435 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3436 vmx->rmode.segs[seg] = *var;
3437 if (seg == VCPU_SREG_TR)
3438 vmcs_write16(sf->selector, var->selector);
3439 else if (var->s)
3440 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3441 return;
3442 }
3443
3444 vmcs_writel(sf->base, var->base);
3445 vmcs_write32(sf->limit, var->limit);
3446 vmcs_write16(sf->selector, var->selector);
3447
3448 /*
3449 * Fix the "Accessed" bit in AR field of segment registers for older
3450 * qemu binaries.
3451 * IA32 arch specifies that at the time of processor reset the
3452 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3453 * is setting it to 0 in the userland code. This causes invalid guest
3454 * state vmexit when "unrestricted guest" mode is turned on.
3455 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3456 * tree. Newer qemu binaries with that qemu fix would not need this
3457 * kvm hack.
3458 */
3459 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3460 var->type |= 0x1; /* Accessed */
3461
3462 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3463 }
3464
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3465 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3466 {
3467 __vmx_set_segment(vcpu, var, seg);
3468
3469 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3470 }
3471
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3472 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3473 {
3474 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3475
3476 *db = (ar >> 14) & 1;
3477 *l = (ar >> 13) & 1;
3478 }
3479
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3480 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3481 {
3482 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3483 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3484 }
3485
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3486 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3487 {
3488 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3489 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3490 }
3491
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3492 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3493 {
3494 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3495 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3496 }
3497
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3498 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3499 {
3500 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3501 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3502 }
3503
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3504 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3505 {
3506 struct kvm_segment var;
3507 u32 ar;
3508
3509 vmx_get_segment(vcpu, &var, seg);
3510 var.dpl = 0x3;
3511 if (seg == VCPU_SREG_CS)
3512 var.type = 0x3;
3513 ar = vmx_segment_access_rights(&var);
3514
3515 if (var.base != (var.selector << 4))
3516 return false;
3517 if (var.limit != 0xffff)
3518 return false;
3519 if (ar != 0xf3)
3520 return false;
3521
3522 return true;
3523 }
3524
code_segment_valid(struct kvm_vcpu * vcpu)3525 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3526 {
3527 struct kvm_segment cs;
3528 unsigned int cs_rpl;
3529
3530 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3531 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3532
3533 if (cs.unusable)
3534 return false;
3535 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3536 return false;
3537 if (!cs.s)
3538 return false;
3539 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3540 if (cs.dpl > cs_rpl)
3541 return false;
3542 } else {
3543 if (cs.dpl != cs_rpl)
3544 return false;
3545 }
3546 if (!cs.present)
3547 return false;
3548
3549 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3550 return true;
3551 }
3552
stack_segment_valid(struct kvm_vcpu * vcpu)3553 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3554 {
3555 struct kvm_segment ss;
3556 unsigned int ss_rpl;
3557
3558 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3559 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3560
3561 if (ss.unusable)
3562 return true;
3563 if (ss.type != 3 && ss.type != 7)
3564 return false;
3565 if (!ss.s)
3566 return false;
3567 if (ss.dpl != ss_rpl) /* DPL != RPL */
3568 return false;
3569 if (!ss.present)
3570 return false;
3571
3572 return true;
3573 }
3574
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3575 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3576 {
3577 struct kvm_segment var;
3578 unsigned int rpl;
3579
3580 vmx_get_segment(vcpu, &var, seg);
3581 rpl = var.selector & SEGMENT_RPL_MASK;
3582
3583 if (var.unusable)
3584 return true;
3585 if (!var.s)
3586 return false;
3587 if (!var.present)
3588 return false;
3589 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3590 if (var.dpl < rpl) /* DPL < RPL */
3591 return false;
3592 }
3593
3594 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3595 * rights flags
3596 */
3597 return true;
3598 }
3599
tr_valid(struct kvm_vcpu * vcpu)3600 static bool tr_valid(struct kvm_vcpu *vcpu)
3601 {
3602 struct kvm_segment tr;
3603
3604 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3605
3606 if (tr.unusable)
3607 return false;
3608 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3609 return false;
3610 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3611 return false;
3612 if (!tr.present)
3613 return false;
3614
3615 return true;
3616 }
3617
ldtr_valid(struct kvm_vcpu * vcpu)3618 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3619 {
3620 struct kvm_segment ldtr;
3621
3622 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3623
3624 if (ldtr.unusable)
3625 return true;
3626 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3627 return false;
3628 if (ldtr.type != 2)
3629 return false;
3630 if (!ldtr.present)
3631 return false;
3632
3633 return true;
3634 }
3635
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3636 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3637 {
3638 struct kvm_segment cs, ss;
3639
3640 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3641 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3642
3643 return ((cs.selector & SEGMENT_RPL_MASK) ==
3644 (ss.selector & SEGMENT_RPL_MASK));
3645 }
3646
3647 /*
3648 * Check if guest state is valid. Returns true if valid, false if
3649 * not.
3650 * We assume that registers are always usable
3651 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3652 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3653 {
3654 /* real mode guest state checks */
3655 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3656 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3657 return false;
3658 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3659 return false;
3660 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3661 return false;
3662 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3663 return false;
3664 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3665 return false;
3666 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3667 return false;
3668 } else {
3669 /* protected mode guest state checks */
3670 if (!cs_ss_rpl_check(vcpu))
3671 return false;
3672 if (!code_segment_valid(vcpu))
3673 return false;
3674 if (!stack_segment_valid(vcpu))
3675 return false;
3676 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3677 return false;
3678 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3679 return false;
3680 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3681 return false;
3682 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3683 return false;
3684 if (!tr_valid(vcpu))
3685 return false;
3686 if (!ldtr_valid(vcpu))
3687 return false;
3688 }
3689 /* TODO:
3690 * - Add checks on RIP
3691 * - Add checks on RFLAGS
3692 */
3693
3694 return true;
3695 }
3696
init_rmode_tss(struct kvm * kvm,void __user * ua)3697 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3698 {
3699 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3700 u16 data;
3701 int i;
3702
3703 for (i = 0; i < 3; i++) {
3704 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3705 return -EFAULT;
3706 }
3707
3708 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3709 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3710 return -EFAULT;
3711
3712 data = ~0;
3713 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3714 return -EFAULT;
3715
3716 return 0;
3717 }
3718
init_rmode_identity_map(struct kvm * kvm)3719 static int init_rmode_identity_map(struct kvm *kvm)
3720 {
3721 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3722 int i, r = 0;
3723 void __user *uaddr;
3724 u32 tmp;
3725
3726 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3727 mutex_lock(&kvm->slots_lock);
3728
3729 if (likely(kvm_vmx->ept_identity_pagetable_done))
3730 goto out;
3731
3732 if (!kvm_vmx->ept_identity_map_addr)
3733 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3734
3735 uaddr = __x86_set_memory_region(kvm,
3736 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3737 kvm_vmx->ept_identity_map_addr,
3738 PAGE_SIZE);
3739 if (IS_ERR(uaddr)) {
3740 r = PTR_ERR(uaddr);
3741 goto out;
3742 }
3743
3744 /* Set up identity-mapping pagetable for EPT in real mode */
3745 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3746 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3747 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3748 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3749 r = -EFAULT;
3750 goto out;
3751 }
3752 }
3753 kvm_vmx->ept_identity_pagetable_done = true;
3754
3755 out:
3756 mutex_unlock(&kvm->slots_lock);
3757 return r;
3758 }
3759
seg_setup(int seg)3760 static void seg_setup(int seg)
3761 {
3762 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3763 unsigned int ar;
3764
3765 vmcs_write16(sf->selector, 0);
3766 vmcs_writel(sf->base, 0);
3767 vmcs_write32(sf->limit, 0xffff);
3768 ar = 0x93;
3769 if (seg == VCPU_SREG_CS)
3770 ar |= 0x08; /* code segment */
3771
3772 vmcs_write32(sf->ar_bytes, ar);
3773 }
3774
alloc_apic_access_page(struct kvm * kvm)3775 static int alloc_apic_access_page(struct kvm *kvm)
3776 {
3777 struct page *page;
3778 void __user *hva;
3779 int ret = 0;
3780
3781 mutex_lock(&kvm->slots_lock);
3782 if (kvm->arch.apic_access_memslot_enabled)
3783 goto out;
3784 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3785 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3786 if (IS_ERR(hva)) {
3787 ret = PTR_ERR(hva);
3788 goto out;
3789 }
3790
3791 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3792 if (is_error_page(page)) {
3793 ret = -EFAULT;
3794 goto out;
3795 }
3796
3797 /*
3798 * Do not pin the page in memory, so that memory hot-unplug
3799 * is able to migrate it.
3800 */
3801 put_page(page);
3802 kvm->arch.apic_access_memslot_enabled = true;
3803 out:
3804 mutex_unlock(&kvm->slots_lock);
3805 return ret;
3806 }
3807
allocate_vpid(void)3808 int allocate_vpid(void)
3809 {
3810 int vpid;
3811
3812 if (!enable_vpid)
3813 return 0;
3814 spin_lock(&vmx_vpid_lock);
3815 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3816 if (vpid < VMX_NR_VPIDS)
3817 __set_bit(vpid, vmx_vpid_bitmap);
3818 else
3819 vpid = 0;
3820 spin_unlock(&vmx_vpid_lock);
3821 return vpid;
3822 }
3823
free_vpid(int vpid)3824 void free_vpid(int vpid)
3825 {
3826 if (!enable_vpid || vpid == 0)
3827 return;
3828 spin_lock(&vmx_vpid_lock);
3829 __clear_bit(vpid, vmx_vpid_bitmap);
3830 spin_unlock(&vmx_vpid_lock);
3831 }
3832
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3833 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3834 {
3835 /*
3836 * When KVM is a nested hypervisor on top of Hyper-V and uses
3837 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3838 * bitmap has changed.
3839 */
3840 if (static_branch_unlikely(&enable_evmcs))
3841 evmcs_touch_msr_bitmap();
3842
3843 vmx->nested.force_msr_bitmap_recalc = true;
3844 }
3845
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3846 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3847 {
3848 struct vcpu_vmx *vmx = to_vmx(vcpu);
3849 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3850
3851 if (!cpu_has_vmx_msr_bitmap())
3852 return;
3853
3854 vmx_msr_bitmap_l01_changed(vmx);
3855
3856 /*
3857 * Mark the desired intercept state in shadow bitmap, this is needed
3858 * for resync when the MSR filters change.
3859 */
3860 if (is_valid_passthrough_msr(msr)) {
3861 int idx = possible_passthrough_msr_slot(msr);
3862
3863 if (idx != -ENOENT) {
3864 if (type & MSR_TYPE_R)
3865 clear_bit(idx, vmx->shadow_msr_intercept.read);
3866 if (type & MSR_TYPE_W)
3867 clear_bit(idx, vmx->shadow_msr_intercept.write);
3868 }
3869 }
3870
3871 if ((type & MSR_TYPE_R) &&
3872 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3873 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3874 type &= ~MSR_TYPE_R;
3875 }
3876
3877 if ((type & MSR_TYPE_W) &&
3878 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3879 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3880 type &= ~MSR_TYPE_W;
3881 }
3882
3883 if (type & MSR_TYPE_R)
3884 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3885
3886 if (type & MSR_TYPE_W)
3887 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3888 }
3889
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3890 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3891 {
3892 struct vcpu_vmx *vmx = to_vmx(vcpu);
3893 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3894
3895 if (!cpu_has_vmx_msr_bitmap())
3896 return;
3897
3898 vmx_msr_bitmap_l01_changed(vmx);
3899
3900 /*
3901 * Mark the desired intercept state in shadow bitmap, this is needed
3902 * for resync when the MSR filter changes.
3903 */
3904 if (is_valid_passthrough_msr(msr)) {
3905 int idx = possible_passthrough_msr_slot(msr);
3906
3907 if (idx != -ENOENT) {
3908 if (type & MSR_TYPE_R)
3909 set_bit(idx, vmx->shadow_msr_intercept.read);
3910 if (type & MSR_TYPE_W)
3911 set_bit(idx, vmx->shadow_msr_intercept.write);
3912 }
3913 }
3914
3915 if (type & MSR_TYPE_R)
3916 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3917
3918 if (type & MSR_TYPE_W)
3919 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3920 }
3921
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3922 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3923 {
3924 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3925 unsigned long read_intercept;
3926 int msr;
3927
3928 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3929
3930 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3931 unsigned int read_idx = msr / BITS_PER_LONG;
3932 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3933
3934 msr_bitmap[read_idx] = read_intercept;
3935 msr_bitmap[write_idx] = ~0ul;
3936 }
3937 }
3938
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)3939 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3940 {
3941 struct vcpu_vmx *vmx = to_vmx(vcpu);
3942 u8 mode;
3943
3944 if (!cpu_has_vmx_msr_bitmap())
3945 return;
3946
3947 if (cpu_has_secondary_exec_ctrls() &&
3948 (secondary_exec_controls_get(vmx) &
3949 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3950 mode = MSR_BITMAP_MODE_X2APIC;
3951 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3952 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3953 } else {
3954 mode = 0;
3955 }
3956
3957 if (mode == vmx->x2apic_msr_bitmap_mode)
3958 return;
3959
3960 vmx->x2apic_msr_bitmap_mode = mode;
3961
3962 vmx_reset_x2apic_msrs(vcpu, mode);
3963
3964 /*
3965 * TPR reads and writes can be virtualized even if virtual interrupt
3966 * delivery is not in use.
3967 */
3968 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3969 !(mode & MSR_BITMAP_MODE_X2APIC));
3970
3971 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3972 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3973 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3974 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3975 if (enable_ipiv)
3976 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
3977 }
3978 }
3979
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3980 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3981 {
3982 struct vcpu_vmx *vmx = to_vmx(vcpu);
3983 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3984 u32 i;
3985
3986 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3987 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3988 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3989 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3990 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3991 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3992 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3993 }
3994 }
3995
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3996 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3997 {
3998 struct vcpu_vmx *vmx = to_vmx(vcpu);
3999 void *vapic_page;
4000 u32 vppr;
4001 int rvi;
4002
4003 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4004 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4005 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4006 return false;
4007
4008 rvi = vmx_get_rvi();
4009
4010 vapic_page = vmx->nested.virtual_apic_map.hva;
4011 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4012
4013 return ((rvi & 0xf0) > (vppr & 0xf0));
4014 }
4015
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4016 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4017 {
4018 struct vcpu_vmx *vmx = to_vmx(vcpu);
4019 u32 i;
4020
4021 /*
4022 * Redo intercept permissions for MSRs that KVM is passing through to
4023 * the guest. Disabling interception will check the new MSR filter and
4024 * ensure that KVM enables interception if usersepace wants to filter
4025 * the MSR. MSRs that KVM is already intercepting don't need to be
4026 * refreshed since KVM is going to intercept them regardless of what
4027 * userspace wants.
4028 */
4029 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4030 u32 msr = vmx_possible_passthrough_msrs[i];
4031
4032 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4033 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4034
4035 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4036 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4037 }
4038
4039 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4040 if (vmx_pt_mode_is_host_guest())
4041 pt_update_intercept_for_msr(vcpu);
4042 }
4043
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4044 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4045 int pi_vec)
4046 {
4047 #ifdef CONFIG_SMP
4048 if (vcpu->mode == IN_GUEST_MODE) {
4049 /*
4050 * The vector of the virtual has already been set in the PIR.
4051 * Send a notification event to deliver the virtual interrupt
4052 * unless the vCPU is the currently running vCPU, i.e. the
4053 * event is being sent from a fastpath VM-Exit handler, in
4054 * which case the PIR will be synced to the vIRR before
4055 * re-entering the guest.
4056 *
4057 * When the target is not the running vCPU, the following
4058 * possibilities emerge:
4059 *
4060 * Case 1: vCPU stays in non-root mode. Sending a notification
4061 * event posts the interrupt to the vCPU.
4062 *
4063 * Case 2: vCPU exits to root mode and is still runnable. The
4064 * PIR will be synced to the vIRR before re-entering the guest.
4065 * Sending a notification event is ok as the host IRQ handler
4066 * will ignore the spurious event.
4067 *
4068 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4069 * has already synced PIR to vIRR and never blocks the vCPU if
4070 * the vIRR is not empty. Therefore, a blocked vCPU here does
4071 * not wait for any requested interrupts in PIR, and sending a
4072 * notification event also results in a benign, spurious event.
4073 */
4074
4075 if (vcpu != kvm_get_running_vcpu())
4076 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4077 return;
4078 }
4079 #endif
4080 /*
4081 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4082 * otherwise do nothing as KVM will grab the highest priority pending
4083 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4084 */
4085 kvm_vcpu_wake_up(vcpu);
4086 }
4087
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4088 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4089 int vector)
4090 {
4091 struct vcpu_vmx *vmx = to_vmx(vcpu);
4092
4093 if (is_guest_mode(vcpu) &&
4094 vector == vmx->nested.posted_intr_nv) {
4095 /*
4096 * If a posted intr is not recognized by hardware,
4097 * we will accomplish it in the next vmentry.
4098 */
4099 vmx->nested.pi_pending = true;
4100 kvm_make_request(KVM_REQ_EVENT, vcpu);
4101
4102 /*
4103 * This pairs with the smp_mb_*() after setting vcpu->mode in
4104 * vcpu_enter_guest() to guarantee the vCPU sees the event
4105 * request if triggering a posted interrupt "fails" because
4106 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4107 * the smb_wmb() in kvm_make_request() only ensures everything
4108 * done before making the request is visible when the request
4109 * is visible, it doesn't ensure ordering between the store to
4110 * vcpu->requests and the load from vcpu->mode.
4111 */
4112 smp_mb__after_atomic();
4113
4114 /* the PIR and ON have been set by L1. */
4115 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4116 return 0;
4117 }
4118 return -1;
4119 }
4120 /*
4121 * Send interrupt to vcpu via posted interrupt way.
4122 * 1. If target vcpu is running(non-root mode), send posted interrupt
4123 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4124 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4125 * interrupt from PIR in next vmentry.
4126 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4127 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4128 {
4129 struct vcpu_vmx *vmx = to_vmx(vcpu);
4130 int r;
4131
4132 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4133 if (!r)
4134 return 0;
4135
4136 /* Note, this is called iff the local APIC is in-kernel. */
4137 if (!vcpu->arch.apic->apicv_active)
4138 return -1;
4139
4140 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4141 return 0;
4142
4143 /* If a previous notification has sent the IPI, nothing to do. */
4144 if (pi_test_and_set_on(&vmx->pi_desc))
4145 return 0;
4146
4147 /*
4148 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4149 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4150 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4151 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4152 */
4153 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4154 return 0;
4155 }
4156
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4157 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4158 int trig_mode, int vector)
4159 {
4160 struct kvm_vcpu *vcpu = apic->vcpu;
4161
4162 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4163 kvm_lapic_set_irr(vector, apic);
4164 kvm_make_request(KVM_REQ_EVENT, vcpu);
4165 kvm_vcpu_kick(vcpu);
4166 } else {
4167 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4168 trig_mode, vector);
4169 }
4170 }
4171
4172 /*
4173 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4174 * will not change in the lifetime of the guest.
4175 * Note that host-state that does change is set elsewhere. E.g., host-state
4176 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4177 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4178 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4179 {
4180 u32 low32, high32;
4181 unsigned long tmpl;
4182 unsigned long cr0, cr3, cr4;
4183
4184 cr0 = read_cr0();
4185 WARN_ON(cr0 & X86_CR0_TS);
4186 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4187
4188 /*
4189 * Save the most likely value for this task's CR3 in the VMCS.
4190 * We can't use __get_current_cr3_fast() because we're not atomic.
4191 */
4192 cr3 = __read_cr3();
4193 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4194 vmx->loaded_vmcs->host_state.cr3 = cr3;
4195
4196 /* Save the most likely value for this task's CR4 in the VMCS. */
4197 cr4 = cr4_read_shadow();
4198 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4199 vmx->loaded_vmcs->host_state.cr4 = cr4;
4200
4201 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4202 #ifdef CONFIG_X86_64
4203 /*
4204 * Load null selectors, so we can avoid reloading them in
4205 * vmx_prepare_switch_to_host(), in case userspace uses
4206 * the null selectors too (the expected case).
4207 */
4208 vmcs_write16(HOST_DS_SELECTOR, 0);
4209 vmcs_write16(HOST_ES_SELECTOR, 0);
4210 #else
4211 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4212 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4213 #endif
4214 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4215 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4216
4217 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4218
4219 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4220
4221 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4222 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4223
4224 /*
4225 * SYSENTER is used for 32-bit system calls on either 32-bit or
4226 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4227 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4228 * have already done so!).
4229 */
4230 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4231 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4232
4233 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4234 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4235
4236 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4237 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4238 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4239 }
4240
4241 if (cpu_has_load_ia32_efer())
4242 vmcs_write64(HOST_IA32_EFER, host_efer);
4243 }
4244
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4245 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4246 {
4247 struct kvm_vcpu *vcpu = &vmx->vcpu;
4248
4249 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4250 ~vcpu->arch.cr4_guest_rsvd_bits;
4251 if (!enable_ept) {
4252 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4253 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4254 }
4255 if (is_guest_mode(&vmx->vcpu))
4256 vcpu->arch.cr4_guest_owned_bits &=
4257 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4258 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4259 }
4260
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4261 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4262 {
4263 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4264
4265 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4266 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4267
4268 if (!enable_vnmi)
4269 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4270
4271 if (!enable_preemption_timer)
4272 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4273
4274 return pin_based_exec_ctrl;
4275 }
4276
vmx_vmentry_ctrl(void)4277 static u32 vmx_vmentry_ctrl(void)
4278 {
4279 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4280
4281 if (vmx_pt_mode_is_system())
4282 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4283 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4284 /*
4285 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4286 */
4287 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4288 VM_ENTRY_LOAD_IA32_EFER |
4289 VM_ENTRY_IA32E_MODE);
4290
4291 if (cpu_has_perf_global_ctrl_bug())
4292 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4293
4294 return vmentry_ctrl;
4295 }
4296
vmx_vmexit_ctrl(void)4297 static u32 vmx_vmexit_ctrl(void)
4298 {
4299 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4300
4301 /*
4302 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4303 * nested virtualization and thus allowed to be set in vmcs12.
4304 */
4305 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4306 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4307
4308 if (vmx_pt_mode_is_system())
4309 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4310 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4311
4312 if (cpu_has_perf_global_ctrl_bug())
4313 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4314
4315 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4316 return vmexit_ctrl &
4317 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4318 }
4319
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4320 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4321 {
4322 struct vcpu_vmx *vmx = to_vmx(vcpu);
4323
4324 if (is_guest_mode(vcpu)) {
4325 vmx->nested.update_vmcs01_apicv_status = true;
4326 return;
4327 }
4328
4329 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4330
4331 if (kvm_vcpu_apicv_active(vcpu)) {
4332 secondary_exec_controls_setbit(vmx,
4333 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4334 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4335 if (enable_ipiv)
4336 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4337 } else {
4338 secondary_exec_controls_clearbit(vmx,
4339 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4340 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4341 if (enable_ipiv)
4342 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4343 }
4344
4345 vmx_update_msr_bitmap_x2apic(vcpu);
4346 }
4347
vmx_exec_control(struct vcpu_vmx * vmx)4348 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4349 {
4350 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4351
4352 /*
4353 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4354 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4355 */
4356 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4357 CPU_BASED_USE_IO_BITMAPS |
4358 CPU_BASED_MONITOR_TRAP_FLAG |
4359 CPU_BASED_PAUSE_EXITING);
4360
4361 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4362 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4363 CPU_BASED_NMI_WINDOW_EXITING);
4364
4365 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4366 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4367
4368 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4369 exec_control &= ~CPU_BASED_TPR_SHADOW;
4370
4371 #ifdef CONFIG_X86_64
4372 if (exec_control & CPU_BASED_TPR_SHADOW)
4373 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4374 CPU_BASED_CR8_STORE_EXITING);
4375 else
4376 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4377 CPU_BASED_CR8_LOAD_EXITING;
4378 #endif
4379 /* No need to intercept CR3 access or INVPLG when using EPT. */
4380 if (enable_ept)
4381 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4382 CPU_BASED_CR3_STORE_EXITING |
4383 CPU_BASED_INVLPG_EXITING);
4384 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4385 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4386 CPU_BASED_MONITOR_EXITING);
4387 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4388 exec_control &= ~CPU_BASED_HLT_EXITING;
4389 return exec_control;
4390 }
4391
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4392 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4393 {
4394 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4395
4396 /*
4397 * IPI virtualization relies on APICv. Disable IPI virtualization if
4398 * APICv is inhibited.
4399 */
4400 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4401 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4402
4403 return exec_control;
4404 }
4405
4406 /*
4407 * Adjust a single secondary execution control bit to intercept/allow an
4408 * instruction in the guest. This is usually done based on whether or not a
4409 * feature has been exposed to the guest in order to correctly emulate faults.
4410 */
4411 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4412 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4413 u32 control, bool enabled, bool exiting)
4414 {
4415 /*
4416 * If the control is for an opt-in feature, clear the control if the
4417 * feature is not exposed to the guest, i.e. not enabled. If the
4418 * control is opt-out, i.e. an exiting control, clear the control if
4419 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4420 * disabled for the associated instruction. Note, the caller is
4421 * responsible presetting exec_control to set all supported bits.
4422 */
4423 if (enabled == exiting)
4424 *exec_control &= ~control;
4425
4426 /*
4427 * Update the nested MSR settings so that a nested VMM can/can't set
4428 * controls for features that are/aren't exposed to the guest.
4429 */
4430 if (nested) {
4431 if (enabled)
4432 vmx->nested.msrs.secondary_ctls_high |= control;
4433 else
4434 vmx->nested.msrs.secondary_ctls_high &= ~control;
4435 }
4436 }
4437
4438 /*
4439 * Wrapper macro for the common case of adjusting a secondary execution control
4440 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4441 * verifies that the control is actually supported by KVM and hardware.
4442 */
4443 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4444 ({ \
4445 bool __enabled; \
4446 \
4447 if (cpu_has_vmx_##name()) { \
4448 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4449 X86_FEATURE_##feat_name); \
4450 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4451 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4452 } \
4453 })
4454
4455 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4456 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4457 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4458
4459 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4460 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4461
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4462 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4463 {
4464 struct kvm_vcpu *vcpu = &vmx->vcpu;
4465
4466 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4467
4468 if (vmx_pt_mode_is_system())
4469 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4470 if (!cpu_need_virtualize_apic_accesses(vcpu))
4471 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4472 if (vmx->vpid == 0)
4473 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4474 if (!enable_ept) {
4475 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4476 enable_unrestricted_guest = 0;
4477 }
4478 if (!enable_unrestricted_guest)
4479 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4480 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4481 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4482 if (!kvm_vcpu_apicv_active(vcpu))
4483 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4484 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4485 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4486
4487 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4488 * in vmx_set_cr4. */
4489 exec_control &= ~SECONDARY_EXEC_DESC;
4490
4491 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4492 (handle_vmptrld).
4493 We can NOT enable shadow_vmcs here because we don't have yet
4494 a current VMCS12
4495 */
4496 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4497
4498 /*
4499 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4500 * it needs to be set here when dirty logging is already active, e.g.
4501 * if this vCPU was created after dirty logging was enabled.
4502 */
4503 if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4504 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4505
4506 if (cpu_has_vmx_xsaves()) {
4507 /* Exposing XSAVES only when XSAVE is exposed */
4508 bool xsaves_enabled =
4509 boot_cpu_has(X86_FEATURE_XSAVE) &&
4510 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4511 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4512
4513 vcpu->arch.xsaves_enabled = xsaves_enabled;
4514
4515 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4516 SECONDARY_EXEC_XSAVES,
4517 xsaves_enabled, false);
4518 }
4519
4520 /*
4521 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4522 * feature is exposed to the guest. This creates a virtualization hole
4523 * if both are supported in hardware but only one is exposed to the
4524 * guest, but letting the guest execute RDTSCP or RDPID when either one
4525 * is advertised is preferable to emulating the advertised instruction
4526 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4527 */
4528 if (cpu_has_vmx_rdtscp()) {
4529 bool rdpid_or_rdtscp_enabled =
4530 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4531 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4532
4533 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4534 SECONDARY_EXEC_ENABLE_RDTSCP,
4535 rdpid_or_rdtscp_enabled, false);
4536 }
4537 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4538
4539 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4540 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4541
4542 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4543 ENABLE_USR_WAIT_PAUSE, false);
4544
4545 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4546 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4547
4548 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4549 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4550
4551 return exec_control;
4552 }
4553
vmx_get_pid_table_order(struct kvm * kvm)4554 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4555 {
4556 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4557 }
4558
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4559 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4560 {
4561 struct page *pages;
4562 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4563
4564 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4565 return 0;
4566
4567 if (kvm_vmx->pid_table)
4568 return 0;
4569
4570 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4571 if (!pages)
4572 return -ENOMEM;
4573
4574 kvm_vmx->pid_table = (void *)page_address(pages);
4575 return 0;
4576 }
4577
vmx_vcpu_precreate(struct kvm * kvm)4578 static int vmx_vcpu_precreate(struct kvm *kvm)
4579 {
4580 return vmx_alloc_ipiv_pid_table(kvm);
4581 }
4582
4583 #define VMX_XSS_EXIT_BITMAP 0
4584
init_vmcs(struct vcpu_vmx * vmx)4585 static void init_vmcs(struct vcpu_vmx *vmx)
4586 {
4587 struct kvm *kvm = vmx->vcpu.kvm;
4588 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4589
4590 if (nested)
4591 nested_vmx_set_vmcs_shadowing_bitmap();
4592
4593 if (cpu_has_vmx_msr_bitmap())
4594 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4595
4596 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4597
4598 /* Control */
4599 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4600
4601 exec_controls_set(vmx, vmx_exec_control(vmx));
4602
4603 if (cpu_has_secondary_exec_ctrls())
4604 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4605
4606 if (cpu_has_tertiary_exec_ctrls())
4607 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4608
4609 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4610 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4611 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4612 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4613 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4614
4615 vmcs_write16(GUEST_INTR_STATUS, 0);
4616
4617 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4618 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4619 }
4620
4621 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4622 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4623 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4624 }
4625
4626 if (!kvm_pause_in_guest(kvm)) {
4627 vmcs_write32(PLE_GAP, ple_gap);
4628 vmx->ple_window = ple_window;
4629 vmx->ple_window_dirty = true;
4630 }
4631
4632 if (kvm_notify_vmexit_enabled(kvm))
4633 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4634
4635 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4636 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4637 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4638
4639 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4640 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4641 vmx_set_constant_host_state(vmx);
4642 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4643 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4644
4645 if (cpu_has_vmx_vmfunc())
4646 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4647
4648 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4649 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4650 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4651 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4652 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4653
4654 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4655 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4656
4657 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4658
4659 /* 22.2.1, 20.8.1 */
4660 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4661
4662 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4663 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4664
4665 set_cr4_guest_host_mask(vmx);
4666
4667 if (vmx->vpid != 0)
4668 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4669
4670 if (cpu_has_vmx_xsaves())
4671 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4672
4673 if (enable_pml) {
4674 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4675 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4676 }
4677
4678 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4679
4680 if (vmx_pt_mode_is_host_guest()) {
4681 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4682 /* Bit[6~0] are forced to 1, writes are ignored. */
4683 vmx->pt_desc.guest.output_mask = 0x7F;
4684 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4685 }
4686
4687 vmcs_write32(GUEST_SYSENTER_CS, 0);
4688 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4689 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4690 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4691
4692 if (cpu_has_vmx_tpr_shadow()) {
4693 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4694 if (cpu_need_tpr_shadow(&vmx->vcpu))
4695 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4696 __pa(vmx->vcpu.arch.apic->regs));
4697 vmcs_write32(TPR_THRESHOLD, 0);
4698 }
4699
4700 vmx_setup_uret_msrs(vmx);
4701 }
4702
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4703 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4704 {
4705 struct vcpu_vmx *vmx = to_vmx(vcpu);
4706
4707 init_vmcs(vmx);
4708
4709 if (nested)
4710 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4711
4712 vcpu_setup_sgx_lepubkeyhash(vcpu);
4713
4714 vmx->nested.posted_intr_nv = -1;
4715 vmx->nested.vmxon_ptr = INVALID_GPA;
4716 vmx->nested.current_vmptr = INVALID_GPA;
4717 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4718
4719 vcpu->arch.microcode_version = 0x100000000ULL;
4720 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4721
4722 /*
4723 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4724 * or POSTED_INTR_WAKEUP_VECTOR.
4725 */
4726 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4727 vmx->pi_desc.sn = 1;
4728 }
4729
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4730 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4731 {
4732 struct vcpu_vmx *vmx = to_vmx(vcpu);
4733
4734 if (!init_event)
4735 __vmx_vcpu_reset(vcpu);
4736
4737 vmx->rmode.vm86_active = 0;
4738 vmx->spec_ctrl = 0;
4739
4740 vmx->msr_ia32_umwait_control = 0;
4741
4742 vmx->hv_deadline_tsc = -1;
4743 kvm_set_cr8(vcpu, 0);
4744
4745 vmx_segment_cache_clear(vmx);
4746 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4747
4748 seg_setup(VCPU_SREG_CS);
4749 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4750 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4751
4752 seg_setup(VCPU_SREG_DS);
4753 seg_setup(VCPU_SREG_ES);
4754 seg_setup(VCPU_SREG_FS);
4755 seg_setup(VCPU_SREG_GS);
4756 seg_setup(VCPU_SREG_SS);
4757
4758 vmcs_write16(GUEST_TR_SELECTOR, 0);
4759 vmcs_writel(GUEST_TR_BASE, 0);
4760 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4761 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4762
4763 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4764 vmcs_writel(GUEST_LDTR_BASE, 0);
4765 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4766 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4767
4768 vmcs_writel(GUEST_GDTR_BASE, 0);
4769 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4770
4771 vmcs_writel(GUEST_IDTR_BASE, 0);
4772 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4773
4774 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4775 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4776 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4777 if (kvm_mpx_supported())
4778 vmcs_write64(GUEST_BNDCFGS, 0);
4779
4780 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4781
4782 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4783
4784 vpid_sync_context(vmx->vpid);
4785
4786 vmx_update_fb_clear_dis(vcpu, vmx);
4787 }
4788
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4789 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4790 {
4791 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4792 }
4793
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4794 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4795 {
4796 if (!enable_vnmi ||
4797 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4798 vmx_enable_irq_window(vcpu);
4799 return;
4800 }
4801
4802 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4803 }
4804
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4805 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4806 {
4807 struct vcpu_vmx *vmx = to_vmx(vcpu);
4808 uint32_t intr;
4809 int irq = vcpu->arch.interrupt.nr;
4810
4811 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4812
4813 ++vcpu->stat.irq_injections;
4814 if (vmx->rmode.vm86_active) {
4815 int inc_eip = 0;
4816 if (vcpu->arch.interrupt.soft)
4817 inc_eip = vcpu->arch.event_exit_inst_len;
4818 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4819 return;
4820 }
4821 intr = irq | INTR_INFO_VALID_MASK;
4822 if (vcpu->arch.interrupt.soft) {
4823 intr |= INTR_TYPE_SOFT_INTR;
4824 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4825 vmx->vcpu.arch.event_exit_inst_len);
4826 } else
4827 intr |= INTR_TYPE_EXT_INTR;
4828 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4829
4830 vmx_clear_hlt(vcpu);
4831 }
4832
vmx_inject_nmi(struct kvm_vcpu * vcpu)4833 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4834 {
4835 struct vcpu_vmx *vmx = to_vmx(vcpu);
4836
4837 if (!enable_vnmi) {
4838 /*
4839 * Tracking the NMI-blocked state in software is built upon
4840 * finding the next open IRQ window. This, in turn, depends on
4841 * well-behaving guests: They have to keep IRQs disabled at
4842 * least as long as the NMI handler runs. Otherwise we may
4843 * cause NMI nesting, maybe breaking the guest. But as this is
4844 * highly unlikely, we can live with the residual risk.
4845 */
4846 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4847 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4848 }
4849
4850 ++vcpu->stat.nmi_injections;
4851 vmx->loaded_vmcs->nmi_known_unmasked = false;
4852
4853 if (vmx->rmode.vm86_active) {
4854 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4855 return;
4856 }
4857
4858 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4859 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4860
4861 vmx_clear_hlt(vcpu);
4862 }
4863
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4864 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4865 {
4866 struct vcpu_vmx *vmx = to_vmx(vcpu);
4867 bool masked;
4868
4869 if (!enable_vnmi)
4870 return vmx->loaded_vmcs->soft_vnmi_blocked;
4871 if (vmx->loaded_vmcs->nmi_known_unmasked)
4872 return false;
4873 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4874 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4875 return masked;
4876 }
4877
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4878 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4879 {
4880 struct vcpu_vmx *vmx = to_vmx(vcpu);
4881
4882 if (!enable_vnmi) {
4883 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4884 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4885 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4886 }
4887 } else {
4888 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4889 if (masked)
4890 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4891 GUEST_INTR_STATE_NMI);
4892 else
4893 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4894 GUEST_INTR_STATE_NMI);
4895 }
4896 }
4897
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4898 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4899 {
4900 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4901 return false;
4902
4903 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4904 return true;
4905
4906 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4907 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4908 GUEST_INTR_STATE_NMI));
4909 }
4910
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4911 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4912 {
4913 if (to_vmx(vcpu)->nested.nested_run_pending)
4914 return -EBUSY;
4915
4916 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4917 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4918 return -EBUSY;
4919
4920 return !vmx_nmi_blocked(vcpu);
4921 }
4922
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4923 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4924 {
4925 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4926 return false;
4927
4928 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4929 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4930 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4931 }
4932
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4933 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4934 {
4935 if (to_vmx(vcpu)->nested.nested_run_pending)
4936 return -EBUSY;
4937
4938 /*
4939 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4940 * e.g. if the IRQ arrived asynchronously after checking nested events.
4941 */
4942 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4943 return -EBUSY;
4944
4945 return !vmx_interrupt_blocked(vcpu);
4946 }
4947
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4948 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4949 {
4950 void __user *ret;
4951
4952 if (enable_unrestricted_guest)
4953 return 0;
4954
4955 mutex_lock(&kvm->slots_lock);
4956 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4957 PAGE_SIZE * 3);
4958 mutex_unlock(&kvm->slots_lock);
4959
4960 if (IS_ERR(ret))
4961 return PTR_ERR(ret);
4962
4963 to_kvm_vmx(kvm)->tss_addr = addr;
4964
4965 return init_rmode_tss(kvm, ret);
4966 }
4967
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4968 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4969 {
4970 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4971 return 0;
4972 }
4973
rmode_exception(struct kvm_vcpu * vcpu,int vec)4974 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4975 {
4976 switch (vec) {
4977 case BP_VECTOR:
4978 /*
4979 * Update instruction length as we may reinject the exception
4980 * from user space while in guest debugging mode.
4981 */
4982 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4983 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4984 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4985 return false;
4986 fallthrough;
4987 case DB_VECTOR:
4988 return !(vcpu->guest_debug &
4989 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4990 case DE_VECTOR:
4991 case OF_VECTOR:
4992 case BR_VECTOR:
4993 case UD_VECTOR:
4994 case DF_VECTOR:
4995 case SS_VECTOR:
4996 case GP_VECTOR:
4997 case MF_VECTOR:
4998 return true;
4999 }
5000 return false;
5001 }
5002
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5003 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5004 int vec, u32 err_code)
5005 {
5006 /*
5007 * Instruction with address size override prefix opcode 0x67
5008 * Cause the #SS fault with 0 error code in VM86 mode.
5009 */
5010 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5011 if (kvm_emulate_instruction(vcpu, 0)) {
5012 if (vcpu->arch.halt_request) {
5013 vcpu->arch.halt_request = 0;
5014 return kvm_emulate_halt_noskip(vcpu);
5015 }
5016 return 1;
5017 }
5018 return 0;
5019 }
5020
5021 /*
5022 * Forward all other exceptions that are valid in real mode.
5023 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5024 * the required debugging infrastructure rework.
5025 */
5026 kvm_queue_exception(vcpu, vec);
5027 return 1;
5028 }
5029
handle_machine_check(struct kvm_vcpu * vcpu)5030 static int handle_machine_check(struct kvm_vcpu *vcpu)
5031 {
5032 /* handled by vmx_vcpu_run() */
5033 return 1;
5034 }
5035
5036 /*
5037 * If the host has split lock detection disabled, then #AC is
5038 * unconditionally injected into the guest, which is the pre split lock
5039 * detection behaviour.
5040 *
5041 * If the host has split lock detection enabled then #AC is
5042 * only injected into the guest when:
5043 * - Guest CPL == 3 (user mode)
5044 * - Guest has #AC detection enabled in CR0
5045 * - Guest EFLAGS has AC bit set
5046 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5047 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5048 {
5049 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5050 return true;
5051
5052 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
5053 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5054 }
5055
handle_exception_nmi(struct kvm_vcpu * vcpu)5056 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5057 {
5058 struct vcpu_vmx *vmx = to_vmx(vcpu);
5059 struct kvm_run *kvm_run = vcpu->run;
5060 u32 intr_info, ex_no, error_code;
5061 unsigned long cr2, dr6;
5062 u32 vect_info;
5063
5064 vect_info = vmx->idt_vectoring_info;
5065 intr_info = vmx_get_intr_info(vcpu);
5066
5067 if (is_machine_check(intr_info) || is_nmi(intr_info))
5068 return 1; /* handled by handle_exception_nmi_irqoff() */
5069
5070 /*
5071 * Queue the exception here instead of in handle_nm_fault_irqoff().
5072 * This ensures the nested_vmx check is not skipped so vmexit can
5073 * be reflected to L1 (when it intercepts #NM) before reaching this
5074 * point.
5075 */
5076 if (is_nm_fault(intr_info)) {
5077 kvm_queue_exception(vcpu, NM_VECTOR);
5078 return 1;
5079 }
5080
5081 if (is_invalid_opcode(intr_info))
5082 return handle_ud(vcpu);
5083
5084 error_code = 0;
5085 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5086 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5087
5088 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5089 WARN_ON_ONCE(!enable_vmware_backdoor);
5090
5091 /*
5092 * VMware backdoor emulation on #GP interception only handles
5093 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5094 * error code on #GP.
5095 */
5096 if (error_code) {
5097 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5098 return 1;
5099 }
5100 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5101 }
5102
5103 /*
5104 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5105 * MMIO, it is better to report an internal error.
5106 * See the comments in vmx_handle_exit.
5107 */
5108 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5109 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5110 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5111 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5112 vcpu->run->internal.ndata = 4;
5113 vcpu->run->internal.data[0] = vect_info;
5114 vcpu->run->internal.data[1] = intr_info;
5115 vcpu->run->internal.data[2] = error_code;
5116 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5117 return 0;
5118 }
5119
5120 if (is_page_fault(intr_info)) {
5121 cr2 = vmx_get_exit_qual(vcpu);
5122 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5123 /*
5124 * EPT will cause page fault only if we need to
5125 * detect illegal GPAs.
5126 */
5127 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5128 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5129 return 1;
5130 } else
5131 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5132 }
5133
5134 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5135
5136 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5137 return handle_rmode_exception(vcpu, ex_no, error_code);
5138
5139 switch (ex_no) {
5140 case DB_VECTOR:
5141 dr6 = vmx_get_exit_qual(vcpu);
5142 if (!(vcpu->guest_debug &
5143 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5144 /*
5145 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5146 * instruction. ICEBP generates a trap-like #DB, but
5147 * despite its interception control being tied to #DB,
5148 * is an instruction intercept, i.e. the VM-Exit occurs
5149 * on the ICEBP itself. Use the inner "skip" helper to
5150 * avoid single-step #DB and MTF updates, as ICEBP is
5151 * higher priority. Note, skipping ICEBP still clears
5152 * STI and MOVSS blocking.
5153 *
5154 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5155 * if single-step is enabled in RFLAGS and STI or MOVSS
5156 * blocking is active, as the CPU doesn't set the bit
5157 * on VM-Exit due to #DB interception. VM-Entry has a
5158 * consistency check that a single-step #DB is pending
5159 * in this scenario as the previous instruction cannot
5160 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5161 * don't modify RFLAGS), therefore the one instruction
5162 * delay when activating single-step breakpoints must
5163 * have already expired. Note, the CPU sets/clears BS
5164 * as appropriate for all other VM-Exits types.
5165 */
5166 if (is_icebp(intr_info))
5167 WARN_ON(!skip_emulated_instruction(vcpu));
5168 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5169 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5170 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5171 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5172 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5173
5174 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5175 return 1;
5176 }
5177 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5178 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5179 fallthrough;
5180 case BP_VECTOR:
5181 /*
5182 * Update instruction length as we may reinject #BP from
5183 * user space while in guest debugging mode. Reading it for
5184 * #DB as well causes no harm, it is not used in that case.
5185 */
5186 vmx->vcpu.arch.event_exit_inst_len =
5187 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5188 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5189 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5190 kvm_run->debug.arch.exception = ex_no;
5191 break;
5192 case AC_VECTOR:
5193 if (vmx_guest_inject_ac(vcpu)) {
5194 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5195 return 1;
5196 }
5197
5198 /*
5199 * Handle split lock. Depending on detection mode this will
5200 * either warn and disable split lock detection for this
5201 * task or force SIGBUS on it.
5202 */
5203 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5204 return 1;
5205 fallthrough;
5206 default:
5207 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5208 kvm_run->ex.exception = ex_no;
5209 kvm_run->ex.error_code = error_code;
5210 break;
5211 }
5212 return 0;
5213 }
5214
handle_external_interrupt(struct kvm_vcpu * vcpu)5215 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5216 {
5217 ++vcpu->stat.irq_exits;
5218 return 1;
5219 }
5220
handle_triple_fault(struct kvm_vcpu * vcpu)5221 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5222 {
5223 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5224 vcpu->mmio_needed = 0;
5225 return 0;
5226 }
5227
handle_io(struct kvm_vcpu * vcpu)5228 static int handle_io(struct kvm_vcpu *vcpu)
5229 {
5230 unsigned long exit_qualification;
5231 int size, in, string;
5232 unsigned port;
5233
5234 exit_qualification = vmx_get_exit_qual(vcpu);
5235 string = (exit_qualification & 16) != 0;
5236
5237 ++vcpu->stat.io_exits;
5238
5239 if (string)
5240 return kvm_emulate_instruction(vcpu, 0);
5241
5242 port = exit_qualification >> 16;
5243 size = (exit_qualification & 7) + 1;
5244 in = (exit_qualification & 8) != 0;
5245
5246 return kvm_fast_pio(vcpu, size, port, in);
5247 }
5248
5249 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5250 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5251 {
5252 /*
5253 * Patch in the VMCALL instruction:
5254 */
5255 hypercall[0] = 0x0f;
5256 hypercall[1] = 0x01;
5257 hypercall[2] = 0xc1;
5258 }
5259
5260 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5261 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5262 {
5263 if (is_guest_mode(vcpu)) {
5264 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5265 unsigned long orig_val = val;
5266
5267 /*
5268 * We get here when L2 changed cr0 in a way that did not change
5269 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5270 * but did change L0 shadowed bits. So we first calculate the
5271 * effective cr0 value that L1 would like to write into the
5272 * hardware. It consists of the L2-owned bits from the new
5273 * value combined with the L1-owned bits from L1's guest_cr0.
5274 */
5275 val = (val & ~vmcs12->cr0_guest_host_mask) |
5276 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5277
5278 if (!nested_guest_cr0_valid(vcpu, val))
5279 return 1;
5280
5281 if (kvm_set_cr0(vcpu, val))
5282 return 1;
5283 vmcs_writel(CR0_READ_SHADOW, orig_val);
5284 return 0;
5285 } else {
5286 if (to_vmx(vcpu)->nested.vmxon &&
5287 !nested_host_cr0_valid(vcpu, val))
5288 return 1;
5289
5290 return kvm_set_cr0(vcpu, val);
5291 }
5292 }
5293
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5294 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5295 {
5296 if (is_guest_mode(vcpu)) {
5297 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5298 unsigned long orig_val = val;
5299
5300 /* analogously to handle_set_cr0 */
5301 val = (val & ~vmcs12->cr4_guest_host_mask) |
5302 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5303 if (kvm_set_cr4(vcpu, val))
5304 return 1;
5305 vmcs_writel(CR4_READ_SHADOW, orig_val);
5306 return 0;
5307 } else
5308 return kvm_set_cr4(vcpu, val);
5309 }
5310
handle_desc(struct kvm_vcpu * vcpu)5311 static int handle_desc(struct kvm_vcpu *vcpu)
5312 {
5313 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5314 return kvm_emulate_instruction(vcpu, 0);
5315 }
5316
handle_cr(struct kvm_vcpu * vcpu)5317 static int handle_cr(struct kvm_vcpu *vcpu)
5318 {
5319 unsigned long exit_qualification, val;
5320 int cr;
5321 int reg;
5322 int err;
5323 int ret;
5324
5325 exit_qualification = vmx_get_exit_qual(vcpu);
5326 cr = exit_qualification & 15;
5327 reg = (exit_qualification >> 8) & 15;
5328 switch ((exit_qualification >> 4) & 3) {
5329 case 0: /* mov to cr */
5330 val = kvm_register_read(vcpu, reg);
5331 trace_kvm_cr_write(cr, val);
5332 switch (cr) {
5333 case 0:
5334 err = handle_set_cr0(vcpu, val);
5335 return kvm_complete_insn_gp(vcpu, err);
5336 case 3:
5337 WARN_ON_ONCE(enable_unrestricted_guest);
5338
5339 err = kvm_set_cr3(vcpu, val);
5340 return kvm_complete_insn_gp(vcpu, err);
5341 case 4:
5342 err = handle_set_cr4(vcpu, val);
5343 return kvm_complete_insn_gp(vcpu, err);
5344 case 8: {
5345 u8 cr8_prev = kvm_get_cr8(vcpu);
5346 u8 cr8 = (u8)val;
5347 err = kvm_set_cr8(vcpu, cr8);
5348 ret = kvm_complete_insn_gp(vcpu, err);
5349 if (lapic_in_kernel(vcpu))
5350 return ret;
5351 if (cr8_prev <= cr8)
5352 return ret;
5353 /*
5354 * TODO: we might be squashing a
5355 * KVM_GUESTDBG_SINGLESTEP-triggered
5356 * KVM_EXIT_DEBUG here.
5357 */
5358 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5359 return 0;
5360 }
5361 }
5362 break;
5363 case 2: /* clts */
5364 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5365 return -EIO;
5366 case 1: /*mov from cr*/
5367 switch (cr) {
5368 case 3:
5369 WARN_ON_ONCE(enable_unrestricted_guest);
5370
5371 val = kvm_read_cr3(vcpu);
5372 kvm_register_write(vcpu, reg, val);
5373 trace_kvm_cr_read(cr, val);
5374 return kvm_skip_emulated_instruction(vcpu);
5375 case 8:
5376 val = kvm_get_cr8(vcpu);
5377 kvm_register_write(vcpu, reg, val);
5378 trace_kvm_cr_read(cr, val);
5379 return kvm_skip_emulated_instruction(vcpu);
5380 }
5381 break;
5382 case 3: /* lmsw */
5383 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5384 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5385 kvm_lmsw(vcpu, val);
5386
5387 return kvm_skip_emulated_instruction(vcpu);
5388 default:
5389 break;
5390 }
5391 vcpu->run->exit_reason = 0;
5392 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5393 (int)(exit_qualification >> 4) & 3, cr);
5394 return 0;
5395 }
5396
handle_dr(struct kvm_vcpu * vcpu)5397 static int handle_dr(struct kvm_vcpu *vcpu)
5398 {
5399 unsigned long exit_qualification;
5400 int dr, dr7, reg;
5401 int err = 1;
5402
5403 exit_qualification = vmx_get_exit_qual(vcpu);
5404 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5405
5406 /* First, if DR does not exist, trigger UD */
5407 if (!kvm_require_dr(vcpu, dr))
5408 return 1;
5409
5410 if (vmx_get_cpl(vcpu) > 0)
5411 goto out;
5412
5413 dr7 = vmcs_readl(GUEST_DR7);
5414 if (dr7 & DR7_GD) {
5415 /*
5416 * As the vm-exit takes precedence over the debug trap, we
5417 * need to emulate the latter, either for the host or the
5418 * guest debugging itself.
5419 */
5420 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5421 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5422 vcpu->run->debug.arch.dr7 = dr7;
5423 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5424 vcpu->run->debug.arch.exception = DB_VECTOR;
5425 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5426 return 0;
5427 } else {
5428 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5429 return 1;
5430 }
5431 }
5432
5433 if (vcpu->guest_debug == 0) {
5434 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5435
5436 /*
5437 * No more DR vmexits; force a reload of the debug registers
5438 * and reenter on this instruction. The next vmexit will
5439 * retrieve the full state of the debug registers.
5440 */
5441 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5442 return 1;
5443 }
5444
5445 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5446 if (exit_qualification & TYPE_MOV_FROM_DR) {
5447 unsigned long val;
5448
5449 kvm_get_dr(vcpu, dr, &val);
5450 kvm_register_write(vcpu, reg, val);
5451 err = 0;
5452 } else {
5453 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5454 }
5455
5456 out:
5457 return kvm_complete_insn_gp(vcpu, err);
5458 }
5459
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5460 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5461 {
5462 get_debugreg(vcpu->arch.db[0], 0);
5463 get_debugreg(vcpu->arch.db[1], 1);
5464 get_debugreg(vcpu->arch.db[2], 2);
5465 get_debugreg(vcpu->arch.db[3], 3);
5466 get_debugreg(vcpu->arch.dr6, 6);
5467 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5468
5469 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5470 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5471
5472 /*
5473 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5474 * a stale dr6 from the guest.
5475 */
5476 set_debugreg(DR6_RESERVED, 6);
5477 }
5478
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5479 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5480 {
5481 vmcs_writel(GUEST_DR7, val);
5482 }
5483
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5484 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5485 {
5486 kvm_apic_update_ppr(vcpu);
5487 return 1;
5488 }
5489
handle_interrupt_window(struct kvm_vcpu * vcpu)5490 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5491 {
5492 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5493
5494 kvm_make_request(KVM_REQ_EVENT, vcpu);
5495
5496 ++vcpu->stat.irq_window_exits;
5497 return 1;
5498 }
5499
handle_invlpg(struct kvm_vcpu * vcpu)5500 static int handle_invlpg(struct kvm_vcpu *vcpu)
5501 {
5502 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5503
5504 kvm_mmu_invlpg(vcpu, exit_qualification);
5505 return kvm_skip_emulated_instruction(vcpu);
5506 }
5507
handle_apic_access(struct kvm_vcpu * vcpu)5508 static int handle_apic_access(struct kvm_vcpu *vcpu)
5509 {
5510 if (likely(fasteoi)) {
5511 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5512 int access_type, offset;
5513
5514 access_type = exit_qualification & APIC_ACCESS_TYPE;
5515 offset = exit_qualification & APIC_ACCESS_OFFSET;
5516 /*
5517 * Sane guest uses MOV to write EOI, with written value
5518 * not cared. So make a short-circuit here by avoiding
5519 * heavy instruction emulation.
5520 */
5521 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5522 (offset == APIC_EOI)) {
5523 kvm_lapic_set_eoi(vcpu);
5524 return kvm_skip_emulated_instruction(vcpu);
5525 }
5526 }
5527 return kvm_emulate_instruction(vcpu, 0);
5528 }
5529
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5530 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5531 {
5532 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5533 int vector = exit_qualification & 0xff;
5534
5535 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5536 kvm_apic_set_eoi_accelerated(vcpu, vector);
5537 return 1;
5538 }
5539
handle_apic_write(struct kvm_vcpu * vcpu)5540 static int handle_apic_write(struct kvm_vcpu *vcpu)
5541 {
5542 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5543
5544 /*
5545 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5546 * hardware has done any necessary aliasing, offset adjustments, etc...
5547 * for the access. I.e. the correct value has already been written to
5548 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5549 * retrieve the register value and emulate the access.
5550 */
5551 u32 offset = exit_qualification & 0xff0;
5552
5553 kvm_apic_write_nodecode(vcpu, offset);
5554 return 1;
5555 }
5556
handle_task_switch(struct kvm_vcpu * vcpu)5557 static int handle_task_switch(struct kvm_vcpu *vcpu)
5558 {
5559 struct vcpu_vmx *vmx = to_vmx(vcpu);
5560 unsigned long exit_qualification;
5561 bool has_error_code = false;
5562 u32 error_code = 0;
5563 u16 tss_selector;
5564 int reason, type, idt_v, idt_index;
5565
5566 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5567 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5568 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5569
5570 exit_qualification = vmx_get_exit_qual(vcpu);
5571
5572 reason = (u32)exit_qualification >> 30;
5573 if (reason == TASK_SWITCH_GATE && idt_v) {
5574 switch (type) {
5575 case INTR_TYPE_NMI_INTR:
5576 vcpu->arch.nmi_injected = false;
5577 vmx_set_nmi_mask(vcpu, true);
5578 break;
5579 case INTR_TYPE_EXT_INTR:
5580 case INTR_TYPE_SOFT_INTR:
5581 kvm_clear_interrupt_queue(vcpu);
5582 break;
5583 case INTR_TYPE_HARD_EXCEPTION:
5584 if (vmx->idt_vectoring_info &
5585 VECTORING_INFO_DELIVER_CODE_MASK) {
5586 has_error_code = true;
5587 error_code =
5588 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5589 }
5590 fallthrough;
5591 case INTR_TYPE_SOFT_EXCEPTION:
5592 kvm_clear_exception_queue(vcpu);
5593 break;
5594 default:
5595 break;
5596 }
5597 }
5598 tss_selector = exit_qualification;
5599
5600 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5601 type != INTR_TYPE_EXT_INTR &&
5602 type != INTR_TYPE_NMI_INTR))
5603 WARN_ON(!skip_emulated_instruction(vcpu));
5604
5605 /*
5606 * TODO: What about debug traps on tss switch?
5607 * Are we supposed to inject them and update dr6?
5608 */
5609 return kvm_task_switch(vcpu, tss_selector,
5610 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5611 reason, has_error_code, error_code);
5612 }
5613
handle_ept_violation(struct kvm_vcpu * vcpu)5614 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5615 {
5616 unsigned long exit_qualification;
5617 gpa_t gpa;
5618 u64 error_code;
5619
5620 exit_qualification = vmx_get_exit_qual(vcpu);
5621
5622 /*
5623 * EPT violation happened while executing iret from NMI,
5624 * "blocked by NMI" bit has to be set before next VM entry.
5625 * There are errata that may cause this bit to not be set:
5626 * AAK134, BY25.
5627 */
5628 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5629 enable_vnmi &&
5630 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5631 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5632
5633 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5634 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5635
5636 /* Is it a read fault? */
5637 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5638 ? PFERR_USER_MASK : 0;
5639 /* Is it a write fault? */
5640 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5641 ? PFERR_WRITE_MASK : 0;
5642 /* Is it a fetch fault? */
5643 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5644 ? PFERR_FETCH_MASK : 0;
5645 /* ept page table entry is present? */
5646 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5647 ? PFERR_PRESENT_MASK : 0;
5648
5649 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5650 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5651
5652 vcpu->arch.exit_qualification = exit_qualification;
5653
5654 /*
5655 * Check that the GPA doesn't exceed physical memory limits, as that is
5656 * a guest page fault. We have to emulate the instruction here, because
5657 * if the illegal address is that of a paging structure, then
5658 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5659 * would also use advanced VM-exit information for EPT violations to
5660 * reconstruct the page fault error code.
5661 */
5662 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5663 return kvm_emulate_instruction(vcpu, 0);
5664
5665 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5666 }
5667
handle_ept_misconfig(struct kvm_vcpu * vcpu)5668 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5669 {
5670 gpa_t gpa;
5671
5672 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5673 return 1;
5674
5675 /*
5676 * A nested guest cannot optimize MMIO vmexits, because we have an
5677 * nGPA here instead of the required GPA.
5678 */
5679 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5680 if (!is_guest_mode(vcpu) &&
5681 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5682 trace_kvm_fast_mmio(gpa);
5683 return kvm_skip_emulated_instruction(vcpu);
5684 }
5685
5686 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5687 }
5688
handle_nmi_window(struct kvm_vcpu * vcpu)5689 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5690 {
5691 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5692 return -EIO;
5693
5694 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5695 ++vcpu->stat.nmi_window_exits;
5696 kvm_make_request(KVM_REQ_EVENT, vcpu);
5697
5698 return 1;
5699 }
5700
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5701 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5702 {
5703 struct vcpu_vmx *vmx = to_vmx(vcpu);
5704
5705 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5706 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5707 }
5708
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5709 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5710 {
5711 struct vcpu_vmx *vmx = to_vmx(vcpu);
5712 bool intr_window_requested;
5713 unsigned count = 130;
5714
5715 intr_window_requested = exec_controls_get(vmx) &
5716 CPU_BASED_INTR_WINDOW_EXITING;
5717
5718 while (vmx->emulation_required && count-- != 0) {
5719 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5720 return handle_interrupt_window(&vmx->vcpu);
5721
5722 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5723 return 1;
5724
5725 if (!kvm_emulate_instruction(vcpu, 0))
5726 return 0;
5727
5728 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5729 kvm_prepare_emulation_failure_exit(vcpu);
5730 return 0;
5731 }
5732
5733 if (vcpu->arch.halt_request) {
5734 vcpu->arch.halt_request = 0;
5735 return kvm_emulate_halt_noskip(vcpu);
5736 }
5737
5738 /*
5739 * Note, return 1 and not 0, vcpu_run() will invoke
5740 * xfer_to_guest_mode() which will create a proper return
5741 * code.
5742 */
5743 if (__xfer_to_guest_mode_work_pending())
5744 return 1;
5745 }
5746
5747 return 1;
5748 }
5749
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5750 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5751 {
5752 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5753 kvm_prepare_emulation_failure_exit(vcpu);
5754 return 0;
5755 }
5756
5757 return 1;
5758 }
5759
grow_ple_window(struct kvm_vcpu * vcpu)5760 static void grow_ple_window(struct kvm_vcpu *vcpu)
5761 {
5762 struct vcpu_vmx *vmx = to_vmx(vcpu);
5763 unsigned int old = vmx->ple_window;
5764
5765 vmx->ple_window = __grow_ple_window(old, ple_window,
5766 ple_window_grow,
5767 ple_window_max);
5768
5769 if (vmx->ple_window != old) {
5770 vmx->ple_window_dirty = true;
5771 trace_kvm_ple_window_update(vcpu->vcpu_id,
5772 vmx->ple_window, old);
5773 }
5774 }
5775
shrink_ple_window(struct kvm_vcpu * vcpu)5776 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5777 {
5778 struct vcpu_vmx *vmx = to_vmx(vcpu);
5779 unsigned int old = vmx->ple_window;
5780
5781 vmx->ple_window = __shrink_ple_window(old, ple_window,
5782 ple_window_shrink,
5783 ple_window);
5784
5785 if (vmx->ple_window != old) {
5786 vmx->ple_window_dirty = true;
5787 trace_kvm_ple_window_update(vcpu->vcpu_id,
5788 vmx->ple_window, old);
5789 }
5790 }
5791
5792 /*
5793 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5794 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5795 */
handle_pause(struct kvm_vcpu * vcpu)5796 static int handle_pause(struct kvm_vcpu *vcpu)
5797 {
5798 if (!kvm_pause_in_guest(vcpu->kvm))
5799 grow_ple_window(vcpu);
5800
5801 /*
5802 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5803 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5804 * never set PAUSE_EXITING and just set PLE if supported,
5805 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5806 */
5807 kvm_vcpu_on_spin(vcpu, true);
5808 return kvm_skip_emulated_instruction(vcpu);
5809 }
5810
handle_monitor_trap(struct kvm_vcpu * vcpu)5811 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5812 {
5813 return 1;
5814 }
5815
handle_invpcid(struct kvm_vcpu * vcpu)5816 static int handle_invpcid(struct kvm_vcpu *vcpu)
5817 {
5818 u32 vmx_instruction_info;
5819 unsigned long type;
5820 gva_t gva;
5821 struct {
5822 u64 pcid;
5823 u64 gla;
5824 } operand;
5825 int gpr_index;
5826
5827 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5828 kvm_queue_exception(vcpu, UD_VECTOR);
5829 return 1;
5830 }
5831
5832 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5833 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5834 type = kvm_register_read(vcpu, gpr_index);
5835
5836 /* According to the Intel instruction reference, the memory operand
5837 * is read even if it isn't needed (e.g., for type==all)
5838 */
5839 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5840 vmx_instruction_info, false,
5841 sizeof(operand), &gva))
5842 return 1;
5843
5844 return kvm_handle_invpcid(vcpu, type, gva);
5845 }
5846
handle_pml_full(struct kvm_vcpu * vcpu)5847 static int handle_pml_full(struct kvm_vcpu *vcpu)
5848 {
5849 unsigned long exit_qualification;
5850
5851 trace_kvm_pml_full(vcpu->vcpu_id);
5852
5853 exit_qualification = vmx_get_exit_qual(vcpu);
5854
5855 /*
5856 * PML buffer FULL happened while executing iret from NMI,
5857 * "blocked by NMI" bit has to be set before next VM entry.
5858 */
5859 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5860 enable_vnmi &&
5861 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5862 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5863 GUEST_INTR_STATE_NMI);
5864
5865 /*
5866 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5867 * here.., and there's no userspace involvement needed for PML.
5868 */
5869 return 1;
5870 }
5871
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5872 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5873 {
5874 struct vcpu_vmx *vmx = to_vmx(vcpu);
5875
5876 if (!vmx->req_immediate_exit &&
5877 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5878 kvm_lapic_expired_hv_timer(vcpu);
5879 return EXIT_FASTPATH_REENTER_GUEST;
5880 }
5881
5882 return EXIT_FASTPATH_NONE;
5883 }
5884
handle_preemption_timer(struct kvm_vcpu * vcpu)5885 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5886 {
5887 handle_fastpath_preemption_timer(vcpu);
5888 return 1;
5889 }
5890
5891 /*
5892 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5893 * are overwritten by nested_vmx_setup() when nested=1.
5894 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5895 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5896 {
5897 kvm_queue_exception(vcpu, UD_VECTOR);
5898 return 1;
5899 }
5900
5901 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)5902 static int handle_encls(struct kvm_vcpu *vcpu)
5903 {
5904 /*
5905 * SGX virtualization is disabled. There is no software enable bit for
5906 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5907 * the guest from executing ENCLS (when SGX is supported by hardware).
5908 */
5909 kvm_queue_exception(vcpu, UD_VECTOR);
5910 return 1;
5911 }
5912 #endif /* CONFIG_X86_SGX_KVM */
5913
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)5914 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5915 {
5916 /*
5917 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5918 * VM-Exits. Unconditionally set the flag here and leave the handling to
5919 * vmx_handle_exit().
5920 */
5921 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5922 return 1;
5923 }
5924
handle_notify(struct kvm_vcpu * vcpu)5925 static int handle_notify(struct kvm_vcpu *vcpu)
5926 {
5927 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5928 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5929
5930 ++vcpu->stat.notify_window_exits;
5931
5932 /*
5933 * Notify VM exit happened while executing iret from NMI,
5934 * "blocked by NMI" bit has to be set before next VM entry.
5935 */
5936 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5937 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5938 GUEST_INTR_STATE_NMI);
5939
5940 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5941 context_invalid) {
5942 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5943 vcpu->run->notify.flags = context_invalid ?
5944 KVM_NOTIFY_CONTEXT_INVALID : 0;
5945 return 0;
5946 }
5947
5948 return 1;
5949 }
5950
5951 /*
5952 * The exit handlers return 1 if the exit was handled fully and guest execution
5953 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5954 * to be done to userspace and return 0.
5955 */
5956 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5957 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5958 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5959 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5960 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5961 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5962 [EXIT_REASON_CR_ACCESS] = handle_cr,
5963 [EXIT_REASON_DR_ACCESS] = handle_dr,
5964 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5965 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5966 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5967 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5968 [EXIT_REASON_HLT] = kvm_emulate_halt,
5969 [EXIT_REASON_INVD] = kvm_emulate_invd,
5970 [EXIT_REASON_INVLPG] = handle_invlpg,
5971 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
5972 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
5973 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5974 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5975 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5976 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5977 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5978 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5979 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5980 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5981 [EXIT_REASON_VMON] = handle_vmx_instruction,
5982 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5983 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5984 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5985 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5986 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
5987 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
5988 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5989 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5990 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5991 [EXIT_REASON_LDTR_TR] = handle_desc,
5992 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5993 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5994 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5995 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
5996 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5997 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
5998 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5999 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6000 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6001 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6002 [EXIT_REASON_PML_FULL] = handle_pml_full,
6003 [EXIT_REASON_INVPCID] = handle_invpcid,
6004 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6005 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6006 [EXIT_REASON_ENCLS] = handle_encls,
6007 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6008 [EXIT_REASON_NOTIFY] = handle_notify,
6009 };
6010
6011 static const int kvm_vmx_max_exit_handlers =
6012 ARRAY_SIZE(kvm_vmx_exit_handlers);
6013
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6014 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6015 u64 *info1, u64 *info2,
6016 u32 *intr_info, u32 *error_code)
6017 {
6018 struct vcpu_vmx *vmx = to_vmx(vcpu);
6019
6020 *reason = vmx->exit_reason.full;
6021 *info1 = vmx_get_exit_qual(vcpu);
6022 if (!(vmx->exit_reason.failed_vmentry)) {
6023 *info2 = vmx->idt_vectoring_info;
6024 *intr_info = vmx_get_intr_info(vcpu);
6025 if (is_exception_with_error_code(*intr_info))
6026 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6027 else
6028 *error_code = 0;
6029 } else {
6030 *info2 = 0;
6031 *intr_info = 0;
6032 *error_code = 0;
6033 }
6034 }
6035
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6036 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6037 {
6038 if (vmx->pml_pg) {
6039 __free_page(vmx->pml_pg);
6040 vmx->pml_pg = NULL;
6041 }
6042 }
6043
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6044 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6045 {
6046 struct vcpu_vmx *vmx = to_vmx(vcpu);
6047 u64 *pml_buf;
6048 u16 pml_idx;
6049
6050 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6051
6052 /* Do nothing if PML buffer is empty */
6053 if (pml_idx == (PML_ENTITY_NUM - 1))
6054 return;
6055
6056 /* PML index always points to next available PML buffer entity */
6057 if (pml_idx >= PML_ENTITY_NUM)
6058 pml_idx = 0;
6059 else
6060 pml_idx++;
6061
6062 pml_buf = page_address(vmx->pml_pg);
6063 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6064 u64 gpa;
6065
6066 gpa = pml_buf[pml_idx];
6067 WARN_ON(gpa & (PAGE_SIZE - 1));
6068 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6069 }
6070
6071 /* reset PML index */
6072 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6073 }
6074
vmx_dump_sel(char * name,uint32_t sel)6075 static void vmx_dump_sel(char *name, uint32_t sel)
6076 {
6077 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6078 name, vmcs_read16(sel),
6079 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6080 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6081 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6082 }
6083
vmx_dump_dtsel(char * name,uint32_t limit)6084 static void vmx_dump_dtsel(char *name, uint32_t limit)
6085 {
6086 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6087 name, vmcs_read32(limit),
6088 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6089 }
6090
vmx_dump_msrs(char * name,struct vmx_msrs * m)6091 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6092 {
6093 unsigned int i;
6094 struct vmx_msr_entry *e;
6095
6096 pr_err("MSR %s:\n", name);
6097 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6098 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6099 }
6100
dump_vmcs(struct kvm_vcpu * vcpu)6101 void dump_vmcs(struct kvm_vcpu *vcpu)
6102 {
6103 struct vcpu_vmx *vmx = to_vmx(vcpu);
6104 u32 vmentry_ctl, vmexit_ctl;
6105 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6106 u64 tertiary_exec_control;
6107 unsigned long cr4;
6108 int efer_slot;
6109
6110 if (!dump_invalid_vmcs) {
6111 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6112 return;
6113 }
6114
6115 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6116 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6117 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6118 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6119 cr4 = vmcs_readl(GUEST_CR4);
6120
6121 if (cpu_has_secondary_exec_ctrls())
6122 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6123 else
6124 secondary_exec_control = 0;
6125
6126 if (cpu_has_tertiary_exec_ctrls())
6127 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6128 else
6129 tertiary_exec_control = 0;
6130
6131 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6132 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6133 pr_err("*** Guest State ***\n");
6134 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6135 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6136 vmcs_readl(CR0_GUEST_HOST_MASK));
6137 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6138 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6139 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6140 if (cpu_has_vmx_ept()) {
6141 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6142 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6143 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6144 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6145 }
6146 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6147 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6148 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6149 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6150 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6151 vmcs_readl(GUEST_SYSENTER_ESP),
6152 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6153 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6154 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6155 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6156 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6157 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6158 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6159 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6160 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6161 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6162 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6163 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6164 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6165 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6166 else if (efer_slot >= 0)
6167 pr_err("EFER= 0x%016llx (autoload)\n",
6168 vmx->msr_autoload.guest.val[efer_slot].value);
6169 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6170 pr_err("EFER= 0x%016llx (effective)\n",
6171 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6172 else
6173 pr_err("EFER= 0x%016llx (effective)\n",
6174 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6175 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6176 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6177 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6178 vmcs_read64(GUEST_IA32_DEBUGCTL),
6179 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6180 if (cpu_has_load_perf_global_ctrl() &&
6181 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6182 pr_err("PerfGlobCtl = 0x%016llx\n",
6183 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6184 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6185 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6186 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6187 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6188 vmcs_read32(GUEST_ACTIVITY_STATE));
6189 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6190 pr_err("InterruptStatus = %04x\n",
6191 vmcs_read16(GUEST_INTR_STATUS));
6192 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6193 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6194 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6195 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6196
6197 pr_err("*** Host State ***\n");
6198 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6199 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6200 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6201 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6202 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6203 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6204 vmcs_read16(HOST_TR_SELECTOR));
6205 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6206 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6207 vmcs_readl(HOST_TR_BASE));
6208 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6209 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6210 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6211 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6212 vmcs_readl(HOST_CR4));
6213 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6214 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6215 vmcs_read32(HOST_IA32_SYSENTER_CS),
6216 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6217 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6218 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6219 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6220 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6221 if (cpu_has_load_perf_global_ctrl() &&
6222 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6223 pr_err("PerfGlobCtl = 0x%016llx\n",
6224 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6225 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6226 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6227
6228 pr_err("*** Control State ***\n");
6229 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6230 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6231 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6232 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6233 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6234 vmcs_read32(EXCEPTION_BITMAP),
6235 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6236 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6237 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6238 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6239 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6240 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6241 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6242 vmcs_read32(VM_EXIT_INTR_INFO),
6243 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6244 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6245 pr_err(" reason=%08x qualification=%016lx\n",
6246 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6247 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6248 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6249 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6250 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6251 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6252 pr_err("TSC Multiplier = 0x%016llx\n",
6253 vmcs_read64(TSC_MULTIPLIER));
6254 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6255 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6256 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6257 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6258 }
6259 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6260 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6261 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6262 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6263 }
6264 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6265 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6266 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6267 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6268 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6269 pr_err("PLE Gap=%08x Window=%08x\n",
6270 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6271 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6272 pr_err("Virtual processor ID = 0x%04x\n",
6273 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6274 }
6275
6276 /*
6277 * The guest has exited. See if we can fix it or if we need userspace
6278 * assistance.
6279 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6280 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6281 {
6282 struct vcpu_vmx *vmx = to_vmx(vcpu);
6283 union vmx_exit_reason exit_reason = vmx->exit_reason;
6284 u32 vectoring_info = vmx->idt_vectoring_info;
6285 u16 exit_handler_index;
6286
6287 /*
6288 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6289 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6290 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6291 * mode as if vcpus is in root mode, the PML buffer must has been
6292 * flushed already. Note, PML is never enabled in hardware while
6293 * running L2.
6294 */
6295 if (enable_pml && !is_guest_mode(vcpu))
6296 vmx_flush_pml_buffer(vcpu);
6297
6298 /*
6299 * KVM should never reach this point with a pending nested VM-Enter.
6300 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6301 * invalid guest state should never happen as that means KVM knowingly
6302 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6303 */
6304 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6305 return -EIO;
6306
6307 if (is_guest_mode(vcpu)) {
6308 /*
6309 * PML is never enabled when running L2, bail immediately if a
6310 * PML full exit occurs as something is horribly wrong.
6311 */
6312 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6313 goto unexpected_vmexit;
6314
6315 /*
6316 * The host physical addresses of some pages of guest memory
6317 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6318 * Page). The CPU may write to these pages via their host
6319 * physical address while L2 is running, bypassing any
6320 * address-translation-based dirty tracking (e.g. EPT write
6321 * protection).
6322 *
6323 * Mark them dirty on every exit from L2 to prevent them from
6324 * getting out of sync with dirty tracking.
6325 */
6326 nested_mark_vmcs12_pages_dirty(vcpu);
6327
6328 /*
6329 * Synthesize a triple fault if L2 state is invalid. In normal
6330 * operation, nested VM-Enter rejects any attempt to enter L2
6331 * with invalid state. However, those checks are skipped if
6332 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6333 * L2 state is invalid, it means either L1 modified SMRAM state
6334 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6335 * doing so is architecturally allowed in the RSM case, and is
6336 * the least awful solution for the userspace case without
6337 * risking false positives.
6338 */
6339 if (vmx->emulation_required) {
6340 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6341 return 1;
6342 }
6343
6344 if (nested_vmx_reflect_vmexit(vcpu))
6345 return 1;
6346 }
6347
6348 /* If guest state is invalid, start emulating. L2 is handled above. */
6349 if (vmx->emulation_required)
6350 return handle_invalid_guest_state(vcpu);
6351
6352 if (exit_reason.failed_vmentry) {
6353 dump_vmcs(vcpu);
6354 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6355 vcpu->run->fail_entry.hardware_entry_failure_reason
6356 = exit_reason.full;
6357 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6358 return 0;
6359 }
6360
6361 if (unlikely(vmx->fail)) {
6362 dump_vmcs(vcpu);
6363 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6364 vcpu->run->fail_entry.hardware_entry_failure_reason
6365 = vmcs_read32(VM_INSTRUCTION_ERROR);
6366 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6367 return 0;
6368 }
6369
6370 /*
6371 * Note:
6372 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6373 * delivery event since it indicates guest is accessing MMIO.
6374 * The vm-exit can be triggered again after return to guest that
6375 * will cause infinite loop.
6376 */
6377 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6378 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6379 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6380 exit_reason.basic != EXIT_REASON_PML_FULL &&
6381 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6382 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6383 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6384 int ndata = 3;
6385
6386 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6387 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6388 vcpu->run->internal.data[0] = vectoring_info;
6389 vcpu->run->internal.data[1] = exit_reason.full;
6390 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6391 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6392 vcpu->run->internal.data[ndata++] =
6393 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6394 }
6395 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6396 vcpu->run->internal.ndata = ndata;
6397 return 0;
6398 }
6399
6400 if (unlikely(!enable_vnmi &&
6401 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6402 if (!vmx_interrupt_blocked(vcpu)) {
6403 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6404 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6405 vcpu->arch.nmi_pending) {
6406 /*
6407 * This CPU don't support us in finding the end of an
6408 * NMI-blocked window if the guest runs with IRQs
6409 * disabled. So we pull the trigger after 1 s of
6410 * futile waiting, but inform the user about this.
6411 */
6412 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6413 "state on VCPU %d after 1 s timeout\n",
6414 __func__, vcpu->vcpu_id);
6415 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6416 }
6417 }
6418
6419 if (exit_fastpath != EXIT_FASTPATH_NONE)
6420 return 1;
6421
6422 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6423 goto unexpected_vmexit;
6424 #ifdef CONFIG_RETPOLINE
6425 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6426 return kvm_emulate_wrmsr(vcpu);
6427 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6428 return handle_preemption_timer(vcpu);
6429 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6430 return handle_interrupt_window(vcpu);
6431 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6432 return handle_external_interrupt(vcpu);
6433 else if (exit_reason.basic == EXIT_REASON_HLT)
6434 return kvm_emulate_halt(vcpu);
6435 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6436 return handle_ept_misconfig(vcpu);
6437 #endif
6438
6439 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6440 kvm_vmx_max_exit_handlers);
6441 if (!kvm_vmx_exit_handlers[exit_handler_index])
6442 goto unexpected_vmexit;
6443
6444 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6445
6446 unexpected_vmexit:
6447 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6448 exit_reason.full);
6449 dump_vmcs(vcpu);
6450 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6451 vcpu->run->internal.suberror =
6452 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6453 vcpu->run->internal.ndata = 2;
6454 vcpu->run->internal.data[0] = exit_reason.full;
6455 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6456 return 0;
6457 }
6458
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6459 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6460 {
6461 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6462
6463 /*
6464 * Exit to user space when bus lock detected to inform that there is
6465 * a bus lock in guest.
6466 */
6467 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6468 if (ret > 0)
6469 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6470
6471 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6472 return 0;
6473 }
6474 return ret;
6475 }
6476
6477 /*
6478 * Software based L1D cache flush which is used when microcode providing
6479 * the cache control MSR is not loaded.
6480 *
6481 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6482 * flush it is required to read in 64 KiB because the replacement algorithm
6483 * is not exactly LRU. This could be sized at runtime via topology
6484 * information but as all relevant affected CPUs have 32KiB L1D cache size
6485 * there is no point in doing so.
6486 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6487 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6488 {
6489 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6490
6491 /*
6492 * This code is only executed when the flush mode is 'cond' or
6493 * 'always'
6494 */
6495 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6496 bool flush_l1d;
6497
6498 /*
6499 * Clear the per-vcpu flush bit, it gets set again
6500 * either from vcpu_run() or from one of the unsafe
6501 * VMEXIT handlers.
6502 */
6503 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6504 vcpu->arch.l1tf_flush_l1d = false;
6505
6506 /*
6507 * Clear the per-cpu flush bit, it gets set again from
6508 * the interrupt handlers.
6509 */
6510 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6511 kvm_clear_cpu_l1tf_flush_l1d();
6512
6513 if (!flush_l1d)
6514 return;
6515 }
6516
6517 vcpu->stat.l1d_flush++;
6518
6519 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6520 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6521 return;
6522 }
6523
6524 asm volatile(
6525 /* First ensure the pages are in the TLB */
6526 "xorl %%eax, %%eax\n"
6527 ".Lpopulate_tlb:\n\t"
6528 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6529 "addl $4096, %%eax\n\t"
6530 "cmpl %%eax, %[size]\n\t"
6531 "jne .Lpopulate_tlb\n\t"
6532 "xorl %%eax, %%eax\n\t"
6533 "cpuid\n\t"
6534 /* Now fill the cache */
6535 "xorl %%eax, %%eax\n"
6536 ".Lfill_cache:\n"
6537 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6538 "addl $64, %%eax\n\t"
6539 "cmpl %%eax, %[size]\n\t"
6540 "jne .Lfill_cache\n\t"
6541 "lfence\n"
6542 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6543 [size] "r" (size)
6544 : "eax", "ebx", "ecx", "edx");
6545 }
6546
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6547 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6548 {
6549 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6550 int tpr_threshold;
6551
6552 if (is_guest_mode(vcpu) &&
6553 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6554 return;
6555
6556 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6557 if (is_guest_mode(vcpu))
6558 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6559 else
6560 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6561 }
6562
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6563 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6564 {
6565 struct vcpu_vmx *vmx = to_vmx(vcpu);
6566 u32 sec_exec_control;
6567
6568 if (!lapic_in_kernel(vcpu))
6569 return;
6570
6571 if (!flexpriority_enabled &&
6572 !cpu_has_vmx_virtualize_x2apic_mode())
6573 return;
6574
6575 /* Postpone execution until vmcs01 is the current VMCS. */
6576 if (is_guest_mode(vcpu)) {
6577 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6578 return;
6579 }
6580
6581 sec_exec_control = secondary_exec_controls_get(vmx);
6582 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6583 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6584
6585 switch (kvm_get_apic_mode(vcpu)) {
6586 case LAPIC_MODE_INVALID:
6587 WARN_ONCE(true, "Invalid local APIC state");
6588 break;
6589 case LAPIC_MODE_DISABLED:
6590 break;
6591 case LAPIC_MODE_XAPIC:
6592 if (flexpriority_enabled) {
6593 sec_exec_control |=
6594 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6595 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6596
6597 /*
6598 * Flush the TLB, reloading the APIC access page will
6599 * only do so if its physical address has changed, but
6600 * the guest may have inserted a non-APIC mapping into
6601 * the TLB while the APIC access page was disabled.
6602 */
6603 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6604 }
6605 break;
6606 case LAPIC_MODE_X2APIC:
6607 if (cpu_has_vmx_virtualize_x2apic_mode())
6608 sec_exec_control |=
6609 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6610 break;
6611 }
6612 secondary_exec_controls_set(vmx, sec_exec_control);
6613
6614 vmx_update_msr_bitmap_x2apic(vcpu);
6615 }
6616
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6617 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6618 {
6619 struct page *page;
6620
6621 /* Defer reload until vmcs01 is the current VMCS. */
6622 if (is_guest_mode(vcpu)) {
6623 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6624 return;
6625 }
6626
6627 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6628 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6629 return;
6630
6631 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6632 if (is_error_page(page))
6633 return;
6634
6635 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6636 vmx_flush_tlb_current(vcpu);
6637
6638 /*
6639 * Do not pin apic access page in memory, the MMU notifier
6640 * will call us again if it is migrated or swapped out.
6641 */
6642 put_page(page);
6643 }
6644
vmx_hwapic_isr_update(int max_isr)6645 static void vmx_hwapic_isr_update(int max_isr)
6646 {
6647 u16 status;
6648 u8 old;
6649
6650 if (max_isr == -1)
6651 max_isr = 0;
6652
6653 status = vmcs_read16(GUEST_INTR_STATUS);
6654 old = status >> 8;
6655 if (max_isr != old) {
6656 status &= 0xff;
6657 status |= max_isr << 8;
6658 vmcs_write16(GUEST_INTR_STATUS, status);
6659 }
6660 }
6661
vmx_set_rvi(int vector)6662 static void vmx_set_rvi(int vector)
6663 {
6664 u16 status;
6665 u8 old;
6666
6667 if (vector == -1)
6668 vector = 0;
6669
6670 status = vmcs_read16(GUEST_INTR_STATUS);
6671 old = (u8)status & 0xff;
6672 if ((u8)vector != old) {
6673 status &= ~0xff;
6674 status |= (u8)vector;
6675 vmcs_write16(GUEST_INTR_STATUS, status);
6676 }
6677 }
6678
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6679 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6680 {
6681 /*
6682 * When running L2, updating RVI is only relevant when
6683 * vmcs12 virtual-interrupt-delivery enabled.
6684 * However, it can be enabled only when L1 also
6685 * intercepts external-interrupts and in that case
6686 * we should not update vmcs02 RVI but instead intercept
6687 * interrupt. Therefore, do nothing when running L2.
6688 */
6689 if (!is_guest_mode(vcpu))
6690 vmx_set_rvi(max_irr);
6691 }
6692
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6693 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6694 {
6695 struct vcpu_vmx *vmx = to_vmx(vcpu);
6696 int max_irr;
6697 bool got_posted_interrupt;
6698
6699 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6700 return -EIO;
6701
6702 if (pi_test_on(&vmx->pi_desc)) {
6703 pi_clear_on(&vmx->pi_desc);
6704 /*
6705 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6706 * But on x86 this is just a compiler barrier anyway.
6707 */
6708 smp_mb__after_atomic();
6709 got_posted_interrupt =
6710 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6711 } else {
6712 max_irr = kvm_lapic_find_highest_irr(vcpu);
6713 got_posted_interrupt = false;
6714 }
6715
6716 /*
6717 * Newly recognized interrupts are injected via either virtual interrupt
6718 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6719 * disabled in two cases:
6720 *
6721 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6722 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6723 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6724 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6725 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6726 *
6727 * 2) If APICv is disabled for this vCPU, assigned devices may still
6728 * attempt to post interrupts. The posted interrupt vector will cause
6729 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6730 */
6731 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6732 vmx_set_rvi(max_irr);
6733 else if (got_posted_interrupt)
6734 kvm_make_request(KVM_REQ_EVENT, vcpu);
6735
6736 return max_irr;
6737 }
6738
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6739 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6740 {
6741 if (!kvm_vcpu_apicv_active(vcpu))
6742 return;
6743
6744 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6745 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6746 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6747 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6748 }
6749
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6750 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6751 {
6752 struct vcpu_vmx *vmx = to_vmx(vcpu);
6753
6754 pi_clear_on(&vmx->pi_desc);
6755 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6756 }
6757
6758 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6759
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6760 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6761 unsigned long entry)
6762 {
6763 bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6764
6765 kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6766 vmx_do_interrupt_nmi_irqoff(entry);
6767 kvm_after_interrupt(vcpu);
6768 }
6769
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6770 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6771 {
6772 /*
6773 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6774 * MSR value is not clobbered by the host activity before the guest
6775 * has chance to consume it.
6776 *
6777 * Do not blindly read xfd_err here, since this exception might
6778 * be caused by L1 interception on a platform which doesn't
6779 * support xfd at all.
6780 *
6781 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6782 * only when xfd contains a non-zero value.
6783 *
6784 * Queuing exception is done in vmx_handle_exit. See comment there.
6785 */
6786 if (vcpu->arch.guest_fpu.fpstate->xfd)
6787 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6788 }
6789
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6790 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6791 {
6792 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6793 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6794
6795 /* if exit due to PF check for async PF */
6796 if (is_page_fault(intr_info))
6797 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6798 /* if exit due to NM, handle before interrupts are enabled */
6799 else if (is_nm_fault(intr_info))
6800 handle_nm_fault_irqoff(&vmx->vcpu);
6801 /* Handle machine checks before interrupts are enabled */
6802 else if (is_machine_check(intr_info))
6803 kvm_machine_check();
6804 /* We need to handle NMIs before interrupts are enabled */
6805 else if (is_nmi(intr_info))
6806 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6807 }
6808
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6809 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6810 {
6811 u32 intr_info = vmx_get_intr_info(vcpu);
6812 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6813 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6814
6815 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6816 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6817 return;
6818
6819 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6820 vcpu->arch.at_instruction_boundary = true;
6821 }
6822
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6823 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6824 {
6825 struct vcpu_vmx *vmx = to_vmx(vcpu);
6826
6827 if (vmx->emulation_required)
6828 return;
6829
6830 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6831 handle_external_interrupt_irqoff(vcpu);
6832 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6833 handle_exception_nmi_irqoff(vmx);
6834 }
6835
6836 /*
6837 * The kvm parameter can be NULL (module initialization, or invocation before
6838 * VM creation). Be sure to check the kvm parameter before using it.
6839 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)6840 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6841 {
6842 switch (index) {
6843 case MSR_IA32_SMBASE:
6844 /*
6845 * We cannot do SMM unless we can run the guest in big
6846 * real mode.
6847 */
6848 return enable_unrestricted_guest || emulate_invalid_guest_state;
6849 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6850 return nested;
6851 case MSR_AMD64_VIRT_SPEC_CTRL:
6852 case MSR_AMD64_TSC_RATIO:
6853 /* This is AMD only. */
6854 return false;
6855 default:
6856 return true;
6857 }
6858 }
6859
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6860 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6861 {
6862 u32 exit_intr_info;
6863 bool unblock_nmi;
6864 u8 vector;
6865 bool idtv_info_valid;
6866
6867 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6868
6869 if (enable_vnmi) {
6870 if (vmx->loaded_vmcs->nmi_known_unmasked)
6871 return;
6872
6873 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6874 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6875 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6876 /*
6877 * SDM 3: 27.7.1.2 (September 2008)
6878 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6879 * a guest IRET fault.
6880 * SDM 3: 23.2.2 (September 2008)
6881 * Bit 12 is undefined in any of the following cases:
6882 * If the VM exit sets the valid bit in the IDT-vectoring
6883 * information field.
6884 * If the VM exit is due to a double fault.
6885 */
6886 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6887 vector != DF_VECTOR && !idtv_info_valid)
6888 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6889 GUEST_INTR_STATE_NMI);
6890 else
6891 vmx->loaded_vmcs->nmi_known_unmasked =
6892 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6893 & GUEST_INTR_STATE_NMI);
6894 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6895 vmx->loaded_vmcs->vnmi_blocked_time +=
6896 ktime_to_ns(ktime_sub(ktime_get(),
6897 vmx->loaded_vmcs->entry_time));
6898 }
6899
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6900 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6901 u32 idt_vectoring_info,
6902 int instr_len_field,
6903 int error_code_field)
6904 {
6905 u8 vector;
6906 int type;
6907 bool idtv_info_valid;
6908
6909 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6910
6911 vcpu->arch.nmi_injected = false;
6912 kvm_clear_exception_queue(vcpu);
6913 kvm_clear_interrupt_queue(vcpu);
6914
6915 if (!idtv_info_valid)
6916 return;
6917
6918 kvm_make_request(KVM_REQ_EVENT, vcpu);
6919
6920 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6921 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6922
6923 switch (type) {
6924 case INTR_TYPE_NMI_INTR:
6925 vcpu->arch.nmi_injected = true;
6926 /*
6927 * SDM 3: 27.7.1.2 (September 2008)
6928 * Clear bit "block by NMI" before VM entry if a NMI
6929 * delivery faulted.
6930 */
6931 vmx_set_nmi_mask(vcpu, false);
6932 break;
6933 case INTR_TYPE_SOFT_EXCEPTION:
6934 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6935 fallthrough;
6936 case INTR_TYPE_HARD_EXCEPTION:
6937 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6938 u32 err = vmcs_read32(error_code_field);
6939 kvm_requeue_exception_e(vcpu, vector, err);
6940 } else
6941 kvm_requeue_exception(vcpu, vector);
6942 break;
6943 case INTR_TYPE_SOFT_INTR:
6944 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6945 fallthrough;
6946 case INTR_TYPE_EXT_INTR:
6947 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6948 break;
6949 default:
6950 break;
6951 }
6952 }
6953
vmx_complete_interrupts(struct vcpu_vmx * vmx)6954 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6955 {
6956 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6957 VM_EXIT_INSTRUCTION_LEN,
6958 IDT_VECTORING_ERROR_CODE);
6959 }
6960
vmx_cancel_injection(struct kvm_vcpu * vcpu)6961 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6962 {
6963 __vmx_complete_interrupts(vcpu,
6964 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6965 VM_ENTRY_INSTRUCTION_LEN,
6966 VM_ENTRY_EXCEPTION_ERROR_CODE);
6967
6968 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6969 }
6970
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6971 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6972 {
6973 int i, nr_msrs;
6974 struct perf_guest_switch_msr *msrs;
6975 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
6976
6977 pmu->host_cross_mapped_mask = 0;
6978 if (pmu->pebs_enable & pmu->global_ctrl)
6979 intel_pmu_cross_mapped_check(pmu);
6980
6981 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6982 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
6983 if (!msrs)
6984 return;
6985
6986 for (i = 0; i < nr_msrs; i++)
6987 if (msrs[i].host == msrs[i].guest)
6988 clear_atomic_switch_msr(vmx, msrs[i].msr);
6989 else
6990 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6991 msrs[i].host, false);
6992 }
6993
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6994 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6995 {
6996 struct vcpu_vmx *vmx = to_vmx(vcpu);
6997 u64 tscl;
6998 u32 delta_tsc;
6999
7000 if (vmx->req_immediate_exit) {
7001 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7002 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7003 } else if (vmx->hv_deadline_tsc != -1) {
7004 tscl = rdtsc();
7005 if (vmx->hv_deadline_tsc > tscl)
7006 /* set_hv_timer ensures the delta fits in 32-bits */
7007 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7008 cpu_preemption_timer_multi);
7009 else
7010 delta_tsc = 0;
7011
7012 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7013 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7014 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7015 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7016 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7017 }
7018 }
7019
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7020 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7021 {
7022 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7023 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7024 vmcs_writel(HOST_RSP, host_rsp);
7025 }
7026 }
7027
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7028 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7029 unsigned int flags)
7030 {
7031 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7032
7033 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7034 return;
7035
7036 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7037 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7038
7039 /*
7040 * If the guest/host SPEC_CTRL values differ, restore the host value.
7041 *
7042 * For legacy IBRS, the IBRS bit always needs to be written after
7043 * transitioning from a less privileged predictor mode, regardless of
7044 * whether the guest/host values differ.
7045 */
7046 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7047 vmx->spec_ctrl != hostval)
7048 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7049
7050 barrier_nospec();
7051 }
7052
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7053 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7054 {
7055 switch (to_vmx(vcpu)->exit_reason.basic) {
7056 case EXIT_REASON_MSR_WRITE:
7057 return handle_fastpath_set_msr_irqoff(vcpu);
7058 case EXIT_REASON_PREEMPTION_TIMER:
7059 return handle_fastpath_preemption_timer(vcpu);
7060 default:
7061 return EXIT_FASTPATH_NONE;
7062 }
7063 }
7064
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)7065 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7066 struct vcpu_vmx *vmx,
7067 unsigned long flags)
7068 {
7069 guest_state_enter_irqoff();
7070
7071 /* L1D Flush includes CPU buffer clear to mitigate MDS */
7072 if (static_branch_unlikely(&vmx_l1d_should_flush))
7073 vmx_l1d_flush(vcpu);
7074 else if (static_branch_unlikely(&mds_user_clear))
7075 mds_clear_cpu_buffers();
7076 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7077 kvm_arch_has_assigned_device(vcpu->kvm))
7078 mds_clear_cpu_buffers();
7079
7080 vmx_disable_fb_clear(vmx);
7081
7082 if (vcpu->arch.cr2 != native_read_cr2())
7083 native_write_cr2(vcpu->arch.cr2);
7084
7085 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7086 flags);
7087
7088 vcpu->arch.cr2 = native_read_cr2();
7089
7090 vmx_enable_fb_clear(vmx);
7091
7092 guest_state_exit_irqoff();
7093 }
7094
vmx_vcpu_run(struct kvm_vcpu * vcpu)7095 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7096 {
7097 struct vcpu_vmx *vmx = to_vmx(vcpu);
7098 unsigned long cr3, cr4;
7099
7100 /* Record the guest's net vcpu time for enforced NMI injections. */
7101 if (unlikely(!enable_vnmi &&
7102 vmx->loaded_vmcs->soft_vnmi_blocked))
7103 vmx->loaded_vmcs->entry_time = ktime_get();
7104
7105 /*
7106 * Don't enter VMX if guest state is invalid, let the exit handler
7107 * start emulation until we arrive back to a valid state. Synthesize a
7108 * consistency check VM-Exit due to invalid guest state and bail.
7109 */
7110 if (unlikely(vmx->emulation_required)) {
7111 vmx->fail = 0;
7112
7113 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7114 vmx->exit_reason.failed_vmentry = 1;
7115 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7116 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7117 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7118 vmx->exit_intr_info = 0;
7119 return EXIT_FASTPATH_NONE;
7120 }
7121
7122 trace_kvm_entry(vcpu);
7123
7124 if (vmx->ple_window_dirty) {
7125 vmx->ple_window_dirty = false;
7126 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7127 }
7128
7129 /*
7130 * We did this in prepare_switch_to_guest, because it needs to
7131 * be within srcu_read_lock.
7132 */
7133 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7134
7135 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7136 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7137 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7138 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7139 vcpu->arch.regs_dirty = 0;
7140
7141 /*
7142 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7143 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7144 * it switches back to the current->mm, which can occur in KVM context
7145 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7146 * toggles a static key while handling a VM-Exit.
7147 */
7148 cr3 = __get_current_cr3_fast();
7149 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7150 vmcs_writel(HOST_CR3, cr3);
7151 vmx->loaded_vmcs->host_state.cr3 = cr3;
7152 }
7153
7154 cr4 = cr4_read_shadow();
7155 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7156 vmcs_writel(HOST_CR4, cr4);
7157 vmx->loaded_vmcs->host_state.cr4 = cr4;
7158 }
7159
7160 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7161 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7162 set_debugreg(vcpu->arch.dr6, 6);
7163
7164 /* When single-stepping over STI and MOV SS, we must clear the
7165 * corresponding interruptibility bits in the guest state. Otherwise
7166 * vmentry fails as it then expects bit 14 (BS) in pending debug
7167 * exceptions being set, but that's not correct for the guest debugging
7168 * case. */
7169 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7170 vmx_set_interrupt_shadow(vcpu, 0);
7171
7172 kvm_load_guest_xsave_state(vcpu);
7173
7174 pt_guest_enter(vmx);
7175
7176 atomic_switch_perf_msrs(vmx);
7177 if (intel_pmu_lbr_is_enabled(vcpu))
7178 vmx_passthrough_lbr_msrs(vcpu);
7179
7180 if (enable_preemption_timer)
7181 vmx_update_hv_timer(vcpu);
7182
7183 kvm_wait_lapic_expire(vcpu);
7184
7185 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7186 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
7187
7188 /* All fields are clean at this point */
7189 if (static_branch_unlikely(&enable_evmcs)) {
7190 current_evmcs->hv_clean_fields |=
7191 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7192
7193 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7194 }
7195
7196 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7197 if (vmx->host_debugctlmsr)
7198 update_debugctlmsr(vmx->host_debugctlmsr);
7199
7200 #ifndef CONFIG_X86_64
7201 /*
7202 * The sysexit path does not restore ds/es, so we must set them to
7203 * a reasonable value ourselves.
7204 *
7205 * We can't defer this to vmx_prepare_switch_to_host() since that
7206 * function may be executed in interrupt context, which saves and
7207 * restore segments around it, nullifying its effect.
7208 */
7209 loadsegment(ds, __USER_DS);
7210 loadsegment(es, __USER_DS);
7211 #endif
7212
7213 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7214
7215 pt_guest_exit(vmx);
7216
7217 kvm_load_host_xsave_state(vcpu);
7218
7219 if (is_guest_mode(vcpu)) {
7220 /*
7221 * Track VMLAUNCH/VMRESUME that have made past guest state
7222 * checking.
7223 */
7224 if (vmx->nested.nested_run_pending &&
7225 !vmx->exit_reason.failed_vmentry)
7226 ++vcpu->stat.nested_run;
7227
7228 vmx->nested.nested_run_pending = 0;
7229 }
7230
7231 vmx->idt_vectoring_info = 0;
7232
7233 if (unlikely(vmx->fail)) {
7234 vmx->exit_reason.full = 0xdead;
7235 return EXIT_FASTPATH_NONE;
7236 }
7237
7238 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7239 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7240 kvm_machine_check();
7241
7242 if (likely(!vmx->exit_reason.failed_vmentry))
7243 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7244
7245 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7246
7247 if (unlikely(vmx->exit_reason.failed_vmentry))
7248 return EXIT_FASTPATH_NONE;
7249
7250 vmx->loaded_vmcs->launched = 1;
7251
7252 vmx_recover_nmi_blocking(vmx);
7253 vmx_complete_interrupts(vmx);
7254
7255 if (is_guest_mode(vcpu))
7256 return EXIT_FASTPATH_NONE;
7257
7258 return vmx_exit_handlers_fastpath(vcpu);
7259 }
7260
vmx_vcpu_free(struct kvm_vcpu * vcpu)7261 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7262 {
7263 struct vcpu_vmx *vmx = to_vmx(vcpu);
7264
7265 if (enable_pml)
7266 vmx_destroy_pml_buffer(vmx);
7267 free_vpid(vmx->vpid);
7268 nested_vmx_free_vcpu(vcpu);
7269 free_loaded_vmcs(vmx->loaded_vmcs);
7270 }
7271
vmx_vcpu_create(struct kvm_vcpu * vcpu)7272 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7273 {
7274 struct vmx_uret_msr *tsx_ctrl;
7275 struct vcpu_vmx *vmx;
7276 int i, err;
7277
7278 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7279 vmx = to_vmx(vcpu);
7280
7281 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7282
7283 err = -ENOMEM;
7284
7285 vmx->vpid = allocate_vpid();
7286
7287 /*
7288 * If PML is turned on, failure on enabling PML just results in failure
7289 * of creating the vcpu, therefore we can simplify PML logic (by
7290 * avoiding dealing with cases, such as enabling PML partially on vcpus
7291 * for the guest), etc.
7292 */
7293 if (enable_pml) {
7294 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7295 if (!vmx->pml_pg)
7296 goto free_vpid;
7297 }
7298
7299 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7300 vmx->guest_uret_msrs[i].mask = -1ull;
7301 if (boot_cpu_has(X86_FEATURE_RTM)) {
7302 /*
7303 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7304 * Keep the host value unchanged to avoid changing CPUID bits
7305 * under the host kernel's feet.
7306 */
7307 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7308 if (tsx_ctrl)
7309 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7310 }
7311
7312 err = alloc_loaded_vmcs(&vmx->vmcs01);
7313 if (err < 0)
7314 goto free_pml;
7315
7316 /*
7317 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7318 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7319 * feature only for vmcs01, KVM currently isn't equipped to realize any
7320 * performance benefits from enabling it for vmcs02.
7321 */
7322 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7323 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7324 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7325
7326 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7327 }
7328
7329 /* The MSR bitmap starts with all ones */
7330 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7331 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7332
7333 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7334 #ifdef CONFIG_X86_64
7335 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7336 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7337 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7338 #endif
7339 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7340 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7341 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7342 if (kvm_cstate_in_guest(vcpu->kvm)) {
7343 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7344 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7345 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7346 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7347 }
7348
7349 vmx->loaded_vmcs = &vmx->vmcs01;
7350
7351 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7352 err = alloc_apic_access_page(vcpu->kvm);
7353 if (err)
7354 goto free_vmcs;
7355 }
7356
7357 if (enable_ept && !enable_unrestricted_guest) {
7358 err = init_rmode_identity_map(vcpu->kvm);
7359 if (err)
7360 goto free_vmcs;
7361 }
7362
7363 if (vmx_can_use_ipiv(vcpu))
7364 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7365 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7366
7367 return 0;
7368
7369 free_vmcs:
7370 free_loaded_vmcs(vmx->loaded_vmcs);
7371 free_pml:
7372 vmx_destroy_pml_buffer(vmx);
7373 free_vpid:
7374 free_vpid(vmx->vpid);
7375 return err;
7376 }
7377
7378 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7379 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7380
vmx_vm_init(struct kvm * kvm)7381 static int vmx_vm_init(struct kvm *kvm)
7382 {
7383 if (!ple_gap)
7384 kvm->arch.pause_in_guest = true;
7385
7386 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7387 switch (l1tf_mitigation) {
7388 case L1TF_MITIGATION_OFF:
7389 case L1TF_MITIGATION_FLUSH_NOWARN:
7390 /* 'I explicitly don't care' is set */
7391 break;
7392 case L1TF_MITIGATION_FLUSH:
7393 case L1TF_MITIGATION_FLUSH_NOSMT:
7394 case L1TF_MITIGATION_FULL:
7395 /*
7396 * Warn upon starting the first VM in a potentially
7397 * insecure environment.
7398 */
7399 if (sched_smt_active())
7400 pr_warn_once(L1TF_MSG_SMT);
7401 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7402 pr_warn_once(L1TF_MSG_L1D);
7403 break;
7404 case L1TF_MITIGATION_FULL_FORCE:
7405 /* Flush is enforced */
7406 break;
7407 }
7408 }
7409 return 0;
7410 }
7411
vmx_check_processor_compat(void)7412 static int __init vmx_check_processor_compat(void)
7413 {
7414 struct vmcs_config vmcs_conf;
7415 struct vmx_capability vmx_cap;
7416
7417 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7418 !this_cpu_has(X86_FEATURE_VMX)) {
7419 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7420 return -EIO;
7421 }
7422
7423 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7424 return -EIO;
7425 if (nested)
7426 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
7427 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7428 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7429 smp_processor_id());
7430 return -EIO;
7431 }
7432 return 0;
7433 }
7434
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7435 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7436 {
7437 u8 cache;
7438
7439 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7440 * memory aliases with conflicting memory types and sometimes MCEs.
7441 * We have to be careful as to what are honored and when.
7442 *
7443 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7444 * UC. The effective memory type is UC or WC depending on guest PAT.
7445 * This was historically the source of MCEs and we want to be
7446 * conservative.
7447 *
7448 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7449 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7450 * EPT memory type is set to WB. The effective memory type is forced
7451 * WB.
7452 *
7453 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7454 * EPT memory type is used to emulate guest CD/MTRR.
7455 */
7456
7457 if (is_mmio)
7458 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7459
7460 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7461 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7462
7463 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7464 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7465 cache = MTRR_TYPE_WRBACK;
7466 else
7467 cache = MTRR_TYPE_UNCACHABLE;
7468
7469 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7470 }
7471
7472 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7473 }
7474
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7475 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7476 {
7477 /*
7478 * These bits in the secondary execution controls field
7479 * are dynamic, the others are mostly based on the hypervisor
7480 * architecture and the guest's CPUID. Do not touch the
7481 * dynamic bits.
7482 */
7483 u32 mask =
7484 SECONDARY_EXEC_SHADOW_VMCS |
7485 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7486 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7487 SECONDARY_EXEC_DESC;
7488
7489 u32 cur_ctl = secondary_exec_controls_get(vmx);
7490
7491 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7492 }
7493
7494 /*
7495 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7496 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7497 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7498 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7499 {
7500 struct vcpu_vmx *vmx = to_vmx(vcpu);
7501 struct kvm_cpuid_entry2 *entry;
7502
7503 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7504 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7505
7506 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7507 if (entry && (entry->_reg & (_cpuid_mask))) \
7508 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7509 } while (0)
7510
7511 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7512 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7513 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7514 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7515 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7516 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7517 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7518 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7519 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7520 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7521 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7522 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7523 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7524 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7525 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7526
7527 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7528 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7529 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7530 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7531 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7532 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7533 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7534
7535 #undef cr4_fixed1_update
7536 }
7537
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7538 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7539 {
7540 struct vcpu_vmx *vmx = to_vmx(vcpu);
7541 struct kvm_cpuid_entry2 *best = NULL;
7542 int i;
7543
7544 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7545 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7546 if (!best)
7547 return;
7548 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7549 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7550 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7551 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7552 }
7553
7554 /* Get the number of configurable Address Ranges for filtering */
7555 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7556 PT_CAP_num_address_ranges);
7557
7558 /* Initialize and clear the no dependency bits */
7559 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7560 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7561 RTIT_CTL_BRANCH_EN);
7562
7563 /*
7564 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7565 * will inject an #GP
7566 */
7567 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7568 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7569
7570 /*
7571 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7572 * PSBFreq can be set
7573 */
7574 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7575 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7576 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7577
7578 /*
7579 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7580 */
7581 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7582 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7583 RTIT_CTL_MTC_RANGE);
7584
7585 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7586 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7587 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7588 RTIT_CTL_PTW_EN);
7589
7590 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7591 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7592 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7593
7594 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7595 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7596 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7597
7598 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7599 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7600 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7601
7602 /* unmask address range configure area */
7603 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7604 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7605 }
7606
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7607 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7608 {
7609 struct vcpu_vmx *vmx = to_vmx(vcpu);
7610
7611 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7612 vcpu->arch.xsaves_enabled = false;
7613
7614 vmx_setup_uret_msrs(vmx);
7615
7616 if (cpu_has_secondary_exec_ctrls())
7617 vmcs_set_secondary_exec_control(vmx,
7618 vmx_secondary_exec_control(vmx));
7619
7620 if (nested_vmx_allowed(vcpu))
7621 vmx->msr_ia32_feature_control_valid_bits |=
7622 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7623 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7624 else
7625 vmx->msr_ia32_feature_control_valid_bits &=
7626 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7627 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7628
7629 if (nested_vmx_allowed(vcpu))
7630 nested_vmx_cr_fixed1_bits_update(vcpu);
7631
7632 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7633 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7634 update_intel_pt_cfg(vcpu);
7635
7636 if (boot_cpu_has(X86_FEATURE_RTM)) {
7637 struct vmx_uret_msr *msr;
7638 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7639 if (msr) {
7640 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7641 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7642 }
7643 }
7644
7645 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7646 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7647 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7648
7649
7650 set_cr4_guest_host_mask(vmx);
7651
7652 vmx_write_encls_bitmap(vcpu, NULL);
7653 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7654 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7655 else
7656 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7657
7658 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7659 vmx->msr_ia32_feature_control_valid_bits |=
7660 FEAT_CTL_SGX_LC_ENABLED;
7661 else
7662 vmx->msr_ia32_feature_control_valid_bits &=
7663 ~FEAT_CTL_SGX_LC_ENABLED;
7664
7665 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7666 vmx_update_exception_bitmap(vcpu);
7667 }
7668
vmx_set_cpu_caps(void)7669 static __init void vmx_set_cpu_caps(void)
7670 {
7671 kvm_set_cpu_caps();
7672
7673 /* CPUID 0x1 */
7674 if (nested)
7675 kvm_cpu_cap_set(X86_FEATURE_VMX);
7676
7677 /* CPUID 0x7 */
7678 if (kvm_mpx_supported())
7679 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7680 if (!cpu_has_vmx_invpcid())
7681 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7682 if (vmx_pt_mode_is_host_guest())
7683 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7684 if (vmx_pebs_supported()) {
7685 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7686 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7687 }
7688
7689 if (!enable_pmu)
7690 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7691
7692 if (!enable_sgx) {
7693 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7694 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7695 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7696 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7697 }
7698
7699 if (vmx_umip_emulated())
7700 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7701
7702 /* CPUID 0xD.1 */
7703 kvm_caps.supported_xss = 0;
7704 if (!cpu_has_vmx_xsaves())
7705 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7706
7707 /* CPUID 0x80000001 and 0x7 (RDPID) */
7708 if (!cpu_has_vmx_rdtscp()) {
7709 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7710 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7711 }
7712
7713 if (cpu_has_vmx_waitpkg())
7714 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7715 }
7716
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7717 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7718 {
7719 to_vmx(vcpu)->req_immediate_exit = true;
7720 }
7721
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7722 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7723 struct x86_instruction_info *info)
7724 {
7725 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7726 unsigned short port;
7727 bool intercept;
7728 int size;
7729
7730 if (info->intercept == x86_intercept_in ||
7731 info->intercept == x86_intercept_ins) {
7732 port = info->src_val;
7733 size = info->dst_bytes;
7734 } else {
7735 port = info->dst_val;
7736 size = info->src_bytes;
7737 }
7738
7739 /*
7740 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7741 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7742 * control.
7743 *
7744 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7745 */
7746 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7747 intercept = nested_cpu_has(vmcs12,
7748 CPU_BASED_UNCOND_IO_EXITING);
7749 else
7750 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7751
7752 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7753 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7754 }
7755
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7756 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7757 struct x86_instruction_info *info,
7758 enum x86_intercept_stage stage,
7759 struct x86_exception *exception)
7760 {
7761 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7762
7763 switch (info->intercept) {
7764 /*
7765 * RDPID causes #UD if disabled through secondary execution controls.
7766 * Because it is marked as EmulateOnUD, we need to intercept it here.
7767 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7768 */
7769 case x86_intercept_rdpid:
7770 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7771 exception->vector = UD_VECTOR;
7772 exception->error_code_valid = false;
7773 return X86EMUL_PROPAGATE_FAULT;
7774 }
7775 break;
7776
7777 case x86_intercept_in:
7778 case x86_intercept_ins:
7779 case x86_intercept_out:
7780 case x86_intercept_outs:
7781 return vmx_check_intercept_io(vcpu, info);
7782
7783 case x86_intercept_lgdt:
7784 case x86_intercept_lidt:
7785 case x86_intercept_lldt:
7786 case x86_intercept_ltr:
7787 case x86_intercept_sgdt:
7788 case x86_intercept_sidt:
7789 case x86_intercept_sldt:
7790 case x86_intercept_str:
7791 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7792 return X86EMUL_CONTINUE;
7793
7794 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7795 break;
7796
7797 /* TODO: check more intercepts... */
7798 default:
7799 break;
7800 }
7801
7802 return X86EMUL_UNHANDLEABLE;
7803 }
7804
7805 #ifdef CONFIG_X86_64
7806 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7807 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7808 u64 divisor, u64 *result)
7809 {
7810 u64 low = a << shift, high = a >> (64 - shift);
7811
7812 /* To avoid the overflow on divq */
7813 if (high >= divisor)
7814 return 1;
7815
7816 /* Low hold the result, high hold rem which is discarded */
7817 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7818 "rm" (divisor), "0" (low), "1" (high));
7819 *result = low;
7820
7821 return 0;
7822 }
7823
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7824 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7825 bool *expired)
7826 {
7827 struct vcpu_vmx *vmx;
7828 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7829 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7830
7831 vmx = to_vmx(vcpu);
7832 tscl = rdtsc();
7833 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7834 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7835 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7836 ktimer->timer_advance_ns);
7837
7838 if (delta_tsc > lapic_timer_advance_cycles)
7839 delta_tsc -= lapic_timer_advance_cycles;
7840 else
7841 delta_tsc = 0;
7842
7843 /* Convert to host delta tsc if tsc scaling is enabled */
7844 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7845 delta_tsc && u64_shl_div_u64(delta_tsc,
7846 kvm_caps.tsc_scaling_ratio_frac_bits,
7847 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7848 return -ERANGE;
7849
7850 /*
7851 * If the delta tsc can't fit in the 32 bit after the multi shift,
7852 * we can't use the preemption timer.
7853 * It's possible that it fits on later vmentries, but checking
7854 * on every vmentry is costly so we just use an hrtimer.
7855 */
7856 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7857 return -ERANGE;
7858
7859 vmx->hv_deadline_tsc = tscl + delta_tsc;
7860 *expired = !delta_tsc;
7861 return 0;
7862 }
7863
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7864 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7865 {
7866 to_vmx(vcpu)->hv_deadline_tsc = -1;
7867 }
7868 #endif
7869
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7870 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7871 {
7872 if (!kvm_pause_in_guest(vcpu->kvm))
7873 shrink_ple_window(vcpu);
7874 }
7875
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)7876 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7877 {
7878 struct vcpu_vmx *vmx = to_vmx(vcpu);
7879
7880 if (is_guest_mode(vcpu)) {
7881 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7882 return;
7883 }
7884
7885 /*
7886 * Note, cpu_dirty_logging_count can be changed concurrent with this
7887 * code, but in that case another update request will be made and so
7888 * the guest will never run with a stale PML value.
7889 */
7890 if (vcpu->kvm->arch.cpu_dirty_logging_count)
7891 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7892 else
7893 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7894 }
7895
vmx_setup_mce(struct kvm_vcpu * vcpu)7896 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7897 {
7898 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7899 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7900 FEAT_CTL_LMCE_ENABLED;
7901 else
7902 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7903 ~FEAT_CTL_LMCE_ENABLED;
7904 }
7905
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7906 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7907 {
7908 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7909 if (to_vmx(vcpu)->nested.nested_run_pending)
7910 return -EBUSY;
7911 return !is_smm(vcpu);
7912 }
7913
vmx_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7914 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7915 {
7916 struct vcpu_vmx *vmx = to_vmx(vcpu);
7917
7918 /*
7919 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
7920 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
7921 * SMI and RSM only modify state that is saved and restored via SMRAM.
7922 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
7923 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
7924 */
7925 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7926 if (vmx->nested.smm.guest_mode)
7927 nested_vmx_vmexit(vcpu, -1, 0, 0);
7928
7929 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7930 vmx->nested.vmxon = false;
7931 vmx_clear_hlt(vcpu);
7932 return 0;
7933 }
7934
vmx_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7935 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7936 {
7937 struct vcpu_vmx *vmx = to_vmx(vcpu);
7938 int ret;
7939
7940 if (vmx->nested.smm.vmxon) {
7941 vmx->nested.vmxon = true;
7942 vmx->nested.smm.vmxon = false;
7943 }
7944
7945 if (vmx->nested.smm.guest_mode) {
7946 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7947 if (ret)
7948 return ret;
7949
7950 vmx->nested.nested_run_pending = 1;
7951 vmx->nested.smm.guest_mode = false;
7952 }
7953 return 0;
7954 }
7955
vmx_enable_smi_window(struct kvm_vcpu * vcpu)7956 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7957 {
7958 /* RSM will cause a vmexit anyway. */
7959 }
7960
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7961 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7962 {
7963 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7964 }
7965
vmx_migrate_timers(struct kvm_vcpu * vcpu)7966 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7967 {
7968 if (is_guest_mode(vcpu)) {
7969 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7970
7971 if (hrtimer_try_to_cancel(timer) == 1)
7972 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7973 }
7974 }
7975
vmx_hardware_unsetup(void)7976 static void vmx_hardware_unsetup(void)
7977 {
7978 kvm_set_posted_intr_wakeup_handler(NULL);
7979
7980 if (nested)
7981 nested_vmx_hardware_unsetup();
7982
7983 free_kvm_area();
7984 }
7985
vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)7986 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7987 {
7988 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7989 BIT(APICV_INHIBIT_REASON_ABSENT) |
7990 BIT(APICV_INHIBIT_REASON_HYPERV) |
7991 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
7992 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
7993 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
7994
7995 return supported & BIT(reason);
7996 }
7997
vmx_vm_destroy(struct kvm * kvm)7998 static void vmx_vm_destroy(struct kvm *kvm)
7999 {
8000 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8001
8002 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8003 }
8004
8005 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8006 .name = "kvm_intel",
8007
8008 .hardware_unsetup = vmx_hardware_unsetup,
8009
8010 .hardware_enable = vmx_hardware_enable,
8011 .hardware_disable = vmx_hardware_disable,
8012 .has_emulated_msr = vmx_has_emulated_msr,
8013
8014 .vm_size = sizeof(struct kvm_vmx),
8015 .vm_init = vmx_vm_init,
8016 .vm_destroy = vmx_vm_destroy,
8017
8018 .vcpu_precreate = vmx_vcpu_precreate,
8019 .vcpu_create = vmx_vcpu_create,
8020 .vcpu_free = vmx_vcpu_free,
8021 .vcpu_reset = vmx_vcpu_reset,
8022
8023 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8024 .vcpu_load = vmx_vcpu_load,
8025 .vcpu_put = vmx_vcpu_put,
8026
8027 .update_exception_bitmap = vmx_update_exception_bitmap,
8028 .get_msr_feature = vmx_get_msr_feature,
8029 .get_msr = vmx_get_msr,
8030 .set_msr = vmx_set_msr,
8031 .get_segment_base = vmx_get_segment_base,
8032 .get_segment = vmx_get_segment,
8033 .set_segment = vmx_set_segment,
8034 .get_cpl = vmx_get_cpl,
8035 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8036 .set_cr0 = vmx_set_cr0,
8037 .is_valid_cr4 = vmx_is_valid_cr4,
8038 .set_cr4 = vmx_set_cr4,
8039 .set_efer = vmx_set_efer,
8040 .get_idt = vmx_get_idt,
8041 .set_idt = vmx_set_idt,
8042 .get_gdt = vmx_get_gdt,
8043 .set_gdt = vmx_set_gdt,
8044 .set_dr7 = vmx_set_dr7,
8045 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8046 .cache_reg = vmx_cache_reg,
8047 .get_rflags = vmx_get_rflags,
8048 .set_rflags = vmx_set_rflags,
8049 .get_if_flag = vmx_get_if_flag,
8050
8051 .flush_tlb_all = vmx_flush_tlb_all,
8052 .flush_tlb_current = vmx_flush_tlb_current,
8053 .flush_tlb_gva = vmx_flush_tlb_gva,
8054 .flush_tlb_guest = vmx_flush_tlb_guest,
8055
8056 .vcpu_pre_run = vmx_vcpu_pre_run,
8057 .vcpu_run = vmx_vcpu_run,
8058 .handle_exit = vmx_handle_exit,
8059 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8060 .update_emulated_instruction = vmx_update_emulated_instruction,
8061 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8062 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8063 .patch_hypercall = vmx_patch_hypercall,
8064 .inject_irq = vmx_inject_irq,
8065 .inject_nmi = vmx_inject_nmi,
8066 .inject_exception = vmx_inject_exception,
8067 .cancel_injection = vmx_cancel_injection,
8068 .interrupt_allowed = vmx_interrupt_allowed,
8069 .nmi_allowed = vmx_nmi_allowed,
8070 .get_nmi_mask = vmx_get_nmi_mask,
8071 .set_nmi_mask = vmx_set_nmi_mask,
8072 .enable_nmi_window = vmx_enable_nmi_window,
8073 .enable_irq_window = vmx_enable_irq_window,
8074 .update_cr8_intercept = vmx_update_cr8_intercept,
8075 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8076 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8077 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8078 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8079 .apicv_post_state_restore = vmx_apicv_post_state_restore,
8080 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
8081 .hwapic_irr_update = vmx_hwapic_irr_update,
8082 .hwapic_isr_update = vmx_hwapic_isr_update,
8083 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8084 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8085 .deliver_interrupt = vmx_deliver_interrupt,
8086 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8087
8088 .set_tss_addr = vmx_set_tss_addr,
8089 .set_identity_map_addr = vmx_set_identity_map_addr,
8090 .get_mt_mask = vmx_get_mt_mask,
8091
8092 .get_exit_info = vmx_get_exit_info,
8093
8094 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8095
8096 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8097
8098 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8099 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8100 .write_tsc_offset = vmx_write_tsc_offset,
8101 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8102
8103 .load_mmu_pgd = vmx_load_mmu_pgd,
8104
8105 .check_intercept = vmx_check_intercept,
8106 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8107
8108 .request_immediate_exit = vmx_request_immediate_exit,
8109
8110 .sched_in = vmx_sched_in,
8111
8112 .cpu_dirty_log_size = PML_ENTITY_NUM,
8113 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8114
8115 .nested_ops = &vmx_nested_ops,
8116
8117 .pi_update_irte = vmx_pi_update_irte,
8118 .pi_start_assignment = vmx_pi_start_assignment,
8119
8120 #ifdef CONFIG_X86_64
8121 .set_hv_timer = vmx_set_hv_timer,
8122 .cancel_hv_timer = vmx_cancel_hv_timer,
8123 #endif
8124
8125 .setup_mce = vmx_setup_mce,
8126
8127 .smi_allowed = vmx_smi_allowed,
8128 .enter_smm = vmx_enter_smm,
8129 .leave_smm = vmx_leave_smm,
8130 .enable_smi_window = vmx_enable_smi_window,
8131
8132 .can_emulate_instruction = vmx_can_emulate_instruction,
8133 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8134 .migrate_timers = vmx_migrate_timers,
8135
8136 .msr_filter_changed = vmx_msr_filter_changed,
8137 .complete_emulated_msr = kvm_complete_insn_gp,
8138
8139 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8140 };
8141
vmx_handle_intel_pt_intr(void)8142 static unsigned int vmx_handle_intel_pt_intr(void)
8143 {
8144 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8145
8146 /* '0' on failure so that the !PT case can use a RET0 static call. */
8147 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8148 return 0;
8149
8150 kvm_make_request(KVM_REQ_PMI, vcpu);
8151 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8152 (unsigned long *)&vcpu->arch.pmu.global_status);
8153 return 1;
8154 }
8155
vmx_setup_user_return_msrs(void)8156 static __init void vmx_setup_user_return_msrs(void)
8157 {
8158
8159 /*
8160 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8161 * will emulate SYSCALL in legacy mode if the vendor string in guest
8162 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8163 * support this emulation, MSR_STAR is included in the list for i386,
8164 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8165 * into hardware and is here purely for emulation purposes.
8166 */
8167 const u32 vmx_uret_msrs_list[] = {
8168 #ifdef CONFIG_X86_64
8169 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8170 #endif
8171 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8172 MSR_IA32_TSX_CTRL,
8173 };
8174 int i;
8175
8176 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8177
8178 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8179 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8180 }
8181
vmx_setup_me_spte_mask(void)8182 static void __init vmx_setup_me_spte_mask(void)
8183 {
8184 u64 me_mask = 0;
8185
8186 /*
8187 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8188 * the former to avoid exposing shadow_phys_bits.
8189 *
8190 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8191 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8192 * boot_cpu_data.x86_phys_bits holds the actual physical address
8193 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8194 * reported by CPUID. Those bits between are KeyID bits.
8195 */
8196 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8197 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8198 kvm_get_shadow_phys_bits() - 1);
8199 /*
8200 * Unlike SME, host kernel doesn't support setting up any
8201 * MKTME KeyID on Intel platforms. No memory encryption
8202 * bits should be included into the SPTE.
8203 */
8204 kvm_mmu_set_me_spte_mask(0, me_mask);
8205 }
8206
8207 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8208
hardware_setup(void)8209 static __init int hardware_setup(void)
8210 {
8211 unsigned long host_bndcfgs;
8212 struct desc_ptr dt;
8213 int r;
8214
8215 store_idt(&dt);
8216 host_idt_base = dt.address;
8217
8218 vmx_setup_user_return_msrs();
8219
8220 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8221 return -EIO;
8222
8223 if (cpu_has_perf_global_ctrl_bug())
8224 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8225 "does not work properly. Using workaround\n");
8226
8227 if (boot_cpu_has(X86_FEATURE_NX))
8228 kvm_enable_efer_bits(EFER_NX);
8229
8230 if (boot_cpu_has(X86_FEATURE_MPX)) {
8231 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8232 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8233 }
8234
8235 if (!cpu_has_vmx_mpx())
8236 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8237 XFEATURE_MASK_BNDCSR);
8238
8239 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8240 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8241 enable_vpid = 0;
8242
8243 if (!cpu_has_vmx_ept() ||
8244 !cpu_has_vmx_ept_4levels() ||
8245 !cpu_has_vmx_ept_mt_wb() ||
8246 !cpu_has_vmx_invept_global())
8247 enable_ept = 0;
8248
8249 /* NX support is required for shadow paging. */
8250 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8251 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8252 return -EOPNOTSUPP;
8253 }
8254
8255 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8256 enable_ept_ad_bits = 0;
8257
8258 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8259 enable_unrestricted_guest = 0;
8260
8261 if (!cpu_has_vmx_flexpriority())
8262 flexpriority_enabled = 0;
8263
8264 if (!cpu_has_virtual_nmis())
8265 enable_vnmi = 0;
8266
8267 #ifdef CONFIG_X86_SGX_KVM
8268 if (!cpu_has_vmx_encls_vmexit())
8269 enable_sgx = false;
8270 #endif
8271
8272 /*
8273 * set_apic_access_page_addr() is used to reload apic access
8274 * page upon invalidation. No need to do anything if not
8275 * using the APIC_ACCESS_ADDR VMCS field.
8276 */
8277 if (!flexpriority_enabled)
8278 vmx_x86_ops.set_apic_access_page_addr = NULL;
8279
8280 if (!cpu_has_vmx_tpr_shadow())
8281 vmx_x86_ops.update_cr8_intercept = NULL;
8282
8283 #if IS_ENABLED(CONFIG_HYPERV)
8284 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8285 && enable_ept) {
8286 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8287 vmx_x86_ops.tlb_remote_flush_with_range =
8288 hv_remote_flush_tlb_with_range;
8289 }
8290 #endif
8291
8292 if (!cpu_has_vmx_ple()) {
8293 ple_gap = 0;
8294 ple_window = 0;
8295 ple_window_grow = 0;
8296 ple_window_max = 0;
8297 ple_window_shrink = 0;
8298 }
8299
8300 if (!cpu_has_vmx_apicv())
8301 enable_apicv = 0;
8302 if (!enable_apicv)
8303 vmx_x86_ops.sync_pir_to_irr = NULL;
8304
8305 if (!enable_apicv || !cpu_has_vmx_ipiv())
8306 enable_ipiv = false;
8307
8308 if (cpu_has_vmx_tsc_scaling())
8309 kvm_caps.has_tsc_control = true;
8310
8311 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8312 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8313 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8314 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8315
8316 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8317
8318 if (enable_ept)
8319 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8320 cpu_has_vmx_ept_execute_only());
8321
8322 /*
8323 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8324 * bits to shadow_zero_check.
8325 */
8326 vmx_setup_me_spte_mask();
8327
8328 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8329 ept_caps_to_lpage_level(vmx_capability.ept));
8330
8331 /*
8332 * Only enable PML when hardware supports PML feature, and both EPT
8333 * and EPT A/D bit features are enabled -- PML depends on them to work.
8334 */
8335 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8336 enable_pml = 0;
8337
8338 if (!enable_pml)
8339 vmx_x86_ops.cpu_dirty_log_size = 0;
8340
8341 if (!cpu_has_vmx_preemption_timer())
8342 enable_preemption_timer = false;
8343
8344 if (enable_preemption_timer) {
8345 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8346
8347 cpu_preemption_timer_multi =
8348 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8349
8350 if (tsc_khz)
8351 use_timer_freq = (u64)tsc_khz * 1000;
8352 use_timer_freq >>= cpu_preemption_timer_multi;
8353
8354 /*
8355 * KVM "disables" the preemption timer by setting it to its max
8356 * value. Don't use the timer if it might cause spurious exits
8357 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8358 */
8359 if (use_timer_freq > 0xffffffffu / 10)
8360 enable_preemption_timer = false;
8361 }
8362
8363 if (!enable_preemption_timer) {
8364 vmx_x86_ops.set_hv_timer = NULL;
8365 vmx_x86_ops.cancel_hv_timer = NULL;
8366 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8367 }
8368
8369 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8370 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8371
8372 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8373 return -EINVAL;
8374 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8375 pt_mode = PT_MODE_SYSTEM;
8376 if (pt_mode == PT_MODE_HOST_GUEST)
8377 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8378 else
8379 vmx_init_ops.handle_intel_pt_intr = NULL;
8380
8381 setup_default_sgx_lepubkeyhash();
8382
8383 if (nested) {
8384 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8385
8386 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8387 if (r)
8388 return r;
8389 }
8390
8391 vmx_set_cpu_caps();
8392
8393 r = alloc_kvm_area();
8394 if (r && nested)
8395 nested_vmx_hardware_unsetup();
8396
8397 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8398
8399 return r;
8400 }
8401
8402 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8403 .cpu_has_kvm_support = cpu_has_kvm_support,
8404 .disabled_by_bios = vmx_disabled_by_bios,
8405 .check_processor_compatibility = vmx_check_processor_compat,
8406 .hardware_setup = hardware_setup,
8407 .handle_intel_pt_intr = NULL,
8408
8409 .runtime_ops = &vmx_x86_ops,
8410 .pmu_ops = &intel_pmu_ops,
8411 };
8412
vmx_cleanup_l1d_flush(void)8413 static void vmx_cleanup_l1d_flush(void)
8414 {
8415 if (vmx_l1d_flush_pages) {
8416 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8417 vmx_l1d_flush_pages = NULL;
8418 }
8419 /* Restore state so sysfs ignores VMX */
8420 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8421 }
8422
vmx_exit(void)8423 static void vmx_exit(void)
8424 {
8425 #ifdef CONFIG_KEXEC_CORE
8426 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8427 synchronize_rcu();
8428 #endif
8429
8430 kvm_exit();
8431
8432 #if IS_ENABLED(CONFIG_HYPERV)
8433 if (static_branch_unlikely(&enable_evmcs)) {
8434 int cpu;
8435 struct hv_vp_assist_page *vp_ap;
8436 /*
8437 * Reset everything to support using non-enlightened VMCS
8438 * access later (e.g. when we reload the module with
8439 * enlightened_vmcs=0)
8440 */
8441 for_each_online_cpu(cpu) {
8442 vp_ap = hv_get_vp_assist_page(cpu);
8443
8444 if (!vp_ap)
8445 continue;
8446
8447 vp_ap->nested_control.features.directhypercall = 0;
8448 vp_ap->current_nested_vmcs = 0;
8449 vp_ap->enlighten_vmentry = 0;
8450 }
8451
8452 static_branch_disable(&enable_evmcs);
8453 }
8454 #endif
8455 vmx_cleanup_l1d_flush();
8456
8457 allow_smaller_maxphyaddr = false;
8458 }
8459 module_exit(vmx_exit);
8460
vmx_init(void)8461 static int __init vmx_init(void)
8462 {
8463 int r, cpu;
8464
8465 #if IS_ENABLED(CONFIG_HYPERV)
8466 /*
8467 * Enlightened VMCS usage should be recommended and the host needs
8468 * to support eVMCS v1 or above. We can also disable eVMCS support
8469 * with module parameter.
8470 */
8471 if (enlightened_vmcs &&
8472 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8473 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8474 KVM_EVMCS_VERSION) {
8475
8476 /* Check that we have assist pages on all online CPUs */
8477 for_each_online_cpu(cpu) {
8478 if (!hv_get_vp_assist_page(cpu)) {
8479 enlightened_vmcs = false;
8480 break;
8481 }
8482 }
8483
8484 if (enlightened_vmcs) {
8485 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8486 static_branch_enable(&enable_evmcs);
8487 }
8488
8489 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8490 vmx_x86_ops.enable_direct_tlbflush
8491 = hv_enable_direct_tlbflush;
8492
8493 } else {
8494 enlightened_vmcs = false;
8495 }
8496 #endif
8497
8498 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8499 __alignof__(struct vcpu_vmx), THIS_MODULE);
8500 if (r)
8501 return r;
8502
8503 /*
8504 * Must be called after kvm_init() so enable_ept is properly set
8505 * up. Hand the parameter mitigation value in which was stored in
8506 * the pre module init parser. If no parameter was given, it will
8507 * contain 'auto' which will be turned into the default 'cond'
8508 * mitigation mode.
8509 */
8510 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8511 if (r) {
8512 vmx_exit();
8513 return r;
8514 }
8515
8516 vmx_setup_fb_clear_ctrl();
8517
8518 for_each_possible_cpu(cpu) {
8519 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8520
8521 pi_init_cpu(cpu);
8522 }
8523
8524 #ifdef CONFIG_KEXEC_CORE
8525 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8526 crash_vmclear_local_loaded_vmcss);
8527 #endif
8528 vmx_check_vmcs12_offsets();
8529
8530 /*
8531 * Shadow paging doesn't have a (further) performance penalty
8532 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8533 * by default
8534 */
8535 if (!enable_ept)
8536 allow_smaller_maxphyaddr = true;
8537
8538 return 0;
8539 }
8540 module_init(vmx_init);
8541