1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55
56 #include "internal.h"
57
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63
64 #define SPINUNIT 100 /* 100ns */
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69
70 struct mce_bank {
71 u64 ctl; /* subevents to enable */
72
73 __u64 init : 1, /* initialise bank? */
74 __reserved_1 : 63;
75 };
76 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
77
78 #define ATTR_LEN 16
79 /* One object for each MCE bank, shared by all CPUs */
80 struct mce_bank_dev {
81 struct device_attribute attr; /* device attribute */
82 char attrname[ATTR_LEN]; /* attribute name */
83 u8 bank; /* bank number */
84 };
85 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
86
87 struct mce_vendor_flags mce_flags __read_mostly;
88
89 struct mca_config mca_cfg __read_mostly = {
90 .bootlog = -1,
91 .monarch_timeout = -1
92 };
93
94 static DEFINE_PER_CPU(struct mce, mces_seen);
95 static unsigned long mce_need_notify;
96
97 /*
98 * MCA banks polled by the period polling timer for corrected events.
99 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
100 */
101 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
102 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
103 };
104
105 /*
106 * MCA banks controlled through firmware first for corrected errors.
107 * This is a global list of banks for which we won't enable CMCI and we
108 * won't poll. Firmware controls these banks and is responsible for
109 * reporting corrected errors through GHES. Uncorrected/recoverable
110 * errors are still notified through a machine check.
111 */
112 mce_banks_t mce_banks_ce_disabled;
113
114 static struct work_struct mce_work;
115 static struct irq_work mce_irq_work;
116
117 /*
118 * CPU/chipset specific EDAC code can register a notifier call here to print
119 * MCE errors in a human-readable form.
120 */
121 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
122
123 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)124 void mce_setup(struct mce *m)
125 {
126 memset(m, 0, sizeof(struct mce));
127 m->cpu = m->extcpu = smp_processor_id();
128 /* need the internal __ version to avoid deadlocks */
129 m->time = __ktime_get_real_seconds();
130 m->cpuvendor = boot_cpu_data.x86_vendor;
131 m->cpuid = cpuid_eax(1);
132 m->socketid = cpu_data(m->extcpu).phys_proc_id;
133 m->apicid = cpu_data(m->extcpu).initial_apicid;
134 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
135 m->ppin = cpu_data(m->extcpu).ppin;
136 m->microcode = boot_cpu_data.microcode;
137 }
138
139 DEFINE_PER_CPU(struct mce, injectm);
140 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
141
mce_log(struct mce * m)142 void mce_log(struct mce *m)
143 {
144 if (!mce_gen_pool_add(m))
145 irq_work_queue(&mce_irq_work);
146 }
147 EXPORT_SYMBOL_GPL(mce_log);
148
mce_register_decode_chain(struct notifier_block * nb)149 void mce_register_decode_chain(struct notifier_block *nb)
150 {
151 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
152 nb->priority > MCE_PRIO_HIGHEST))
153 return;
154
155 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
156 }
157 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
158
mce_unregister_decode_chain(struct notifier_block * nb)159 void mce_unregister_decode_chain(struct notifier_block *nb)
160 {
161 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
162 }
163 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
164
__print_mce(struct mce * m)165 static void __print_mce(struct mce *m)
166 {
167 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
168 m->extcpu,
169 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
170 m->mcgstatus, m->bank, m->status);
171
172 if (m->ip) {
173 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
174 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
175 m->cs, m->ip);
176
177 if (m->cs == __KERNEL_CS)
178 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
179 pr_cont("\n");
180 }
181
182 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
183 if (m->addr)
184 pr_cont("ADDR %llx ", m->addr);
185 if (m->misc)
186 pr_cont("MISC %llx ", m->misc);
187 if (m->ppin)
188 pr_cont("PPIN %llx ", m->ppin);
189
190 if (mce_flags.smca) {
191 if (m->synd)
192 pr_cont("SYND %llx ", m->synd);
193 if (m->ipid)
194 pr_cont("IPID %llx ", m->ipid);
195 }
196
197 pr_cont("\n");
198
199 /*
200 * Note this output is parsed by external tools and old fields
201 * should not be changed.
202 */
203 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
204 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
205 m->microcode);
206 }
207
print_mce(struct mce * m)208 static void print_mce(struct mce *m)
209 {
210 __print_mce(m);
211
212 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
213 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
214 }
215
216 #define PANIC_TIMEOUT 5 /* 5 seconds */
217
218 static atomic_t mce_panicked;
219
220 static int fake_panic;
221 static atomic_t mce_fake_panicked;
222
223 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)224 static void wait_for_panic(void)
225 {
226 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
227
228 preempt_disable();
229 local_irq_enable();
230 while (timeout-- > 0)
231 udelay(1);
232 if (panic_timeout == 0)
233 panic_timeout = mca_cfg.panic_timeout;
234 panic("Panicing machine check CPU died");
235 }
236
mce_panic(const char * msg,struct mce * final,char * exp)237 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
238 {
239 struct llist_node *pending;
240 struct mce_evt_llist *l;
241 int apei_err = 0;
242
243 /*
244 * Allow instrumentation around external facilities usage. Not that it
245 * matters a whole lot since the machine is going to panic anyway.
246 */
247 instrumentation_begin();
248
249 if (!fake_panic) {
250 /*
251 * Make sure only one CPU runs in machine check panic
252 */
253 if (atomic_inc_return(&mce_panicked) > 1)
254 wait_for_panic();
255 barrier();
256
257 bust_spinlocks(1);
258 console_verbose();
259 } else {
260 /* Don't log too much for fake panic */
261 if (atomic_inc_return(&mce_fake_panicked) > 1)
262 goto out;
263 }
264 pending = mce_gen_pool_prepare_records();
265 /* First print corrected ones that are still unlogged */
266 llist_for_each_entry(l, pending, llnode) {
267 struct mce *m = &l->mce;
268 if (!(m->status & MCI_STATUS_UC)) {
269 print_mce(m);
270 if (!apei_err)
271 apei_err = apei_write_mce(m);
272 }
273 }
274 /* Now print uncorrected but with the final one last */
275 llist_for_each_entry(l, pending, llnode) {
276 struct mce *m = &l->mce;
277 if (!(m->status & MCI_STATUS_UC))
278 continue;
279 if (!final || mce_cmp(m, final)) {
280 print_mce(m);
281 if (!apei_err)
282 apei_err = apei_write_mce(m);
283 }
284 }
285 if (final) {
286 print_mce(final);
287 if (!apei_err)
288 apei_err = apei_write_mce(final);
289 }
290 if (exp)
291 pr_emerg(HW_ERR "Machine check: %s\n", exp);
292 if (!fake_panic) {
293 if (panic_timeout == 0)
294 panic_timeout = mca_cfg.panic_timeout;
295 panic(msg);
296 } else
297 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
298
299 out:
300 instrumentation_end();
301 }
302
303 /* Support code for software error injection */
304
msr_to_offset(u32 msr)305 static int msr_to_offset(u32 msr)
306 {
307 unsigned bank = __this_cpu_read(injectm.bank);
308
309 if (msr == mca_cfg.rip_msr)
310 return offsetof(struct mce, ip);
311 if (msr == mca_msr_reg(bank, MCA_STATUS))
312 return offsetof(struct mce, status);
313 if (msr == mca_msr_reg(bank, MCA_ADDR))
314 return offsetof(struct mce, addr);
315 if (msr == mca_msr_reg(bank, MCA_MISC))
316 return offsetof(struct mce, misc);
317 if (msr == MSR_IA32_MCG_STATUS)
318 return offsetof(struct mce, mcgstatus);
319 return -1;
320 }
321
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)322 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
323 {
324 if (wrmsr) {
325 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
326 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
327 regs->ip, (void *)regs->ip);
328 } else {
329 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
330 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
331 }
332
333 show_stack_regs(regs);
334
335 panic("MCA architectural violation!\n");
336
337 while (true)
338 cpu_relax();
339 }
340
341 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)342 noinstr u64 mce_rdmsrl(u32 msr)
343 {
344 DECLARE_ARGS(val, low, high);
345
346 if (__this_cpu_read(injectm.finished)) {
347 int offset;
348 u64 ret;
349
350 instrumentation_begin();
351
352 offset = msr_to_offset(msr);
353 if (offset < 0)
354 ret = 0;
355 else
356 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
357
358 instrumentation_end();
359
360 return ret;
361 }
362
363 /*
364 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
365 * architectural violation and needs to be reported to hw vendor. Panic
366 * the box to not allow any further progress.
367 */
368 asm volatile("1: rdmsr\n"
369 "2:\n"
370 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
371 : EAX_EDX_RET(val, low, high) : "c" (msr));
372
373
374 return EAX_EDX_VAL(val, low, high);
375 }
376
mce_wrmsrl(u32 msr,u64 v)377 static noinstr void mce_wrmsrl(u32 msr, u64 v)
378 {
379 u32 low, high;
380
381 if (__this_cpu_read(injectm.finished)) {
382 int offset;
383
384 instrumentation_begin();
385
386 offset = msr_to_offset(msr);
387 if (offset >= 0)
388 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
389
390 instrumentation_end();
391
392 return;
393 }
394
395 low = (u32)v;
396 high = (u32)(v >> 32);
397
398 /* See comment in mce_rdmsrl() */
399 asm volatile("1: wrmsr\n"
400 "2:\n"
401 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
402 : : "c" (msr), "a"(low), "d" (high) : "memory");
403 }
404
405 /*
406 * Collect all global (w.r.t. this processor) status about this machine
407 * check into our "mce" struct so that we can use it later to assess
408 * the severity of the problem as we read per-bank specific details.
409 */
mce_gather_info(struct mce * m,struct pt_regs * regs)410 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
411 {
412 /*
413 * Enable instrumentation around mce_setup() which calls external
414 * facilities.
415 */
416 instrumentation_begin();
417 mce_setup(m);
418 instrumentation_end();
419
420 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
421 if (regs) {
422 /*
423 * Get the address of the instruction at the time of
424 * the machine check error.
425 */
426 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
427 m->ip = regs->ip;
428 m->cs = regs->cs;
429
430 /*
431 * When in VM86 mode make the cs look like ring 3
432 * always. This is a lie, but it's better than passing
433 * the additional vm86 bit around everywhere.
434 */
435 if (v8086_mode(regs))
436 m->cs |= 3;
437 }
438 /* Use accurate RIP reporting if available. */
439 if (mca_cfg.rip_msr)
440 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
441 }
442 }
443
mce_available(struct cpuinfo_x86 * c)444 int mce_available(struct cpuinfo_x86 *c)
445 {
446 if (mca_cfg.disabled)
447 return 0;
448 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
449 }
450
mce_schedule_work(void)451 static void mce_schedule_work(void)
452 {
453 if (!mce_gen_pool_empty())
454 schedule_work(&mce_work);
455 }
456
mce_irq_work_cb(struct irq_work * entry)457 static void mce_irq_work_cb(struct irq_work *entry)
458 {
459 mce_schedule_work();
460 }
461
462 /*
463 * Check if the address reported by the CPU is in a format we can parse.
464 * It would be possible to add code for most other cases, but all would
465 * be somewhat complicated (e.g. segment offset would require an instruction
466 * parser). So only support physical addresses up to page granularity for now.
467 */
mce_usable_address(struct mce * m)468 int mce_usable_address(struct mce *m)
469 {
470 if (!(m->status & MCI_STATUS_ADDRV))
471 return 0;
472
473 /* Checks after this one are Intel/Zhaoxin-specific: */
474 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
475 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
476 return 1;
477
478 if (!(m->status & MCI_STATUS_MISCV))
479 return 0;
480
481 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
482 return 0;
483
484 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
485 return 0;
486
487 return 1;
488 }
489 EXPORT_SYMBOL_GPL(mce_usable_address);
490
mce_is_memory_error(struct mce * m)491 bool mce_is_memory_error(struct mce *m)
492 {
493 switch (m->cpuvendor) {
494 case X86_VENDOR_AMD:
495 case X86_VENDOR_HYGON:
496 return amd_mce_is_memory_error(m);
497
498 case X86_VENDOR_INTEL:
499 case X86_VENDOR_ZHAOXIN:
500 /*
501 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
502 *
503 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
504 * indicating a memory error. Bit 8 is used for indicating a
505 * cache hierarchy error. The combination of bit 2 and bit 3
506 * is used for indicating a `generic' cache hierarchy error
507 * But we can't just blindly check the above bits, because if
508 * bit 11 is set, then it is a bus/interconnect error - and
509 * either way the above bits just gives more detail on what
510 * bus/interconnect error happened. Note that bit 12 can be
511 * ignored, as it's the "filter" bit.
512 */
513 return (m->status & 0xef80) == BIT(7) ||
514 (m->status & 0xef00) == BIT(8) ||
515 (m->status & 0xeffc) == 0xc;
516
517 default:
518 return false;
519 }
520 }
521 EXPORT_SYMBOL_GPL(mce_is_memory_error);
522
whole_page(struct mce * m)523 static bool whole_page(struct mce *m)
524 {
525 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
526 return true;
527
528 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
529 }
530
mce_is_correctable(struct mce * m)531 bool mce_is_correctable(struct mce *m)
532 {
533 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
534 return false;
535
536 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
537 return false;
538
539 if (m->status & MCI_STATUS_UC)
540 return false;
541
542 return true;
543 }
544 EXPORT_SYMBOL_GPL(mce_is_correctable);
545
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)546 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
547 void *data)
548 {
549 struct mce *m = (struct mce *)data;
550
551 if (!m)
552 return NOTIFY_DONE;
553
554 /* Emit the trace record: */
555 trace_mce_record(m);
556
557 set_bit(0, &mce_need_notify);
558
559 mce_notify_irq();
560
561 return NOTIFY_DONE;
562 }
563
564 static struct notifier_block early_nb = {
565 .notifier_call = mce_early_notifier,
566 .priority = MCE_PRIO_EARLY,
567 };
568
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)569 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
570 void *data)
571 {
572 struct mce *mce = (struct mce *)data;
573 unsigned long pfn;
574
575 if (!mce || !mce_usable_address(mce))
576 return NOTIFY_DONE;
577
578 if (mce->severity != MCE_AO_SEVERITY &&
579 mce->severity != MCE_DEFERRED_SEVERITY)
580 return NOTIFY_DONE;
581
582 pfn = mce->addr >> PAGE_SHIFT;
583 if (!memory_failure(pfn, 0)) {
584 set_mce_nospec(pfn);
585 mce->kflags |= MCE_HANDLED_UC;
586 }
587
588 return NOTIFY_OK;
589 }
590
591 static struct notifier_block mce_uc_nb = {
592 .notifier_call = uc_decode_notifier,
593 .priority = MCE_PRIO_UC,
594 };
595
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)596 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
597 void *data)
598 {
599 struct mce *m = (struct mce *)data;
600
601 if (!m)
602 return NOTIFY_DONE;
603
604 if (mca_cfg.print_all || !m->kflags)
605 __print_mce(m);
606
607 return NOTIFY_DONE;
608 }
609
610 static struct notifier_block mce_default_nb = {
611 .notifier_call = mce_default_notifier,
612 /* lowest prio, we want it to run last. */
613 .priority = MCE_PRIO_LOWEST,
614 };
615
616 /*
617 * Read ADDR and MISC registers.
618 */
mce_read_aux(struct mce * m,int i)619 static noinstr void mce_read_aux(struct mce *m, int i)
620 {
621 if (m->status & MCI_STATUS_MISCV)
622 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
623
624 if (m->status & MCI_STATUS_ADDRV) {
625 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
626
627 /*
628 * Mask the reported address by the reported granularity.
629 */
630 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
631 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
632 m->addr >>= shift;
633 m->addr <<= shift;
634 }
635
636 /*
637 * Extract [55:<lsb>] where lsb is the least significant
638 * *valid* bit of the address bits.
639 */
640 if (mce_flags.smca) {
641 u8 lsb = (m->addr >> 56) & 0x3f;
642
643 m->addr &= GENMASK_ULL(55, lsb);
644 }
645 }
646
647 if (mce_flags.smca) {
648 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
649
650 if (m->status & MCI_STATUS_SYNDV)
651 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
652 }
653 }
654
655 DEFINE_PER_CPU(unsigned, mce_poll_count);
656
657 /*
658 * Poll for corrected events or events that happened before reset.
659 * Those are just logged through /dev/mcelog.
660 *
661 * This is executed in standard interrupt context.
662 *
663 * Note: spec recommends to panic for fatal unsignalled
664 * errors here. However this would be quite problematic --
665 * we would need to reimplement the Monarch handling and
666 * it would mess up the exclusion between exception handler
667 * and poll handler -- * so we skip this for now.
668 * These cases should not happen anyways, or only when the CPU
669 * is already totally * confused. In this case it's likely it will
670 * not fully execute the machine check handler either.
671 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)672 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
673 {
674 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
675 bool error_seen = false;
676 struct mce m;
677 int i;
678
679 this_cpu_inc(mce_poll_count);
680
681 mce_gather_info(&m, NULL);
682
683 if (flags & MCP_TIMESTAMP)
684 m.tsc = rdtsc();
685
686 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
687 if (!mce_banks[i].ctl || !test_bit(i, *b))
688 continue;
689
690 m.misc = 0;
691 m.addr = 0;
692 m.bank = i;
693
694 barrier();
695 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
696
697 /* If this entry is not valid, ignore it */
698 if (!(m.status & MCI_STATUS_VAL))
699 continue;
700
701 /*
702 * If we are logging everything (at CPU online) or this
703 * is a corrected error, then we must log it.
704 */
705 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
706 goto log_it;
707
708 /*
709 * Newer Intel systems that support software error
710 * recovery need to make additional checks. Other
711 * CPUs should skip over uncorrected errors, but log
712 * everything else.
713 */
714 if (!mca_cfg.ser) {
715 if (m.status & MCI_STATUS_UC)
716 continue;
717 goto log_it;
718 }
719
720 /* Log "not enabled" (speculative) errors */
721 if (!(m.status & MCI_STATUS_EN))
722 goto log_it;
723
724 /*
725 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
726 * UC == 1 && PCC == 0 && S == 0
727 */
728 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
729 goto log_it;
730
731 /*
732 * Skip anything else. Presumption is that our read of this
733 * bank is racing with a machine check. Leave the log alone
734 * for do_machine_check() to deal with it.
735 */
736 continue;
737
738 log_it:
739 error_seen = true;
740
741 if (flags & MCP_DONTLOG)
742 goto clear_it;
743
744 mce_read_aux(&m, i);
745 m.severity = mce_severity(&m, NULL, NULL, false);
746 /*
747 * Don't get the IP here because it's unlikely to
748 * have anything to do with the actual error location.
749 */
750
751 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
752 goto clear_it;
753
754 if (flags & MCP_QUEUE_LOG)
755 mce_gen_pool_add(&m);
756 else
757 mce_log(&m);
758
759 clear_it:
760 /*
761 * Clear state for this bank.
762 */
763 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
764 }
765
766 /*
767 * Don't clear MCG_STATUS here because it's only defined for
768 * exceptions.
769 */
770
771 sync_core();
772
773 return error_seen;
774 }
775 EXPORT_SYMBOL_GPL(machine_check_poll);
776
777 /*
778 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
779 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
780 * Vol 3B Table 15-20). But this confuses both the code that determines
781 * whether the machine check occurred in kernel or user mode, and also
782 * the severity assessment code. Pretend that EIPV was set, and take the
783 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
784 */
785 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)786 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
787 {
788 if (bank != 0)
789 return;
790 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
791 return;
792 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
793 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
794 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
795 MCACOD)) !=
796 (MCI_STATUS_UC|MCI_STATUS_EN|
797 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
798 MCI_STATUS_AR|MCACOD_INSTR))
799 return;
800
801 m->mcgstatus |= MCG_STATUS_EIPV;
802 m->ip = regs->ip;
803 m->cs = regs->cs;
804 }
805
806 /*
807 * Disable fast string copy and return from the MCE handler upon the first SRAR
808 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
809 * CPUs.
810 * The fast string copy instructions ("REP; MOVS*") could consume an
811 * uncorrectable memory error in the cache line _right after_ the desired region
812 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
813 * "REP; MOVS*".
814 * This mitigation addresses the issue completely with the caveat of performance
815 * degradation on the CPU affected. This is still better than the OS crashing on
816 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
817 * kernel context (e.g., copy_page).
818 *
819 * Returns true when fast string copy on CPU has been disabled.
820 */
quirk_skylake_repmov(void)821 static noinstr bool quirk_skylake_repmov(void)
822 {
823 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
824 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
825 u64 mc1_status;
826
827 /*
828 * Apply the quirk only to local machine checks, i.e., no broadcast
829 * sync is needed.
830 */
831 if (!(mcgstatus & MCG_STATUS_LMCES) ||
832 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
833 return false;
834
835 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
836
837 /* Check for a software-recoverable data fetch error. */
838 if ((mc1_status &
839 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
840 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
841 MCI_STATUS_AR | MCI_STATUS_S)) ==
842 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
843 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
844 MCI_STATUS_AR | MCI_STATUS_S)) {
845 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
846 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
847 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
848
849 instrumentation_begin();
850 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
851 instrumentation_end();
852
853 return true;
854 }
855
856 return false;
857 }
858
859 /*
860 * Do a quick check if any of the events requires a panic.
861 * This decides if we keep the events around or clear them.
862 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)863 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
864 struct pt_regs *regs)
865 {
866 char *tmp = *msg;
867 int i;
868
869 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
870 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
871 if (!(m->status & MCI_STATUS_VAL))
872 continue;
873
874 arch___set_bit(i, validp);
875 if (mce_flags.snb_ifu_quirk)
876 quirk_sandybridge_ifu(i, m, regs);
877
878 m->bank = i;
879 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
880 mce_read_aux(m, i);
881 *msg = tmp;
882 return 1;
883 }
884 }
885 return 0;
886 }
887
888 /*
889 * Variable to establish order between CPUs while scanning.
890 * Each CPU spins initially until executing is equal its number.
891 */
892 static atomic_t mce_executing;
893
894 /*
895 * Defines order of CPUs on entry. First CPU becomes Monarch.
896 */
897 static atomic_t mce_callin;
898
899 /*
900 * Track which CPUs entered the MCA broadcast synchronization and which not in
901 * order to print holdouts.
902 */
903 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
904
905 /*
906 * Check if a timeout waiting for other CPUs happened.
907 */
mce_timed_out(u64 * t,const char * msg)908 static noinstr int mce_timed_out(u64 *t, const char *msg)
909 {
910 int ret = 0;
911
912 /* Enable instrumentation around calls to external facilities */
913 instrumentation_begin();
914
915 /*
916 * The others already did panic for some reason.
917 * Bail out like in a timeout.
918 * rmb() to tell the compiler that system_state
919 * might have been modified by someone else.
920 */
921 rmb();
922 if (atomic_read(&mce_panicked))
923 wait_for_panic();
924 if (!mca_cfg.monarch_timeout)
925 goto out;
926 if ((s64)*t < SPINUNIT) {
927 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
928 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
929 cpumask_pr_args(&mce_missing_cpus));
930 mce_panic(msg, NULL, NULL);
931
932 ret = 1;
933 goto out;
934 }
935 *t -= SPINUNIT;
936
937 out:
938 touch_nmi_watchdog();
939
940 instrumentation_end();
941
942 return ret;
943 }
944
945 /*
946 * The Monarch's reign. The Monarch is the CPU who entered
947 * the machine check handler first. It waits for the others to
948 * raise the exception too and then grades them. When any
949 * error is fatal panic. Only then let the others continue.
950 *
951 * The other CPUs entering the MCE handler will be controlled by the
952 * Monarch. They are called Subjects.
953 *
954 * This way we prevent any potential data corruption in a unrecoverable case
955 * and also makes sure always all CPU's errors are examined.
956 *
957 * Also this detects the case of a machine check event coming from outer
958 * space (not detected by any CPUs) In this case some external agent wants
959 * us to shut down, so panic too.
960 *
961 * The other CPUs might still decide to panic if the handler happens
962 * in a unrecoverable place, but in this case the system is in a semi-stable
963 * state and won't corrupt anything by itself. It's ok to let the others
964 * continue for a bit first.
965 *
966 * All the spin loops have timeouts; when a timeout happens a CPU
967 * typically elects itself to be Monarch.
968 */
mce_reign(void)969 static void mce_reign(void)
970 {
971 int cpu;
972 struct mce *m = NULL;
973 int global_worst = 0;
974 char *msg = NULL;
975
976 /*
977 * This CPU is the Monarch and the other CPUs have run
978 * through their handlers.
979 * Grade the severity of the errors of all the CPUs.
980 */
981 for_each_possible_cpu(cpu) {
982 struct mce *mtmp = &per_cpu(mces_seen, cpu);
983
984 if (mtmp->severity > global_worst) {
985 global_worst = mtmp->severity;
986 m = &per_cpu(mces_seen, cpu);
987 }
988 }
989
990 /*
991 * Cannot recover? Panic here then.
992 * This dumps all the mces in the log buffer and stops the
993 * other CPUs.
994 */
995 if (m && global_worst >= MCE_PANIC_SEVERITY) {
996 /* call mce_severity() to get "msg" for panic */
997 mce_severity(m, NULL, &msg, true);
998 mce_panic("Fatal machine check", m, msg);
999 }
1000
1001 /*
1002 * For UC somewhere we let the CPU who detects it handle it.
1003 * Also must let continue the others, otherwise the handling
1004 * CPU could deadlock on a lock.
1005 */
1006
1007 /*
1008 * No machine check event found. Must be some external
1009 * source or one CPU is hung. Panic.
1010 */
1011 if (global_worst <= MCE_KEEP_SEVERITY)
1012 mce_panic("Fatal machine check from unknown source", NULL, NULL);
1013
1014 /*
1015 * Now clear all the mces_seen so that they don't reappear on
1016 * the next mce.
1017 */
1018 for_each_possible_cpu(cpu)
1019 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1020 }
1021
1022 static atomic_t global_nwo;
1023
1024 /*
1025 * Start of Monarch synchronization. This waits until all CPUs have
1026 * entered the exception handler and then determines if any of them
1027 * saw a fatal event that requires panic. Then it executes them
1028 * in the entry order.
1029 * TBD double check parallel CPU hotunplug
1030 */
mce_start(int * no_way_out)1031 static noinstr int mce_start(int *no_way_out)
1032 {
1033 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1034 int order, ret = -1;
1035
1036 if (!timeout)
1037 return ret;
1038
1039 arch_atomic_add(*no_way_out, &global_nwo);
1040 /*
1041 * Rely on the implied barrier below, such that global_nwo
1042 * is updated before mce_callin.
1043 */
1044 order = arch_atomic_inc_return(&mce_callin);
1045 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1046
1047 /* Enable instrumentation around calls to external facilities */
1048 instrumentation_begin();
1049
1050 /*
1051 * Wait for everyone.
1052 */
1053 while (arch_atomic_read(&mce_callin) != num_online_cpus()) {
1054 if (mce_timed_out(&timeout,
1055 "Timeout: Not all CPUs entered broadcast exception handler")) {
1056 arch_atomic_set(&global_nwo, 0);
1057 goto out;
1058 }
1059 ndelay(SPINUNIT);
1060 }
1061
1062 /*
1063 * mce_callin should be read before global_nwo
1064 */
1065 smp_rmb();
1066
1067 if (order == 1) {
1068 /*
1069 * Monarch: Starts executing now, the others wait.
1070 */
1071 arch_atomic_set(&mce_executing, 1);
1072 } else {
1073 /*
1074 * Subject: Now start the scanning loop one by one in
1075 * the original callin order.
1076 * This way when there are any shared banks it will be
1077 * only seen by one CPU before cleared, avoiding duplicates.
1078 */
1079 while (arch_atomic_read(&mce_executing) < order) {
1080 if (mce_timed_out(&timeout,
1081 "Timeout: Subject CPUs unable to finish machine check processing")) {
1082 arch_atomic_set(&global_nwo, 0);
1083 goto out;
1084 }
1085 ndelay(SPINUNIT);
1086 }
1087 }
1088
1089 /*
1090 * Cache the global no_way_out state.
1091 */
1092 *no_way_out = arch_atomic_read(&global_nwo);
1093
1094 ret = order;
1095
1096 out:
1097 instrumentation_end();
1098
1099 return ret;
1100 }
1101
1102 /*
1103 * Synchronize between CPUs after main scanning loop.
1104 * This invokes the bulk of the Monarch processing.
1105 */
mce_end(int order)1106 static noinstr int mce_end(int order)
1107 {
1108 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1109 int ret = -1;
1110
1111 /* Allow instrumentation around external facilities. */
1112 instrumentation_begin();
1113
1114 if (!timeout)
1115 goto reset;
1116 if (order < 0)
1117 goto reset;
1118
1119 /*
1120 * Allow others to run.
1121 */
1122 atomic_inc(&mce_executing);
1123
1124 if (order == 1) {
1125 /*
1126 * Monarch: Wait for everyone to go through their scanning
1127 * loops.
1128 */
1129 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1130 if (mce_timed_out(&timeout,
1131 "Timeout: Monarch CPU unable to finish machine check processing"))
1132 goto reset;
1133 ndelay(SPINUNIT);
1134 }
1135
1136 mce_reign();
1137 barrier();
1138 ret = 0;
1139 } else {
1140 /*
1141 * Subject: Wait for Monarch to finish.
1142 */
1143 while (atomic_read(&mce_executing) != 0) {
1144 if (mce_timed_out(&timeout,
1145 "Timeout: Monarch CPU did not finish machine check processing"))
1146 goto reset;
1147 ndelay(SPINUNIT);
1148 }
1149
1150 /*
1151 * Don't reset anything. That's done by the Monarch.
1152 */
1153 ret = 0;
1154 goto out;
1155 }
1156
1157 /*
1158 * Reset all global state.
1159 */
1160 reset:
1161 atomic_set(&global_nwo, 0);
1162 atomic_set(&mce_callin, 0);
1163 cpumask_setall(&mce_missing_cpus);
1164 barrier();
1165
1166 /*
1167 * Let others run again.
1168 */
1169 atomic_set(&mce_executing, 0);
1170
1171 out:
1172 instrumentation_end();
1173
1174 return ret;
1175 }
1176
mce_clear_state(unsigned long * toclear)1177 static __always_inline void mce_clear_state(unsigned long *toclear)
1178 {
1179 int i;
1180
1181 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1182 if (arch_test_bit(i, toclear))
1183 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1184 }
1185 }
1186
1187 /*
1188 * Cases where we avoid rendezvous handler timeout:
1189 * 1) If this CPU is offline.
1190 *
1191 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1192 * skip those CPUs which remain looping in the 1st kernel - see
1193 * crash_nmi_callback().
1194 *
1195 * Note: there still is a small window between kexec-ing and the new,
1196 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1197 * might not get handled properly.
1198 */
mce_check_crashing_cpu(void)1199 static noinstr bool mce_check_crashing_cpu(void)
1200 {
1201 unsigned int cpu = smp_processor_id();
1202
1203 if (arch_cpu_is_offline(cpu) ||
1204 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1205 u64 mcgstatus;
1206
1207 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1208
1209 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1210 if (mcgstatus & MCG_STATUS_LMCES)
1211 return false;
1212 }
1213
1214 if (mcgstatus & MCG_STATUS_RIPV) {
1215 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1216 return true;
1217 }
1218 }
1219 return false;
1220 }
1221
1222 static __always_inline int
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1223 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1224 unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1225 int *worst)
1226 {
1227 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1228 struct mca_config *cfg = &mca_cfg;
1229 int severity, i, taint = 0;
1230
1231 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1232 arch___clear_bit(i, toclear);
1233 if (!arch_test_bit(i, valid_banks))
1234 continue;
1235
1236 if (!mce_banks[i].ctl)
1237 continue;
1238
1239 m->misc = 0;
1240 m->addr = 0;
1241 m->bank = i;
1242
1243 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1244 if (!(m->status & MCI_STATUS_VAL))
1245 continue;
1246
1247 /*
1248 * Corrected or non-signaled errors are handled by
1249 * machine_check_poll(). Leave them alone, unless this panics.
1250 */
1251 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1252 !no_way_out)
1253 continue;
1254
1255 /* Set taint even when machine check was not enabled. */
1256 taint++;
1257
1258 severity = mce_severity(m, regs, NULL, true);
1259
1260 /*
1261 * When machine check was for corrected/deferred handler don't
1262 * touch, unless we're panicking.
1263 */
1264 if ((severity == MCE_KEEP_SEVERITY ||
1265 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1266 continue;
1267
1268 arch___set_bit(i, toclear);
1269
1270 /* Machine check event was not enabled. Clear, but ignore. */
1271 if (severity == MCE_NO_SEVERITY)
1272 continue;
1273
1274 mce_read_aux(m, i);
1275
1276 /* assuming valid severity level != 0 */
1277 m->severity = severity;
1278
1279 /*
1280 * Enable instrumentation around the mce_log() call which is
1281 * done in #MC context, where instrumentation is disabled.
1282 */
1283 instrumentation_begin();
1284 mce_log(m);
1285 instrumentation_end();
1286
1287 if (severity > *worst) {
1288 *final = *m;
1289 *worst = severity;
1290 }
1291 }
1292
1293 /* mce_clear_state will clear *final, save locally for use later */
1294 *m = *final;
1295
1296 return taint;
1297 }
1298
kill_me_now(struct callback_head * ch)1299 static void kill_me_now(struct callback_head *ch)
1300 {
1301 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1302
1303 p->mce_count = 0;
1304 force_sig(SIGBUS);
1305 }
1306
kill_me_maybe(struct callback_head * cb)1307 static void kill_me_maybe(struct callback_head *cb)
1308 {
1309 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1310 int flags = MF_ACTION_REQUIRED;
1311 int ret;
1312
1313 p->mce_count = 0;
1314 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1315
1316 if (!p->mce_ripv)
1317 flags |= MF_MUST_KILL;
1318
1319 ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1320 if (!ret) {
1321 set_mce_nospec(p->mce_addr >> PAGE_SHIFT);
1322 sync_core();
1323 return;
1324 }
1325
1326 /*
1327 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1328 * to the current process with the proper error info,
1329 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1330 *
1331 * In both cases, no further processing is required.
1332 */
1333 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1334 return;
1335
1336 pr_err("Memory error not recovered");
1337 kill_me_now(cb);
1338 }
1339
kill_me_never(struct callback_head * cb)1340 static void kill_me_never(struct callback_head *cb)
1341 {
1342 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1343
1344 p->mce_count = 0;
1345 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1346 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1347 set_mce_nospec(p->mce_addr >> PAGE_SHIFT);
1348 }
1349
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1350 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1351 {
1352 int count = ++current->mce_count;
1353
1354 /* First call, save all the details */
1355 if (count == 1) {
1356 current->mce_addr = m->addr;
1357 current->mce_kflags = m->kflags;
1358 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1359 current->mce_whole_page = whole_page(m);
1360 current->mce_kill_me.func = func;
1361 }
1362
1363 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1364 if (count > 10)
1365 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1366
1367 /* Second or later call, make sure page address matches the one from first call */
1368 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1369 mce_panic("Consecutive machine checks to different user pages", m, msg);
1370
1371 /* Do not call task_work_add() more than once */
1372 if (count > 1)
1373 return;
1374
1375 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1376 }
1377
1378 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1379 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1380 {
1381 instrumentation_begin();
1382 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1383 smp_processor_id());
1384 instrumentation_end();
1385 }
1386
1387 /*
1388 * The actual machine check handler. This only handles real exceptions when
1389 * something got corrupted coming in through int 18.
1390 *
1391 * This is executed in #MC context not subject to normal locking rules.
1392 * This implies that most kernel services cannot be safely used. Don't even
1393 * think about putting a printk in there!
1394 *
1395 * On Intel systems this is entered on all CPUs in parallel through
1396 * MCE broadcast. However some CPUs might be broken beyond repair,
1397 * so be always careful when synchronizing with others.
1398 *
1399 * Tracing and kprobes are disabled: if we interrupted a kernel context
1400 * with IF=1, we need to minimize stack usage. There are also recursion
1401 * issues: if the machine check was due to a failure of the memory
1402 * backing the user stack, tracing that reads the user stack will cause
1403 * potentially infinite recursion.
1404 *
1405 * Currently, the #MC handler calls out to a number of external facilities
1406 * and, therefore, allows instrumentation around them. The optimal thing to
1407 * have would be to do the absolutely minimal work required in #MC context
1408 * and have instrumentation disabled only around that. Further processing can
1409 * then happen in process context where instrumentation is allowed. Achieving
1410 * that requires careful auditing and modifications. Until then, the code
1411 * allows instrumentation temporarily, where required. *
1412 */
do_machine_check(struct pt_regs * regs)1413 noinstr void do_machine_check(struct pt_regs *regs)
1414 {
1415 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1416 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1417 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1418 struct mce m, *final;
1419 char *msg = NULL;
1420
1421 if (unlikely(mce_flags.p5))
1422 return pentium_machine_check(regs);
1423 else if (unlikely(mce_flags.winchip))
1424 return winchip_machine_check(regs);
1425 else if (unlikely(!mca_cfg.initialized))
1426 return unexpected_machine_check(regs);
1427
1428 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1429 goto clear;
1430
1431 /*
1432 * Establish sequential order between the CPUs entering the machine
1433 * check handler.
1434 */
1435 order = -1;
1436
1437 /*
1438 * If no_way_out gets set, there is no safe way to recover from this
1439 * MCE.
1440 */
1441 no_way_out = 0;
1442
1443 /*
1444 * If kill_current_task is not set, there might be a way to recover from this
1445 * error.
1446 */
1447 kill_current_task = 0;
1448
1449 /*
1450 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1451 * on Intel.
1452 */
1453 lmce = 1;
1454
1455 this_cpu_inc(mce_exception_count);
1456
1457 mce_gather_info(&m, regs);
1458 m.tsc = rdtsc();
1459
1460 final = this_cpu_ptr(&mces_seen);
1461 *final = m;
1462
1463 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1464
1465 barrier();
1466
1467 /*
1468 * When no restart IP might need to kill or panic.
1469 * Assume the worst for now, but if we find the
1470 * severity is MCE_AR_SEVERITY we have other options.
1471 */
1472 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1473 kill_current_task = 1;
1474 /*
1475 * Check if this MCE is signaled to only this logical processor,
1476 * on Intel, Zhaoxin only.
1477 */
1478 if (m.cpuvendor == X86_VENDOR_INTEL ||
1479 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1480 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1481
1482 /*
1483 * Local machine check may already know that we have to panic.
1484 * Broadcast machine check begins rendezvous in mce_start()
1485 * Go through all banks in exclusion of the other CPUs. This way we
1486 * don't report duplicated events on shared banks because the first one
1487 * to see it will clear it.
1488 */
1489 if (lmce) {
1490 if (no_way_out)
1491 mce_panic("Fatal local machine check", &m, msg);
1492 } else {
1493 order = mce_start(&no_way_out);
1494 }
1495
1496 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1497
1498 if (!no_way_out)
1499 mce_clear_state(toclear);
1500
1501 /*
1502 * Do most of the synchronization with other CPUs.
1503 * When there's any problem use only local no_way_out state.
1504 */
1505 if (!lmce) {
1506 if (mce_end(order) < 0) {
1507 if (!no_way_out)
1508 no_way_out = worst >= MCE_PANIC_SEVERITY;
1509
1510 if (no_way_out)
1511 mce_panic("Fatal machine check on current CPU", &m, msg);
1512 }
1513 } else {
1514 /*
1515 * If there was a fatal machine check we should have
1516 * already called mce_panic earlier in this function.
1517 * Since we re-read the banks, we might have found
1518 * something new. Check again to see if we found a
1519 * fatal error. We call "mce_severity()" again to
1520 * make sure we have the right "msg".
1521 */
1522 if (worst >= MCE_PANIC_SEVERITY) {
1523 mce_severity(&m, regs, &msg, true);
1524 mce_panic("Local fatal machine check!", &m, msg);
1525 }
1526 }
1527
1528 /*
1529 * Enable instrumentation around the external facilities like task_work_add()
1530 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1531 * properly would need a lot more involved reorganization.
1532 */
1533 instrumentation_begin();
1534
1535 if (taint)
1536 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1537
1538 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1539 goto out;
1540
1541 /* Fault was in user mode and we need to take some action */
1542 if ((m.cs & 3) == 3) {
1543 /* If this triggers there is no way to recover. Die hard. */
1544 BUG_ON(!on_thread_stack() || !user_mode(regs));
1545
1546 if (kill_current_task)
1547 queue_task_work(&m, msg, kill_me_now);
1548 else
1549 queue_task_work(&m, msg, kill_me_maybe);
1550
1551 } else {
1552 /*
1553 * Handle an MCE which has happened in kernel space but from
1554 * which the kernel can recover: ex_has_fault_handler() has
1555 * already verified that the rIP at which the error happened is
1556 * a rIP from which the kernel can recover (by jumping to
1557 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1558 * corresponding exception handler which would do that is the
1559 * proper one.
1560 */
1561 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1562 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1563 mce_panic("Failed kernel mode recovery", &m, msg);
1564 }
1565
1566 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1567 queue_task_work(&m, msg, kill_me_never);
1568 }
1569
1570 out:
1571 instrumentation_end();
1572
1573 clear:
1574 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1575 }
1576 EXPORT_SYMBOL_GPL(do_machine_check);
1577
1578 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1579 int memory_failure(unsigned long pfn, int flags)
1580 {
1581 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1582 BUG_ON(flags & MF_ACTION_REQUIRED);
1583 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1584 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1585 pfn);
1586
1587 return 0;
1588 }
1589 #endif
1590
1591 /*
1592 * Periodic polling timer for "silent" machine check errors. If the
1593 * poller finds an MCE, poll 2x faster. When the poller finds no more
1594 * errors, poll 2x slower (up to check_interval seconds).
1595 */
1596 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1597
1598 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1599 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1600
mce_adjust_timer_default(unsigned long interval)1601 static unsigned long mce_adjust_timer_default(unsigned long interval)
1602 {
1603 return interval;
1604 }
1605
1606 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1607
__start_timer(struct timer_list * t,unsigned long interval)1608 static void __start_timer(struct timer_list *t, unsigned long interval)
1609 {
1610 unsigned long when = jiffies + interval;
1611 unsigned long flags;
1612
1613 local_irq_save(flags);
1614
1615 if (!timer_pending(t) || time_before(when, t->expires))
1616 mod_timer(t, round_jiffies(when));
1617
1618 local_irq_restore(flags);
1619 }
1620
mce_timer_fn(struct timer_list * t)1621 static void mce_timer_fn(struct timer_list *t)
1622 {
1623 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1624 unsigned long iv;
1625
1626 WARN_ON(cpu_t != t);
1627
1628 iv = __this_cpu_read(mce_next_interval);
1629
1630 if (mce_available(this_cpu_ptr(&cpu_info))) {
1631 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1632
1633 if (mce_intel_cmci_poll()) {
1634 iv = mce_adjust_timer(iv);
1635 goto done;
1636 }
1637 }
1638
1639 /*
1640 * Alert userspace if needed. If we logged an MCE, reduce the polling
1641 * interval, otherwise increase the polling interval.
1642 */
1643 if (mce_notify_irq())
1644 iv = max(iv / 2, (unsigned long) HZ/100);
1645 else
1646 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1647
1648 done:
1649 __this_cpu_write(mce_next_interval, iv);
1650 __start_timer(t, iv);
1651 }
1652
1653 /*
1654 * Ensure that the timer is firing in @interval from now.
1655 */
mce_timer_kick(unsigned long interval)1656 void mce_timer_kick(unsigned long interval)
1657 {
1658 struct timer_list *t = this_cpu_ptr(&mce_timer);
1659 unsigned long iv = __this_cpu_read(mce_next_interval);
1660
1661 __start_timer(t, interval);
1662
1663 if (interval < iv)
1664 __this_cpu_write(mce_next_interval, interval);
1665 }
1666
1667 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1668 static void mce_timer_delete_all(void)
1669 {
1670 int cpu;
1671
1672 for_each_online_cpu(cpu)
1673 del_timer_sync(&per_cpu(mce_timer, cpu));
1674 }
1675
1676 /*
1677 * Notify the user(s) about new machine check events.
1678 * Can be called from interrupt context, but not from machine check/NMI
1679 * context.
1680 */
mce_notify_irq(void)1681 int mce_notify_irq(void)
1682 {
1683 /* Not more than two messages every minute */
1684 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1685
1686 if (test_and_clear_bit(0, &mce_need_notify)) {
1687 mce_work_trigger();
1688
1689 if (__ratelimit(&ratelimit))
1690 pr_info(HW_ERR "Machine check events logged\n");
1691
1692 return 1;
1693 }
1694 return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(mce_notify_irq);
1697
__mcheck_cpu_mce_banks_init(void)1698 static void __mcheck_cpu_mce_banks_init(void)
1699 {
1700 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1701 u8 n_banks = this_cpu_read(mce_num_banks);
1702 int i;
1703
1704 for (i = 0; i < n_banks; i++) {
1705 struct mce_bank *b = &mce_banks[i];
1706
1707 /*
1708 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1709 * the required vendor quirks before
1710 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1711 */
1712 b->ctl = -1ULL;
1713 b->init = true;
1714 }
1715 }
1716
1717 /*
1718 * Initialize Machine Checks for a CPU.
1719 */
__mcheck_cpu_cap_init(void)1720 static void __mcheck_cpu_cap_init(void)
1721 {
1722 u64 cap;
1723 u8 b;
1724
1725 rdmsrl(MSR_IA32_MCG_CAP, cap);
1726
1727 b = cap & MCG_BANKCNT_MASK;
1728
1729 if (b > MAX_NR_BANKS) {
1730 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1731 smp_processor_id(), MAX_NR_BANKS, b);
1732 b = MAX_NR_BANKS;
1733 }
1734
1735 this_cpu_write(mce_num_banks, b);
1736
1737 __mcheck_cpu_mce_banks_init();
1738
1739 /* Use accurate RIP reporting if available. */
1740 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1741 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1742
1743 if (cap & MCG_SER_P)
1744 mca_cfg.ser = 1;
1745 }
1746
__mcheck_cpu_init_generic(void)1747 static void __mcheck_cpu_init_generic(void)
1748 {
1749 enum mcp_flags m_fl = 0;
1750 mce_banks_t all_banks;
1751 u64 cap;
1752
1753 if (!mca_cfg.bootlog)
1754 m_fl = MCP_DONTLOG;
1755
1756 /*
1757 * Log the machine checks left over from the previous reset. Log them
1758 * only, do not start processing them. That will happen in mcheck_late_init()
1759 * when all consumers have been registered on the notifier chain.
1760 */
1761 bitmap_fill(all_banks, MAX_NR_BANKS);
1762 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1763
1764 cr4_set_bits(X86_CR4_MCE);
1765
1766 rdmsrl(MSR_IA32_MCG_CAP, cap);
1767 if (cap & MCG_CTL_P)
1768 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1769 }
1770
__mcheck_cpu_init_clear_banks(void)1771 static void __mcheck_cpu_init_clear_banks(void)
1772 {
1773 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1774 int i;
1775
1776 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1777 struct mce_bank *b = &mce_banks[i];
1778
1779 if (!b->init)
1780 continue;
1781 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1782 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1783 }
1784 }
1785
1786 /*
1787 * Do a final check to see if there are any unused/RAZ banks.
1788 *
1789 * This must be done after the banks have been initialized and any quirks have
1790 * been applied.
1791 *
1792 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1793 * Otherwise, a user who disables a bank will not be able to re-enable it
1794 * without a system reboot.
1795 */
__mcheck_cpu_check_banks(void)1796 static void __mcheck_cpu_check_banks(void)
1797 {
1798 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1799 u64 msrval;
1800 int i;
1801
1802 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1803 struct mce_bank *b = &mce_banks[i];
1804
1805 if (!b->init)
1806 continue;
1807
1808 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1809 b->init = !!msrval;
1810 }
1811 }
1812
1813 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1814 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1815 {
1816 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1817 struct mca_config *cfg = &mca_cfg;
1818
1819 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1820 pr_info("unknown CPU type - not enabling MCE support\n");
1821 return -EOPNOTSUPP;
1822 }
1823
1824 /* This should be disabled by the BIOS, but isn't always */
1825 if (c->x86_vendor == X86_VENDOR_AMD) {
1826 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1827 /*
1828 * disable GART TBL walk error reporting, which
1829 * trips off incorrectly with the IOMMU & 3ware
1830 * & Cerberus:
1831 */
1832 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1833 }
1834 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1835 /*
1836 * Lots of broken BIOS around that don't clear them
1837 * by default and leave crap in there. Don't log:
1838 */
1839 cfg->bootlog = 0;
1840 }
1841 /*
1842 * Various K7s with broken bank 0 around. Always disable
1843 * by default.
1844 */
1845 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1846 mce_banks[0].ctl = 0;
1847
1848 /*
1849 * overflow_recov is supported for F15h Models 00h-0fh
1850 * even though we don't have a CPUID bit for it.
1851 */
1852 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1853 mce_flags.overflow_recov = 1;
1854
1855 }
1856
1857 if (c->x86_vendor == X86_VENDOR_INTEL) {
1858 /*
1859 * SDM documents that on family 6 bank 0 should not be written
1860 * because it aliases to another special BIOS controlled
1861 * register.
1862 * But it's not aliased anymore on model 0x1a+
1863 * Don't ignore bank 0 completely because there could be a
1864 * valid event later, merely don't write CTL0.
1865 */
1866
1867 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1868 mce_banks[0].init = false;
1869
1870 /*
1871 * All newer Intel systems support MCE broadcasting. Enable
1872 * synchronization with a one second timeout.
1873 */
1874 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1875 cfg->monarch_timeout < 0)
1876 cfg->monarch_timeout = USEC_PER_SEC;
1877
1878 /*
1879 * There are also broken BIOSes on some Pentium M and
1880 * earlier systems:
1881 */
1882 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1883 cfg->bootlog = 0;
1884
1885 if (c->x86 == 6 && c->x86_model == 45)
1886 mce_flags.snb_ifu_quirk = 1;
1887
1888 /*
1889 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1890 * rep movs.
1891 */
1892 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1893 mce_flags.skx_repmov_quirk = 1;
1894 }
1895
1896 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1897 /*
1898 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1899 * synchronization with a one second timeout.
1900 */
1901 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1902 if (cfg->monarch_timeout < 0)
1903 cfg->monarch_timeout = USEC_PER_SEC;
1904 }
1905 }
1906
1907 if (cfg->monarch_timeout < 0)
1908 cfg->monarch_timeout = 0;
1909 if (cfg->bootlog != 0)
1910 cfg->panic_timeout = 30;
1911
1912 return 0;
1913 }
1914
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1915 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1916 {
1917 if (c->x86 != 5)
1918 return 0;
1919
1920 switch (c->x86_vendor) {
1921 case X86_VENDOR_INTEL:
1922 intel_p5_mcheck_init(c);
1923 mce_flags.p5 = 1;
1924 return 1;
1925 case X86_VENDOR_CENTAUR:
1926 winchip_mcheck_init(c);
1927 mce_flags.winchip = 1;
1928 return 1;
1929 default:
1930 return 0;
1931 }
1932
1933 return 0;
1934 }
1935
1936 /*
1937 * Init basic CPU features needed for early decoding of MCEs.
1938 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1939 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1940 {
1941 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1942 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1943 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1944 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1945 mce_flags.amd_threshold = 1;
1946 }
1947 }
1948
mce_centaur_feature_init(struct cpuinfo_x86 * c)1949 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1950 {
1951 struct mca_config *cfg = &mca_cfg;
1952
1953 /*
1954 * All newer Centaur CPUs support MCE broadcasting. Enable
1955 * synchronization with a one second timeout.
1956 */
1957 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1958 c->x86 > 6) {
1959 if (cfg->monarch_timeout < 0)
1960 cfg->monarch_timeout = USEC_PER_SEC;
1961 }
1962 }
1963
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1964 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1965 {
1966 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1967
1968 /*
1969 * These CPUs have MCA bank 8 which reports only one error type called
1970 * SVAD (System View Address Decoder). The reporting of that error is
1971 * controlled by IA32_MC8.CTL.0.
1972 *
1973 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1974 * virtual machines start and result in a system panic. Always disable
1975 * bank 8 SVAD error by default.
1976 */
1977 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1978 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1979 if (this_cpu_read(mce_num_banks) > 8)
1980 mce_banks[8].ctl = 0;
1981 }
1982
1983 intel_init_cmci();
1984 intel_init_lmce();
1985 mce_adjust_timer = cmci_intel_adjust_timer;
1986 }
1987
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1988 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1989 {
1990 intel_clear_lmce();
1991 }
1992
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1993 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1994 {
1995 switch (c->x86_vendor) {
1996 case X86_VENDOR_INTEL:
1997 mce_intel_feature_init(c);
1998 mce_adjust_timer = cmci_intel_adjust_timer;
1999 break;
2000
2001 case X86_VENDOR_AMD: {
2002 mce_amd_feature_init(c);
2003 break;
2004 }
2005
2006 case X86_VENDOR_HYGON:
2007 mce_hygon_feature_init(c);
2008 break;
2009
2010 case X86_VENDOR_CENTAUR:
2011 mce_centaur_feature_init(c);
2012 break;
2013
2014 case X86_VENDOR_ZHAOXIN:
2015 mce_zhaoxin_feature_init(c);
2016 break;
2017
2018 default:
2019 break;
2020 }
2021 }
2022
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2023 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2024 {
2025 switch (c->x86_vendor) {
2026 case X86_VENDOR_INTEL:
2027 mce_intel_feature_clear(c);
2028 break;
2029
2030 case X86_VENDOR_ZHAOXIN:
2031 mce_zhaoxin_feature_clear(c);
2032 break;
2033
2034 default:
2035 break;
2036 }
2037 }
2038
mce_start_timer(struct timer_list * t)2039 static void mce_start_timer(struct timer_list *t)
2040 {
2041 unsigned long iv = check_interval * HZ;
2042
2043 if (mca_cfg.ignore_ce || !iv)
2044 return;
2045
2046 this_cpu_write(mce_next_interval, iv);
2047 __start_timer(t, iv);
2048 }
2049
__mcheck_cpu_setup_timer(void)2050 static void __mcheck_cpu_setup_timer(void)
2051 {
2052 struct timer_list *t = this_cpu_ptr(&mce_timer);
2053
2054 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2055 }
2056
__mcheck_cpu_init_timer(void)2057 static void __mcheck_cpu_init_timer(void)
2058 {
2059 struct timer_list *t = this_cpu_ptr(&mce_timer);
2060
2061 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2062 mce_start_timer(t);
2063 }
2064
filter_mce(struct mce * m)2065 bool filter_mce(struct mce *m)
2066 {
2067 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2068 return amd_filter_mce(m);
2069 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2070 return intel_filter_mce(m);
2071
2072 return false;
2073 }
2074
exc_machine_check_kernel(struct pt_regs * regs)2075 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2076 {
2077 irqentry_state_t irq_state;
2078
2079 WARN_ON_ONCE(user_mode(regs));
2080
2081 /*
2082 * Only required when from kernel mode. See
2083 * mce_check_crashing_cpu() for details.
2084 */
2085 if (mca_cfg.initialized && mce_check_crashing_cpu())
2086 return;
2087
2088 irq_state = irqentry_nmi_enter(regs);
2089
2090 do_machine_check(regs);
2091
2092 irqentry_nmi_exit(regs, irq_state);
2093 }
2094
exc_machine_check_user(struct pt_regs * regs)2095 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2096 {
2097 irqentry_enter_from_user_mode(regs);
2098
2099 do_machine_check(regs);
2100
2101 irqentry_exit_to_user_mode(regs);
2102 }
2103
2104 #ifdef CONFIG_X86_64
2105 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2106 DEFINE_IDTENTRY_MCE(exc_machine_check)
2107 {
2108 unsigned long dr7;
2109
2110 dr7 = local_db_save();
2111 exc_machine_check_kernel(regs);
2112 local_db_restore(dr7);
2113 }
2114
2115 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2116 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2117 {
2118 unsigned long dr7;
2119
2120 dr7 = local_db_save();
2121 exc_machine_check_user(regs);
2122 local_db_restore(dr7);
2123 }
2124 #else
2125 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2126 DEFINE_IDTENTRY_RAW(exc_machine_check)
2127 {
2128 unsigned long dr7;
2129
2130 dr7 = local_db_save();
2131 if (user_mode(regs))
2132 exc_machine_check_user(regs);
2133 else
2134 exc_machine_check_kernel(regs);
2135 local_db_restore(dr7);
2136 }
2137 #endif
2138
2139 /*
2140 * Called for each booted CPU to set up machine checks.
2141 * Must be called with preempt off:
2142 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2143 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2144 {
2145 if (mca_cfg.disabled)
2146 return;
2147
2148 if (__mcheck_cpu_ancient_init(c))
2149 return;
2150
2151 if (!mce_available(c))
2152 return;
2153
2154 __mcheck_cpu_cap_init();
2155
2156 if (__mcheck_cpu_apply_quirks(c) < 0) {
2157 mca_cfg.disabled = 1;
2158 return;
2159 }
2160
2161 if (mce_gen_pool_init()) {
2162 mca_cfg.disabled = 1;
2163 pr_emerg("Couldn't allocate MCE records pool!\n");
2164 return;
2165 }
2166
2167 mca_cfg.initialized = 1;
2168
2169 __mcheck_cpu_init_early(c);
2170 __mcheck_cpu_init_generic();
2171 __mcheck_cpu_init_vendor(c);
2172 __mcheck_cpu_init_clear_banks();
2173 __mcheck_cpu_check_banks();
2174 __mcheck_cpu_setup_timer();
2175 }
2176
2177 /*
2178 * Called for each booted CPU to clear some machine checks opt-ins
2179 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2180 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2181 {
2182 if (mca_cfg.disabled)
2183 return;
2184
2185 if (!mce_available(c))
2186 return;
2187
2188 /*
2189 * Possibly to clear general settings generic to x86
2190 * __mcheck_cpu_clear_generic(c);
2191 */
2192 __mcheck_cpu_clear_vendor(c);
2193
2194 }
2195
__mce_disable_bank(void * arg)2196 static void __mce_disable_bank(void *arg)
2197 {
2198 int bank = *((int *)arg);
2199 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2200 cmci_disable_bank(bank);
2201 }
2202
mce_disable_bank(int bank)2203 void mce_disable_bank(int bank)
2204 {
2205 if (bank >= this_cpu_read(mce_num_banks)) {
2206 pr_warn(FW_BUG
2207 "Ignoring request to disable invalid MCA bank %d.\n",
2208 bank);
2209 return;
2210 }
2211 set_bit(bank, mce_banks_ce_disabled);
2212 on_each_cpu(__mce_disable_bank, &bank, 1);
2213 }
2214
2215 /*
2216 * mce=off Disables machine check
2217 * mce=no_cmci Disables CMCI
2218 * mce=no_lmce Disables LMCE
2219 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2220 * mce=print_all Print all machine check logs to console
2221 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2222 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2223 * monarchtimeout is how long to wait for other CPUs on machine
2224 * check, or 0 to not wait
2225 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2226 and older.
2227 * mce=nobootlog Don't log MCEs from before booting.
2228 * mce=bios_cmci_threshold Don't program the CMCI threshold
2229 * mce=recovery force enable copy_mc_fragile()
2230 */
mcheck_enable(char * str)2231 static int __init mcheck_enable(char *str)
2232 {
2233 struct mca_config *cfg = &mca_cfg;
2234
2235 if (*str == 0) {
2236 enable_p5_mce();
2237 return 1;
2238 }
2239 if (*str == '=')
2240 str++;
2241 if (!strcmp(str, "off"))
2242 cfg->disabled = 1;
2243 else if (!strcmp(str, "no_cmci"))
2244 cfg->cmci_disabled = true;
2245 else if (!strcmp(str, "no_lmce"))
2246 cfg->lmce_disabled = 1;
2247 else if (!strcmp(str, "dont_log_ce"))
2248 cfg->dont_log_ce = true;
2249 else if (!strcmp(str, "print_all"))
2250 cfg->print_all = true;
2251 else if (!strcmp(str, "ignore_ce"))
2252 cfg->ignore_ce = true;
2253 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2254 cfg->bootlog = (str[0] == 'b');
2255 else if (!strcmp(str, "bios_cmci_threshold"))
2256 cfg->bios_cmci_threshold = 1;
2257 else if (!strcmp(str, "recovery"))
2258 cfg->recovery = 1;
2259 else if (isdigit(str[0]))
2260 get_option(&str, &(cfg->monarch_timeout));
2261 else {
2262 pr_info("mce argument %s ignored. Please use /sys\n", str);
2263 return 0;
2264 }
2265 return 1;
2266 }
2267 __setup("mce", mcheck_enable);
2268
mcheck_init(void)2269 int __init mcheck_init(void)
2270 {
2271 mce_register_decode_chain(&early_nb);
2272 mce_register_decode_chain(&mce_uc_nb);
2273 mce_register_decode_chain(&mce_default_nb);
2274
2275 INIT_WORK(&mce_work, mce_gen_pool_process);
2276 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2277
2278 return 0;
2279 }
2280
2281 /*
2282 * mce_syscore: PM support
2283 */
2284
2285 /*
2286 * Disable machine checks on suspend and shutdown. We can't really handle
2287 * them later.
2288 */
mce_disable_error_reporting(void)2289 static void mce_disable_error_reporting(void)
2290 {
2291 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2292 int i;
2293
2294 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2295 struct mce_bank *b = &mce_banks[i];
2296
2297 if (b->init)
2298 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2299 }
2300 return;
2301 }
2302
vendor_disable_error_reporting(void)2303 static void vendor_disable_error_reporting(void)
2304 {
2305 /*
2306 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2307 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2308 * is bad, since it will inhibit reporting for all shared resources on
2309 * the socket like the last level cache (LLC), the integrated memory
2310 * controller (iMC), etc.
2311 */
2312 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2313 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2314 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2315 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2316 return;
2317
2318 mce_disable_error_reporting();
2319 }
2320
mce_syscore_suspend(void)2321 static int mce_syscore_suspend(void)
2322 {
2323 vendor_disable_error_reporting();
2324 return 0;
2325 }
2326
mce_syscore_shutdown(void)2327 static void mce_syscore_shutdown(void)
2328 {
2329 vendor_disable_error_reporting();
2330 }
2331
2332 /*
2333 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2334 * Only one CPU is active at this time, the others get re-added later using
2335 * CPU hotplug:
2336 */
mce_syscore_resume(void)2337 static void mce_syscore_resume(void)
2338 {
2339 __mcheck_cpu_init_generic();
2340 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2341 __mcheck_cpu_init_clear_banks();
2342 }
2343
2344 static struct syscore_ops mce_syscore_ops = {
2345 .suspend = mce_syscore_suspend,
2346 .shutdown = mce_syscore_shutdown,
2347 .resume = mce_syscore_resume,
2348 };
2349
2350 /*
2351 * mce_device: Sysfs support
2352 */
2353
mce_cpu_restart(void * data)2354 static void mce_cpu_restart(void *data)
2355 {
2356 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2357 return;
2358 __mcheck_cpu_init_generic();
2359 __mcheck_cpu_init_clear_banks();
2360 __mcheck_cpu_init_timer();
2361 }
2362
2363 /* Reinit MCEs after user configuration changes */
mce_restart(void)2364 static void mce_restart(void)
2365 {
2366 mce_timer_delete_all();
2367 on_each_cpu(mce_cpu_restart, NULL, 1);
2368 }
2369
2370 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2371 static void mce_disable_cmci(void *data)
2372 {
2373 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2374 return;
2375 cmci_clear();
2376 }
2377
mce_enable_ce(void * all)2378 static void mce_enable_ce(void *all)
2379 {
2380 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2381 return;
2382 cmci_reenable();
2383 cmci_recheck();
2384 if (all)
2385 __mcheck_cpu_init_timer();
2386 }
2387
2388 static struct bus_type mce_subsys = {
2389 .name = "machinecheck",
2390 .dev_name = "machinecheck",
2391 };
2392
2393 DEFINE_PER_CPU(struct device *, mce_device);
2394
attr_to_bank(struct device_attribute * attr)2395 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2396 {
2397 return container_of(attr, struct mce_bank_dev, attr);
2398 }
2399
show_bank(struct device * s,struct device_attribute * attr,char * buf)2400 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2401 char *buf)
2402 {
2403 u8 bank = attr_to_bank(attr)->bank;
2404 struct mce_bank *b;
2405
2406 if (bank >= per_cpu(mce_num_banks, s->id))
2407 return -EINVAL;
2408
2409 b = &per_cpu(mce_banks_array, s->id)[bank];
2410
2411 if (!b->init)
2412 return -ENODEV;
2413
2414 return sprintf(buf, "%llx\n", b->ctl);
2415 }
2416
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2417 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2418 const char *buf, size_t size)
2419 {
2420 u8 bank = attr_to_bank(attr)->bank;
2421 struct mce_bank *b;
2422 u64 new;
2423
2424 if (kstrtou64(buf, 0, &new) < 0)
2425 return -EINVAL;
2426
2427 if (bank >= per_cpu(mce_num_banks, s->id))
2428 return -EINVAL;
2429
2430 b = &per_cpu(mce_banks_array, s->id)[bank];
2431
2432 if (!b->init)
2433 return -ENODEV;
2434
2435 b->ctl = new;
2436 mce_restart();
2437
2438 return size;
2439 }
2440
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2441 static ssize_t set_ignore_ce(struct device *s,
2442 struct device_attribute *attr,
2443 const char *buf, size_t size)
2444 {
2445 u64 new;
2446
2447 if (kstrtou64(buf, 0, &new) < 0)
2448 return -EINVAL;
2449
2450 mutex_lock(&mce_sysfs_mutex);
2451 if (mca_cfg.ignore_ce ^ !!new) {
2452 if (new) {
2453 /* disable ce features */
2454 mce_timer_delete_all();
2455 on_each_cpu(mce_disable_cmci, NULL, 1);
2456 mca_cfg.ignore_ce = true;
2457 } else {
2458 /* enable ce features */
2459 mca_cfg.ignore_ce = false;
2460 on_each_cpu(mce_enable_ce, (void *)1, 1);
2461 }
2462 }
2463 mutex_unlock(&mce_sysfs_mutex);
2464
2465 return size;
2466 }
2467
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2468 static ssize_t set_cmci_disabled(struct device *s,
2469 struct device_attribute *attr,
2470 const char *buf, size_t size)
2471 {
2472 u64 new;
2473
2474 if (kstrtou64(buf, 0, &new) < 0)
2475 return -EINVAL;
2476
2477 mutex_lock(&mce_sysfs_mutex);
2478 if (mca_cfg.cmci_disabled ^ !!new) {
2479 if (new) {
2480 /* disable cmci */
2481 on_each_cpu(mce_disable_cmci, NULL, 1);
2482 mca_cfg.cmci_disabled = true;
2483 } else {
2484 /* enable cmci */
2485 mca_cfg.cmci_disabled = false;
2486 on_each_cpu(mce_enable_ce, NULL, 1);
2487 }
2488 }
2489 mutex_unlock(&mce_sysfs_mutex);
2490
2491 return size;
2492 }
2493
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2494 static ssize_t store_int_with_restart(struct device *s,
2495 struct device_attribute *attr,
2496 const char *buf, size_t size)
2497 {
2498 unsigned long old_check_interval = check_interval;
2499 ssize_t ret = device_store_ulong(s, attr, buf, size);
2500
2501 if (check_interval == old_check_interval)
2502 return ret;
2503
2504 mutex_lock(&mce_sysfs_mutex);
2505 mce_restart();
2506 mutex_unlock(&mce_sysfs_mutex);
2507
2508 return ret;
2509 }
2510
2511 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2512 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2513 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2514
2515 static struct dev_ext_attribute dev_attr_check_interval = {
2516 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2517 &check_interval
2518 };
2519
2520 static struct dev_ext_attribute dev_attr_ignore_ce = {
2521 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2522 &mca_cfg.ignore_ce
2523 };
2524
2525 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2526 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2527 &mca_cfg.cmci_disabled
2528 };
2529
2530 static struct device_attribute *mce_device_attrs[] = {
2531 &dev_attr_check_interval.attr,
2532 #ifdef CONFIG_X86_MCELOG_LEGACY
2533 &dev_attr_trigger,
2534 #endif
2535 &dev_attr_monarch_timeout.attr,
2536 &dev_attr_dont_log_ce.attr,
2537 &dev_attr_print_all.attr,
2538 &dev_attr_ignore_ce.attr,
2539 &dev_attr_cmci_disabled.attr,
2540 NULL
2541 };
2542
2543 static cpumask_var_t mce_device_initialized;
2544
mce_device_release(struct device * dev)2545 static void mce_device_release(struct device *dev)
2546 {
2547 kfree(dev);
2548 }
2549
2550 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2551 static int mce_device_create(unsigned int cpu)
2552 {
2553 struct device *dev;
2554 int err;
2555 int i, j;
2556
2557 if (!mce_available(&boot_cpu_data))
2558 return -EIO;
2559
2560 dev = per_cpu(mce_device, cpu);
2561 if (dev)
2562 return 0;
2563
2564 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2565 if (!dev)
2566 return -ENOMEM;
2567 dev->id = cpu;
2568 dev->bus = &mce_subsys;
2569 dev->release = &mce_device_release;
2570
2571 err = device_register(dev);
2572 if (err) {
2573 put_device(dev);
2574 return err;
2575 }
2576
2577 for (i = 0; mce_device_attrs[i]; i++) {
2578 err = device_create_file(dev, mce_device_attrs[i]);
2579 if (err)
2580 goto error;
2581 }
2582 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2583 err = device_create_file(dev, &mce_bank_devs[j].attr);
2584 if (err)
2585 goto error2;
2586 }
2587 cpumask_set_cpu(cpu, mce_device_initialized);
2588 per_cpu(mce_device, cpu) = dev;
2589
2590 return 0;
2591 error2:
2592 while (--j >= 0)
2593 device_remove_file(dev, &mce_bank_devs[j].attr);
2594 error:
2595 while (--i >= 0)
2596 device_remove_file(dev, mce_device_attrs[i]);
2597
2598 device_unregister(dev);
2599
2600 return err;
2601 }
2602
mce_device_remove(unsigned int cpu)2603 static void mce_device_remove(unsigned int cpu)
2604 {
2605 struct device *dev = per_cpu(mce_device, cpu);
2606 int i;
2607
2608 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2609 return;
2610
2611 for (i = 0; mce_device_attrs[i]; i++)
2612 device_remove_file(dev, mce_device_attrs[i]);
2613
2614 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2615 device_remove_file(dev, &mce_bank_devs[i].attr);
2616
2617 device_unregister(dev);
2618 cpumask_clear_cpu(cpu, mce_device_initialized);
2619 per_cpu(mce_device, cpu) = NULL;
2620 }
2621
2622 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2623 static void mce_disable_cpu(void)
2624 {
2625 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2626 return;
2627
2628 if (!cpuhp_tasks_frozen)
2629 cmci_clear();
2630
2631 vendor_disable_error_reporting();
2632 }
2633
mce_reenable_cpu(void)2634 static void mce_reenable_cpu(void)
2635 {
2636 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2637 int i;
2638
2639 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2640 return;
2641
2642 if (!cpuhp_tasks_frozen)
2643 cmci_reenable();
2644 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2645 struct mce_bank *b = &mce_banks[i];
2646
2647 if (b->init)
2648 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2649 }
2650 }
2651
mce_cpu_dead(unsigned int cpu)2652 static int mce_cpu_dead(unsigned int cpu)
2653 {
2654 mce_intel_hcpu_update(cpu);
2655
2656 /* intentionally ignoring frozen here */
2657 if (!cpuhp_tasks_frozen)
2658 cmci_rediscover();
2659 return 0;
2660 }
2661
mce_cpu_online(unsigned int cpu)2662 static int mce_cpu_online(unsigned int cpu)
2663 {
2664 struct timer_list *t = this_cpu_ptr(&mce_timer);
2665 int ret;
2666
2667 mce_device_create(cpu);
2668
2669 ret = mce_threshold_create_device(cpu);
2670 if (ret) {
2671 mce_device_remove(cpu);
2672 return ret;
2673 }
2674 mce_reenable_cpu();
2675 mce_start_timer(t);
2676 return 0;
2677 }
2678
mce_cpu_pre_down(unsigned int cpu)2679 static int mce_cpu_pre_down(unsigned int cpu)
2680 {
2681 struct timer_list *t = this_cpu_ptr(&mce_timer);
2682
2683 mce_disable_cpu();
2684 del_timer_sync(t);
2685 mce_threshold_remove_device(cpu);
2686 mce_device_remove(cpu);
2687 return 0;
2688 }
2689
mce_init_banks(void)2690 static __init void mce_init_banks(void)
2691 {
2692 int i;
2693
2694 for (i = 0; i < MAX_NR_BANKS; i++) {
2695 struct mce_bank_dev *b = &mce_bank_devs[i];
2696 struct device_attribute *a = &b->attr;
2697
2698 b->bank = i;
2699
2700 sysfs_attr_init(&a->attr);
2701 a->attr.name = b->attrname;
2702 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2703
2704 a->attr.mode = 0644;
2705 a->show = show_bank;
2706 a->store = set_bank;
2707 }
2708 }
2709
2710 /*
2711 * When running on XEN, this initcall is ordered against the XEN mcelog
2712 * initcall:
2713 *
2714 * device_initcall(xen_late_init_mcelog);
2715 * device_initcall_sync(mcheck_init_device);
2716 */
mcheck_init_device(void)2717 static __init int mcheck_init_device(void)
2718 {
2719 int err;
2720
2721 /*
2722 * Check if we have a spare virtual bit. This will only become
2723 * a problem if/when we move beyond 5-level page tables.
2724 */
2725 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2726
2727 if (!mce_available(&boot_cpu_data)) {
2728 err = -EIO;
2729 goto err_out;
2730 }
2731
2732 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2733 err = -ENOMEM;
2734 goto err_out;
2735 }
2736
2737 mce_init_banks();
2738
2739 err = subsys_system_register(&mce_subsys, NULL);
2740 if (err)
2741 goto err_out_mem;
2742
2743 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2744 mce_cpu_dead);
2745 if (err)
2746 goto err_out_mem;
2747
2748 /*
2749 * Invokes mce_cpu_online() on all CPUs which are online when
2750 * the state is installed.
2751 */
2752 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2753 mce_cpu_online, mce_cpu_pre_down);
2754 if (err < 0)
2755 goto err_out_online;
2756
2757 register_syscore_ops(&mce_syscore_ops);
2758
2759 return 0;
2760
2761 err_out_online:
2762 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2763
2764 err_out_mem:
2765 free_cpumask_var(mce_device_initialized);
2766
2767 err_out:
2768 pr_err("Unable to init MCE device (rc: %d)\n", err);
2769
2770 return err;
2771 }
2772 device_initcall_sync(mcheck_init_device);
2773
2774 /*
2775 * Old style boot options parsing. Only for compatibility.
2776 */
mcheck_disable(char * str)2777 static int __init mcheck_disable(char *str)
2778 {
2779 mca_cfg.disabled = 1;
2780 return 1;
2781 }
2782 __setup("nomce", mcheck_disable);
2783
2784 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2785 struct dentry *mce_get_debugfs_dir(void)
2786 {
2787 static struct dentry *dmce;
2788
2789 if (!dmce)
2790 dmce = debugfs_create_dir("mce", NULL);
2791
2792 return dmce;
2793 }
2794
mce_reset(void)2795 static void mce_reset(void)
2796 {
2797 atomic_set(&mce_fake_panicked, 0);
2798 atomic_set(&mce_executing, 0);
2799 atomic_set(&mce_callin, 0);
2800 atomic_set(&global_nwo, 0);
2801 cpumask_setall(&mce_missing_cpus);
2802 }
2803
fake_panic_get(void * data,u64 * val)2804 static int fake_panic_get(void *data, u64 *val)
2805 {
2806 *val = fake_panic;
2807 return 0;
2808 }
2809
fake_panic_set(void * data,u64 val)2810 static int fake_panic_set(void *data, u64 val)
2811 {
2812 mce_reset();
2813 fake_panic = val;
2814 return 0;
2815 }
2816
2817 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2818 "%llu\n");
2819
mcheck_debugfs_init(void)2820 static void __init mcheck_debugfs_init(void)
2821 {
2822 struct dentry *dmce;
2823
2824 dmce = mce_get_debugfs_dir();
2825 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2826 &fake_panic_fops);
2827 }
2828 #else
mcheck_debugfs_init(void)2829 static void __init mcheck_debugfs_init(void) { }
2830 #endif
2831
mcheck_late_init(void)2832 static int __init mcheck_late_init(void)
2833 {
2834 if (mca_cfg.recovery)
2835 enable_copy_mc_fragile();
2836
2837 mcheck_debugfs_init();
2838
2839 /*
2840 * Flush out everything that has been logged during early boot, now that
2841 * everything has been initialized (workqueues, decoders, ...).
2842 */
2843 mce_schedule_work();
2844
2845 return 0;
2846 }
2847 late_initcall(mcheck_late_init);
2848