1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
4 *
5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
7 */
8
9 #include <linux/bpf.h>
10 #include <linux/bitops.h>
11 #include <linux/compiler.h>
12 #include <linux/errno.h>
13 #include <linux/filter.h>
14 #include <linux/netdevice.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/if_vlan.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/hwcap.h>
21 #include <asm/opcodes.h>
22 #include <asm/system_info.h>
23
24 #include "bpf_jit_32.h"
25
26 /*
27 * eBPF prog stack layout:
28 *
29 * high
30 * original ARM_SP => +-----+
31 * | | callee saved registers
32 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
33 * | ... | eBPF JIT scratch space
34 * eBPF fp register => +-----+
35 * (BPF_FP) | ... | eBPF prog stack
36 * +-----+
37 * |RSVD | JIT scratchpad
38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
39 * | ... | caller-saved registers
40 * +-----+
41 * | ... | arguments passed on stack
42 * ARM_SP during call => +-----|
43 * | |
44 * | ... | Function call stack
45 * | |
46 * +-----+
47 * low
48 *
49 * The callee saved registers depends on whether frame pointers are enabled.
50 * With frame pointers (to be compliant with the ABI):
51 *
52 * high
53 * original ARM_SP => +--------------+ \
54 * | pc | |
55 * current ARM_FP => +--------------+ } callee saved registers
56 * |r4-r9,fp,ip,lr| |
57 * +--------------+ /
58 * low
59 *
60 * Without frame pointers:
61 *
62 * high
63 * original ARM_SP => +--------------+
64 * | r4-r9,fp,lr | callee saved registers
65 * current ARM_FP => +--------------+
66 * low
67 *
68 * When popping registers off the stack at the end of a BPF function, we
69 * reference them via the current ARM_FP register.
70 *
71 * Some eBPF operations are implemented via a call to a helper function.
72 * Such calls are "invisible" in the eBPF code, so it is up to the calling
73 * program to preserve any caller-saved ARM registers during the call. The
74 * JIT emits code to push and pop those registers onto the stack, immediately
75 * above the callee stack frame.
76 */
77 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
78 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
79 1 << ARM_FP)
80 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
81 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
82
83 #define CALLER_MASK (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
84
85 enum {
86 /* Stack layout - these are offsets from (top of stack - 4) */
87 BPF_R2_HI,
88 BPF_R2_LO,
89 BPF_R3_HI,
90 BPF_R3_LO,
91 BPF_R4_HI,
92 BPF_R4_LO,
93 BPF_R5_HI,
94 BPF_R5_LO,
95 BPF_R7_HI,
96 BPF_R7_LO,
97 BPF_R8_HI,
98 BPF_R8_LO,
99 BPF_R9_HI,
100 BPF_R9_LO,
101 BPF_FP_HI,
102 BPF_FP_LO,
103 BPF_TC_HI,
104 BPF_TC_LO,
105 BPF_AX_HI,
106 BPF_AX_LO,
107 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
108 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
109 * BPF_REG_FP and Tail call counts.
110 */
111 BPF_JIT_SCRATCH_REGS,
112 };
113
114 /*
115 * Negative "register" values indicate the register is stored on the stack
116 * and are the offset from the top of the eBPF JIT scratch space.
117 */
118 #define STACK_OFFSET(k) (-4 - (k) * 4)
119 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
120
121 #ifdef CONFIG_FRAME_POINTER
122 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
123 #else
124 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
125 #endif
126
127 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
128 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
129 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
130
131 #define FLAG_IMM_OVERFLOW (1 << 0)
132
133 /*
134 * Map eBPF registers to ARM 32bit registers or stack scratch space.
135 *
136 * 1. First argument is passed using the arm 32bit registers and rest of the
137 * arguments are passed on stack scratch space.
138 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
139 * arguments are mapped to scratch space on stack.
140 * 3. We need two 64 bit temp registers to do complex operations on eBPF
141 * registers.
142 *
143 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
144 * registers, we have to map each eBPF registers with two arm 32 bit regs or
145 * scratch memory space and we have to build eBPF 64 bit register from those.
146 *
147 */
148 static const s8 bpf2a32[][2] = {
149 /* return value from in-kernel function, and exit value from eBPF */
150 [BPF_REG_0] = {ARM_R1, ARM_R0},
151 /* arguments from eBPF program to in-kernel function */
152 [BPF_REG_1] = {ARM_R3, ARM_R2},
153 /* Stored on stack scratch space */
154 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
155 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
156 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
157 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
158 /* callee saved registers that in-kernel function will preserve */
159 [BPF_REG_6] = {ARM_R5, ARM_R4},
160 /* Stored on stack scratch space */
161 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
162 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
163 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
164 /* Read only Frame Pointer to access Stack */
165 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
166 /* Temporary Register for BPF JIT, can be used
167 * for constant blindings and others.
168 */
169 [TMP_REG_1] = {ARM_R7, ARM_R6},
170 [TMP_REG_2] = {ARM_R9, ARM_R8},
171 /* Tail call count. Stored on stack scratch space. */
172 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
173 /* temporary register for blinding constants.
174 * Stored on stack scratch space.
175 */
176 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
177 };
178
179 #define dst_lo dst[1]
180 #define dst_hi dst[0]
181 #define src_lo src[1]
182 #define src_hi src[0]
183
184 /*
185 * JIT Context:
186 *
187 * prog : bpf_prog
188 * idx : index of current last JITed instruction.
189 * prologue_bytes : bytes used in prologue.
190 * epilogue_offset : offset of epilogue starting.
191 * offsets : array of eBPF instruction offsets in
192 * JITed code.
193 * target : final JITed code.
194 * epilogue_bytes : no of bytes used in epilogue.
195 * imm_count : no of immediate counts used for global
196 * variables.
197 * imms : array of global variable addresses.
198 */
199
200 struct jit_ctx {
201 const struct bpf_prog *prog;
202 unsigned int idx;
203 unsigned int prologue_bytes;
204 unsigned int epilogue_offset;
205 unsigned int cpu_architecture;
206 u32 flags;
207 u32 *offsets;
208 u32 *target;
209 u32 stack_size;
210 #if __LINUX_ARM_ARCH__ < 7
211 u16 epilogue_bytes;
212 u16 imm_count;
213 u32 *imms;
214 #endif
215 };
216
217 /*
218 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
219 * (where the assembly routines like __aeabi_uidiv could cause problems).
220 */
jit_udiv32(u32 dividend,u32 divisor)221 static u32 jit_udiv32(u32 dividend, u32 divisor)
222 {
223 return dividend / divisor;
224 }
225
jit_mod32(u32 dividend,u32 divisor)226 static u32 jit_mod32(u32 dividend, u32 divisor)
227 {
228 return dividend % divisor;
229 }
230
_emit(int cond,u32 inst,struct jit_ctx * ctx)231 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
232 {
233 inst |= (cond << 28);
234 inst = __opcode_to_mem_arm(inst);
235
236 if (ctx->target != NULL)
237 ctx->target[ctx->idx] = inst;
238
239 ctx->idx++;
240 }
241
242 /*
243 * Emit an instruction that will be executed unconditionally.
244 */
emit(u32 inst,struct jit_ctx * ctx)245 static inline void emit(u32 inst, struct jit_ctx *ctx)
246 {
247 _emit(ARM_COND_AL, inst, ctx);
248 }
249
250 /*
251 * This is rather horrid, but necessary to convert an integer constant
252 * to an immediate operand for the opcodes, and be able to detect at
253 * build time whether the constant can't be converted (iow, usable in
254 * BUILD_BUG_ON()).
255 */
256 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
257 #define const_imm8m(x) \
258 ({ int r; \
259 u32 v = (x); \
260 if (!(v & ~0x000000ff)) \
261 r = imm12val(v, 0); \
262 else if (!(v & ~0xc000003f)) \
263 r = imm12val(v, 2); \
264 else if (!(v & ~0xf000000f)) \
265 r = imm12val(v, 4); \
266 else if (!(v & ~0xfc000003)) \
267 r = imm12val(v, 6); \
268 else if (!(v & ~0xff000000)) \
269 r = imm12val(v, 8); \
270 else if (!(v & ~0x3fc00000)) \
271 r = imm12val(v, 10); \
272 else if (!(v & ~0x0ff00000)) \
273 r = imm12val(v, 12); \
274 else if (!(v & ~0x03fc0000)) \
275 r = imm12val(v, 14); \
276 else if (!(v & ~0x00ff0000)) \
277 r = imm12val(v, 16); \
278 else if (!(v & ~0x003fc000)) \
279 r = imm12val(v, 18); \
280 else if (!(v & ~0x000ff000)) \
281 r = imm12val(v, 20); \
282 else if (!(v & ~0x0003fc00)) \
283 r = imm12val(v, 22); \
284 else if (!(v & ~0x0000ff00)) \
285 r = imm12val(v, 24); \
286 else if (!(v & ~0x00003fc0)) \
287 r = imm12val(v, 26); \
288 else if (!(v & ~0x00000ff0)) \
289 r = imm12val(v, 28); \
290 else if (!(v & ~0x000003fc)) \
291 r = imm12val(v, 30); \
292 else \
293 r = -1; \
294 r; })
295
296 /*
297 * Checks if immediate value can be converted to imm12(12 bits) value.
298 */
imm8m(u32 x)299 static int imm8m(u32 x)
300 {
301 u32 rot;
302
303 for (rot = 0; rot < 16; rot++)
304 if ((x & ~ror32(0xff, 2 * rot)) == 0)
305 return rol32(x, 2 * rot) | (rot << 8);
306 return -1;
307 }
308
309 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
310
arm_bpf_ldst_imm12(u32 op,u8 rt,u8 rn,s16 imm12)311 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
312 {
313 op |= rt << 12 | rn << 16;
314 if (imm12 >= 0)
315 op |= ARM_INST_LDST__U;
316 else
317 imm12 = -imm12;
318 return op | (imm12 & ARM_INST_LDST__IMM12);
319 }
320
arm_bpf_ldst_imm8(u32 op,u8 rt,u8 rn,s16 imm8)321 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
322 {
323 op |= rt << 12 | rn << 16;
324 if (imm8 >= 0)
325 op |= ARM_INST_LDST__U;
326 else
327 imm8 = -imm8;
328 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
329 }
330
331 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
332 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
333 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
334 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
335
336 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
337 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
338 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
339 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
340
341 /*
342 * Initializes the JIT space with undefined instructions.
343 */
jit_fill_hole(void * area,unsigned int size)344 static void jit_fill_hole(void *area, unsigned int size)
345 {
346 u32 *ptr;
347 /* We are guaranteed to have aligned memory. */
348 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
349 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
350 }
351
352 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
353 /* EABI requires the stack to be aligned to 64-bit boundaries */
354 #define STACK_ALIGNMENT 8
355 #else
356 /* Stack must be aligned to 32-bit boundaries */
357 #define STACK_ALIGNMENT 4
358 #endif
359
360 /* total stack size used in JITed code */
361 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
362 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
363
364 #if __LINUX_ARM_ARCH__ < 7
365
imm_offset(u32 k,struct jit_ctx * ctx)366 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
367 {
368 unsigned int i = 0, offset;
369 u16 imm;
370
371 /* on the "fake" run we just count them (duplicates included) */
372 if (ctx->target == NULL) {
373 ctx->imm_count++;
374 return 0;
375 }
376
377 while ((i < ctx->imm_count) && ctx->imms[i]) {
378 if (ctx->imms[i] == k)
379 break;
380 i++;
381 }
382
383 if (ctx->imms[i] == 0)
384 ctx->imms[i] = k;
385
386 /* constants go just after the epilogue */
387 offset = ctx->offsets[ctx->prog->len - 1] * 4;
388 offset += ctx->prologue_bytes;
389 offset += ctx->epilogue_bytes;
390 offset += i * 4;
391
392 ctx->target[offset / 4] = k;
393
394 /* PC in ARM mode == address of the instruction + 8 */
395 imm = offset - (8 + ctx->idx * 4);
396
397 if (imm & ~0xfff) {
398 /*
399 * literal pool is too far, signal it into flags. we
400 * can only detect it on the second pass unfortunately.
401 */
402 ctx->flags |= FLAG_IMM_OVERFLOW;
403 return 0;
404 }
405
406 return imm;
407 }
408
409 #endif /* __LINUX_ARM_ARCH__ */
410
bpf2a32_offset(int bpf_to,int bpf_from,const struct jit_ctx * ctx)411 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
412 const struct jit_ctx *ctx) {
413 int to, from;
414
415 if (ctx->target == NULL)
416 return 0;
417 to = ctx->offsets[bpf_to];
418 from = ctx->offsets[bpf_from];
419
420 return to - from - 1;
421 }
422
423 /*
424 * Move an immediate that's not an imm8m to a core register.
425 */
emit_mov_i_no8m(const u8 rd,u32 val,struct jit_ctx * ctx)426 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
427 {
428 #if __LINUX_ARM_ARCH__ < 7
429 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
430 #else
431 emit(ARM_MOVW(rd, val & 0xffff), ctx);
432 if (val > 0xffff)
433 emit(ARM_MOVT(rd, val >> 16), ctx);
434 #endif
435 }
436
emit_mov_i(const u8 rd,u32 val,struct jit_ctx * ctx)437 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
438 {
439 int imm12 = imm8m(val);
440
441 if (imm12 >= 0)
442 emit(ARM_MOV_I(rd, imm12), ctx);
443 else
444 emit_mov_i_no8m(rd, val, ctx);
445 }
446
emit_bx_r(u8 tgt_reg,struct jit_ctx * ctx)447 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
448 {
449 if (elf_hwcap & HWCAP_THUMB)
450 emit(ARM_BX(tgt_reg), ctx);
451 else
452 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
453 }
454
emit_blx_r(u8 tgt_reg,struct jit_ctx * ctx)455 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
456 {
457 #if __LINUX_ARM_ARCH__ < 5
458 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
459 emit_bx_r(tgt_reg, ctx);
460 #else
461 emit(ARM_BLX_R(tgt_reg), ctx);
462 #endif
463 }
464
epilogue_offset(const struct jit_ctx * ctx)465 static inline int epilogue_offset(const struct jit_ctx *ctx)
466 {
467 int to, from;
468 /* No need for 1st dummy run */
469 if (ctx->target == NULL)
470 return 0;
471 to = ctx->epilogue_offset;
472 from = ctx->idx;
473
474 return to - from - 2;
475 }
476
emit_udivmod(u8 rd,u8 rm,u8 rn,struct jit_ctx * ctx,u8 op)477 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
478 {
479 const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
480 const s8 *tmp = bpf2a32[TMP_REG_1];
481
482 #if __LINUX_ARM_ARCH__ == 7
483 if (elf_hwcap & HWCAP_IDIVA) {
484 if (op == BPF_DIV)
485 emit(ARM_UDIV(rd, rm, rn), ctx);
486 else {
487 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
488 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
489 }
490 return;
491 }
492 #endif
493
494 /*
495 * For BPF_ALU | BPF_DIV | BPF_K instructions
496 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
497 * function, we need to save it on caller side to save
498 * it from getting destroyed within callee.
499 * After the return from the callee, we restore ARM_R0
500 * ARM_R1.
501 */
502 if (rn != ARM_R1) {
503 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
504 emit(ARM_MOV_R(ARM_R1, rn), ctx);
505 }
506 if (rm != ARM_R0) {
507 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
508 emit(ARM_MOV_R(ARM_R0, rm), ctx);
509 }
510
511 /* Push caller-saved registers on stack */
512 emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
513
514 /* Call appropriate function */
515 emit_mov_i(ARM_IP, op == BPF_DIV ?
516 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
517 emit_blx_r(ARM_IP, ctx);
518
519 /* Restore caller-saved registers from stack */
520 emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
521
522 /* Save return value */
523 if (rd != ARM_R0)
524 emit(ARM_MOV_R(rd, ARM_R0), ctx);
525
526 /* Restore ARM_R0 and ARM_R1 */
527 if (rn != ARM_R1)
528 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
529 if (rm != ARM_R0)
530 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
531 }
532
533 /* Is the translated BPF register on stack? */
is_stacked(s8 reg)534 static bool is_stacked(s8 reg)
535 {
536 return reg < 0;
537 }
538
539 /* If a BPF register is on the stack (stk is true), load it to the
540 * supplied temporary register and return the temporary register
541 * for subsequent operations, otherwise just use the CPU register.
542 */
arm_bpf_get_reg32(s8 reg,s8 tmp,struct jit_ctx * ctx)543 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
544 {
545 if (is_stacked(reg)) {
546 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
547 reg = tmp;
548 }
549 return reg;
550 }
551
arm_bpf_get_reg64(const s8 * reg,const s8 * tmp,struct jit_ctx * ctx)552 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
553 struct jit_ctx *ctx)
554 {
555 if (is_stacked(reg[1])) {
556 if (__LINUX_ARM_ARCH__ >= 6 ||
557 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
558 emit(ARM_LDRD_I(tmp[1], ARM_FP,
559 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
560 } else {
561 emit(ARM_LDR_I(tmp[1], ARM_FP,
562 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
563 emit(ARM_LDR_I(tmp[0], ARM_FP,
564 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
565 }
566 reg = tmp;
567 }
568 return reg;
569 }
570
571 /* If a BPF register is on the stack (stk is true), save the register
572 * back to the stack. If the source register is not the same, then
573 * move it into the correct register.
574 */
arm_bpf_put_reg32(s8 reg,s8 src,struct jit_ctx * ctx)575 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
576 {
577 if (is_stacked(reg))
578 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
579 else if (reg != src)
580 emit(ARM_MOV_R(reg, src), ctx);
581 }
582
arm_bpf_put_reg64(const s8 * reg,const s8 * src,struct jit_ctx * ctx)583 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
584 struct jit_ctx *ctx)
585 {
586 if (is_stacked(reg[1])) {
587 if (__LINUX_ARM_ARCH__ >= 6 ||
588 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
589 emit(ARM_STRD_I(src[1], ARM_FP,
590 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
591 } else {
592 emit(ARM_STR_I(src[1], ARM_FP,
593 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
594 emit(ARM_STR_I(src[0], ARM_FP,
595 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
596 }
597 } else {
598 if (reg[1] != src[1])
599 emit(ARM_MOV_R(reg[1], src[1]), ctx);
600 if (reg[0] != src[0])
601 emit(ARM_MOV_R(reg[0], src[0]), ctx);
602 }
603 }
604
emit_a32_mov_i(const s8 dst,const u32 val,struct jit_ctx * ctx)605 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
606 struct jit_ctx *ctx)
607 {
608 const s8 *tmp = bpf2a32[TMP_REG_1];
609
610 if (is_stacked(dst)) {
611 emit_mov_i(tmp[1], val, ctx);
612 arm_bpf_put_reg32(dst, tmp[1], ctx);
613 } else {
614 emit_mov_i(dst, val, ctx);
615 }
616 }
617
emit_a32_mov_i64(const s8 dst[],u64 val,struct jit_ctx * ctx)618 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
619 {
620 const s8 *tmp = bpf2a32[TMP_REG_1];
621 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
622
623 emit_mov_i(rd[1], (u32)val, ctx);
624 emit_mov_i(rd[0], val >> 32, ctx);
625
626 arm_bpf_put_reg64(dst, rd, ctx);
627 }
628
629 /* Sign extended move */
emit_a32_mov_se_i64(const bool is64,const s8 dst[],const u32 val,struct jit_ctx * ctx)630 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
631 const u32 val, struct jit_ctx *ctx) {
632 u64 val64 = val;
633
634 if (is64 && (val & (1<<31)))
635 val64 |= 0xffffffff00000000ULL;
636 emit_a32_mov_i64(dst, val64, ctx);
637 }
638
emit_a32_add_r(const u8 dst,const u8 src,const bool is64,const bool hi,struct jit_ctx * ctx)639 static inline void emit_a32_add_r(const u8 dst, const u8 src,
640 const bool is64, const bool hi,
641 struct jit_ctx *ctx) {
642 /* 64 bit :
643 * adds dst_lo, dst_lo, src_lo
644 * adc dst_hi, dst_hi, src_hi
645 * 32 bit :
646 * add dst_lo, dst_lo, src_lo
647 */
648 if (!hi && is64)
649 emit(ARM_ADDS_R(dst, dst, src), ctx);
650 else if (hi && is64)
651 emit(ARM_ADC_R(dst, dst, src), ctx);
652 else
653 emit(ARM_ADD_R(dst, dst, src), ctx);
654 }
655
emit_a32_sub_r(const u8 dst,const u8 src,const bool is64,const bool hi,struct jit_ctx * ctx)656 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
657 const bool is64, const bool hi,
658 struct jit_ctx *ctx) {
659 /* 64 bit :
660 * subs dst_lo, dst_lo, src_lo
661 * sbc dst_hi, dst_hi, src_hi
662 * 32 bit :
663 * sub dst_lo, dst_lo, src_lo
664 */
665 if (!hi && is64)
666 emit(ARM_SUBS_R(dst, dst, src), ctx);
667 else if (hi && is64)
668 emit(ARM_SBC_R(dst, dst, src), ctx);
669 else
670 emit(ARM_SUB_R(dst, dst, src), ctx);
671 }
672
emit_alu_r(const u8 dst,const u8 src,const bool is64,const bool hi,const u8 op,struct jit_ctx * ctx)673 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
674 const bool hi, const u8 op, struct jit_ctx *ctx){
675 switch (BPF_OP(op)) {
676 /* dst = dst + src */
677 case BPF_ADD:
678 emit_a32_add_r(dst, src, is64, hi, ctx);
679 break;
680 /* dst = dst - src */
681 case BPF_SUB:
682 emit_a32_sub_r(dst, src, is64, hi, ctx);
683 break;
684 /* dst = dst | src */
685 case BPF_OR:
686 emit(ARM_ORR_R(dst, dst, src), ctx);
687 break;
688 /* dst = dst & src */
689 case BPF_AND:
690 emit(ARM_AND_R(dst, dst, src), ctx);
691 break;
692 /* dst = dst ^ src */
693 case BPF_XOR:
694 emit(ARM_EOR_R(dst, dst, src), ctx);
695 break;
696 /* dst = dst * src */
697 case BPF_MUL:
698 emit(ARM_MUL(dst, dst, src), ctx);
699 break;
700 /* dst = dst << src */
701 case BPF_LSH:
702 emit(ARM_LSL_R(dst, dst, src), ctx);
703 break;
704 /* dst = dst >> src */
705 case BPF_RSH:
706 emit(ARM_LSR_R(dst, dst, src), ctx);
707 break;
708 /* dst = dst >> src (signed)*/
709 case BPF_ARSH:
710 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
711 break;
712 }
713 }
714
715 /* ALU operation (64 bit) */
emit_a32_alu_r64(const bool is64,const s8 dst[],const s8 src[],struct jit_ctx * ctx,const u8 op)716 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
717 const s8 src[], struct jit_ctx *ctx,
718 const u8 op) {
719 const s8 *tmp = bpf2a32[TMP_REG_1];
720 const s8 *tmp2 = bpf2a32[TMP_REG_2];
721 const s8 *rd;
722
723 rd = arm_bpf_get_reg64(dst, tmp, ctx);
724 if (is64) {
725 const s8 *rs;
726
727 rs = arm_bpf_get_reg64(src, tmp2, ctx);
728
729 /* ALU operation */
730 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
731 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
732 } else {
733 s8 rs;
734
735 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
736
737 /* ALU operation */
738 emit_alu_r(rd[1], rs, true, false, op, ctx);
739 if (!ctx->prog->aux->verifier_zext)
740 emit_a32_mov_i(rd[0], 0, ctx);
741 }
742
743 arm_bpf_put_reg64(dst, rd, ctx);
744 }
745
746 /* dst = src (4 bytes)*/
emit_a32_mov_r(const s8 dst,const s8 src,struct jit_ctx * ctx)747 static inline void emit_a32_mov_r(const s8 dst, const s8 src,
748 struct jit_ctx *ctx) {
749 const s8 *tmp = bpf2a32[TMP_REG_1];
750 s8 rt;
751
752 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
753 arm_bpf_put_reg32(dst, rt, ctx);
754 }
755
756 /* dst = src */
emit_a32_mov_r64(const bool is64,const s8 dst[],const s8 src[],struct jit_ctx * ctx)757 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
758 const s8 src[],
759 struct jit_ctx *ctx) {
760 if (!is64) {
761 emit_a32_mov_r(dst_lo, src_lo, ctx);
762 if (!ctx->prog->aux->verifier_zext)
763 /* Zero out high 4 bytes */
764 emit_a32_mov_i(dst_hi, 0, ctx);
765 } else if (__LINUX_ARM_ARCH__ < 6 &&
766 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
767 /* complete 8 byte move */
768 emit_a32_mov_r(dst_lo, src_lo, ctx);
769 emit_a32_mov_r(dst_hi, src_hi, ctx);
770 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
771 const u8 *tmp = bpf2a32[TMP_REG_1];
772
773 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
774 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
775 } else if (is_stacked(src_lo)) {
776 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
777 } else if (is_stacked(dst_lo)) {
778 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
779 } else {
780 emit(ARM_MOV_R(dst[0], src[0]), ctx);
781 emit(ARM_MOV_R(dst[1], src[1]), ctx);
782 }
783 }
784
785 /* Shift operations */
emit_a32_alu_i(const s8 dst,const u32 val,struct jit_ctx * ctx,const u8 op)786 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
787 struct jit_ctx *ctx, const u8 op) {
788 const s8 *tmp = bpf2a32[TMP_REG_1];
789 s8 rd;
790
791 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
792
793 /* Do shift operation */
794 switch (op) {
795 case BPF_LSH:
796 emit(ARM_LSL_I(rd, rd, val), ctx);
797 break;
798 case BPF_RSH:
799 emit(ARM_LSR_I(rd, rd, val), ctx);
800 break;
801 case BPF_ARSH:
802 emit(ARM_ASR_I(rd, rd, val), ctx);
803 break;
804 case BPF_NEG:
805 emit(ARM_RSB_I(rd, rd, val), ctx);
806 break;
807 }
808
809 arm_bpf_put_reg32(dst, rd, ctx);
810 }
811
812 /* dst = ~dst (64 bit) */
emit_a32_neg64(const s8 dst[],struct jit_ctx * ctx)813 static inline void emit_a32_neg64(const s8 dst[],
814 struct jit_ctx *ctx){
815 const s8 *tmp = bpf2a32[TMP_REG_1];
816 const s8 *rd;
817
818 /* Setup Operand */
819 rd = arm_bpf_get_reg64(dst, tmp, ctx);
820
821 /* Do Negate Operation */
822 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
823 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
824
825 arm_bpf_put_reg64(dst, rd, ctx);
826 }
827
828 /* dst = dst << src */
emit_a32_lsh_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)829 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
830 struct jit_ctx *ctx) {
831 const s8 *tmp = bpf2a32[TMP_REG_1];
832 const s8 *tmp2 = bpf2a32[TMP_REG_2];
833 const s8 *rd;
834 s8 rt;
835
836 /* Setup Operands */
837 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
838 rd = arm_bpf_get_reg64(dst, tmp, ctx);
839
840 /* Do LSH operation */
841 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
842 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
843 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
844 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
845 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
846 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
847
848 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
849 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
850 }
851
852 /* dst = dst >> src (signed)*/
emit_a32_arsh_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)853 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
854 struct jit_ctx *ctx) {
855 const s8 *tmp = bpf2a32[TMP_REG_1];
856 const s8 *tmp2 = bpf2a32[TMP_REG_2];
857 const s8 *rd;
858 s8 rt;
859
860 /* Setup Operands */
861 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
862 rd = arm_bpf_get_reg64(dst, tmp, ctx);
863
864 /* Do the ARSH operation */
865 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
866 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
867 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
868 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
869 _emit(ARM_COND_PL,
870 ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
871 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
872
873 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
874 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
875 }
876
877 /* dst = dst >> src */
emit_a32_rsh_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)878 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
879 struct jit_ctx *ctx) {
880 const s8 *tmp = bpf2a32[TMP_REG_1];
881 const s8 *tmp2 = bpf2a32[TMP_REG_2];
882 const s8 *rd;
883 s8 rt;
884
885 /* Setup Operands */
886 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
887 rd = arm_bpf_get_reg64(dst, tmp, ctx);
888
889 /* Do RSH operation */
890 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
891 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
892 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
893 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
894 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
895 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
896
897 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
898 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
899 }
900
901 /* dst = dst << val */
emit_a32_lsh_i64(const s8 dst[],const u32 val,struct jit_ctx * ctx)902 static inline void emit_a32_lsh_i64(const s8 dst[],
903 const u32 val, struct jit_ctx *ctx){
904 const s8 *tmp = bpf2a32[TMP_REG_1];
905 const s8 *tmp2 = bpf2a32[TMP_REG_2];
906 const s8 *rd;
907
908 /* Setup operands */
909 rd = arm_bpf_get_reg64(dst, tmp, ctx);
910
911 /* Do LSH operation */
912 if (val < 32) {
913 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
914 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
915 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
916 } else {
917 if (val == 32)
918 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
919 else
920 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
921 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
922 }
923
924 arm_bpf_put_reg64(dst, rd, ctx);
925 }
926
927 /* dst = dst >> val */
emit_a32_rsh_i64(const s8 dst[],const u32 val,struct jit_ctx * ctx)928 static inline void emit_a32_rsh_i64(const s8 dst[],
929 const u32 val, struct jit_ctx *ctx) {
930 const s8 *tmp = bpf2a32[TMP_REG_1];
931 const s8 *tmp2 = bpf2a32[TMP_REG_2];
932 const s8 *rd;
933
934 /* Setup operands */
935 rd = arm_bpf_get_reg64(dst, tmp, ctx);
936
937 /* Do LSR operation */
938 if (val == 0) {
939 /* An immediate value of 0 encodes a shift amount of 32
940 * for LSR. To shift by 0, don't do anything.
941 */
942 } else if (val < 32) {
943 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
944 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
945 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
946 } else if (val == 32) {
947 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
948 emit(ARM_MOV_I(rd[0], 0), ctx);
949 } else {
950 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
951 emit(ARM_MOV_I(rd[0], 0), ctx);
952 }
953
954 arm_bpf_put_reg64(dst, rd, ctx);
955 }
956
957 /* dst = dst >> val (signed) */
emit_a32_arsh_i64(const s8 dst[],const u32 val,struct jit_ctx * ctx)958 static inline void emit_a32_arsh_i64(const s8 dst[],
959 const u32 val, struct jit_ctx *ctx){
960 const s8 *tmp = bpf2a32[TMP_REG_1];
961 const s8 *tmp2 = bpf2a32[TMP_REG_2];
962 const s8 *rd;
963
964 /* Setup operands */
965 rd = arm_bpf_get_reg64(dst, tmp, ctx);
966
967 /* Do ARSH operation */
968 if (val == 0) {
969 /* An immediate value of 0 encodes a shift amount of 32
970 * for ASR. To shift by 0, don't do anything.
971 */
972 } else if (val < 32) {
973 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
974 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
975 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
976 } else if (val == 32) {
977 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
978 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
979 } else {
980 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
981 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
982 }
983
984 arm_bpf_put_reg64(dst, rd, ctx);
985 }
986
emit_a32_mul_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)987 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
988 struct jit_ctx *ctx) {
989 const s8 *tmp = bpf2a32[TMP_REG_1];
990 const s8 *tmp2 = bpf2a32[TMP_REG_2];
991 const s8 *rd, *rt;
992
993 /* Setup operands for multiplication */
994 rd = arm_bpf_get_reg64(dst, tmp, ctx);
995 rt = arm_bpf_get_reg64(src, tmp2, ctx);
996
997 /* Do Multiplication */
998 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
999 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1000 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1001
1002 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1003 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1004
1005 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1006 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1007 }
1008
is_ldst_imm(s16 off,const u8 size)1009 static bool is_ldst_imm(s16 off, const u8 size)
1010 {
1011 s16 off_max = 0;
1012
1013 switch (size) {
1014 case BPF_B:
1015 case BPF_W:
1016 off_max = 0xfff;
1017 break;
1018 case BPF_H:
1019 off_max = 0xff;
1020 break;
1021 case BPF_DW:
1022 /* Need to make sure off+4 does not overflow. */
1023 off_max = 0xfff - 4;
1024 break;
1025 }
1026 return -off_max <= off && off <= off_max;
1027 }
1028
1029 /* *(size *)(dst + off) = src */
emit_str_r(const s8 dst,const s8 src[],s16 off,struct jit_ctx * ctx,const u8 sz)1030 static inline void emit_str_r(const s8 dst, const s8 src[],
1031 s16 off, struct jit_ctx *ctx, const u8 sz){
1032 const s8 *tmp = bpf2a32[TMP_REG_1];
1033 s8 rd;
1034
1035 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1036
1037 if (!is_ldst_imm(off, sz)) {
1038 emit_a32_mov_i(tmp[0], off, ctx);
1039 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1040 rd = tmp[0];
1041 off = 0;
1042 }
1043 switch (sz) {
1044 case BPF_B:
1045 /* Store a Byte */
1046 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1047 break;
1048 case BPF_H:
1049 /* Store a HalfWord */
1050 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1051 break;
1052 case BPF_W:
1053 /* Store a Word */
1054 emit(ARM_STR_I(src_lo, rd, off), ctx);
1055 break;
1056 case BPF_DW:
1057 /* Store a Double Word */
1058 emit(ARM_STR_I(src_lo, rd, off), ctx);
1059 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1060 break;
1061 }
1062 }
1063
1064 /* dst = *(size*)(src + off) */
emit_ldx_r(const s8 dst[],const s8 src,s16 off,struct jit_ctx * ctx,const u8 sz)1065 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1066 s16 off, struct jit_ctx *ctx, const u8 sz){
1067 const s8 *tmp = bpf2a32[TMP_REG_1];
1068 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1069 s8 rm = src;
1070
1071 if (!is_ldst_imm(off, sz)) {
1072 emit_a32_mov_i(tmp[0], off, ctx);
1073 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1074 rm = tmp[0];
1075 off = 0;
1076 } else if (rd[1] == rm) {
1077 emit(ARM_MOV_R(tmp[0], rm), ctx);
1078 rm = tmp[0];
1079 }
1080 switch (sz) {
1081 case BPF_B:
1082 /* Load a Byte */
1083 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1084 if (!ctx->prog->aux->verifier_zext)
1085 emit_a32_mov_i(rd[0], 0, ctx);
1086 break;
1087 case BPF_H:
1088 /* Load a HalfWord */
1089 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1090 if (!ctx->prog->aux->verifier_zext)
1091 emit_a32_mov_i(rd[0], 0, ctx);
1092 break;
1093 case BPF_W:
1094 /* Load a Word */
1095 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1096 if (!ctx->prog->aux->verifier_zext)
1097 emit_a32_mov_i(rd[0], 0, ctx);
1098 break;
1099 case BPF_DW:
1100 /* Load a Double Word */
1101 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1102 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1103 break;
1104 }
1105 arm_bpf_put_reg64(dst, rd, ctx);
1106 }
1107
1108 /* Arithmatic Operation */
emit_ar_r(const u8 rd,const u8 rt,const u8 rm,const u8 rn,struct jit_ctx * ctx,u8 op,bool is_jmp64)1109 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1110 const u8 rn, struct jit_ctx *ctx, u8 op,
1111 bool is_jmp64) {
1112 switch (op) {
1113 case BPF_JSET:
1114 if (is_jmp64) {
1115 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1116 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1117 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1118 } else {
1119 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1120 }
1121 break;
1122 case BPF_JEQ:
1123 case BPF_JNE:
1124 case BPF_JGT:
1125 case BPF_JGE:
1126 case BPF_JLE:
1127 case BPF_JLT:
1128 if (is_jmp64) {
1129 emit(ARM_CMP_R(rd, rm), ctx);
1130 /* Only compare low halve if high halve are equal. */
1131 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1132 } else {
1133 emit(ARM_CMP_R(rt, rn), ctx);
1134 }
1135 break;
1136 case BPF_JSLE:
1137 case BPF_JSGT:
1138 emit(ARM_CMP_R(rn, rt), ctx);
1139 if (is_jmp64)
1140 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1141 break;
1142 case BPF_JSLT:
1143 case BPF_JSGE:
1144 emit(ARM_CMP_R(rt, rn), ctx);
1145 if (is_jmp64)
1146 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1147 break;
1148 }
1149 }
1150
1151 static int out_offset = -1; /* initialized on the first pass of build_body() */
emit_bpf_tail_call(struct jit_ctx * ctx)1152 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1153 {
1154
1155 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1156 const s8 *r2 = bpf2a32[BPF_REG_2];
1157 const s8 *r3 = bpf2a32[BPF_REG_3];
1158 const s8 *tmp = bpf2a32[TMP_REG_1];
1159 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1160 const s8 *tcc = bpf2a32[TCALL_CNT];
1161 const s8 *tc;
1162 const int idx0 = ctx->idx;
1163 #define cur_offset (ctx->idx - idx0)
1164 #define jmp_offset (out_offset - (cur_offset) - 2)
1165 u32 lo, hi;
1166 s8 r_array, r_index;
1167 int off;
1168
1169 /* if (index >= array->map.max_entries)
1170 * goto out;
1171 */
1172 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1173 ARM_INST_LDST__IMM12);
1174 off = offsetof(struct bpf_array, map.max_entries);
1175 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1176 /* index is 32-bit for arrays */
1177 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1178 /* array->map.max_entries */
1179 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1180 /* index >= array->map.max_entries */
1181 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1182 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1183
1184 /* tmp2[0] = array, tmp2[1] = index */
1185
1186 /*
1187 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1188 * goto out;
1189 * tail_call_cnt++;
1190 */
1191 lo = (u32)MAX_TAIL_CALL_CNT;
1192 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1193 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1194 emit(ARM_CMP_I(tc[0], hi), ctx);
1195 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1196 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1197 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1198 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1199 arm_bpf_put_reg64(tcc, tmp, ctx);
1200
1201 /* prog = array->ptrs[index]
1202 * if (prog == NULL)
1203 * goto out;
1204 */
1205 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1206 off = imm8m(offsetof(struct bpf_array, ptrs));
1207 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1208 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1209 emit(ARM_CMP_I(tmp[1], 0), ctx);
1210 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1211
1212 /* goto *(prog->bpf_func + prologue_size); */
1213 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1214 ARM_INST_LDST__IMM12);
1215 off = offsetof(struct bpf_prog, bpf_func);
1216 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1217 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1218 emit_bx_r(tmp[1], ctx);
1219
1220 /* out: */
1221 if (out_offset == -1)
1222 out_offset = cur_offset;
1223 if (cur_offset != out_offset) {
1224 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1225 cur_offset, out_offset);
1226 return -1;
1227 }
1228 return 0;
1229 #undef cur_offset
1230 #undef jmp_offset
1231 }
1232
1233 /* 0xabcd => 0xcdab */
emit_rev16(const u8 rd,const u8 rn,struct jit_ctx * ctx)1234 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1235 {
1236 #if __LINUX_ARM_ARCH__ < 6
1237 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1238
1239 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1240 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1241 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1242 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1243 #else /* ARMv6+ */
1244 emit(ARM_REV16(rd, rn), ctx);
1245 #endif
1246 }
1247
1248 /* 0xabcdefgh => 0xghefcdab */
emit_rev32(const u8 rd,const u8 rn,struct jit_ctx * ctx)1249 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1250 {
1251 #if __LINUX_ARM_ARCH__ < 6
1252 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1253
1254 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1255 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1256 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1257
1258 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1259 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1260 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1261 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1262 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1263 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1264 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1265
1266 #else /* ARMv6+ */
1267 emit(ARM_REV(rd, rn), ctx);
1268 #endif
1269 }
1270
1271 // push the scratch stack register on top of the stack
emit_push_r64(const s8 src[],struct jit_ctx * ctx)1272 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1273 {
1274 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1275 const s8 *rt;
1276 u16 reg_set = 0;
1277
1278 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1279
1280 reg_set = (1 << rt[1]) | (1 << rt[0]);
1281 emit(ARM_PUSH(reg_set), ctx);
1282 }
1283
build_prologue(struct jit_ctx * ctx)1284 static void build_prologue(struct jit_ctx *ctx)
1285 {
1286 const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1287 const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1288 const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1289 const s8 *tcc = bpf2a32[TCALL_CNT];
1290
1291 /* Save callee saved registers. */
1292 #ifdef CONFIG_FRAME_POINTER
1293 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1294 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1295 emit(ARM_PUSH(reg_set), ctx);
1296 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1297 #else
1298 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1299 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1300 #endif
1301 /* mov r3, #0 */
1302 /* sub r2, sp, #SCRATCH_SIZE */
1303 emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1304 emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1305
1306 ctx->stack_size = imm8m(STACK_SIZE);
1307
1308 /* Set up function call stack */
1309 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1310
1311 /* Set up BPF prog stack base register */
1312 emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1313
1314 /* Initialize Tail Count */
1315 emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1316 emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1317
1318 /* Move BPF_CTX to BPF_R1 */
1319 emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1320
1321 /* end of prologue */
1322 }
1323
1324 /* restore callee saved registers. */
build_epilogue(struct jit_ctx * ctx)1325 static void build_epilogue(struct jit_ctx *ctx)
1326 {
1327 #ifdef CONFIG_FRAME_POINTER
1328 /* When using frame pointers, some additional registers need to
1329 * be loaded. */
1330 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1331 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1332 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1333 #else
1334 /* Restore callee saved registers. */
1335 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1336 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1337 #endif
1338 }
1339
1340 /*
1341 * Convert an eBPF instruction to native instruction, i.e
1342 * JITs an eBPF instruction.
1343 * Returns :
1344 * 0 - Successfully JITed an 8-byte eBPF instruction
1345 * >0 - Successfully JITed a 16-byte eBPF instruction
1346 * <0 - Failed to JIT.
1347 */
build_insn(const struct bpf_insn * insn,struct jit_ctx * ctx)1348 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1349 {
1350 const u8 code = insn->code;
1351 const s8 *dst = bpf2a32[insn->dst_reg];
1352 const s8 *src = bpf2a32[insn->src_reg];
1353 const s8 *tmp = bpf2a32[TMP_REG_1];
1354 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1355 const s16 off = insn->off;
1356 const s32 imm = insn->imm;
1357 const int i = insn - ctx->prog->insnsi;
1358 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1359 const s8 *rd, *rs;
1360 s8 rd_lo, rt, rm, rn;
1361 s32 jmp_offset;
1362
1363 #define check_imm(bits, imm) do { \
1364 if ((imm) >= (1 << ((bits) - 1)) || \
1365 (imm) < -(1 << ((bits) - 1))) { \
1366 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1367 i, imm, imm); \
1368 return -EINVAL; \
1369 } \
1370 } while (0)
1371 #define check_imm24(imm) check_imm(24, imm)
1372
1373 switch (code) {
1374 /* ALU operations */
1375
1376 /* dst = src */
1377 case BPF_ALU | BPF_MOV | BPF_K:
1378 case BPF_ALU | BPF_MOV | BPF_X:
1379 case BPF_ALU64 | BPF_MOV | BPF_K:
1380 case BPF_ALU64 | BPF_MOV | BPF_X:
1381 switch (BPF_SRC(code)) {
1382 case BPF_X:
1383 if (imm == 1) {
1384 /* Special mov32 for zext */
1385 emit_a32_mov_i(dst_hi, 0, ctx);
1386 break;
1387 }
1388 emit_a32_mov_r64(is64, dst, src, ctx);
1389 break;
1390 case BPF_K:
1391 /* Sign-extend immediate value to destination reg */
1392 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1393 break;
1394 }
1395 break;
1396 /* dst = dst + src/imm */
1397 /* dst = dst - src/imm */
1398 /* dst = dst | src/imm */
1399 /* dst = dst & src/imm */
1400 /* dst = dst ^ src/imm */
1401 /* dst = dst * src/imm */
1402 /* dst = dst << src */
1403 /* dst = dst >> src */
1404 case BPF_ALU | BPF_ADD | BPF_K:
1405 case BPF_ALU | BPF_ADD | BPF_X:
1406 case BPF_ALU | BPF_SUB | BPF_K:
1407 case BPF_ALU | BPF_SUB | BPF_X:
1408 case BPF_ALU | BPF_OR | BPF_K:
1409 case BPF_ALU | BPF_OR | BPF_X:
1410 case BPF_ALU | BPF_AND | BPF_K:
1411 case BPF_ALU | BPF_AND | BPF_X:
1412 case BPF_ALU | BPF_XOR | BPF_K:
1413 case BPF_ALU | BPF_XOR | BPF_X:
1414 case BPF_ALU | BPF_MUL | BPF_K:
1415 case BPF_ALU | BPF_MUL | BPF_X:
1416 case BPF_ALU | BPF_LSH | BPF_X:
1417 case BPF_ALU | BPF_RSH | BPF_X:
1418 case BPF_ALU | BPF_ARSH | BPF_X:
1419 case BPF_ALU64 | BPF_ADD | BPF_K:
1420 case BPF_ALU64 | BPF_ADD | BPF_X:
1421 case BPF_ALU64 | BPF_SUB | BPF_K:
1422 case BPF_ALU64 | BPF_SUB | BPF_X:
1423 case BPF_ALU64 | BPF_OR | BPF_K:
1424 case BPF_ALU64 | BPF_OR | BPF_X:
1425 case BPF_ALU64 | BPF_AND | BPF_K:
1426 case BPF_ALU64 | BPF_AND | BPF_X:
1427 case BPF_ALU64 | BPF_XOR | BPF_K:
1428 case BPF_ALU64 | BPF_XOR | BPF_X:
1429 switch (BPF_SRC(code)) {
1430 case BPF_X:
1431 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1432 break;
1433 case BPF_K:
1434 /* Move immediate value to the temporary register
1435 * and then do the ALU operation on the temporary
1436 * register as this will sign-extend the immediate
1437 * value into temporary reg and then it would be
1438 * safe to do the operation on it.
1439 */
1440 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1441 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1442 break;
1443 }
1444 break;
1445 /* dst = dst / src(imm) */
1446 /* dst = dst % src(imm) */
1447 case BPF_ALU | BPF_DIV | BPF_K:
1448 case BPF_ALU | BPF_DIV | BPF_X:
1449 case BPF_ALU | BPF_MOD | BPF_K:
1450 case BPF_ALU | BPF_MOD | BPF_X:
1451 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1452 switch (BPF_SRC(code)) {
1453 case BPF_X:
1454 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1455 break;
1456 case BPF_K:
1457 rt = tmp2[0];
1458 emit_a32_mov_i(rt, imm, ctx);
1459 break;
1460 default:
1461 rt = src_lo;
1462 break;
1463 }
1464 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1465 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1466 if (!ctx->prog->aux->verifier_zext)
1467 emit_a32_mov_i(dst_hi, 0, ctx);
1468 break;
1469 case BPF_ALU64 | BPF_DIV | BPF_K:
1470 case BPF_ALU64 | BPF_DIV | BPF_X:
1471 case BPF_ALU64 | BPF_MOD | BPF_K:
1472 case BPF_ALU64 | BPF_MOD | BPF_X:
1473 goto notyet;
1474 /* dst = dst << imm */
1475 /* dst = dst >> imm */
1476 /* dst = dst >> imm (signed) */
1477 case BPF_ALU | BPF_LSH | BPF_K:
1478 case BPF_ALU | BPF_RSH | BPF_K:
1479 case BPF_ALU | BPF_ARSH | BPF_K:
1480 if (unlikely(imm > 31))
1481 return -EINVAL;
1482 if (imm)
1483 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1484 if (!ctx->prog->aux->verifier_zext)
1485 emit_a32_mov_i(dst_hi, 0, ctx);
1486 break;
1487 /* dst = dst << imm */
1488 case BPF_ALU64 | BPF_LSH | BPF_K:
1489 if (unlikely(imm > 63))
1490 return -EINVAL;
1491 emit_a32_lsh_i64(dst, imm, ctx);
1492 break;
1493 /* dst = dst >> imm */
1494 case BPF_ALU64 | BPF_RSH | BPF_K:
1495 if (unlikely(imm > 63))
1496 return -EINVAL;
1497 emit_a32_rsh_i64(dst, imm, ctx);
1498 break;
1499 /* dst = dst << src */
1500 case BPF_ALU64 | BPF_LSH | BPF_X:
1501 emit_a32_lsh_r64(dst, src, ctx);
1502 break;
1503 /* dst = dst >> src */
1504 case BPF_ALU64 | BPF_RSH | BPF_X:
1505 emit_a32_rsh_r64(dst, src, ctx);
1506 break;
1507 /* dst = dst >> src (signed) */
1508 case BPF_ALU64 | BPF_ARSH | BPF_X:
1509 emit_a32_arsh_r64(dst, src, ctx);
1510 break;
1511 /* dst = dst >> imm (signed) */
1512 case BPF_ALU64 | BPF_ARSH | BPF_K:
1513 if (unlikely(imm > 63))
1514 return -EINVAL;
1515 emit_a32_arsh_i64(dst, imm, ctx);
1516 break;
1517 /* dst = ~dst */
1518 case BPF_ALU | BPF_NEG:
1519 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1520 if (!ctx->prog->aux->verifier_zext)
1521 emit_a32_mov_i(dst_hi, 0, ctx);
1522 break;
1523 /* dst = ~dst (64 bit) */
1524 case BPF_ALU64 | BPF_NEG:
1525 emit_a32_neg64(dst, ctx);
1526 break;
1527 /* dst = dst * src/imm */
1528 case BPF_ALU64 | BPF_MUL | BPF_X:
1529 case BPF_ALU64 | BPF_MUL | BPF_K:
1530 switch (BPF_SRC(code)) {
1531 case BPF_X:
1532 emit_a32_mul_r64(dst, src, ctx);
1533 break;
1534 case BPF_K:
1535 /* Move immediate value to the temporary register
1536 * and then do the multiplication on it as this
1537 * will sign-extend the immediate value into temp
1538 * reg then it would be safe to do the operation
1539 * on it.
1540 */
1541 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1542 emit_a32_mul_r64(dst, tmp2, ctx);
1543 break;
1544 }
1545 break;
1546 /* dst = htole(dst) */
1547 /* dst = htobe(dst) */
1548 case BPF_ALU | BPF_END | BPF_FROM_LE:
1549 case BPF_ALU | BPF_END | BPF_FROM_BE:
1550 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1551 if (BPF_SRC(code) == BPF_FROM_LE)
1552 goto emit_bswap_uxt;
1553 switch (imm) {
1554 case 16:
1555 emit_rev16(rd[1], rd[1], ctx);
1556 goto emit_bswap_uxt;
1557 case 32:
1558 emit_rev32(rd[1], rd[1], ctx);
1559 goto emit_bswap_uxt;
1560 case 64:
1561 emit_rev32(ARM_LR, rd[1], ctx);
1562 emit_rev32(rd[1], rd[0], ctx);
1563 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1564 break;
1565 }
1566 goto exit;
1567 emit_bswap_uxt:
1568 switch (imm) {
1569 case 16:
1570 /* zero-extend 16 bits into 64 bits */
1571 #if __LINUX_ARM_ARCH__ < 6
1572 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1573 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1574 #else /* ARMv6+ */
1575 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1576 #endif
1577 if (!ctx->prog->aux->verifier_zext)
1578 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1579 break;
1580 case 32:
1581 /* zero-extend 32 bits into 64 bits */
1582 if (!ctx->prog->aux->verifier_zext)
1583 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1584 break;
1585 case 64:
1586 /* nop */
1587 break;
1588 }
1589 exit:
1590 arm_bpf_put_reg64(dst, rd, ctx);
1591 break;
1592 /* dst = imm64 */
1593 case BPF_LD | BPF_IMM | BPF_DW:
1594 {
1595 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1596
1597 emit_a32_mov_i64(dst, val, ctx);
1598
1599 return 1;
1600 }
1601 /* LDX: dst = *(size *)(src + off) */
1602 case BPF_LDX | BPF_MEM | BPF_W:
1603 case BPF_LDX | BPF_MEM | BPF_H:
1604 case BPF_LDX | BPF_MEM | BPF_B:
1605 case BPF_LDX | BPF_MEM | BPF_DW:
1606 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1607 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1608 break;
1609 /* speculation barrier */
1610 case BPF_ST | BPF_NOSPEC:
1611 break;
1612 /* ST: *(size *)(dst + off) = imm */
1613 case BPF_ST | BPF_MEM | BPF_W:
1614 case BPF_ST | BPF_MEM | BPF_H:
1615 case BPF_ST | BPF_MEM | BPF_B:
1616 case BPF_ST | BPF_MEM | BPF_DW:
1617 switch (BPF_SIZE(code)) {
1618 case BPF_DW:
1619 /* Sign-extend immediate value into temp reg */
1620 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1621 break;
1622 case BPF_W:
1623 case BPF_H:
1624 case BPF_B:
1625 emit_a32_mov_i(tmp2[1], imm, ctx);
1626 break;
1627 }
1628 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1629 break;
1630 /* Atomic ops */
1631 case BPF_STX | BPF_ATOMIC | BPF_W:
1632 case BPF_STX | BPF_ATOMIC | BPF_DW:
1633 goto notyet;
1634 /* STX: *(size *)(dst + off) = src */
1635 case BPF_STX | BPF_MEM | BPF_W:
1636 case BPF_STX | BPF_MEM | BPF_H:
1637 case BPF_STX | BPF_MEM | BPF_B:
1638 case BPF_STX | BPF_MEM | BPF_DW:
1639 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1640 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1641 break;
1642 /* PC += off if dst == src */
1643 /* PC += off if dst > src */
1644 /* PC += off if dst >= src */
1645 /* PC += off if dst < src */
1646 /* PC += off if dst <= src */
1647 /* PC += off if dst != src */
1648 /* PC += off if dst > src (signed) */
1649 /* PC += off if dst >= src (signed) */
1650 /* PC += off if dst < src (signed) */
1651 /* PC += off if dst <= src (signed) */
1652 /* PC += off if dst & src */
1653 case BPF_JMP | BPF_JEQ | BPF_X:
1654 case BPF_JMP | BPF_JGT | BPF_X:
1655 case BPF_JMP | BPF_JGE | BPF_X:
1656 case BPF_JMP | BPF_JNE | BPF_X:
1657 case BPF_JMP | BPF_JSGT | BPF_X:
1658 case BPF_JMP | BPF_JSGE | BPF_X:
1659 case BPF_JMP | BPF_JSET | BPF_X:
1660 case BPF_JMP | BPF_JLE | BPF_X:
1661 case BPF_JMP | BPF_JLT | BPF_X:
1662 case BPF_JMP | BPF_JSLT | BPF_X:
1663 case BPF_JMP | BPF_JSLE | BPF_X:
1664 case BPF_JMP32 | BPF_JEQ | BPF_X:
1665 case BPF_JMP32 | BPF_JGT | BPF_X:
1666 case BPF_JMP32 | BPF_JGE | BPF_X:
1667 case BPF_JMP32 | BPF_JNE | BPF_X:
1668 case BPF_JMP32 | BPF_JSGT | BPF_X:
1669 case BPF_JMP32 | BPF_JSGE | BPF_X:
1670 case BPF_JMP32 | BPF_JSET | BPF_X:
1671 case BPF_JMP32 | BPF_JLE | BPF_X:
1672 case BPF_JMP32 | BPF_JLT | BPF_X:
1673 case BPF_JMP32 | BPF_JSLT | BPF_X:
1674 case BPF_JMP32 | BPF_JSLE | BPF_X:
1675 /* Setup source registers */
1676 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1677 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1678 goto go_jmp;
1679 /* PC += off if dst == imm */
1680 /* PC += off if dst > imm */
1681 /* PC += off if dst >= imm */
1682 /* PC += off if dst < imm */
1683 /* PC += off if dst <= imm */
1684 /* PC += off if dst != imm */
1685 /* PC += off if dst > imm (signed) */
1686 /* PC += off if dst >= imm (signed) */
1687 /* PC += off if dst < imm (signed) */
1688 /* PC += off if dst <= imm (signed) */
1689 /* PC += off if dst & imm */
1690 case BPF_JMP | BPF_JEQ | BPF_K:
1691 case BPF_JMP | BPF_JGT | BPF_K:
1692 case BPF_JMP | BPF_JGE | BPF_K:
1693 case BPF_JMP | BPF_JNE | BPF_K:
1694 case BPF_JMP | BPF_JSGT | BPF_K:
1695 case BPF_JMP | BPF_JSGE | BPF_K:
1696 case BPF_JMP | BPF_JSET | BPF_K:
1697 case BPF_JMP | BPF_JLT | BPF_K:
1698 case BPF_JMP | BPF_JLE | BPF_K:
1699 case BPF_JMP | BPF_JSLT | BPF_K:
1700 case BPF_JMP | BPF_JSLE | BPF_K:
1701 case BPF_JMP32 | BPF_JEQ | BPF_K:
1702 case BPF_JMP32 | BPF_JGT | BPF_K:
1703 case BPF_JMP32 | BPF_JGE | BPF_K:
1704 case BPF_JMP32 | BPF_JNE | BPF_K:
1705 case BPF_JMP32 | BPF_JSGT | BPF_K:
1706 case BPF_JMP32 | BPF_JSGE | BPF_K:
1707 case BPF_JMP32 | BPF_JSET | BPF_K:
1708 case BPF_JMP32 | BPF_JLT | BPF_K:
1709 case BPF_JMP32 | BPF_JLE | BPF_K:
1710 case BPF_JMP32 | BPF_JSLT | BPF_K:
1711 case BPF_JMP32 | BPF_JSLE | BPF_K:
1712 if (off == 0)
1713 break;
1714 rm = tmp2[0];
1715 rn = tmp2[1];
1716 /* Sign-extend immediate value */
1717 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1718 go_jmp:
1719 /* Setup destination register */
1720 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1721
1722 /* Check for the condition */
1723 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1724 BPF_CLASS(code) == BPF_JMP);
1725
1726 /* Setup JUMP instruction */
1727 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1728 switch (BPF_OP(code)) {
1729 case BPF_JNE:
1730 case BPF_JSET:
1731 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1732 break;
1733 case BPF_JEQ:
1734 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1735 break;
1736 case BPF_JGT:
1737 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1738 break;
1739 case BPF_JGE:
1740 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1741 break;
1742 case BPF_JSGT:
1743 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1744 break;
1745 case BPF_JSGE:
1746 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1747 break;
1748 case BPF_JLE:
1749 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1750 break;
1751 case BPF_JLT:
1752 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1753 break;
1754 case BPF_JSLT:
1755 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1756 break;
1757 case BPF_JSLE:
1758 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1759 break;
1760 }
1761 break;
1762 /* JMP OFF */
1763 case BPF_JMP | BPF_JA:
1764 {
1765 if (off == 0)
1766 break;
1767 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1768 check_imm24(jmp_offset);
1769 emit(ARM_B(jmp_offset), ctx);
1770 break;
1771 }
1772 /* tail call */
1773 case BPF_JMP | BPF_TAIL_CALL:
1774 if (emit_bpf_tail_call(ctx))
1775 return -EFAULT;
1776 break;
1777 /* function call */
1778 case BPF_JMP | BPF_CALL:
1779 {
1780 const s8 *r0 = bpf2a32[BPF_REG_0];
1781 const s8 *r1 = bpf2a32[BPF_REG_1];
1782 const s8 *r2 = bpf2a32[BPF_REG_2];
1783 const s8 *r3 = bpf2a32[BPF_REG_3];
1784 const s8 *r4 = bpf2a32[BPF_REG_4];
1785 const s8 *r5 = bpf2a32[BPF_REG_5];
1786 const u32 func = (u32)__bpf_call_base + (u32)imm;
1787
1788 emit_a32_mov_r64(true, r0, r1, ctx);
1789 emit_a32_mov_r64(true, r1, r2, ctx);
1790 emit_push_r64(r5, ctx);
1791 emit_push_r64(r4, ctx);
1792 emit_push_r64(r3, ctx);
1793
1794 emit_a32_mov_i(tmp[1], func, ctx);
1795 emit_blx_r(tmp[1], ctx);
1796
1797 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1798 break;
1799 }
1800 /* function return */
1801 case BPF_JMP | BPF_EXIT:
1802 /* Optimization: when last instruction is EXIT
1803 * simply fallthrough to epilogue.
1804 */
1805 if (i == ctx->prog->len - 1)
1806 break;
1807 jmp_offset = epilogue_offset(ctx);
1808 check_imm24(jmp_offset);
1809 emit(ARM_B(jmp_offset), ctx);
1810 break;
1811 notyet:
1812 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1813 return -EFAULT;
1814 default:
1815 pr_err_once("unknown opcode %02x\n", code);
1816 return -EINVAL;
1817 }
1818
1819 if (ctx->flags & FLAG_IMM_OVERFLOW)
1820 /*
1821 * this instruction generated an overflow when
1822 * trying to access the literal pool, so
1823 * delegate this filter to the kernel interpreter.
1824 */
1825 return -1;
1826 return 0;
1827 }
1828
build_body(struct jit_ctx * ctx)1829 static int build_body(struct jit_ctx *ctx)
1830 {
1831 const struct bpf_prog *prog = ctx->prog;
1832 unsigned int i;
1833
1834 for (i = 0; i < prog->len; i++) {
1835 const struct bpf_insn *insn = &(prog->insnsi[i]);
1836 int ret;
1837
1838 ret = build_insn(insn, ctx);
1839
1840 /* It's used with loading the 64 bit immediate value. */
1841 if (ret > 0) {
1842 i++;
1843 if (ctx->target == NULL)
1844 ctx->offsets[i] = ctx->idx;
1845 continue;
1846 }
1847
1848 if (ctx->target == NULL)
1849 ctx->offsets[i] = ctx->idx;
1850
1851 /* If unsuccesful, return with error code */
1852 if (ret)
1853 return ret;
1854 }
1855 return 0;
1856 }
1857
validate_code(struct jit_ctx * ctx)1858 static int validate_code(struct jit_ctx *ctx)
1859 {
1860 int i;
1861
1862 for (i = 0; i < ctx->idx; i++) {
1863 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1864 return -1;
1865 }
1866
1867 return 0;
1868 }
1869
bpf_jit_needs_zext(void)1870 bool bpf_jit_needs_zext(void)
1871 {
1872 return true;
1873 }
1874
bpf_int_jit_compile(struct bpf_prog * prog)1875 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1876 {
1877 struct bpf_prog *tmp, *orig_prog = prog;
1878 struct bpf_binary_header *header;
1879 bool tmp_blinded = false;
1880 struct jit_ctx ctx;
1881 unsigned int tmp_idx;
1882 unsigned int image_size;
1883 u8 *image_ptr;
1884
1885 /* If BPF JIT was not enabled then we must fall back to
1886 * the interpreter.
1887 */
1888 if (!prog->jit_requested)
1889 return orig_prog;
1890
1891 /* If constant blinding was enabled and we failed during blinding
1892 * then we must fall back to the interpreter. Otherwise, we save
1893 * the new JITed code.
1894 */
1895 tmp = bpf_jit_blind_constants(prog);
1896
1897 if (IS_ERR(tmp))
1898 return orig_prog;
1899 if (tmp != prog) {
1900 tmp_blinded = true;
1901 prog = tmp;
1902 }
1903
1904 memset(&ctx, 0, sizeof(ctx));
1905 ctx.prog = prog;
1906 ctx.cpu_architecture = cpu_architecture();
1907
1908 /* Not able to allocate memory for offsets[] , then
1909 * we must fall back to the interpreter
1910 */
1911 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1912 if (ctx.offsets == NULL) {
1913 prog = orig_prog;
1914 goto out;
1915 }
1916
1917 /* 1) fake pass to find in the length of the JITed code,
1918 * to compute ctx->offsets and other context variables
1919 * needed to compute final JITed code.
1920 * Also, calculate random starting pointer/start of JITed code
1921 * which is prefixed by random number of fault instructions.
1922 *
1923 * If the first pass fails then there is no chance of it
1924 * being successful in the second pass, so just fall back
1925 * to the interpreter.
1926 */
1927 if (build_body(&ctx)) {
1928 prog = orig_prog;
1929 goto out_off;
1930 }
1931
1932 tmp_idx = ctx.idx;
1933 build_prologue(&ctx);
1934 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1935
1936 ctx.epilogue_offset = ctx.idx;
1937
1938 #if __LINUX_ARM_ARCH__ < 7
1939 tmp_idx = ctx.idx;
1940 build_epilogue(&ctx);
1941 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1942
1943 ctx.idx += ctx.imm_count;
1944 if (ctx.imm_count) {
1945 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1946 if (ctx.imms == NULL) {
1947 prog = orig_prog;
1948 goto out_off;
1949 }
1950 }
1951 #else
1952 /* there's nothing about the epilogue on ARMv7 */
1953 build_epilogue(&ctx);
1954 #endif
1955 /* Now we can get the actual image size of the JITed arm code.
1956 * Currently, we are not considering the THUMB-2 instructions
1957 * for jit, although it can decrease the size of the image.
1958 *
1959 * As each arm instruction is of length 32bit, we are translating
1960 * number of JITed instructions into the size required to store these
1961 * JITed code.
1962 */
1963 image_size = sizeof(u32) * ctx.idx;
1964
1965 /* Now we know the size of the structure to make */
1966 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1967 sizeof(u32), jit_fill_hole);
1968 /* Not able to allocate memory for the structure then
1969 * we must fall back to the interpretation
1970 */
1971 if (header == NULL) {
1972 prog = orig_prog;
1973 goto out_imms;
1974 }
1975
1976 /* 2.) Actual pass to generate final JIT code */
1977 ctx.target = (u32 *) image_ptr;
1978 ctx.idx = 0;
1979
1980 build_prologue(&ctx);
1981
1982 /* If building the body of the JITed code fails somehow,
1983 * we fall back to the interpretation.
1984 */
1985 if (build_body(&ctx) < 0) {
1986 image_ptr = NULL;
1987 bpf_jit_binary_free(header);
1988 prog = orig_prog;
1989 goto out_imms;
1990 }
1991 build_epilogue(&ctx);
1992
1993 /* 3.) Extra pass to validate JITed Code */
1994 if (validate_code(&ctx)) {
1995 image_ptr = NULL;
1996 bpf_jit_binary_free(header);
1997 prog = orig_prog;
1998 goto out_imms;
1999 }
2000 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2001
2002 if (bpf_jit_enable > 1)
2003 /* there are 2 passes here */
2004 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2005
2006 bpf_jit_binary_lock_ro(header);
2007 prog->bpf_func = (void *)ctx.target;
2008 prog->jited = 1;
2009 prog->jited_len = image_size;
2010
2011 out_imms:
2012 #if __LINUX_ARM_ARCH__ < 7
2013 if (ctx.imm_count)
2014 kfree(ctx.imms);
2015 #endif
2016 out_off:
2017 kfree(ctx.offsets);
2018 out:
2019 if (tmp_blinded)
2020 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2021 tmp : orig_prog);
2022 return prog;
2023 }
2024
2025