1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2022 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
get_cfg80211_regdom(void)138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
get_wiphy_regdom(struct wiphy * wiphy)148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169 }
170
reg_get_dfs_region(struct wiphy * wiphy)171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201 out:
202 rcu_read_unlock();
203
204 return dfs_region;
205 }
206
rcu_free_regdom(const struct ieee80211_regdomain * r)207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
get_last_request(void)214 static struct regulatory_request *get_last_request(void)
215 {
216 return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
reg_free_request(struct regulatory_request * request)292 static void reg_free_request(struct regulatory_request *request)
293 {
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299 }
300
reg_free_last_request(void)301 static void reg_free_last_request(void)
302 {
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307 }
308
reg_update_last_request(struct regulatory_request * request)309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319 }
320
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323 {
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348 }
349
350 /*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
update_world_regdomain(const struct ieee80211_regdomain * rd)354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365 }
366
is_world_regdom(const char * alpha2)367 bool is_world_regdom(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
is_alpha2_set(const char * alpha2)374 static bool is_alpha2_set(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379 }
380
is_unknown_alpha2(const char * alpha2)381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
is_intersected_alpha2(const char * alpha2)392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
is_an_alpha2(const char * alpha2)404 static bool is_an_alpha2(const char *alpha2)
405 {
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
alpha2_equal(const char * alpha2_x,const char * alpha2_y)411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
regdom_changes(const char * alpha2)418 static bool regdom_changes(const char *alpha2)
419 {
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
is_user_regdom_saved(void)432 static bool is_user_regdom_saved(void)
433 {
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444 }
445
446 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464 }
465
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
reg_regdb_apply(struct work_struct * work)483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
reg_schedule_apply(const struct ieee80211_regdomain * regdom)506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
crda_timeout_work(struct work_struct * work)535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542 }
543
cancel_crda_timeout(void)544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
cancel_crda_timeout_sync(void)549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
reset_crda_timeouts(void)554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
call_crda(const char * alpha2)563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
cancel_crda_timeout(void)592 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)593 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)594 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654 } __packed __aligned(4);
655
ecw2cw(int ecw)656 static int ecw2cw(int ecw)
657 {
658 return (1 << ecw) - 1;
659 }
660
valid_wmm(struct fwdb_wmm_rule * rule)661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679 }
680
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704 }
705
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)706 static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708 {
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
load_keys_from_buffer(const u8 * p,unsigned int buflen)742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 const u8 *end = p + buflen;
745 size_t plen;
746 key_ref_t key;
747
748 while (p < end) {
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
751 */
752 if (end - p < 4)
753 goto dodgy_cert;
754 if (p[0] != 0x30 &&
755 p[1] != 0x82)
756 goto dodgy_cert;
757 plen = (p[2] << 8) | p[3];
758 plen += 4;
759 if (plen > end - p)
760 goto dodgy_cert;
761
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
767 KEY_ALLOC_BUILT_IN |
768 KEY_ALLOC_BYPASS_RESTRICTION);
769 if (IS_ERR(key)) {
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 PTR_ERR(key));
772 } else {
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
775 key_ref_put(key);
776 }
777 p += plen;
778 }
779
780 return;
781
782 dodgy_cert:
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
load_builtin_regdb_keys(void)786 static int __init load_builtin_regdb_keys(void)
787 {
788 builtin_regdb_keys =
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
796
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807 return 0;
808 }
809
810 MODULE_FIRMWARE("regulatory.db.p7s");
811
regdb_has_valid_signature(const u8 * data,unsigned int size)812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814 const struct firmware *sig;
815 bool result;
816
817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
818 return false;
819
820 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 builtin_regdb_keys,
822 VERIFYING_UNSPECIFIED_SIGNATURE,
823 NULL, NULL) == 0;
824
825 release_firmware(sig);
826
827 return result;
828 }
829
free_regdb_keyring(void)830 static void free_regdb_keyring(void)
831 {
832 key_put(builtin_regdb_keys);
833 }
834 #else
load_builtin_regdb_keys(void)835 static int load_builtin_regdb_keys(void)
836 {
837 return 0;
838 }
839
regdb_has_valid_signature(const u8 * data,unsigned int size)840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842 return true;
843 }
844
free_regdb_keyring(void)845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
valid_regdb(const u8 * data,unsigned int size)850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852 const struct fwdb_header *hdr = (void *)data;
853 const struct fwdb_country *country;
854
855 if (size < sizeof(*hdr))
856 return false;
857
858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 return false;
860
861 if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 return false;
863
864 if (!regdb_has_valid_signature(data, size))
865 return false;
866
867 country = &hdr->country[0];
868 while ((u8 *)(country + 1) <= data + size) {
869 if (!country->coll_ptr)
870 break;
871 if (!valid_country(data, size, country))
872 return false;
873 country++;
874 }
875
876 return true;
877 }
878
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)879 static void set_wmm_rule(const struct fwdb_header *db,
880 const struct fwdb_country *country,
881 const struct fwdb_rule *rule,
882 struct ieee80211_reg_rule *rrule)
883 {
884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 struct fwdb_wmm_rule *wmm;
886 unsigned int i, wmm_ptr;
887
888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 wmm = (void *)((u8 *)db + wmm_ptr);
890
891 if (!valid_wmm(wmm)) {
892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 country->alpha2[0], country->alpha2[1]);
895 return;
896 }
897
898 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 wmm_rule->client[i].cw_min =
900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
903 wmm_rule->client[i].cot =
904 1000 * be16_to_cpu(wmm->client[i].cot);
905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 }
910
911 rrule->has_wmm = true;
912 }
913
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)914 static int __regdb_query_wmm(const struct fwdb_header *db,
915 const struct fwdb_country *country, int freq,
916 struct ieee80211_reg_rule *rrule)
917 {
918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 int i;
921
922 for (i = 0; i < coll->n_rules; i++) {
923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 continue;
929
930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 set_wmm_rule(db, country, rule, rrule);
933 return 0;
934 }
935 }
936
937 return -ENODATA;
938 }
939
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942 const struct fwdb_header *hdr = regdb;
943 const struct fwdb_country *country;
944
945 if (!regdb)
946 return -ENODATA;
947
948 if (IS_ERR(regdb))
949 return PTR_ERR(regdb);
950
951 country = &hdr->country[0];
952 while (country->coll_ptr) {
953 if (alpha2_equal(alpha2, country->alpha2))
954 return __regdb_query_wmm(regdb, country, freq, rule);
955
956 country++;
957 }
958
959 return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)963 static int regdb_query_country(const struct fwdb_header *db,
964 const struct fwdb_country *country)
965 {
966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 struct ieee80211_regdomain *regdom;
969 unsigned int i;
970
971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 GFP_KERNEL);
973 if (!regdom)
974 return -ENOMEM;
975
976 regdom->n_reg_rules = coll->n_rules;
977 regdom->alpha2[0] = country->alpha2[0];
978 regdom->alpha2[1] = country->alpha2[1];
979 regdom->dfs_region = coll->dfs_region;
980
981 for (i = 0; i < regdom->n_reg_rules; i++) {
982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
986
987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991 rrule->power_rule.max_antenna_gain = 0;
992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994 rrule->flags = 0;
995 if (rule->flags & FWDB_FLAG_NO_OFDM)
996 rrule->flags |= NL80211_RRF_NO_OFDM;
997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 if (rule->flags & FWDB_FLAG_DFS)
1000 rrule->flags |= NL80211_RRF_DFS;
1001 if (rule->flags & FWDB_FLAG_NO_IR)
1002 rrule->flags |= NL80211_RRF_NO_IR;
1003 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006 rrule->dfs_cac_ms = 0;
1007
1008 /* handle optional data */
1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 rrule->dfs_cac_ms =
1011 1000 * be16_to_cpu(rule->cac_timeout);
1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 set_wmm_rule(db, country, rule, rrule);
1014 }
1015
1016 return reg_schedule_apply(regdom);
1017 }
1018
query_regdb(const char * alpha2)1019 static int query_regdb(const char *alpha2)
1020 {
1021 const struct fwdb_header *hdr = regdb;
1022 const struct fwdb_country *country;
1023
1024 ASSERT_RTNL();
1025
1026 if (IS_ERR(regdb))
1027 return PTR_ERR(regdb);
1028
1029 country = &hdr->country[0];
1030 while (country->coll_ptr) {
1031 if (alpha2_equal(alpha2, country->alpha2))
1032 return regdb_query_country(regdb, country);
1033 country++;
1034 }
1035
1036 return -ENODATA;
1037 }
1038
regdb_fw_cb(const struct firmware * fw,void * context)1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041 int set_error = 0;
1042 bool restore = true;
1043 void *db;
1044
1045 if (!fw) {
1046 pr_info("failed to load regulatory.db\n");
1047 set_error = -ENODATA;
1048 } else if (!valid_regdb(fw->data, fw->size)) {
1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 set_error = -EINVAL;
1051 }
1052
1053 rtnl_lock();
1054 if (regdb && !IS_ERR(regdb)) {
1055 /* negative case - a bug
1056 * positive case - can happen due to race in case of multiple cb's in
1057 * queue, due to usage of asynchronous callback
1058 *
1059 * Either case, just restore and free new db.
1060 */
1061 } else if (set_error) {
1062 regdb = ERR_PTR(set_error);
1063 } else if (fw) {
1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 if (db) {
1066 regdb = db;
1067 restore = context && query_regdb(context);
1068 } else {
1069 restore = true;
1070 }
1071 }
1072
1073 if (restore)
1074 restore_regulatory_settings(true, false);
1075
1076 rtnl_unlock();
1077
1078 kfree(context);
1079
1080 release_firmware(fw);
1081 }
1082
1083 MODULE_FIRMWARE("regulatory.db");
1084
query_regdb_file(const char * alpha2)1085 static int query_regdb_file(const char *alpha2)
1086 {
1087 ASSERT_RTNL();
1088
1089 if (regdb)
1090 return query_regdb(alpha2);
1091
1092 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1093 if (!alpha2)
1094 return -ENOMEM;
1095
1096 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1097 ®_pdev->dev, GFP_KERNEL,
1098 (void *)alpha2, regdb_fw_cb);
1099 }
1100
reg_reload_regdb(void)1101 int reg_reload_regdb(void)
1102 {
1103 const struct firmware *fw;
1104 void *db;
1105 int err;
1106 const struct ieee80211_regdomain *current_regdomain;
1107 struct regulatory_request *request;
1108
1109 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1110 if (err)
1111 return err;
1112
1113 if (!valid_regdb(fw->data, fw->size)) {
1114 err = -ENODATA;
1115 goto out;
1116 }
1117
1118 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1119 if (!db) {
1120 err = -ENOMEM;
1121 goto out;
1122 }
1123
1124 rtnl_lock();
1125 if (!IS_ERR_OR_NULL(regdb))
1126 kfree(regdb);
1127 regdb = db;
1128
1129 /* reset regulatory domain */
1130 current_regdomain = get_cfg80211_regdom();
1131
1132 request = kzalloc(sizeof(*request), GFP_KERNEL);
1133 if (!request) {
1134 err = -ENOMEM;
1135 goto out_unlock;
1136 }
1137
1138 request->wiphy_idx = WIPHY_IDX_INVALID;
1139 request->alpha2[0] = current_regdomain->alpha2[0];
1140 request->alpha2[1] = current_regdomain->alpha2[1];
1141 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1142 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1143
1144 reg_process_hint(request);
1145
1146 out_unlock:
1147 rtnl_unlock();
1148 out:
1149 release_firmware(fw);
1150 return err;
1151 }
1152
reg_query_database(struct regulatory_request * request)1153 static bool reg_query_database(struct regulatory_request *request)
1154 {
1155 if (query_regdb_file(request->alpha2) == 0)
1156 return true;
1157
1158 if (call_crda(request->alpha2) == 0)
1159 return true;
1160
1161 return false;
1162 }
1163
reg_is_valid_request(const char * alpha2)1164 bool reg_is_valid_request(const char *alpha2)
1165 {
1166 struct regulatory_request *lr = get_last_request();
1167
1168 if (!lr || lr->processed)
1169 return false;
1170
1171 return alpha2_equal(lr->alpha2, alpha2);
1172 }
1173
reg_get_regdomain(struct wiphy * wiphy)1174 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1175 {
1176 struct regulatory_request *lr = get_last_request();
1177
1178 /*
1179 * Follow the driver's regulatory domain, if present, unless a country
1180 * IE has been processed or a user wants to help complaince further
1181 */
1182 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1183 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1184 wiphy->regd)
1185 return get_wiphy_regdom(wiphy);
1186
1187 return get_cfg80211_regdom();
1188 }
1189
1190 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1191 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1192 const struct ieee80211_reg_rule *rule)
1193 {
1194 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1195 const struct ieee80211_freq_range *freq_range_tmp;
1196 const struct ieee80211_reg_rule *tmp;
1197 u32 start_freq, end_freq, idx, no;
1198
1199 for (idx = 0; idx < rd->n_reg_rules; idx++)
1200 if (rule == &rd->reg_rules[idx])
1201 break;
1202
1203 if (idx == rd->n_reg_rules)
1204 return 0;
1205
1206 /* get start_freq */
1207 no = idx;
1208
1209 while (no) {
1210 tmp = &rd->reg_rules[--no];
1211 freq_range_tmp = &tmp->freq_range;
1212
1213 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1214 break;
1215
1216 freq_range = freq_range_tmp;
1217 }
1218
1219 start_freq = freq_range->start_freq_khz;
1220
1221 /* get end_freq */
1222 freq_range = &rule->freq_range;
1223 no = idx;
1224
1225 while (no < rd->n_reg_rules - 1) {
1226 tmp = &rd->reg_rules[++no];
1227 freq_range_tmp = &tmp->freq_range;
1228
1229 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1230 break;
1231
1232 freq_range = freq_range_tmp;
1233 }
1234
1235 end_freq = freq_range->end_freq_khz;
1236
1237 return end_freq - start_freq;
1238 }
1239
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1240 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1241 const struct ieee80211_reg_rule *rule)
1242 {
1243 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1244
1245 if (rule->flags & NL80211_RRF_NO_320MHZ)
1246 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1247 if (rule->flags & NL80211_RRF_NO_160MHZ)
1248 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249 if (rule->flags & NL80211_RRF_NO_80MHZ)
1250 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251
1252 /*
1253 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254 * are not allowed.
1255 */
1256 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257 rule->flags & NL80211_RRF_NO_HT40PLUS)
1258 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259
1260 return bw;
1261 }
1262
1263 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 {
1266 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267 u32 freq_diff;
1268
1269 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270 return false;
1271
1272 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273 return false;
1274
1275 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276
1277 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278 freq_range->max_bandwidth_khz > freq_diff)
1279 return false;
1280
1281 return true;
1282 }
1283
is_valid_rd(const struct ieee80211_regdomain * rd)1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 {
1286 const struct ieee80211_reg_rule *reg_rule = NULL;
1287 unsigned int i;
1288
1289 if (!rd->n_reg_rules)
1290 return false;
1291
1292 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293 return false;
1294
1295 for (i = 0; i < rd->n_reg_rules; i++) {
1296 reg_rule = &rd->reg_rules[i];
1297 if (!is_valid_reg_rule(reg_rule))
1298 return false;
1299 }
1300
1301 return true;
1302 }
1303
1304 /**
1305 * freq_in_rule_band - tells us if a frequency is in a frequency band
1306 * @freq_range: frequency rule we want to query
1307 * @freq_khz: frequency we are inquiring about
1308 *
1309 * This lets us know if a specific frequency rule is or is not relevant to
1310 * a specific frequency's band. Bands are device specific and artificial
1311 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312 * however it is safe for now to assume that a frequency rule should not be
1313 * part of a frequency's band if the start freq or end freq are off by more
1314 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1315 * 60 GHz band.
1316 * This resolution can be lowered and should be considered as we add
1317 * regulatory rule support for other "bands".
1318 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320 u32 freq_khz)
1321 {
1322 #define ONE_GHZ_IN_KHZ 1000000
1323 /*
1324 * From 802.11ad: directional multi-gigabit (DMG):
1325 * Pertaining to operation in a frequency band containing a channel
1326 * with the Channel starting frequency above 45 GHz.
1327 */
1328 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331 return true;
1332 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333 return true;
1334 return false;
1335 #undef ONE_GHZ_IN_KHZ
1336 }
1337
1338 /*
1339 * Later on we can perhaps use the more restrictive DFS
1340 * region but we don't have information for that yet so
1341 * for now simply disallow conflicts.
1342 */
1343 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345 const enum nl80211_dfs_regions dfs_region2)
1346 {
1347 if (dfs_region1 != dfs_region2)
1348 return NL80211_DFS_UNSET;
1349 return dfs_region1;
1350 }
1351
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1352 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1353 const struct ieee80211_wmm_ac *wmm_ac2,
1354 struct ieee80211_wmm_ac *intersect)
1355 {
1356 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1357 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1358 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1359 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1360 }
1361
1362 /*
1363 * Helper for regdom_intersect(), this does the real
1364 * mathematical intersection fun
1365 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1366 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1367 const struct ieee80211_regdomain *rd2,
1368 const struct ieee80211_reg_rule *rule1,
1369 const struct ieee80211_reg_rule *rule2,
1370 struct ieee80211_reg_rule *intersected_rule)
1371 {
1372 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1373 struct ieee80211_freq_range *freq_range;
1374 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1375 struct ieee80211_power_rule *power_rule;
1376 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1377 struct ieee80211_wmm_rule *wmm_rule;
1378 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1379
1380 freq_range1 = &rule1->freq_range;
1381 freq_range2 = &rule2->freq_range;
1382 freq_range = &intersected_rule->freq_range;
1383
1384 power_rule1 = &rule1->power_rule;
1385 power_rule2 = &rule2->power_rule;
1386 power_rule = &intersected_rule->power_rule;
1387
1388 wmm_rule1 = &rule1->wmm_rule;
1389 wmm_rule2 = &rule2->wmm_rule;
1390 wmm_rule = &intersected_rule->wmm_rule;
1391
1392 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1393 freq_range2->start_freq_khz);
1394 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1395 freq_range2->end_freq_khz);
1396
1397 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1398 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1399
1400 if (rule1->flags & NL80211_RRF_AUTO_BW)
1401 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1402 if (rule2->flags & NL80211_RRF_AUTO_BW)
1403 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1404
1405 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1406
1407 intersected_rule->flags = rule1->flags | rule2->flags;
1408
1409 /*
1410 * In case NL80211_RRF_AUTO_BW requested for both rules
1411 * set AUTO_BW in intersected rule also. Next we will
1412 * calculate BW correctly in handle_channel function.
1413 * In other case remove AUTO_BW flag while we calculate
1414 * maximum bandwidth correctly and auto calculation is
1415 * not required.
1416 */
1417 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1418 (rule2->flags & NL80211_RRF_AUTO_BW))
1419 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1420 else
1421 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1422
1423 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1424 if (freq_range->max_bandwidth_khz > freq_diff)
1425 freq_range->max_bandwidth_khz = freq_diff;
1426
1427 power_rule->max_eirp = min(power_rule1->max_eirp,
1428 power_rule2->max_eirp);
1429 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1430 power_rule2->max_antenna_gain);
1431
1432 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1433 rule2->dfs_cac_ms);
1434
1435 if (rule1->has_wmm && rule2->has_wmm) {
1436 u8 ac;
1437
1438 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1439 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1440 &wmm_rule2->client[ac],
1441 &wmm_rule->client[ac]);
1442 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1443 &wmm_rule2->ap[ac],
1444 &wmm_rule->ap[ac]);
1445 }
1446
1447 intersected_rule->has_wmm = true;
1448 } else if (rule1->has_wmm) {
1449 *wmm_rule = *wmm_rule1;
1450 intersected_rule->has_wmm = true;
1451 } else if (rule2->has_wmm) {
1452 *wmm_rule = *wmm_rule2;
1453 intersected_rule->has_wmm = true;
1454 } else {
1455 intersected_rule->has_wmm = false;
1456 }
1457
1458 if (!is_valid_reg_rule(intersected_rule))
1459 return -EINVAL;
1460
1461 return 0;
1462 }
1463
1464 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1465 static bool rule_contains(struct ieee80211_reg_rule *r1,
1466 struct ieee80211_reg_rule *r2)
1467 {
1468 /* for simplicity, currently consider only same flags */
1469 if (r1->flags != r2->flags)
1470 return false;
1471
1472 /* verify r1 is more restrictive */
1473 if ((r1->power_rule.max_antenna_gain >
1474 r2->power_rule.max_antenna_gain) ||
1475 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1476 return false;
1477
1478 /* make sure r2's range is contained within r1 */
1479 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1480 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1481 return false;
1482
1483 /* and finally verify that r1.max_bw >= r2.max_bw */
1484 if (r1->freq_range.max_bandwidth_khz <
1485 r2->freq_range.max_bandwidth_khz)
1486 return false;
1487
1488 return true;
1489 }
1490
1491 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1492 static void add_rule(struct ieee80211_reg_rule *rule,
1493 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1494 {
1495 struct ieee80211_reg_rule *tmp_rule;
1496 int i;
1497
1498 for (i = 0; i < *n_rules; i++) {
1499 tmp_rule = ®_rules[i];
1500 /* rule is already contained - do nothing */
1501 if (rule_contains(tmp_rule, rule))
1502 return;
1503
1504 /* extend rule if possible */
1505 if (rule_contains(rule, tmp_rule)) {
1506 memcpy(tmp_rule, rule, sizeof(*rule));
1507 return;
1508 }
1509 }
1510
1511 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1512 (*n_rules)++;
1513 }
1514
1515 /**
1516 * regdom_intersect - do the intersection between two regulatory domains
1517 * @rd1: first regulatory domain
1518 * @rd2: second regulatory domain
1519 *
1520 * Use this function to get the intersection between two regulatory domains.
1521 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1522 * as no one single alpha2 can represent this regulatory domain.
1523 *
1524 * Returns a pointer to the regulatory domain structure which will hold the
1525 * resulting intersection of rules between rd1 and rd2. We will
1526 * kzalloc() this structure for you.
1527 */
1528 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1529 regdom_intersect(const struct ieee80211_regdomain *rd1,
1530 const struct ieee80211_regdomain *rd2)
1531 {
1532 int r;
1533 unsigned int x, y;
1534 unsigned int num_rules = 0;
1535 const struct ieee80211_reg_rule *rule1, *rule2;
1536 struct ieee80211_reg_rule intersected_rule;
1537 struct ieee80211_regdomain *rd;
1538
1539 if (!rd1 || !rd2)
1540 return NULL;
1541
1542 /*
1543 * First we get a count of the rules we'll need, then we actually
1544 * build them. This is to so we can malloc() and free() a
1545 * regdomain once. The reason we use reg_rules_intersect() here
1546 * is it will return -EINVAL if the rule computed makes no sense.
1547 * All rules that do check out OK are valid.
1548 */
1549
1550 for (x = 0; x < rd1->n_reg_rules; x++) {
1551 rule1 = &rd1->reg_rules[x];
1552 for (y = 0; y < rd2->n_reg_rules; y++) {
1553 rule2 = &rd2->reg_rules[y];
1554 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1555 &intersected_rule))
1556 num_rules++;
1557 }
1558 }
1559
1560 if (!num_rules)
1561 return NULL;
1562
1563 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1564 if (!rd)
1565 return NULL;
1566
1567 for (x = 0; x < rd1->n_reg_rules; x++) {
1568 rule1 = &rd1->reg_rules[x];
1569 for (y = 0; y < rd2->n_reg_rules; y++) {
1570 rule2 = &rd2->reg_rules[y];
1571 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1572 &intersected_rule);
1573 /*
1574 * No need to memset here the intersected rule here as
1575 * we're not using the stack anymore
1576 */
1577 if (r)
1578 continue;
1579
1580 add_rule(&intersected_rule, rd->reg_rules,
1581 &rd->n_reg_rules);
1582 }
1583 }
1584
1585 rd->alpha2[0] = '9';
1586 rd->alpha2[1] = '8';
1587 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588 rd2->dfs_region);
1589
1590 return rd;
1591 }
1592
1593 /*
1594 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1595 * want to just have the channel structure use these
1596 */
map_regdom_flags(u32 rd_flags)1597 static u32 map_regdom_flags(u32 rd_flags)
1598 {
1599 u32 channel_flags = 0;
1600 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1601 channel_flags |= IEEE80211_CHAN_NO_IR;
1602 if (rd_flags & NL80211_RRF_DFS)
1603 channel_flags |= IEEE80211_CHAN_RADAR;
1604 if (rd_flags & NL80211_RRF_NO_OFDM)
1605 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1606 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1607 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1608 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1609 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1610 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1611 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1612 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1613 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1614 if (rd_flags & NL80211_RRF_NO_80MHZ)
1615 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1616 if (rd_flags & NL80211_RRF_NO_160MHZ)
1617 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1618 if (rd_flags & NL80211_RRF_NO_HE)
1619 channel_flags |= IEEE80211_CHAN_NO_HE;
1620 if (rd_flags & NL80211_RRF_NO_320MHZ)
1621 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1622 return channel_flags;
1623 }
1624
1625 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1626 freq_reg_info_regd(u32 center_freq,
1627 const struct ieee80211_regdomain *regd, u32 bw)
1628 {
1629 int i;
1630 bool band_rule_found = false;
1631 bool bw_fits = false;
1632
1633 if (!regd)
1634 return ERR_PTR(-EINVAL);
1635
1636 for (i = 0; i < regd->n_reg_rules; i++) {
1637 const struct ieee80211_reg_rule *rr;
1638 const struct ieee80211_freq_range *fr = NULL;
1639
1640 rr = ®d->reg_rules[i];
1641 fr = &rr->freq_range;
1642
1643 /*
1644 * We only need to know if one frequency rule was
1645 * in center_freq's band, that's enough, so let's
1646 * not overwrite it once found
1647 */
1648 if (!band_rule_found)
1649 band_rule_found = freq_in_rule_band(fr, center_freq);
1650
1651 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1652
1653 if (band_rule_found && bw_fits)
1654 return rr;
1655 }
1656
1657 if (!band_rule_found)
1658 return ERR_PTR(-ERANGE);
1659
1660 return ERR_PTR(-EINVAL);
1661 }
1662
1663 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1664 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1665 {
1666 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1667 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1668 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1669 int i = ARRAY_SIZE(bws) - 1;
1670 u32 bw;
1671
1672 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1673 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1674 if (!IS_ERR(reg_rule))
1675 return reg_rule;
1676 }
1677
1678 return reg_rule;
1679 }
1680
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1681 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1682 u32 center_freq)
1683 {
1684 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1685
1686 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1687 }
1688 EXPORT_SYMBOL(freq_reg_info);
1689
reg_initiator_name(enum nl80211_reg_initiator initiator)1690 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1691 {
1692 switch (initiator) {
1693 case NL80211_REGDOM_SET_BY_CORE:
1694 return "core";
1695 case NL80211_REGDOM_SET_BY_USER:
1696 return "user";
1697 case NL80211_REGDOM_SET_BY_DRIVER:
1698 return "driver";
1699 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1700 return "country element";
1701 default:
1702 WARN_ON(1);
1703 return "bug";
1704 }
1705 }
1706 EXPORT_SYMBOL(reg_initiator_name);
1707
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1708 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1709 const struct ieee80211_reg_rule *reg_rule,
1710 const struct ieee80211_channel *chan)
1711 {
1712 const struct ieee80211_freq_range *freq_range = NULL;
1713 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1714 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1715
1716 freq_range = ®_rule->freq_range;
1717
1718 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1719 center_freq_khz = ieee80211_channel_to_khz(chan);
1720 /* Check if auto calculation requested */
1721 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723
1724 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1725 if (!cfg80211_does_bw_fit_range(freq_range,
1726 center_freq_khz,
1727 MHZ_TO_KHZ(10)))
1728 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1729 if (!cfg80211_does_bw_fit_range(freq_range,
1730 center_freq_khz,
1731 MHZ_TO_KHZ(20)))
1732 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1733
1734 if (is_s1g) {
1735 /* S1G is strict about non overlapping channels. We can
1736 * calculate which bandwidth is allowed per channel by finding
1737 * the largest bandwidth which cleanly divides the freq_range.
1738 */
1739 int edge_offset;
1740 int ch_bw = max_bandwidth_khz;
1741
1742 while (ch_bw) {
1743 edge_offset = (center_freq_khz - ch_bw / 2) -
1744 freq_range->start_freq_khz;
1745 if (edge_offset % ch_bw == 0) {
1746 switch (KHZ_TO_MHZ(ch_bw)) {
1747 case 1:
1748 bw_flags |= IEEE80211_CHAN_1MHZ;
1749 break;
1750 case 2:
1751 bw_flags |= IEEE80211_CHAN_2MHZ;
1752 break;
1753 case 4:
1754 bw_flags |= IEEE80211_CHAN_4MHZ;
1755 break;
1756 case 8:
1757 bw_flags |= IEEE80211_CHAN_8MHZ;
1758 break;
1759 case 16:
1760 bw_flags |= IEEE80211_CHAN_16MHZ;
1761 break;
1762 default:
1763 /* If we got here, no bandwidths fit on
1764 * this frequency, ie. band edge.
1765 */
1766 bw_flags |= IEEE80211_CHAN_DISABLED;
1767 break;
1768 }
1769 break;
1770 }
1771 ch_bw /= 2;
1772 }
1773 } else {
1774 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1775 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1776 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1777 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1778 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1779 bw_flags |= IEEE80211_CHAN_NO_HT40;
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1781 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1782 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1783 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1784 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1785 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1786 }
1787 return bw_flags;
1788 }
1789
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1790 static void handle_channel_single_rule(struct wiphy *wiphy,
1791 enum nl80211_reg_initiator initiator,
1792 struct ieee80211_channel *chan,
1793 u32 flags,
1794 struct regulatory_request *lr,
1795 struct wiphy *request_wiphy,
1796 const struct ieee80211_reg_rule *reg_rule)
1797 {
1798 u32 bw_flags = 0;
1799 const struct ieee80211_power_rule *power_rule = NULL;
1800 const struct ieee80211_regdomain *regd;
1801
1802 regd = reg_get_regdomain(wiphy);
1803
1804 power_rule = ®_rule->power_rule;
1805 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1806
1807 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1808 request_wiphy && request_wiphy == wiphy &&
1809 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1810 /*
1811 * This guarantees the driver's requested regulatory domain
1812 * will always be used as a base for further regulatory
1813 * settings
1814 */
1815 chan->flags = chan->orig_flags =
1816 map_regdom_flags(reg_rule->flags) | bw_flags;
1817 chan->max_antenna_gain = chan->orig_mag =
1818 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1819 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1820 (int) MBM_TO_DBM(power_rule->max_eirp);
1821
1822 if (chan->flags & IEEE80211_CHAN_RADAR) {
1823 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1824 if (reg_rule->dfs_cac_ms)
1825 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1826 }
1827
1828 return;
1829 }
1830
1831 chan->dfs_state = NL80211_DFS_USABLE;
1832 chan->dfs_state_entered = jiffies;
1833
1834 chan->beacon_found = false;
1835 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1836 chan->max_antenna_gain =
1837 min_t(int, chan->orig_mag,
1838 MBI_TO_DBI(power_rule->max_antenna_gain));
1839 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1840
1841 if (chan->flags & IEEE80211_CHAN_RADAR) {
1842 if (reg_rule->dfs_cac_ms)
1843 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1844 else
1845 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1846 }
1847
1848 if (chan->orig_mpwr) {
1849 /*
1850 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1851 * will always follow the passed country IE power settings.
1852 */
1853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1854 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1855 chan->max_power = chan->max_reg_power;
1856 else
1857 chan->max_power = min(chan->orig_mpwr,
1858 chan->max_reg_power);
1859 } else
1860 chan->max_power = chan->max_reg_power;
1861 }
1862
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1863 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1864 enum nl80211_reg_initiator initiator,
1865 struct ieee80211_channel *chan,
1866 u32 flags,
1867 struct regulatory_request *lr,
1868 struct wiphy *request_wiphy,
1869 const struct ieee80211_reg_rule *rrule1,
1870 const struct ieee80211_reg_rule *rrule2,
1871 struct ieee80211_freq_range *comb_range)
1872 {
1873 u32 bw_flags1 = 0;
1874 u32 bw_flags2 = 0;
1875 const struct ieee80211_power_rule *power_rule1 = NULL;
1876 const struct ieee80211_power_rule *power_rule2 = NULL;
1877 const struct ieee80211_regdomain *regd;
1878
1879 regd = reg_get_regdomain(wiphy);
1880
1881 power_rule1 = &rrule1->power_rule;
1882 power_rule2 = &rrule2->power_rule;
1883 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1884 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1885
1886 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1887 request_wiphy && request_wiphy == wiphy &&
1888 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1889 /* This guarantees the driver's requested regulatory domain
1890 * will always be used as a base for further regulatory
1891 * settings
1892 */
1893 chan->flags =
1894 map_regdom_flags(rrule1->flags) |
1895 map_regdom_flags(rrule2->flags) |
1896 bw_flags1 |
1897 bw_flags2;
1898 chan->orig_flags = chan->flags;
1899 chan->max_antenna_gain =
1900 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1901 MBI_TO_DBI(power_rule2->max_antenna_gain));
1902 chan->orig_mag = chan->max_antenna_gain;
1903 chan->max_reg_power =
1904 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1905 MBM_TO_DBM(power_rule2->max_eirp));
1906 chan->max_power = chan->max_reg_power;
1907 chan->orig_mpwr = chan->max_reg_power;
1908
1909 if (chan->flags & IEEE80211_CHAN_RADAR) {
1910 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912 chan->dfs_cac_ms = max_t(unsigned int,
1913 rrule1->dfs_cac_ms,
1914 rrule2->dfs_cac_ms);
1915 }
1916
1917 return;
1918 }
1919
1920 chan->dfs_state = NL80211_DFS_USABLE;
1921 chan->dfs_state_entered = jiffies;
1922
1923 chan->beacon_found = false;
1924 chan->flags = flags | bw_flags1 | bw_flags2 |
1925 map_regdom_flags(rrule1->flags) |
1926 map_regdom_flags(rrule2->flags);
1927
1928 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1929 * (otherwise no adj. rule case), recheck therefore
1930 */
1931 if (cfg80211_does_bw_fit_range(comb_range,
1932 ieee80211_channel_to_khz(chan),
1933 MHZ_TO_KHZ(10)))
1934 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1935 if (cfg80211_does_bw_fit_range(comb_range,
1936 ieee80211_channel_to_khz(chan),
1937 MHZ_TO_KHZ(20)))
1938 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1939
1940 chan->max_antenna_gain =
1941 min_t(int, chan->orig_mag,
1942 min_t(int,
1943 MBI_TO_DBI(power_rule1->max_antenna_gain),
1944 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1945 chan->max_reg_power = min_t(int,
1946 MBM_TO_DBM(power_rule1->max_eirp),
1947 MBM_TO_DBM(power_rule2->max_eirp));
1948
1949 if (chan->flags & IEEE80211_CHAN_RADAR) {
1950 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1951 chan->dfs_cac_ms = max_t(unsigned int,
1952 rrule1->dfs_cac_ms,
1953 rrule2->dfs_cac_ms);
1954 else
1955 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1956 }
1957
1958 if (chan->orig_mpwr) {
1959 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1960 * will always follow the passed country IE power settings.
1961 */
1962 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1963 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1964 chan->max_power = chan->max_reg_power;
1965 else
1966 chan->max_power = min(chan->orig_mpwr,
1967 chan->max_reg_power);
1968 } else {
1969 chan->max_power = chan->max_reg_power;
1970 }
1971 }
1972
1973 /* Note that right now we assume the desired channel bandwidth
1974 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1975 * per channel, the primary and the extension channel).
1976 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1977 static void handle_channel(struct wiphy *wiphy,
1978 enum nl80211_reg_initiator initiator,
1979 struct ieee80211_channel *chan)
1980 {
1981 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1982 struct regulatory_request *lr = get_last_request();
1983 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1984 const struct ieee80211_reg_rule *rrule = NULL;
1985 const struct ieee80211_reg_rule *rrule1 = NULL;
1986 const struct ieee80211_reg_rule *rrule2 = NULL;
1987
1988 u32 flags = chan->orig_flags;
1989
1990 rrule = freq_reg_info(wiphy, orig_chan_freq);
1991 if (IS_ERR(rrule)) {
1992 /* check for adjacent match, therefore get rules for
1993 * chan - 20 MHz and chan + 20 MHz and test
1994 * if reg rules are adjacent
1995 */
1996 rrule1 = freq_reg_info(wiphy,
1997 orig_chan_freq - MHZ_TO_KHZ(20));
1998 rrule2 = freq_reg_info(wiphy,
1999 orig_chan_freq + MHZ_TO_KHZ(20));
2000 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2001 struct ieee80211_freq_range comb_range;
2002
2003 if (rrule1->freq_range.end_freq_khz !=
2004 rrule2->freq_range.start_freq_khz)
2005 goto disable_chan;
2006
2007 comb_range.start_freq_khz =
2008 rrule1->freq_range.start_freq_khz;
2009 comb_range.end_freq_khz =
2010 rrule2->freq_range.end_freq_khz;
2011 comb_range.max_bandwidth_khz =
2012 min_t(u32,
2013 rrule1->freq_range.max_bandwidth_khz,
2014 rrule2->freq_range.max_bandwidth_khz);
2015
2016 if (!cfg80211_does_bw_fit_range(&comb_range,
2017 orig_chan_freq,
2018 MHZ_TO_KHZ(20)))
2019 goto disable_chan;
2020
2021 handle_channel_adjacent_rules(wiphy, initiator, chan,
2022 flags, lr, request_wiphy,
2023 rrule1, rrule2,
2024 &comb_range);
2025 return;
2026 }
2027
2028 disable_chan:
2029 /* We will disable all channels that do not match our
2030 * received regulatory rule unless the hint is coming
2031 * from a Country IE and the Country IE had no information
2032 * about a band. The IEEE 802.11 spec allows for an AP
2033 * to send only a subset of the regulatory rules allowed,
2034 * so an AP in the US that only supports 2.4 GHz may only send
2035 * a country IE with information for the 2.4 GHz band
2036 * while 5 GHz is still supported.
2037 */
2038 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2039 PTR_ERR(rrule) == -ERANGE)
2040 return;
2041
2042 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2043 request_wiphy && request_wiphy == wiphy &&
2044 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2045 pr_debug("Disabling freq %d.%03d MHz for good\n",
2046 chan->center_freq, chan->freq_offset);
2047 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2048 chan->flags = chan->orig_flags;
2049 } else {
2050 pr_debug("Disabling freq %d.%03d MHz\n",
2051 chan->center_freq, chan->freq_offset);
2052 chan->flags |= IEEE80211_CHAN_DISABLED;
2053 }
2054 return;
2055 }
2056
2057 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2058 request_wiphy, rrule);
2059 }
2060
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2061 static void handle_band(struct wiphy *wiphy,
2062 enum nl80211_reg_initiator initiator,
2063 struct ieee80211_supported_band *sband)
2064 {
2065 unsigned int i;
2066
2067 if (!sband)
2068 return;
2069
2070 for (i = 0; i < sband->n_channels; i++)
2071 handle_channel(wiphy, initiator, &sband->channels[i]);
2072 }
2073
reg_request_cell_base(struct regulatory_request * request)2074 static bool reg_request_cell_base(struct regulatory_request *request)
2075 {
2076 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2077 return false;
2078 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2079 }
2080
reg_last_request_cell_base(void)2081 bool reg_last_request_cell_base(void)
2082 {
2083 return reg_request_cell_base(get_last_request());
2084 }
2085
2086 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2087 /* Core specific check */
2088 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2089 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2090 {
2091 struct regulatory_request *lr = get_last_request();
2092
2093 if (!reg_num_devs_support_basehint)
2094 return REG_REQ_IGNORE;
2095
2096 if (reg_request_cell_base(lr) &&
2097 !regdom_changes(pending_request->alpha2))
2098 return REG_REQ_ALREADY_SET;
2099
2100 return REG_REQ_OK;
2101 }
2102
2103 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2104 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2105 {
2106 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2107 }
2108 #else
2109 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2110 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2111 {
2112 return REG_REQ_IGNORE;
2113 }
2114
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2115 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2116 {
2117 return true;
2118 }
2119 #endif
2120
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2121 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2122 {
2123 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2124 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2125 return true;
2126 return false;
2127 }
2128
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2129 static bool ignore_reg_update(struct wiphy *wiphy,
2130 enum nl80211_reg_initiator initiator)
2131 {
2132 struct regulatory_request *lr = get_last_request();
2133
2134 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2135 return true;
2136
2137 if (!lr) {
2138 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2139 reg_initiator_name(initiator));
2140 return true;
2141 }
2142
2143 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2144 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2145 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2146 reg_initiator_name(initiator));
2147 return true;
2148 }
2149
2150 /*
2151 * wiphy->regd will be set once the device has its own
2152 * desired regulatory domain set
2153 */
2154 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2155 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2156 !is_world_regdom(lr->alpha2)) {
2157 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2158 reg_initiator_name(initiator));
2159 return true;
2160 }
2161
2162 if (reg_request_cell_base(lr))
2163 return reg_dev_ignore_cell_hint(wiphy);
2164
2165 return false;
2166 }
2167
reg_is_world_roaming(struct wiphy * wiphy)2168 static bool reg_is_world_roaming(struct wiphy *wiphy)
2169 {
2170 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2171 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2172 struct regulatory_request *lr = get_last_request();
2173
2174 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2175 return true;
2176
2177 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2178 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2179 return true;
2180
2181 return false;
2182 }
2183
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185 struct reg_beacon *reg_beacon)
2186 {
2187 struct ieee80211_supported_band *sband;
2188 struct ieee80211_channel *chan;
2189 bool channel_changed = false;
2190 struct ieee80211_channel chan_before;
2191
2192 sband = wiphy->bands[reg_beacon->chan.band];
2193 chan = &sband->channels[chan_idx];
2194
2195 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2196 return;
2197
2198 if (chan->beacon_found)
2199 return;
2200
2201 chan->beacon_found = true;
2202
2203 if (!reg_is_world_roaming(wiphy))
2204 return;
2205
2206 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2207 return;
2208
2209 chan_before = *chan;
2210
2211 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2212 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2213 channel_changed = true;
2214 }
2215
2216 if (channel_changed)
2217 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2218 }
2219
2220 /*
2221 * Called when a scan on a wiphy finds a beacon on
2222 * new channel
2223 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2224 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2225 struct reg_beacon *reg_beacon)
2226 {
2227 unsigned int i;
2228 struct ieee80211_supported_band *sband;
2229
2230 if (!wiphy->bands[reg_beacon->chan.band])
2231 return;
2232
2233 sband = wiphy->bands[reg_beacon->chan.band];
2234
2235 for (i = 0; i < sband->n_channels; i++)
2236 handle_reg_beacon(wiphy, i, reg_beacon);
2237 }
2238
2239 /*
2240 * Called upon reg changes or a new wiphy is added
2241 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2242 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2243 {
2244 unsigned int i;
2245 struct ieee80211_supported_band *sband;
2246 struct reg_beacon *reg_beacon;
2247
2248 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2249 if (!wiphy->bands[reg_beacon->chan.band])
2250 continue;
2251 sband = wiphy->bands[reg_beacon->chan.band];
2252 for (i = 0; i < sband->n_channels; i++)
2253 handle_reg_beacon(wiphy, i, reg_beacon);
2254 }
2255 }
2256
2257 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2258 static void reg_process_beacons(struct wiphy *wiphy)
2259 {
2260 /*
2261 * Means we are just firing up cfg80211, so no beacons would
2262 * have been processed yet.
2263 */
2264 if (!last_request)
2265 return;
2266 wiphy_update_beacon_reg(wiphy);
2267 }
2268
is_ht40_allowed(struct ieee80211_channel * chan)2269 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2270 {
2271 if (!chan)
2272 return false;
2273 if (chan->flags & IEEE80211_CHAN_DISABLED)
2274 return false;
2275 /* This would happen when regulatory rules disallow HT40 completely */
2276 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2277 return false;
2278 return true;
2279 }
2280
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2281 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2282 struct ieee80211_channel *channel)
2283 {
2284 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2285 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2286 const struct ieee80211_regdomain *regd;
2287 unsigned int i;
2288 u32 flags;
2289
2290 if (!is_ht40_allowed(channel)) {
2291 channel->flags |= IEEE80211_CHAN_NO_HT40;
2292 return;
2293 }
2294
2295 /*
2296 * We need to ensure the extension channels exist to
2297 * be able to use HT40- or HT40+, this finds them (or not)
2298 */
2299 for (i = 0; i < sband->n_channels; i++) {
2300 struct ieee80211_channel *c = &sband->channels[i];
2301
2302 if (c->center_freq == (channel->center_freq - 20))
2303 channel_before = c;
2304 if (c->center_freq == (channel->center_freq + 20))
2305 channel_after = c;
2306 }
2307
2308 flags = 0;
2309 regd = get_wiphy_regdom(wiphy);
2310 if (regd) {
2311 const struct ieee80211_reg_rule *reg_rule =
2312 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2313 regd, MHZ_TO_KHZ(20));
2314
2315 if (!IS_ERR(reg_rule))
2316 flags = reg_rule->flags;
2317 }
2318
2319 /*
2320 * Please note that this assumes target bandwidth is 20 MHz,
2321 * if that ever changes we also need to change the below logic
2322 * to include that as well.
2323 */
2324 if (!is_ht40_allowed(channel_before) ||
2325 flags & NL80211_RRF_NO_HT40MINUS)
2326 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2327 else
2328 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2329
2330 if (!is_ht40_allowed(channel_after) ||
2331 flags & NL80211_RRF_NO_HT40PLUS)
2332 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2333 else
2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2335 }
2336
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2337 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2338 struct ieee80211_supported_band *sband)
2339 {
2340 unsigned int i;
2341
2342 if (!sband)
2343 return;
2344
2345 for (i = 0; i < sband->n_channels; i++)
2346 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2347 }
2348
reg_process_ht_flags(struct wiphy * wiphy)2349 static void reg_process_ht_flags(struct wiphy *wiphy)
2350 {
2351 enum nl80211_band band;
2352
2353 if (!wiphy)
2354 return;
2355
2356 for (band = 0; band < NUM_NL80211_BANDS; band++)
2357 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2358 }
2359
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2360 static void reg_call_notifier(struct wiphy *wiphy,
2361 struct regulatory_request *request)
2362 {
2363 if (wiphy->reg_notifier)
2364 wiphy->reg_notifier(wiphy, request);
2365 }
2366
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368 {
2369 struct cfg80211_chan_def chandef = {};
2370 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371 enum nl80211_iftype iftype;
2372 bool ret;
2373 int link;
2374
2375 wdev_lock(wdev);
2376 iftype = wdev->iftype;
2377
2378 /* make sure the interface is active */
2379 if (!wdev->netdev || !netif_running(wdev->netdev))
2380 goto wdev_inactive_unlock;
2381
2382 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2383 struct ieee80211_channel *chan;
2384
2385 if (!wdev->valid_links && link > 0)
2386 break;
2387 if (!(wdev->valid_links & BIT(link)))
2388 continue;
2389 switch (iftype) {
2390 case NL80211_IFTYPE_AP:
2391 case NL80211_IFTYPE_P2P_GO:
2392 case NL80211_IFTYPE_MESH_POINT:
2393 if (!wdev->u.mesh.beacon_interval)
2394 continue;
2395 chandef = wdev->u.mesh.chandef;
2396 break;
2397 case NL80211_IFTYPE_ADHOC:
2398 if (!wdev->u.ibss.ssid_len)
2399 continue;
2400 chandef = wdev->u.ibss.chandef;
2401 break;
2402 case NL80211_IFTYPE_STATION:
2403 case NL80211_IFTYPE_P2P_CLIENT:
2404 /* Maybe we could consider disabling that link only? */
2405 if (!wdev->links[link].client.current_bss)
2406 continue;
2407
2408 chan = wdev->links[link].client.current_bss->pub.channel;
2409 if (!chan)
2410 continue;
2411
2412 if (!rdev->ops->get_channel ||
2413 rdev_get_channel(rdev, wdev, link, &chandef))
2414 cfg80211_chandef_create(&chandef, chan,
2415 NL80211_CHAN_NO_HT);
2416 break;
2417 case NL80211_IFTYPE_MONITOR:
2418 case NL80211_IFTYPE_AP_VLAN:
2419 case NL80211_IFTYPE_P2P_DEVICE:
2420 /* no enforcement required */
2421 break;
2422 default:
2423 /* others not implemented for now */
2424 WARN_ON(1);
2425 break;
2426 }
2427
2428 wdev_unlock(wdev);
2429
2430 switch (iftype) {
2431 case NL80211_IFTYPE_AP:
2432 case NL80211_IFTYPE_P2P_GO:
2433 case NL80211_IFTYPE_ADHOC:
2434 case NL80211_IFTYPE_MESH_POINT:
2435 wiphy_lock(wiphy);
2436 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2437 iftype);
2438 wiphy_unlock(wiphy);
2439
2440 if (!ret)
2441 return ret;
2442 break;
2443 case NL80211_IFTYPE_STATION:
2444 case NL80211_IFTYPE_P2P_CLIENT:
2445 ret = cfg80211_chandef_usable(wiphy, &chandef,
2446 IEEE80211_CHAN_DISABLED);
2447 if (!ret)
2448 return ret;
2449 break;
2450 default:
2451 break;
2452 }
2453
2454 wdev_lock(wdev);
2455 }
2456
2457 wdev_unlock(wdev);
2458
2459 return true;
2460
2461 wdev_inactive_unlock:
2462 wdev_unlock(wdev);
2463 return true;
2464 }
2465
reg_leave_invalid_chans(struct wiphy * wiphy)2466 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2467 {
2468 struct wireless_dev *wdev;
2469 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2470
2471 ASSERT_RTNL();
2472
2473 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2474 if (!reg_wdev_chan_valid(wiphy, wdev))
2475 cfg80211_leave(rdev, wdev);
2476 }
2477
reg_check_chans_work(struct work_struct * work)2478 static void reg_check_chans_work(struct work_struct *work)
2479 {
2480 struct cfg80211_registered_device *rdev;
2481
2482 pr_debug("Verifying active interfaces after reg change\n");
2483 rtnl_lock();
2484
2485 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2486 if (!(rdev->wiphy.regulatory_flags &
2487 REGULATORY_IGNORE_STALE_KICKOFF))
2488 reg_leave_invalid_chans(&rdev->wiphy);
2489
2490 rtnl_unlock();
2491 }
2492
reg_check_channels(void)2493 static void reg_check_channels(void)
2494 {
2495 /*
2496 * Give usermode a chance to do something nicer (move to another
2497 * channel, orderly disconnection), before forcing a disconnection.
2498 */
2499 mod_delayed_work(system_power_efficient_wq,
2500 ®_check_chans,
2501 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2502 }
2503
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2504 static void wiphy_update_regulatory(struct wiphy *wiphy,
2505 enum nl80211_reg_initiator initiator)
2506 {
2507 enum nl80211_band band;
2508 struct regulatory_request *lr = get_last_request();
2509
2510 if (ignore_reg_update(wiphy, initiator)) {
2511 /*
2512 * Regulatory updates set by CORE are ignored for custom
2513 * regulatory cards. Let us notify the changes to the driver,
2514 * as some drivers used this to restore its orig_* reg domain.
2515 */
2516 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2517 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2518 !(wiphy->regulatory_flags &
2519 REGULATORY_WIPHY_SELF_MANAGED))
2520 reg_call_notifier(wiphy, lr);
2521 return;
2522 }
2523
2524 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2525
2526 for (band = 0; band < NUM_NL80211_BANDS; band++)
2527 handle_band(wiphy, initiator, wiphy->bands[band]);
2528
2529 reg_process_beacons(wiphy);
2530 reg_process_ht_flags(wiphy);
2531 reg_call_notifier(wiphy, lr);
2532 }
2533
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2534 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2535 {
2536 struct cfg80211_registered_device *rdev;
2537 struct wiphy *wiphy;
2538
2539 ASSERT_RTNL();
2540
2541 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2542 wiphy = &rdev->wiphy;
2543 wiphy_update_regulatory(wiphy, initiator);
2544 }
2545
2546 reg_check_channels();
2547 }
2548
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2549 static void handle_channel_custom(struct wiphy *wiphy,
2550 struct ieee80211_channel *chan,
2551 const struct ieee80211_regdomain *regd,
2552 u32 min_bw)
2553 {
2554 u32 bw_flags = 0;
2555 const struct ieee80211_reg_rule *reg_rule = NULL;
2556 const struct ieee80211_power_rule *power_rule = NULL;
2557 u32 bw, center_freq_khz;
2558
2559 center_freq_khz = ieee80211_channel_to_khz(chan);
2560 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2561 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2562 if (!IS_ERR(reg_rule))
2563 break;
2564 }
2565
2566 if (IS_ERR_OR_NULL(reg_rule)) {
2567 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2568 chan->center_freq, chan->freq_offset);
2569 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2570 chan->flags |= IEEE80211_CHAN_DISABLED;
2571 } else {
2572 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2573 chan->flags = chan->orig_flags;
2574 }
2575 return;
2576 }
2577
2578 power_rule = ®_rule->power_rule;
2579 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2580
2581 chan->dfs_state_entered = jiffies;
2582 chan->dfs_state = NL80211_DFS_USABLE;
2583
2584 chan->beacon_found = false;
2585
2586 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2587 chan->flags = chan->orig_flags | bw_flags |
2588 map_regdom_flags(reg_rule->flags);
2589 else
2590 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2591
2592 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2593 chan->max_reg_power = chan->max_power =
2594 (int) MBM_TO_DBM(power_rule->max_eirp);
2595
2596 if (chan->flags & IEEE80211_CHAN_RADAR) {
2597 if (reg_rule->dfs_cac_ms)
2598 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2599 else
2600 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2601 }
2602
2603 chan->max_power = chan->max_reg_power;
2604 }
2605
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2606 static void handle_band_custom(struct wiphy *wiphy,
2607 struct ieee80211_supported_band *sband,
2608 const struct ieee80211_regdomain *regd)
2609 {
2610 unsigned int i;
2611
2612 if (!sband)
2613 return;
2614
2615 /*
2616 * We currently assume that you always want at least 20 MHz,
2617 * otherwise channel 12 might get enabled if this rule is
2618 * compatible to US, which permits 2402 - 2472 MHz.
2619 */
2620 for (i = 0; i < sband->n_channels; i++)
2621 handle_channel_custom(wiphy, &sband->channels[i], regd,
2622 MHZ_TO_KHZ(20));
2623 }
2624
2625 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2626 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2627 const struct ieee80211_regdomain *regd)
2628 {
2629 const struct ieee80211_regdomain *new_regd, *tmp;
2630 enum nl80211_band band;
2631 unsigned int bands_set = 0;
2632
2633 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2634 "wiphy should have REGULATORY_CUSTOM_REG\n");
2635 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2636
2637 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2638 if (!wiphy->bands[band])
2639 continue;
2640 handle_band_custom(wiphy, wiphy->bands[band], regd);
2641 bands_set++;
2642 }
2643
2644 /*
2645 * no point in calling this if it won't have any effect
2646 * on your device's supported bands.
2647 */
2648 WARN_ON(!bands_set);
2649 new_regd = reg_copy_regd(regd);
2650 if (IS_ERR(new_regd))
2651 return;
2652
2653 rtnl_lock();
2654 wiphy_lock(wiphy);
2655
2656 tmp = get_wiphy_regdom(wiphy);
2657 rcu_assign_pointer(wiphy->regd, new_regd);
2658 rcu_free_regdom(tmp);
2659
2660 wiphy_unlock(wiphy);
2661 rtnl_unlock();
2662 }
2663 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2664
reg_set_request_processed(void)2665 static void reg_set_request_processed(void)
2666 {
2667 bool need_more_processing = false;
2668 struct regulatory_request *lr = get_last_request();
2669
2670 lr->processed = true;
2671
2672 spin_lock(®_requests_lock);
2673 if (!list_empty(®_requests_list))
2674 need_more_processing = true;
2675 spin_unlock(®_requests_lock);
2676
2677 cancel_crda_timeout();
2678
2679 if (need_more_processing)
2680 schedule_work(®_work);
2681 }
2682
2683 /**
2684 * reg_process_hint_core - process core regulatory requests
2685 * @core_request: a pending core regulatory request
2686 *
2687 * The wireless subsystem can use this function to process
2688 * a regulatory request issued by the regulatory core.
2689 */
2690 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2691 reg_process_hint_core(struct regulatory_request *core_request)
2692 {
2693 if (reg_query_database(core_request)) {
2694 core_request->intersect = false;
2695 core_request->processed = false;
2696 reg_update_last_request(core_request);
2697 return REG_REQ_OK;
2698 }
2699
2700 return REG_REQ_IGNORE;
2701 }
2702
2703 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2704 __reg_process_hint_user(struct regulatory_request *user_request)
2705 {
2706 struct regulatory_request *lr = get_last_request();
2707
2708 if (reg_request_cell_base(user_request))
2709 return reg_ignore_cell_hint(user_request);
2710
2711 if (reg_request_cell_base(lr))
2712 return REG_REQ_IGNORE;
2713
2714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715 return REG_REQ_INTERSECT;
2716 /*
2717 * If the user knows better the user should set the regdom
2718 * to their country before the IE is picked up
2719 */
2720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721 lr->intersect)
2722 return REG_REQ_IGNORE;
2723 /*
2724 * Process user requests only after previous user/driver/core
2725 * requests have been processed
2726 */
2727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730 regdom_changes(lr->alpha2))
2731 return REG_REQ_IGNORE;
2732
2733 if (!regdom_changes(user_request->alpha2))
2734 return REG_REQ_ALREADY_SET;
2735
2736 return REG_REQ_OK;
2737 }
2738
2739 /**
2740 * reg_process_hint_user - process user regulatory requests
2741 * @user_request: a pending user regulatory request
2742 *
2743 * The wireless subsystem can use this function to process
2744 * a regulatory request initiated by userspace.
2745 */
2746 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2747 reg_process_hint_user(struct regulatory_request *user_request)
2748 {
2749 enum reg_request_treatment treatment;
2750
2751 treatment = __reg_process_hint_user(user_request);
2752 if (treatment == REG_REQ_IGNORE ||
2753 treatment == REG_REQ_ALREADY_SET)
2754 return REG_REQ_IGNORE;
2755
2756 user_request->intersect = treatment == REG_REQ_INTERSECT;
2757 user_request->processed = false;
2758
2759 if (reg_query_database(user_request)) {
2760 reg_update_last_request(user_request);
2761 user_alpha2[0] = user_request->alpha2[0];
2762 user_alpha2[1] = user_request->alpha2[1];
2763 return REG_REQ_OK;
2764 }
2765
2766 return REG_REQ_IGNORE;
2767 }
2768
2769 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2770 __reg_process_hint_driver(struct regulatory_request *driver_request)
2771 {
2772 struct regulatory_request *lr = get_last_request();
2773
2774 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2775 if (regdom_changes(driver_request->alpha2))
2776 return REG_REQ_OK;
2777 return REG_REQ_ALREADY_SET;
2778 }
2779
2780 /*
2781 * This would happen if you unplug and plug your card
2782 * back in or if you add a new device for which the previously
2783 * loaded card also agrees on the regulatory domain.
2784 */
2785 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2786 !regdom_changes(driver_request->alpha2))
2787 return REG_REQ_ALREADY_SET;
2788
2789 return REG_REQ_INTERSECT;
2790 }
2791
2792 /**
2793 * reg_process_hint_driver - process driver regulatory requests
2794 * @wiphy: the wireless device for the regulatory request
2795 * @driver_request: a pending driver regulatory request
2796 *
2797 * The wireless subsystem can use this function to process
2798 * a regulatory request issued by an 802.11 driver.
2799 *
2800 * Returns one of the different reg request treatment values.
2801 */
2802 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2803 reg_process_hint_driver(struct wiphy *wiphy,
2804 struct regulatory_request *driver_request)
2805 {
2806 const struct ieee80211_regdomain *regd, *tmp;
2807 enum reg_request_treatment treatment;
2808
2809 treatment = __reg_process_hint_driver(driver_request);
2810
2811 switch (treatment) {
2812 case REG_REQ_OK:
2813 break;
2814 case REG_REQ_IGNORE:
2815 return REG_REQ_IGNORE;
2816 case REG_REQ_INTERSECT:
2817 case REG_REQ_ALREADY_SET:
2818 regd = reg_copy_regd(get_cfg80211_regdom());
2819 if (IS_ERR(regd))
2820 return REG_REQ_IGNORE;
2821
2822 tmp = get_wiphy_regdom(wiphy);
2823 ASSERT_RTNL();
2824 wiphy_lock(wiphy);
2825 rcu_assign_pointer(wiphy->regd, regd);
2826 wiphy_unlock(wiphy);
2827 rcu_free_regdom(tmp);
2828 }
2829
2830
2831 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2832 driver_request->processed = false;
2833
2834 /*
2835 * Since CRDA will not be called in this case as we already
2836 * have applied the requested regulatory domain before we just
2837 * inform userspace we have processed the request
2838 */
2839 if (treatment == REG_REQ_ALREADY_SET) {
2840 nl80211_send_reg_change_event(driver_request);
2841 reg_update_last_request(driver_request);
2842 reg_set_request_processed();
2843 return REG_REQ_ALREADY_SET;
2844 }
2845
2846 if (reg_query_database(driver_request)) {
2847 reg_update_last_request(driver_request);
2848 return REG_REQ_OK;
2849 }
2850
2851 return REG_REQ_IGNORE;
2852 }
2853
2854 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2855 __reg_process_hint_country_ie(struct wiphy *wiphy,
2856 struct regulatory_request *country_ie_request)
2857 {
2858 struct wiphy *last_wiphy = NULL;
2859 struct regulatory_request *lr = get_last_request();
2860
2861 if (reg_request_cell_base(lr)) {
2862 /* Trust a Cell base station over the AP's country IE */
2863 if (regdom_changes(country_ie_request->alpha2))
2864 return REG_REQ_IGNORE;
2865 return REG_REQ_ALREADY_SET;
2866 } else {
2867 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2868 return REG_REQ_IGNORE;
2869 }
2870
2871 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2872 return -EINVAL;
2873
2874 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2875 return REG_REQ_OK;
2876
2877 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2878
2879 if (last_wiphy != wiphy) {
2880 /*
2881 * Two cards with two APs claiming different
2882 * Country IE alpha2s. We could
2883 * intersect them, but that seems unlikely
2884 * to be correct. Reject second one for now.
2885 */
2886 if (regdom_changes(country_ie_request->alpha2))
2887 return REG_REQ_IGNORE;
2888 return REG_REQ_ALREADY_SET;
2889 }
2890
2891 if (regdom_changes(country_ie_request->alpha2))
2892 return REG_REQ_OK;
2893 return REG_REQ_ALREADY_SET;
2894 }
2895
2896 /**
2897 * reg_process_hint_country_ie - process regulatory requests from country IEs
2898 * @wiphy: the wireless device for the regulatory request
2899 * @country_ie_request: a regulatory request from a country IE
2900 *
2901 * The wireless subsystem can use this function to process
2902 * a regulatory request issued by a country Information Element.
2903 *
2904 * Returns one of the different reg request treatment values.
2905 */
2906 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2907 reg_process_hint_country_ie(struct wiphy *wiphy,
2908 struct regulatory_request *country_ie_request)
2909 {
2910 enum reg_request_treatment treatment;
2911
2912 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2913
2914 switch (treatment) {
2915 case REG_REQ_OK:
2916 break;
2917 case REG_REQ_IGNORE:
2918 return REG_REQ_IGNORE;
2919 case REG_REQ_ALREADY_SET:
2920 reg_free_request(country_ie_request);
2921 return REG_REQ_ALREADY_SET;
2922 case REG_REQ_INTERSECT:
2923 /*
2924 * This doesn't happen yet, not sure we
2925 * ever want to support it for this case.
2926 */
2927 WARN_ONCE(1, "Unexpected intersection for country elements");
2928 return REG_REQ_IGNORE;
2929 }
2930
2931 country_ie_request->intersect = false;
2932 country_ie_request->processed = false;
2933
2934 if (reg_query_database(country_ie_request)) {
2935 reg_update_last_request(country_ie_request);
2936 return REG_REQ_OK;
2937 }
2938
2939 return REG_REQ_IGNORE;
2940 }
2941
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2942 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2943 {
2944 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2945 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2946 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2947 bool dfs_domain_same;
2948
2949 rcu_read_lock();
2950
2951 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2952 wiphy1_regd = rcu_dereference(wiphy1->regd);
2953 if (!wiphy1_regd)
2954 wiphy1_regd = cfg80211_regd;
2955
2956 wiphy2_regd = rcu_dereference(wiphy2->regd);
2957 if (!wiphy2_regd)
2958 wiphy2_regd = cfg80211_regd;
2959
2960 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2961
2962 rcu_read_unlock();
2963
2964 return dfs_domain_same;
2965 }
2966
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2967 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2968 struct ieee80211_channel *src_chan)
2969 {
2970 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2971 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2972 return;
2973
2974 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2975 src_chan->flags & IEEE80211_CHAN_DISABLED)
2976 return;
2977
2978 if (src_chan->center_freq == dst_chan->center_freq &&
2979 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2980 dst_chan->dfs_state = src_chan->dfs_state;
2981 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2982 }
2983 }
2984
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2985 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2986 struct wiphy *src_wiphy)
2987 {
2988 struct ieee80211_supported_band *src_sband, *dst_sband;
2989 struct ieee80211_channel *src_chan, *dst_chan;
2990 int i, j, band;
2991
2992 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2993 return;
2994
2995 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2996 dst_sband = dst_wiphy->bands[band];
2997 src_sband = src_wiphy->bands[band];
2998 if (!dst_sband || !src_sband)
2999 continue;
3000
3001 for (i = 0; i < dst_sband->n_channels; i++) {
3002 dst_chan = &dst_sband->channels[i];
3003 for (j = 0; j < src_sband->n_channels; j++) {
3004 src_chan = &src_sband->channels[j];
3005 reg_copy_dfs_chan_state(dst_chan, src_chan);
3006 }
3007 }
3008 }
3009 }
3010
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3011 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3012 {
3013 struct cfg80211_registered_device *rdev;
3014
3015 ASSERT_RTNL();
3016
3017 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3018 if (wiphy == &rdev->wiphy)
3019 continue;
3020 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3021 }
3022 }
3023
3024 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3025 static void reg_process_hint(struct regulatory_request *reg_request)
3026 {
3027 struct wiphy *wiphy = NULL;
3028 enum reg_request_treatment treatment;
3029 enum nl80211_reg_initiator initiator = reg_request->initiator;
3030
3031 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3032 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3033
3034 switch (initiator) {
3035 case NL80211_REGDOM_SET_BY_CORE:
3036 treatment = reg_process_hint_core(reg_request);
3037 break;
3038 case NL80211_REGDOM_SET_BY_USER:
3039 treatment = reg_process_hint_user(reg_request);
3040 break;
3041 case NL80211_REGDOM_SET_BY_DRIVER:
3042 if (!wiphy)
3043 goto out_free;
3044 treatment = reg_process_hint_driver(wiphy, reg_request);
3045 break;
3046 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3047 if (!wiphy)
3048 goto out_free;
3049 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3050 break;
3051 default:
3052 WARN(1, "invalid initiator %d\n", initiator);
3053 goto out_free;
3054 }
3055
3056 if (treatment == REG_REQ_IGNORE)
3057 goto out_free;
3058
3059 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3060 "unexpected treatment value %d\n", treatment);
3061
3062 /* This is required so that the orig_* parameters are saved.
3063 * NOTE: treatment must be set for any case that reaches here!
3064 */
3065 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3066 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3067 wiphy_update_regulatory(wiphy, initiator);
3068 wiphy_all_share_dfs_chan_state(wiphy);
3069 reg_check_channels();
3070 }
3071
3072 return;
3073
3074 out_free:
3075 reg_free_request(reg_request);
3076 }
3077
notify_self_managed_wiphys(struct regulatory_request * request)3078 static void notify_self_managed_wiphys(struct regulatory_request *request)
3079 {
3080 struct cfg80211_registered_device *rdev;
3081 struct wiphy *wiphy;
3082
3083 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3084 wiphy = &rdev->wiphy;
3085 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3086 request->initiator == NL80211_REGDOM_SET_BY_USER)
3087 reg_call_notifier(wiphy, request);
3088 }
3089 }
3090
3091 /*
3092 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3093 * Regulatory hints come on a first come first serve basis and we
3094 * must process each one atomically.
3095 */
reg_process_pending_hints(void)3096 static void reg_process_pending_hints(void)
3097 {
3098 struct regulatory_request *reg_request, *lr;
3099
3100 lr = get_last_request();
3101
3102 /* When last_request->processed becomes true this will be rescheduled */
3103 if (lr && !lr->processed) {
3104 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3105 return;
3106 }
3107
3108 spin_lock(®_requests_lock);
3109
3110 if (list_empty(®_requests_list)) {
3111 spin_unlock(®_requests_lock);
3112 return;
3113 }
3114
3115 reg_request = list_first_entry(®_requests_list,
3116 struct regulatory_request,
3117 list);
3118 list_del_init(®_request->list);
3119
3120 spin_unlock(®_requests_lock);
3121
3122 notify_self_managed_wiphys(reg_request);
3123
3124 reg_process_hint(reg_request);
3125
3126 lr = get_last_request();
3127
3128 spin_lock(®_requests_lock);
3129 if (!list_empty(®_requests_list) && lr && lr->processed)
3130 schedule_work(®_work);
3131 spin_unlock(®_requests_lock);
3132 }
3133
3134 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3135 static void reg_process_pending_beacon_hints(void)
3136 {
3137 struct cfg80211_registered_device *rdev;
3138 struct reg_beacon *pending_beacon, *tmp;
3139
3140 /* This goes through the _pending_ beacon list */
3141 spin_lock_bh(®_pending_beacons_lock);
3142
3143 list_for_each_entry_safe(pending_beacon, tmp,
3144 ®_pending_beacons, list) {
3145 list_del_init(&pending_beacon->list);
3146
3147 /* Applies the beacon hint to current wiphys */
3148 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3149 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3150
3151 /* Remembers the beacon hint for new wiphys or reg changes */
3152 list_add_tail(&pending_beacon->list, ®_beacon_list);
3153 }
3154
3155 spin_unlock_bh(®_pending_beacons_lock);
3156 }
3157
reg_process_self_managed_hint(struct wiphy * wiphy)3158 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3159 {
3160 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3161 const struct ieee80211_regdomain *tmp;
3162 const struct ieee80211_regdomain *regd;
3163 enum nl80211_band band;
3164 struct regulatory_request request = {};
3165
3166 ASSERT_RTNL();
3167 lockdep_assert_wiphy(wiphy);
3168
3169 spin_lock(®_requests_lock);
3170 regd = rdev->requested_regd;
3171 rdev->requested_regd = NULL;
3172 spin_unlock(®_requests_lock);
3173
3174 if (!regd)
3175 return;
3176
3177 tmp = get_wiphy_regdom(wiphy);
3178 rcu_assign_pointer(wiphy->regd, regd);
3179 rcu_free_regdom(tmp);
3180
3181 for (band = 0; band < NUM_NL80211_BANDS; band++)
3182 handle_band_custom(wiphy, wiphy->bands[band], regd);
3183
3184 reg_process_ht_flags(wiphy);
3185
3186 request.wiphy_idx = get_wiphy_idx(wiphy);
3187 request.alpha2[0] = regd->alpha2[0];
3188 request.alpha2[1] = regd->alpha2[1];
3189 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3190
3191 nl80211_send_wiphy_reg_change_event(&request);
3192 }
3193
reg_process_self_managed_hints(void)3194 static void reg_process_self_managed_hints(void)
3195 {
3196 struct cfg80211_registered_device *rdev;
3197
3198 ASSERT_RTNL();
3199
3200 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3201 wiphy_lock(&rdev->wiphy);
3202 reg_process_self_managed_hint(&rdev->wiphy);
3203 wiphy_unlock(&rdev->wiphy);
3204 }
3205
3206 reg_check_channels();
3207 }
3208
reg_todo(struct work_struct * work)3209 static void reg_todo(struct work_struct *work)
3210 {
3211 rtnl_lock();
3212 reg_process_pending_hints();
3213 reg_process_pending_beacon_hints();
3214 reg_process_self_managed_hints();
3215 rtnl_unlock();
3216 }
3217
queue_regulatory_request(struct regulatory_request * request)3218 static void queue_regulatory_request(struct regulatory_request *request)
3219 {
3220 request->alpha2[0] = toupper(request->alpha2[0]);
3221 request->alpha2[1] = toupper(request->alpha2[1]);
3222
3223 spin_lock(®_requests_lock);
3224 list_add_tail(&request->list, ®_requests_list);
3225 spin_unlock(®_requests_lock);
3226
3227 schedule_work(®_work);
3228 }
3229
3230 /*
3231 * Core regulatory hint -- happens during cfg80211_init()
3232 * and when we restore regulatory settings.
3233 */
regulatory_hint_core(const char * alpha2)3234 static int regulatory_hint_core(const char *alpha2)
3235 {
3236 struct regulatory_request *request;
3237
3238 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3239 if (!request)
3240 return -ENOMEM;
3241
3242 request->alpha2[0] = alpha2[0];
3243 request->alpha2[1] = alpha2[1];
3244 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3245 request->wiphy_idx = WIPHY_IDX_INVALID;
3246
3247 queue_regulatory_request(request);
3248
3249 return 0;
3250 }
3251
3252 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3253 int regulatory_hint_user(const char *alpha2,
3254 enum nl80211_user_reg_hint_type user_reg_hint_type)
3255 {
3256 struct regulatory_request *request;
3257
3258 if (WARN_ON(!alpha2))
3259 return -EINVAL;
3260
3261 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3262 return -EINVAL;
3263
3264 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3265 if (!request)
3266 return -ENOMEM;
3267
3268 request->wiphy_idx = WIPHY_IDX_INVALID;
3269 request->alpha2[0] = alpha2[0];
3270 request->alpha2[1] = alpha2[1];
3271 request->initiator = NL80211_REGDOM_SET_BY_USER;
3272 request->user_reg_hint_type = user_reg_hint_type;
3273
3274 /* Allow calling CRDA again */
3275 reset_crda_timeouts();
3276
3277 queue_regulatory_request(request);
3278
3279 return 0;
3280 }
3281
regulatory_hint_indoor(bool is_indoor,u32 portid)3282 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3283 {
3284 spin_lock(®_indoor_lock);
3285
3286 /* It is possible that more than one user space process is trying to
3287 * configure the indoor setting. To handle such cases, clear the indoor
3288 * setting in case that some process does not think that the device
3289 * is operating in an indoor environment. In addition, if a user space
3290 * process indicates that it is controlling the indoor setting, save its
3291 * portid, i.e., make it the owner.
3292 */
3293 reg_is_indoor = is_indoor;
3294 if (reg_is_indoor) {
3295 if (!reg_is_indoor_portid)
3296 reg_is_indoor_portid = portid;
3297 } else {
3298 reg_is_indoor_portid = 0;
3299 }
3300
3301 spin_unlock(®_indoor_lock);
3302
3303 if (!is_indoor)
3304 reg_check_channels();
3305
3306 return 0;
3307 }
3308
regulatory_netlink_notify(u32 portid)3309 void regulatory_netlink_notify(u32 portid)
3310 {
3311 spin_lock(®_indoor_lock);
3312
3313 if (reg_is_indoor_portid != portid) {
3314 spin_unlock(®_indoor_lock);
3315 return;
3316 }
3317
3318 reg_is_indoor = false;
3319 reg_is_indoor_portid = 0;
3320
3321 spin_unlock(®_indoor_lock);
3322
3323 reg_check_channels();
3324 }
3325
3326 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3327 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3328 {
3329 struct regulatory_request *request;
3330
3331 if (WARN_ON(!alpha2 || !wiphy))
3332 return -EINVAL;
3333
3334 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3335
3336 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3337 if (!request)
3338 return -ENOMEM;
3339
3340 request->wiphy_idx = get_wiphy_idx(wiphy);
3341
3342 request->alpha2[0] = alpha2[0];
3343 request->alpha2[1] = alpha2[1];
3344 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3345
3346 /* Allow calling CRDA again */
3347 reset_crda_timeouts();
3348
3349 queue_regulatory_request(request);
3350
3351 return 0;
3352 }
3353 EXPORT_SYMBOL(regulatory_hint);
3354
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3355 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3356 const u8 *country_ie, u8 country_ie_len)
3357 {
3358 char alpha2[2];
3359 enum environment_cap env = ENVIRON_ANY;
3360 struct regulatory_request *request = NULL, *lr;
3361
3362 /* IE len must be evenly divisible by 2 */
3363 if (country_ie_len & 0x01)
3364 return;
3365
3366 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3367 return;
3368
3369 request = kzalloc(sizeof(*request), GFP_KERNEL);
3370 if (!request)
3371 return;
3372
3373 alpha2[0] = country_ie[0];
3374 alpha2[1] = country_ie[1];
3375
3376 if (country_ie[2] == 'I')
3377 env = ENVIRON_INDOOR;
3378 else if (country_ie[2] == 'O')
3379 env = ENVIRON_OUTDOOR;
3380
3381 rcu_read_lock();
3382 lr = get_last_request();
3383
3384 if (unlikely(!lr))
3385 goto out;
3386
3387 /*
3388 * We will run this only upon a successful connection on cfg80211.
3389 * We leave conflict resolution to the workqueue, where can hold
3390 * the RTNL.
3391 */
3392 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3393 lr->wiphy_idx != WIPHY_IDX_INVALID)
3394 goto out;
3395
3396 request->wiphy_idx = get_wiphy_idx(wiphy);
3397 request->alpha2[0] = alpha2[0];
3398 request->alpha2[1] = alpha2[1];
3399 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3400 request->country_ie_env = env;
3401
3402 /* Allow calling CRDA again */
3403 reset_crda_timeouts();
3404
3405 queue_regulatory_request(request);
3406 request = NULL;
3407 out:
3408 kfree(request);
3409 rcu_read_unlock();
3410 }
3411
restore_alpha2(char * alpha2,bool reset_user)3412 static void restore_alpha2(char *alpha2, bool reset_user)
3413 {
3414 /* indicates there is no alpha2 to consider for restoration */
3415 alpha2[0] = '9';
3416 alpha2[1] = '7';
3417
3418 /* The user setting has precedence over the module parameter */
3419 if (is_user_regdom_saved()) {
3420 /* Unless we're asked to ignore it and reset it */
3421 if (reset_user) {
3422 pr_debug("Restoring regulatory settings including user preference\n");
3423 user_alpha2[0] = '9';
3424 user_alpha2[1] = '7';
3425
3426 /*
3427 * If we're ignoring user settings, we still need to
3428 * check the module parameter to ensure we put things
3429 * back as they were for a full restore.
3430 */
3431 if (!is_world_regdom(ieee80211_regdom)) {
3432 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3433 ieee80211_regdom[0], ieee80211_regdom[1]);
3434 alpha2[0] = ieee80211_regdom[0];
3435 alpha2[1] = ieee80211_regdom[1];
3436 }
3437 } else {
3438 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3439 user_alpha2[0], user_alpha2[1]);
3440 alpha2[0] = user_alpha2[0];
3441 alpha2[1] = user_alpha2[1];
3442 }
3443 } else if (!is_world_regdom(ieee80211_regdom)) {
3444 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3445 ieee80211_regdom[0], ieee80211_regdom[1]);
3446 alpha2[0] = ieee80211_regdom[0];
3447 alpha2[1] = ieee80211_regdom[1];
3448 } else
3449 pr_debug("Restoring regulatory settings\n");
3450 }
3451
restore_custom_reg_settings(struct wiphy * wiphy)3452 static void restore_custom_reg_settings(struct wiphy *wiphy)
3453 {
3454 struct ieee80211_supported_band *sband;
3455 enum nl80211_band band;
3456 struct ieee80211_channel *chan;
3457 int i;
3458
3459 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3460 sband = wiphy->bands[band];
3461 if (!sband)
3462 continue;
3463 for (i = 0; i < sband->n_channels; i++) {
3464 chan = &sband->channels[i];
3465 chan->flags = chan->orig_flags;
3466 chan->max_antenna_gain = chan->orig_mag;
3467 chan->max_power = chan->orig_mpwr;
3468 chan->beacon_found = false;
3469 }
3470 }
3471 }
3472
3473 /*
3474 * Restoring regulatory settings involves ignoring any
3475 * possibly stale country IE information and user regulatory
3476 * settings if so desired, this includes any beacon hints
3477 * learned as we could have traveled outside to another country
3478 * after disconnection. To restore regulatory settings we do
3479 * exactly what we did at bootup:
3480 *
3481 * - send a core regulatory hint
3482 * - send a user regulatory hint if applicable
3483 *
3484 * Device drivers that send a regulatory hint for a specific country
3485 * keep their own regulatory domain on wiphy->regd so that does
3486 * not need to be remembered.
3487 */
restore_regulatory_settings(bool reset_user,bool cached)3488 static void restore_regulatory_settings(bool reset_user, bool cached)
3489 {
3490 char alpha2[2];
3491 char world_alpha2[2];
3492 struct reg_beacon *reg_beacon, *btmp;
3493 LIST_HEAD(tmp_reg_req_list);
3494 struct cfg80211_registered_device *rdev;
3495
3496 ASSERT_RTNL();
3497
3498 /*
3499 * Clear the indoor setting in case that it is not controlled by user
3500 * space, as otherwise there is no guarantee that the device is still
3501 * operating in an indoor environment.
3502 */
3503 spin_lock(®_indoor_lock);
3504 if (reg_is_indoor && !reg_is_indoor_portid) {
3505 reg_is_indoor = false;
3506 reg_check_channels();
3507 }
3508 spin_unlock(®_indoor_lock);
3509
3510 reset_regdomains(true, &world_regdom);
3511 restore_alpha2(alpha2, reset_user);
3512
3513 /*
3514 * If there's any pending requests we simply
3515 * stash them to a temporary pending queue and
3516 * add then after we've restored regulatory
3517 * settings.
3518 */
3519 spin_lock(®_requests_lock);
3520 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3521 spin_unlock(®_requests_lock);
3522
3523 /* Clear beacon hints */
3524 spin_lock_bh(®_pending_beacons_lock);
3525 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3526 list_del(®_beacon->list);
3527 kfree(reg_beacon);
3528 }
3529 spin_unlock_bh(®_pending_beacons_lock);
3530
3531 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3532 list_del(®_beacon->list);
3533 kfree(reg_beacon);
3534 }
3535
3536 /* First restore to the basic regulatory settings */
3537 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3538 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3539
3540 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3541 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3542 continue;
3543 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3544 restore_custom_reg_settings(&rdev->wiphy);
3545 }
3546
3547 if (cached && (!is_an_alpha2(alpha2) ||
3548 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3549 reset_regdomains(false, cfg80211_world_regdom);
3550 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3551 print_regdomain(get_cfg80211_regdom());
3552 nl80211_send_reg_change_event(&core_request_world);
3553 reg_set_request_processed();
3554
3555 if (is_an_alpha2(alpha2) &&
3556 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3557 struct regulatory_request *ureq;
3558
3559 spin_lock(®_requests_lock);
3560 ureq = list_last_entry(®_requests_list,
3561 struct regulatory_request,
3562 list);
3563 list_del(&ureq->list);
3564 spin_unlock(®_requests_lock);
3565
3566 notify_self_managed_wiphys(ureq);
3567 reg_update_last_request(ureq);
3568 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3569 REGD_SOURCE_CACHED);
3570 }
3571 } else {
3572 regulatory_hint_core(world_alpha2);
3573
3574 /*
3575 * This restores the ieee80211_regdom module parameter
3576 * preference or the last user requested regulatory
3577 * settings, user regulatory settings takes precedence.
3578 */
3579 if (is_an_alpha2(alpha2))
3580 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3581 }
3582
3583 spin_lock(®_requests_lock);
3584 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3585 spin_unlock(®_requests_lock);
3586
3587 pr_debug("Kicking the queue\n");
3588
3589 schedule_work(®_work);
3590 }
3591
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3592 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3593 {
3594 struct cfg80211_registered_device *rdev;
3595 struct wireless_dev *wdev;
3596
3597 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3598 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3599 wdev_lock(wdev);
3600 if (!(wdev->wiphy->regulatory_flags & flag)) {
3601 wdev_unlock(wdev);
3602 return false;
3603 }
3604 wdev_unlock(wdev);
3605 }
3606 }
3607
3608 return true;
3609 }
3610
regulatory_hint_disconnect(void)3611 void regulatory_hint_disconnect(void)
3612 {
3613 /* Restore of regulatory settings is not required when wiphy(s)
3614 * ignore IE from connected access point but clearance of beacon hints
3615 * is required when wiphy(s) supports beacon hints.
3616 */
3617 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3618 struct reg_beacon *reg_beacon, *btmp;
3619
3620 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3621 return;
3622
3623 spin_lock_bh(®_pending_beacons_lock);
3624 list_for_each_entry_safe(reg_beacon, btmp,
3625 ®_pending_beacons, list) {
3626 list_del(®_beacon->list);
3627 kfree(reg_beacon);
3628 }
3629 spin_unlock_bh(®_pending_beacons_lock);
3630
3631 list_for_each_entry_safe(reg_beacon, btmp,
3632 ®_beacon_list, list) {
3633 list_del(®_beacon->list);
3634 kfree(reg_beacon);
3635 }
3636
3637 return;
3638 }
3639
3640 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3641 restore_regulatory_settings(false, true);
3642 }
3643
freq_is_chan_12_13_14(u32 freq)3644 static bool freq_is_chan_12_13_14(u32 freq)
3645 {
3646 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3647 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3648 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3649 return true;
3650 return false;
3651 }
3652
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3653 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3654 {
3655 struct reg_beacon *pending_beacon;
3656
3657 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3658 if (ieee80211_channel_equal(beacon_chan,
3659 &pending_beacon->chan))
3660 return true;
3661 return false;
3662 }
3663
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3664 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3665 struct ieee80211_channel *beacon_chan,
3666 gfp_t gfp)
3667 {
3668 struct reg_beacon *reg_beacon;
3669 bool processing;
3670
3671 if (beacon_chan->beacon_found ||
3672 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3673 (beacon_chan->band == NL80211_BAND_2GHZ &&
3674 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3675 return 0;
3676
3677 spin_lock_bh(®_pending_beacons_lock);
3678 processing = pending_reg_beacon(beacon_chan);
3679 spin_unlock_bh(®_pending_beacons_lock);
3680
3681 if (processing)
3682 return 0;
3683
3684 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3685 if (!reg_beacon)
3686 return -ENOMEM;
3687
3688 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3689 beacon_chan->center_freq, beacon_chan->freq_offset,
3690 ieee80211_freq_khz_to_channel(
3691 ieee80211_channel_to_khz(beacon_chan)),
3692 wiphy_name(wiphy));
3693
3694 memcpy(®_beacon->chan, beacon_chan,
3695 sizeof(struct ieee80211_channel));
3696
3697 /*
3698 * Since we can be called from BH or and non-BH context
3699 * we must use spin_lock_bh()
3700 */
3701 spin_lock_bh(®_pending_beacons_lock);
3702 list_add_tail(®_beacon->list, ®_pending_beacons);
3703 spin_unlock_bh(®_pending_beacons_lock);
3704
3705 schedule_work(®_work);
3706
3707 return 0;
3708 }
3709
print_rd_rules(const struct ieee80211_regdomain * rd)3710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3711 {
3712 unsigned int i;
3713 const struct ieee80211_reg_rule *reg_rule = NULL;
3714 const struct ieee80211_freq_range *freq_range = NULL;
3715 const struct ieee80211_power_rule *power_rule = NULL;
3716 char bw[32], cac_time[32];
3717
3718 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3719
3720 for (i = 0; i < rd->n_reg_rules; i++) {
3721 reg_rule = &rd->reg_rules[i];
3722 freq_range = ®_rule->freq_range;
3723 power_rule = ®_rule->power_rule;
3724
3725 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3726 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3727 freq_range->max_bandwidth_khz,
3728 reg_get_max_bandwidth(rd, reg_rule));
3729 else
3730 snprintf(bw, sizeof(bw), "%d KHz",
3731 freq_range->max_bandwidth_khz);
3732
3733 if (reg_rule->flags & NL80211_RRF_DFS)
3734 scnprintf(cac_time, sizeof(cac_time), "%u s",
3735 reg_rule->dfs_cac_ms/1000);
3736 else
3737 scnprintf(cac_time, sizeof(cac_time), "N/A");
3738
3739
3740 /*
3741 * There may not be documentation for max antenna gain
3742 * in certain regions
3743 */
3744 if (power_rule->max_antenna_gain)
3745 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3746 freq_range->start_freq_khz,
3747 freq_range->end_freq_khz,
3748 bw,
3749 power_rule->max_antenna_gain,
3750 power_rule->max_eirp,
3751 cac_time);
3752 else
3753 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3754 freq_range->start_freq_khz,
3755 freq_range->end_freq_khz,
3756 bw,
3757 power_rule->max_eirp,
3758 cac_time);
3759 }
3760 }
3761
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3763 {
3764 switch (dfs_region) {
3765 case NL80211_DFS_UNSET:
3766 case NL80211_DFS_FCC:
3767 case NL80211_DFS_ETSI:
3768 case NL80211_DFS_JP:
3769 return true;
3770 default:
3771 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3772 return false;
3773 }
3774 }
3775
print_regdomain(const struct ieee80211_regdomain * rd)3776 static void print_regdomain(const struct ieee80211_regdomain *rd)
3777 {
3778 struct regulatory_request *lr = get_last_request();
3779
3780 if (is_intersected_alpha2(rd->alpha2)) {
3781 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3782 struct cfg80211_registered_device *rdev;
3783 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3784 if (rdev) {
3785 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3786 rdev->country_ie_alpha2[0],
3787 rdev->country_ie_alpha2[1]);
3788 } else
3789 pr_debug("Current regulatory domain intersected:\n");
3790 } else
3791 pr_debug("Current regulatory domain intersected:\n");
3792 } else if (is_world_regdom(rd->alpha2)) {
3793 pr_debug("World regulatory domain updated:\n");
3794 } else {
3795 if (is_unknown_alpha2(rd->alpha2))
3796 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3797 else {
3798 if (reg_request_cell_base(lr))
3799 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3800 rd->alpha2[0], rd->alpha2[1]);
3801 else
3802 pr_debug("Regulatory domain changed to country: %c%c\n",
3803 rd->alpha2[0], rd->alpha2[1]);
3804 }
3805 }
3806
3807 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3808 print_rd_rules(rd);
3809 }
3810
print_regdomain_info(const struct ieee80211_regdomain * rd)3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3812 {
3813 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3814 print_rd_rules(rd);
3815 }
3816
reg_set_rd_core(const struct ieee80211_regdomain * rd)3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3818 {
3819 if (!is_world_regdom(rd->alpha2))
3820 return -EINVAL;
3821 update_world_regdomain(rd);
3822 return 0;
3823 }
3824
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3826 struct regulatory_request *user_request)
3827 {
3828 const struct ieee80211_regdomain *intersected_rd = NULL;
3829
3830 if (!regdom_changes(rd->alpha2))
3831 return -EALREADY;
3832
3833 if (!is_valid_rd(rd)) {
3834 pr_err("Invalid regulatory domain detected: %c%c\n",
3835 rd->alpha2[0], rd->alpha2[1]);
3836 print_regdomain_info(rd);
3837 return -EINVAL;
3838 }
3839
3840 if (!user_request->intersect) {
3841 reset_regdomains(false, rd);
3842 return 0;
3843 }
3844
3845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3846 if (!intersected_rd)
3847 return -EINVAL;
3848
3849 kfree(rd);
3850 rd = NULL;
3851 reset_regdomains(false, intersected_rd);
3852
3853 return 0;
3854 }
3855
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3857 struct regulatory_request *driver_request)
3858 {
3859 const struct ieee80211_regdomain *regd;
3860 const struct ieee80211_regdomain *intersected_rd = NULL;
3861 const struct ieee80211_regdomain *tmp;
3862 struct wiphy *request_wiphy;
3863
3864 if (is_world_regdom(rd->alpha2))
3865 return -EINVAL;
3866
3867 if (!regdom_changes(rd->alpha2))
3868 return -EALREADY;
3869
3870 if (!is_valid_rd(rd)) {
3871 pr_err("Invalid regulatory domain detected: %c%c\n",
3872 rd->alpha2[0], rd->alpha2[1]);
3873 print_regdomain_info(rd);
3874 return -EINVAL;
3875 }
3876
3877 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3878 if (!request_wiphy)
3879 return -ENODEV;
3880
3881 if (!driver_request->intersect) {
3882 ASSERT_RTNL();
3883 wiphy_lock(request_wiphy);
3884 if (request_wiphy->regd) {
3885 wiphy_unlock(request_wiphy);
3886 return -EALREADY;
3887 }
3888
3889 regd = reg_copy_regd(rd);
3890 if (IS_ERR(regd)) {
3891 wiphy_unlock(request_wiphy);
3892 return PTR_ERR(regd);
3893 }
3894
3895 rcu_assign_pointer(request_wiphy->regd, regd);
3896 wiphy_unlock(request_wiphy);
3897 reset_regdomains(false, rd);
3898 return 0;
3899 }
3900
3901 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3902 if (!intersected_rd)
3903 return -EINVAL;
3904
3905 /*
3906 * We can trash what CRDA provided now.
3907 * However if a driver requested this specific regulatory
3908 * domain we keep it for its private use
3909 */
3910 tmp = get_wiphy_regdom(request_wiphy);
3911 rcu_assign_pointer(request_wiphy->regd, rd);
3912 rcu_free_regdom(tmp);
3913
3914 rd = NULL;
3915
3916 reset_regdomains(false, intersected_rd);
3917
3918 return 0;
3919 }
3920
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3921 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3922 struct regulatory_request *country_ie_request)
3923 {
3924 struct wiphy *request_wiphy;
3925
3926 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3927 !is_unknown_alpha2(rd->alpha2))
3928 return -EINVAL;
3929
3930 /*
3931 * Lets only bother proceeding on the same alpha2 if the current
3932 * rd is non static (it means CRDA was present and was used last)
3933 * and the pending request came in from a country IE
3934 */
3935
3936 if (!is_valid_rd(rd)) {
3937 pr_err("Invalid regulatory domain detected: %c%c\n",
3938 rd->alpha2[0], rd->alpha2[1]);
3939 print_regdomain_info(rd);
3940 return -EINVAL;
3941 }
3942
3943 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3944 if (!request_wiphy)
3945 return -ENODEV;
3946
3947 if (country_ie_request->intersect)
3948 return -EINVAL;
3949
3950 reset_regdomains(false, rd);
3951 return 0;
3952 }
3953
3954 /*
3955 * Use this call to set the current regulatory domain. Conflicts with
3956 * multiple drivers can be ironed out later. Caller must've already
3957 * kmalloc'd the rd structure.
3958 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3959 int set_regdom(const struct ieee80211_regdomain *rd,
3960 enum ieee80211_regd_source regd_src)
3961 {
3962 struct regulatory_request *lr;
3963 bool user_reset = false;
3964 int r;
3965
3966 if (IS_ERR_OR_NULL(rd))
3967 return -ENODATA;
3968
3969 if (!reg_is_valid_request(rd->alpha2)) {
3970 kfree(rd);
3971 return -EINVAL;
3972 }
3973
3974 if (regd_src == REGD_SOURCE_CRDA)
3975 reset_crda_timeouts();
3976
3977 lr = get_last_request();
3978
3979 /* Note that this doesn't update the wiphys, this is done below */
3980 switch (lr->initiator) {
3981 case NL80211_REGDOM_SET_BY_CORE:
3982 r = reg_set_rd_core(rd);
3983 break;
3984 case NL80211_REGDOM_SET_BY_USER:
3985 cfg80211_save_user_regdom(rd);
3986 r = reg_set_rd_user(rd, lr);
3987 user_reset = true;
3988 break;
3989 case NL80211_REGDOM_SET_BY_DRIVER:
3990 r = reg_set_rd_driver(rd, lr);
3991 break;
3992 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3993 r = reg_set_rd_country_ie(rd, lr);
3994 break;
3995 default:
3996 WARN(1, "invalid initiator %d\n", lr->initiator);
3997 kfree(rd);
3998 return -EINVAL;
3999 }
4000
4001 if (r) {
4002 switch (r) {
4003 case -EALREADY:
4004 reg_set_request_processed();
4005 break;
4006 default:
4007 /* Back to world regulatory in case of errors */
4008 restore_regulatory_settings(user_reset, false);
4009 }
4010
4011 kfree(rd);
4012 return r;
4013 }
4014
4015 /* This would make this whole thing pointless */
4016 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4017 return -EINVAL;
4018
4019 /* update all wiphys now with the new established regulatory domain */
4020 update_all_wiphy_regulatory(lr->initiator);
4021
4022 print_regdomain(get_cfg80211_regdom());
4023
4024 nl80211_send_reg_change_event(lr);
4025
4026 reg_set_request_processed();
4027
4028 return 0;
4029 }
4030
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4031 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4032 struct ieee80211_regdomain *rd)
4033 {
4034 const struct ieee80211_regdomain *regd;
4035 const struct ieee80211_regdomain *prev_regd;
4036 struct cfg80211_registered_device *rdev;
4037
4038 if (WARN_ON(!wiphy || !rd))
4039 return -EINVAL;
4040
4041 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4042 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4043 return -EPERM;
4044
4045 if (WARN(!is_valid_rd(rd),
4046 "Invalid regulatory domain detected: %c%c\n",
4047 rd->alpha2[0], rd->alpha2[1])) {
4048 print_regdomain_info(rd);
4049 return -EINVAL;
4050 }
4051
4052 regd = reg_copy_regd(rd);
4053 if (IS_ERR(regd))
4054 return PTR_ERR(regd);
4055
4056 rdev = wiphy_to_rdev(wiphy);
4057
4058 spin_lock(®_requests_lock);
4059 prev_regd = rdev->requested_regd;
4060 rdev->requested_regd = regd;
4061 spin_unlock(®_requests_lock);
4062
4063 kfree(prev_regd);
4064 return 0;
4065 }
4066
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4067 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4068 struct ieee80211_regdomain *rd)
4069 {
4070 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4071
4072 if (ret)
4073 return ret;
4074
4075 schedule_work(®_work);
4076 return 0;
4077 }
4078 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4079
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4080 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4081 struct ieee80211_regdomain *rd)
4082 {
4083 int ret;
4084
4085 ASSERT_RTNL();
4086
4087 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4088 if (ret)
4089 return ret;
4090
4091 /* process the request immediately */
4092 reg_process_self_managed_hint(wiphy);
4093 reg_check_channels();
4094 return 0;
4095 }
4096 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4097
wiphy_regulatory_register(struct wiphy * wiphy)4098 void wiphy_regulatory_register(struct wiphy *wiphy)
4099 {
4100 struct regulatory_request *lr = get_last_request();
4101
4102 /* self-managed devices ignore beacon hints and country IE */
4103 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4104 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4105 REGULATORY_COUNTRY_IE_IGNORE;
4106
4107 /*
4108 * The last request may have been received before this
4109 * registration call. Call the driver notifier if
4110 * initiator is USER.
4111 */
4112 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4113 reg_call_notifier(wiphy, lr);
4114 }
4115
4116 if (!reg_dev_ignore_cell_hint(wiphy))
4117 reg_num_devs_support_basehint++;
4118
4119 wiphy_update_regulatory(wiphy, lr->initiator);
4120 wiphy_all_share_dfs_chan_state(wiphy);
4121 reg_process_self_managed_hints();
4122 }
4123
wiphy_regulatory_deregister(struct wiphy * wiphy)4124 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4125 {
4126 struct wiphy *request_wiphy = NULL;
4127 struct regulatory_request *lr;
4128
4129 lr = get_last_request();
4130
4131 if (!reg_dev_ignore_cell_hint(wiphy))
4132 reg_num_devs_support_basehint--;
4133
4134 rcu_free_regdom(get_wiphy_regdom(wiphy));
4135 RCU_INIT_POINTER(wiphy->regd, NULL);
4136
4137 if (lr)
4138 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4139
4140 if (!request_wiphy || request_wiphy != wiphy)
4141 return;
4142
4143 lr->wiphy_idx = WIPHY_IDX_INVALID;
4144 lr->country_ie_env = ENVIRON_ANY;
4145 }
4146
4147 /*
4148 * See FCC notices for UNII band definitions
4149 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4150 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4151 */
cfg80211_get_unii(int freq)4152 int cfg80211_get_unii(int freq)
4153 {
4154 /* UNII-1 */
4155 if (freq >= 5150 && freq <= 5250)
4156 return 0;
4157
4158 /* UNII-2A */
4159 if (freq > 5250 && freq <= 5350)
4160 return 1;
4161
4162 /* UNII-2B */
4163 if (freq > 5350 && freq <= 5470)
4164 return 2;
4165
4166 /* UNII-2C */
4167 if (freq > 5470 && freq <= 5725)
4168 return 3;
4169
4170 /* UNII-3 */
4171 if (freq > 5725 && freq <= 5825)
4172 return 4;
4173
4174 /* UNII-5 */
4175 if (freq > 5925 && freq <= 6425)
4176 return 5;
4177
4178 /* UNII-6 */
4179 if (freq > 6425 && freq <= 6525)
4180 return 6;
4181
4182 /* UNII-7 */
4183 if (freq > 6525 && freq <= 6875)
4184 return 7;
4185
4186 /* UNII-8 */
4187 if (freq > 6875 && freq <= 7125)
4188 return 8;
4189
4190 return -EINVAL;
4191 }
4192
regulatory_indoor_allowed(void)4193 bool regulatory_indoor_allowed(void)
4194 {
4195 return reg_is_indoor;
4196 }
4197
regulatory_pre_cac_allowed(struct wiphy * wiphy)4198 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4199 {
4200 const struct ieee80211_regdomain *regd = NULL;
4201 const struct ieee80211_regdomain *wiphy_regd = NULL;
4202 bool pre_cac_allowed = false;
4203
4204 rcu_read_lock();
4205
4206 regd = rcu_dereference(cfg80211_regdomain);
4207 wiphy_regd = rcu_dereference(wiphy->regd);
4208 if (!wiphy_regd) {
4209 if (regd->dfs_region == NL80211_DFS_ETSI)
4210 pre_cac_allowed = true;
4211
4212 rcu_read_unlock();
4213
4214 return pre_cac_allowed;
4215 }
4216
4217 if (regd->dfs_region == wiphy_regd->dfs_region &&
4218 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4219 pre_cac_allowed = true;
4220
4221 rcu_read_unlock();
4222
4223 return pre_cac_allowed;
4224 }
4225 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4226
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4227 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4228 {
4229 struct wireless_dev *wdev;
4230 /* If we finished CAC or received radar, we should end any
4231 * CAC running on the same channels.
4232 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4233 * either all channels are available - those the CAC_FINISHED
4234 * event has effected another wdev state, or there is a channel
4235 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4236 * event has effected another wdev state.
4237 * In both cases we should end the CAC on the wdev.
4238 */
4239 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4240 struct cfg80211_chan_def *chandef;
4241
4242 if (!wdev->cac_started)
4243 continue;
4244
4245 /* FIXME: radar detection is tied to link 0 for now */
4246 chandef = wdev_chandef(wdev, 0);
4247 if (!chandef)
4248 continue;
4249
4250 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4251 rdev_end_cac(rdev, wdev->netdev);
4252 }
4253 }
4254
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4255 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4256 struct cfg80211_chan_def *chandef,
4257 enum nl80211_dfs_state dfs_state,
4258 enum nl80211_radar_event event)
4259 {
4260 struct cfg80211_registered_device *rdev;
4261
4262 ASSERT_RTNL();
4263
4264 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4265 return;
4266
4267 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4268 if (wiphy == &rdev->wiphy)
4269 continue;
4270
4271 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4272 continue;
4273
4274 if (!ieee80211_get_channel(&rdev->wiphy,
4275 chandef->chan->center_freq))
4276 continue;
4277
4278 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4279
4280 if (event == NL80211_RADAR_DETECTED ||
4281 event == NL80211_RADAR_CAC_FINISHED) {
4282 cfg80211_sched_dfs_chan_update(rdev);
4283 cfg80211_check_and_end_cac(rdev);
4284 }
4285
4286 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4287 }
4288 }
4289
regulatory_init_db(void)4290 static int __init regulatory_init_db(void)
4291 {
4292 int err;
4293
4294 /*
4295 * It's possible that - due to other bugs/issues - cfg80211
4296 * never called regulatory_init() below, or that it failed;
4297 * in that case, don't try to do any further work here as
4298 * it's doomed to lead to crashes.
4299 */
4300 if (IS_ERR_OR_NULL(reg_pdev))
4301 return -EINVAL;
4302
4303 err = load_builtin_regdb_keys();
4304 if (err)
4305 return err;
4306
4307 /* We always try to get an update for the static regdomain */
4308 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4309 if (err) {
4310 if (err == -ENOMEM) {
4311 platform_device_unregister(reg_pdev);
4312 return err;
4313 }
4314 /*
4315 * N.B. kobject_uevent_env() can fail mainly for when we're out
4316 * memory which is handled and propagated appropriately above
4317 * but it can also fail during a netlink_broadcast() or during
4318 * early boot for call_usermodehelper(). For now treat these
4319 * errors as non-fatal.
4320 */
4321 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4322 }
4323
4324 /*
4325 * Finally, if the user set the module parameter treat it
4326 * as a user hint.
4327 */
4328 if (!is_world_regdom(ieee80211_regdom))
4329 regulatory_hint_user(ieee80211_regdom,
4330 NL80211_USER_REG_HINT_USER);
4331
4332 return 0;
4333 }
4334 #ifndef MODULE
4335 late_initcall(regulatory_init_db);
4336 #endif
4337
regulatory_init(void)4338 int __init regulatory_init(void)
4339 {
4340 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4341 if (IS_ERR(reg_pdev))
4342 return PTR_ERR(reg_pdev);
4343
4344 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4345
4346 user_alpha2[0] = '9';
4347 user_alpha2[1] = '7';
4348
4349 #ifdef MODULE
4350 return regulatory_init_db();
4351 #else
4352 return 0;
4353 #endif
4354 }
4355
regulatory_exit(void)4356 void regulatory_exit(void)
4357 {
4358 struct regulatory_request *reg_request, *tmp;
4359 struct reg_beacon *reg_beacon, *btmp;
4360
4361 cancel_work_sync(®_work);
4362 cancel_crda_timeout_sync();
4363 cancel_delayed_work_sync(®_check_chans);
4364
4365 /* Lock to suppress warnings */
4366 rtnl_lock();
4367 reset_regdomains(true, NULL);
4368 rtnl_unlock();
4369
4370 dev_set_uevent_suppress(®_pdev->dev, true);
4371
4372 platform_device_unregister(reg_pdev);
4373
4374 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4375 list_del(®_beacon->list);
4376 kfree(reg_beacon);
4377 }
4378
4379 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4380 list_del(®_beacon->list);
4381 kfree(reg_beacon);
4382 }
4383
4384 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4385 list_del(®_request->list);
4386 kfree(reg_request);
4387 }
4388
4389 if (!IS_ERR_OR_NULL(regdb))
4390 kfree(regdb);
4391 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4392 kfree(cfg80211_user_regdom);
4393
4394 free_regdb_keyring();
4395 }
4396