1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
inet_get_local_port_range(struct net * net,int * low,int * high)120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)133 static int inet_csk_bind_conflict(const struct sock *sk,
134 const struct inet_bind_bucket *tb,
135 bool relax, bool reuseport_ok)
136 {
137 struct sock *sk2;
138 bool reuseport_cb_ok;
139 bool reuse = sk->sk_reuse;
140 bool reuseport = !!sk->sk_reuseport;
141 struct sock_reuseport *reuseport_cb;
142 kuid_t uid = sock_i_uid((struct sock *)sk);
143
144 rcu_read_lock();
145 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
146 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
147 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
148 rcu_read_unlock();
149
150 /*
151 * Unlike other sk lookup places we do not check
152 * for sk_net here, since _all_ the socks listed
153 * in tb->owners list belong to the same net - the
154 * one this bucket belongs to.
155 */
156
157 sk_for_each_bound(sk2, &tb->owners) {
158 int bound_dev_if2;
159
160 if (sk == sk2)
161 continue;
162 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
163 if ((!sk->sk_bound_dev_if ||
164 !bound_dev_if2 ||
165 sk->sk_bound_dev_if == bound_dev_if2)) {
166 if (reuse && sk2->sk_reuse &&
167 sk2->sk_state != TCP_LISTEN) {
168 if ((!relax ||
169 (!reuseport_ok &&
170 reuseport && sk2->sk_reuseport &&
171 reuseport_cb_ok &&
172 (sk2->sk_state == TCP_TIME_WAIT ||
173 uid_eq(uid, sock_i_uid(sk2))))) &&
174 inet_rcv_saddr_equal(sk, sk2, true))
175 break;
176 } else if (!reuseport_ok ||
177 !reuseport || !sk2->sk_reuseport ||
178 !reuseport_cb_ok ||
179 (sk2->sk_state != TCP_TIME_WAIT &&
180 !uid_eq(uid, sock_i_uid(sk2)))) {
181 if (inet_rcv_saddr_equal(sk, sk2, true))
182 break;
183 }
184 }
185 }
186 return sk2 != NULL;
187 }
188
189 /*
190 * Find an open port number for the socket. Returns with the
191 * inet_bind_hashbucket lock held.
192 */
193 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)194 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
195 {
196 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
197 int port = 0;
198 struct inet_bind_hashbucket *head;
199 struct net *net = sock_net(sk);
200 bool relax = false;
201 int i, low, high, attempt_half;
202 struct inet_bind_bucket *tb;
203 u32 remaining, offset;
204 int l3mdev;
205
206 l3mdev = inet_sk_bound_l3mdev(sk);
207 ports_exhausted:
208 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
209 other_half_scan:
210 inet_get_local_port_range(net, &low, &high);
211 high++; /* [32768, 60999] -> [32768, 61000[ */
212 if (high - low < 4)
213 attempt_half = 0;
214 if (attempt_half) {
215 int half = low + (((high - low) >> 2) << 1);
216
217 if (attempt_half == 1)
218 high = half;
219 else
220 low = half;
221 }
222 remaining = high - low;
223 if (likely(remaining > 1))
224 remaining &= ~1U;
225
226 offset = prandom_u32() % remaining;
227 /* __inet_hash_connect() favors ports having @low parity
228 * We do the opposite to not pollute connect() users.
229 */
230 offset |= 1U;
231
232 other_parity_scan:
233 port = low + offset;
234 for (i = 0; i < remaining; i += 2, port += 2) {
235 if (unlikely(port >= high))
236 port -= remaining;
237 if (inet_is_local_reserved_port(net, port))
238 continue;
239 head = &hinfo->bhash[inet_bhashfn(net, port,
240 hinfo->bhash_size)];
241 spin_lock_bh(&head->lock);
242 inet_bind_bucket_for_each(tb, &head->chain)
243 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
244 tb->port == port) {
245 if (!inet_csk_bind_conflict(sk, tb, relax, false))
246 goto success;
247 goto next_port;
248 }
249 tb = NULL;
250 goto success;
251 next_port:
252 spin_unlock_bh(&head->lock);
253 cond_resched();
254 }
255
256 offset--;
257 if (!(offset & 1))
258 goto other_parity_scan;
259
260 if (attempt_half == 1) {
261 /* OK we now try the upper half of the range */
262 attempt_half = 2;
263 goto other_half_scan;
264 }
265
266 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
267 /* We still have a chance to connect to different destinations */
268 relax = true;
269 goto ports_exhausted;
270 }
271 return NULL;
272 success:
273 *port_ret = port;
274 *tb_ret = tb;
275 return head;
276 }
277
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)278 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
279 struct sock *sk)
280 {
281 kuid_t uid = sock_i_uid(sk);
282
283 if (tb->fastreuseport <= 0)
284 return 0;
285 if (!sk->sk_reuseport)
286 return 0;
287 if (rcu_access_pointer(sk->sk_reuseport_cb))
288 return 0;
289 if (!uid_eq(tb->fastuid, uid))
290 return 0;
291 /* We only need to check the rcv_saddr if this tb was once marked
292 * without fastreuseport and then was reset, as we can only know that
293 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
294 * owners list.
295 */
296 if (tb->fastreuseport == FASTREUSEPORT_ANY)
297 return 1;
298 #if IS_ENABLED(CONFIG_IPV6)
299 if (tb->fast_sk_family == AF_INET6)
300 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
301 inet6_rcv_saddr(sk),
302 tb->fast_rcv_saddr,
303 sk->sk_rcv_saddr,
304 tb->fast_ipv6_only,
305 ipv6_only_sock(sk), true, false);
306 #endif
307 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
308 ipv6_only_sock(sk), true, false);
309 }
310
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)311 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
312 struct sock *sk)
313 {
314 kuid_t uid = sock_i_uid(sk);
315 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
316
317 if (hlist_empty(&tb->owners)) {
318 tb->fastreuse = reuse;
319 if (sk->sk_reuseport) {
320 tb->fastreuseport = FASTREUSEPORT_ANY;
321 tb->fastuid = uid;
322 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
323 tb->fast_ipv6_only = ipv6_only_sock(sk);
324 tb->fast_sk_family = sk->sk_family;
325 #if IS_ENABLED(CONFIG_IPV6)
326 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
327 #endif
328 } else {
329 tb->fastreuseport = 0;
330 }
331 } else {
332 if (!reuse)
333 tb->fastreuse = 0;
334 if (sk->sk_reuseport) {
335 /* We didn't match or we don't have fastreuseport set on
336 * the tb, but we have sk_reuseport set on this socket
337 * and we know that there are no bind conflicts with
338 * this socket in this tb, so reset our tb's reuseport
339 * settings so that any subsequent sockets that match
340 * our current socket will be put on the fast path.
341 *
342 * If we reset we need to set FASTREUSEPORT_STRICT so we
343 * do extra checking for all subsequent sk_reuseport
344 * socks.
345 */
346 if (!sk_reuseport_match(tb, sk)) {
347 tb->fastreuseport = FASTREUSEPORT_STRICT;
348 tb->fastuid = uid;
349 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
350 tb->fast_ipv6_only = ipv6_only_sock(sk);
351 tb->fast_sk_family = sk->sk_family;
352 #if IS_ENABLED(CONFIG_IPV6)
353 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
354 #endif
355 }
356 } else {
357 tb->fastreuseport = 0;
358 }
359 }
360 }
361
362 /* Obtain a reference to a local port for the given sock,
363 * if snum is zero it means select any available local port.
364 * We try to allocate an odd port (and leave even ports for connect())
365 */
inet_csk_get_port(struct sock * sk,unsigned short snum)366 int inet_csk_get_port(struct sock *sk, unsigned short snum)
367 {
368 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
369 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
370 int ret = 1, port = snum;
371 struct inet_bind_hashbucket *head;
372 struct net *net = sock_net(sk);
373 struct inet_bind_bucket *tb = NULL;
374 int l3mdev;
375
376 l3mdev = inet_sk_bound_l3mdev(sk);
377
378 if (!port) {
379 head = inet_csk_find_open_port(sk, &tb, &port);
380 if (!head)
381 return ret;
382 if (!tb)
383 goto tb_not_found;
384 goto success;
385 }
386 head = &hinfo->bhash[inet_bhashfn(net, port,
387 hinfo->bhash_size)];
388 spin_lock_bh(&head->lock);
389 inet_bind_bucket_for_each(tb, &head->chain)
390 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
391 tb->port == port)
392 goto tb_found;
393 tb_not_found:
394 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
395 net, head, port, l3mdev);
396 if (!tb)
397 goto fail_unlock;
398 tb_found:
399 if (!hlist_empty(&tb->owners)) {
400 if (sk->sk_reuse == SK_FORCE_REUSE)
401 goto success;
402
403 if ((tb->fastreuse > 0 && reuse) ||
404 sk_reuseport_match(tb, sk))
405 goto success;
406 if (inet_csk_bind_conflict(sk, tb, true, true))
407 goto fail_unlock;
408 }
409 success:
410 inet_csk_update_fastreuse(tb, sk);
411
412 if (!inet_csk(sk)->icsk_bind_hash)
413 inet_bind_hash(sk, tb, port);
414 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
415 ret = 0;
416
417 fail_unlock:
418 spin_unlock_bh(&head->lock);
419 return ret;
420 }
421 EXPORT_SYMBOL_GPL(inet_csk_get_port);
422
423 /*
424 * Wait for an incoming connection, avoid race conditions. This must be called
425 * with the socket locked.
426 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)427 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
428 {
429 struct inet_connection_sock *icsk = inet_csk(sk);
430 DEFINE_WAIT(wait);
431 int err;
432
433 /*
434 * True wake-one mechanism for incoming connections: only
435 * one process gets woken up, not the 'whole herd'.
436 * Since we do not 'race & poll' for established sockets
437 * anymore, the common case will execute the loop only once.
438 *
439 * Subtle issue: "add_wait_queue_exclusive()" will be added
440 * after any current non-exclusive waiters, and we know that
441 * it will always _stay_ after any new non-exclusive waiters
442 * because all non-exclusive waiters are added at the
443 * beginning of the wait-queue. As such, it's ok to "drop"
444 * our exclusiveness temporarily when we get woken up without
445 * having to remove and re-insert us on the wait queue.
446 */
447 for (;;) {
448 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
449 TASK_INTERRUPTIBLE);
450 release_sock(sk);
451 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
452 timeo = schedule_timeout(timeo);
453 sched_annotate_sleep();
454 lock_sock(sk);
455 err = 0;
456 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
457 break;
458 err = -EINVAL;
459 if (sk->sk_state != TCP_LISTEN)
460 break;
461 err = sock_intr_errno(timeo);
462 if (signal_pending(current))
463 break;
464 err = -EAGAIN;
465 if (!timeo)
466 break;
467 }
468 finish_wait(sk_sleep(sk), &wait);
469 return err;
470 }
471
472 /*
473 * This will accept the next outstanding connection.
474 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)475 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
476 {
477 struct inet_connection_sock *icsk = inet_csk(sk);
478 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
479 struct request_sock *req;
480 struct sock *newsk;
481 int error;
482
483 lock_sock(sk);
484
485 /* We need to make sure that this socket is listening,
486 * and that it has something pending.
487 */
488 error = -EINVAL;
489 if (sk->sk_state != TCP_LISTEN)
490 goto out_err;
491
492 /* Find already established connection */
493 if (reqsk_queue_empty(queue)) {
494 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
495
496 /* If this is a non blocking socket don't sleep */
497 error = -EAGAIN;
498 if (!timeo)
499 goto out_err;
500
501 error = inet_csk_wait_for_connect(sk, timeo);
502 if (error)
503 goto out_err;
504 }
505 req = reqsk_queue_remove(queue, sk);
506 newsk = req->sk;
507
508 if (sk->sk_protocol == IPPROTO_TCP &&
509 tcp_rsk(req)->tfo_listener) {
510 spin_lock_bh(&queue->fastopenq.lock);
511 if (tcp_rsk(req)->tfo_listener) {
512 /* We are still waiting for the final ACK from 3WHS
513 * so can't free req now. Instead, we set req->sk to
514 * NULL to signify that the child socket is taken
515 * so reqsk_fastopen_remove() will free the req
516 * when 3WHS finishes (or is aborted).
517 */
518 req->sk = NULL;
519 req = NULL;
520 }
521 spin_unlock_bh(&queue->fastopenq.lock);
522 }
523
524 out:
525 release_sock(sk);
526 if (newsk && mem_cgroup_sockets_enabled) {
527 int amt;
528
529 /* atomically get the memory usage, set and charge the
530 * newsk->sk_memcg.
531 */
532 lock_sock(newsk);
533
534 /* The socket has not been accepted yet, no need to look at
535 * newsk->sk_wmem_queued.
536 */
537 amt = sk_mem_pages(newsk->sk_forward_alloc +
538 atomic_read(&newsk->sk_rmem_alloc));
539 mem_cgroup_sk_alloc(newsk);
540 if (newsk->sk_memcg && amt)
541 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
542 GFP_KERNEL | __GFP_NOFAIL);
543
544 release_sock(newsk);
545 }
546 if (req)
547 reqsk_put(req);
548 return newsk;
549 out_err:
550 newsk = NULL;
551 req = NULL;
552 *err = error;
553 goto out;
554 }
555 EXPORT_SYMBOL(inet_csk_accept);
556
557 /*
558 * Using different timers for retransmit, delayed acks and probes
559 * We may wish use just one timer maintaining a list of expire jiffies
560 * to optimize.
561 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))562 void inet_csk_init_xmit_timers(struct sock *sk,
563 void (*retransmit_handler)(struct timer_list *t),
564 void (*delack_handler)(struct timer_list *t),
565 void (*keepalive_handler)(struct timer_list *t))
566 {
567 struct inet_connection_sock *icsk = inet_csk(sk);
568
569 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
570 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
571 timer_setup(&sk->sk_timer, keepalive_handler, 0);
572 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
573 }
574 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
575
inet_csk_clear_xmit_timers(struct sock * sk)576 void inet_csk_clear_xmit_timers(struct sock *sk)
577 {
578 struct inet_connection_sock *icsk = inet_csk(sk);
579
580 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
581
582 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
583 sk_stop_timer(sk, &icsk->icsk_delack_timer);
584 sk_stop_timer(sk, &sk->sk_timer);
585 }
586 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
587
inet_csk_delete_keepalive_timer(struct sock * sk)588 void inet_csk_delete_keepalive_timer(struct sock *sk)
589 {
590 sk_stop_timer(sk, &sk->sk_timer);
591 }
592 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
593
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)594 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
595 {
596 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
597 }
598 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
599
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)600 struct dst_entry *inet_csk_route_req(const struct sock *sk,
601 struct flowi4 *fl4,
602 const struct request_sock *req)
603 {
604 const struct inet_request_sock *ireq = inet_rsk(req);
605 struct net *net = read_pnet(&ireq->ireq_net);
606 struct ip_options_rcu *opt;
607 struct rtable *rt;
608
609 rcu_read_lock();
610 opt = rcu_dereference(ireq->ireq_opt);
611
612 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
613 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
614 sk->sk_protocol, inet_sk_flowi_flags(sk),
615 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
616 ireq->ir_loc_addr, ireq->ir_rmt_port,
617 htons(ireq->ir_num), sk->sk_uid);
618 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
619 rt = ip_route_output_flow(net, fl4, sk);
620 if (IS_ERR(rt))
621 goto no_route;
622 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
623 goto route_err;
624 rcu_read_unlock();
625 return &rt->dst;
626
627 route_err:
628 ip_rt_put(rt);
629 no_route:
630 rcu_read_unlock();
631 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
632 return NULL;
633 }
634 EXPORT_SYMBOL_GPL(inet_csk_route_req);
635
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)636 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
637 struct sock *newsk,
638 const struct request_sock *req)
639 {
640 const struct inet_request_sock *ireq = inet_rsk(req);
641 struct net *net = read_pnet(&ireq->ireq_net);
642 struct inet_sock *newinet = inet_sk(newsk);
643 struct ip_options_rcu *opt;
644 struct flowi4 *fl4;
645 struct rtable *rt;
646
647 opt = rcu_dereference(ireq->ireq_opt);
648 fl4 = &newinet->cork.fl.u.ip4;
649
650 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
651 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
652 sk->sk_protocol, inet_sk_flowi_flags(sk),
653 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
654 ireq->ir_loc_addr, ireq->ir_rmt_port,
655 htons(ireq->ir_num), sk->sk_uid);
656 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
657 rt = ip_route_output_flow(net, fl4, sk);
658 if (IS_ERR(rt))
659 goto no_route;
660 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
661 goto route_err;
662 return &rt->dst;
663
664 route_err:
665 ip_rt_put(rt);
666 no_route:
667 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
668 return NULL;
669 }
670 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
671
672 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)673 static void syn_ack_recalc(struct request_sock *req,
674 const int max_syn_ack_retries,
675 const u8 rskq_defer_accept,
676 int *expire, int *resend)
677 {
678 if (!rskq_defer_accept) {
679 *expire = req->num_timeout >= max_syn_ack_retries;
680 *resend = 1;
681 return;
682 }
683 *expire = req->num_timeout >= max_syn_ack_retries &&
684 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
685 /* Do not resend while waiting for data after ACK,
686 * start to resend on end of deferring period to give
687 * last chance for data or ACK to create established socket.
688 */
689 *resend = !inet_rsk(req)->acked ||
690 req->num_timeout >= rskq_defer_accept - 1;
691 }
692
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)693 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
694 {
695 int err = req->rsk_ops->rtx_syn_ack(parent, req);
696
697 if (!err)
698 req->num_retrans++;
699 return err;
700 }
701 EXPORT_SYMBOL(inet_rtx_syn_ack);
702
inet_reqsk_clone(struct request_sock * req,struct sock * sk)703 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
704 struct sock *sk)
705 {
706 struct sock *req_sk, *nreq_sk;
707 struct request_sock *nreq;
708
709 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
710 if (!nreq) {
711 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
712
713 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
714 sock_put(sk);
715 return NULL;
716 }
717
718 req_sk = req_to_sk(req);
719 nreq_sk = req_to_sk(nreq);
720
721 memcpy(nreq_sk, req_sk,
722 offsetof(struct sock, sk_dontcopy_begin));
723 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
724 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
725
726 sk_node_init(&nreq_sk->sk_node);
727 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
728 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
729 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
730 #endif
731 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
732
733 nreq->rsk_listener = sk;
734
735 /* We need not acquire fastopenq->lock
736 * because the child socket is locked in inet_csk_listen_stop().
737 */
738 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
739 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
740
741 return nreq;
742 }
743
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)744 static void reqsk_queue_migrated(struct request_sock_queue *queue,
745 const struct request_sock *req)
746 {
747 if (req->num_timeout == 0)
748 atomic_inc(&queue->young);
749 atomic_inc(&queue->qlen);
750 }
751
reqsk_migrate_reset(struct request_sock * req)752 static void reqsk_migrate_reset(struct request_sock *req)
753 {
754 req->saved_syn = NULL;
755 #if IS_ENABLED(CONFIG_IPV6)
756 inet_rsk(req)->ipv6_opt = NULL;
757 inet_rsk(req)->pktopts = NULL;
758 #else
759 inet_rsk(req)->ireq_opt = NULL;
760 #endif
761 }
762
763 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)764 static bool reqsk_queue_unlink(struct request_sock *req)
765 {
766 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
767 bool found = false;
768
769 if (sk_hashed(req_to_sk(req))) {
770 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
771
772 spin_lock(lock);
773 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
774 spin_unlock(lock);
775 }
776 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
777 reqsk_put(req);
778 return found;
779 }
780
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)781 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
782 {
783 bool unlinked = reqsk_queue_unlink(req);
784
785 if (unlinked) {
786 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
787 reqsk_put(req);
788 }
789 return unlinked;
790 }
791 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
792
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)793 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
794 {
795 inet_csk_reqsk_queue_drop(sk, req);
796 reqsk_put(req);
797 }
798 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
799
reqsk_timer_handler(struct timer_list * t)800 static void reqsk_timer_handler(struct timer_list *t)
801 {
802 struct request_sock *req = from_timer(req, t, rsk_timer);
803 struct request_sock *nreq = NULL, *oreq = req;
804 struct sock *sk_listener = req->rsk_listener;
805 struct inet_connection_sock *icsk;
806 struct request_sock_queue *queue;
807 struct net *net;
808 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
809
810 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
811 struct sock *nsk;
812
813 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
814 if (!nsk)
815 goto drop;
816
817 nreq = inet_reqsk_clone(req, nsk);
818 if (!nreq)
819 goto drop;
820
821 /* The new timer for the cloned req can decrease the 2
822 * by calling inet_csk_reqsk_queue_drop_and_put(), so
823 * hold another count to prevent use-after-free and
824 * call reqsk_put() just before return.
825 */
826 refcount_set(&nreq->rsk_refcnt, 2 + 1);
827 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
828 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
829
830 req = nreq;
831 sk_listener = nsk;
832 }
833
834 icsk = inet_csk(sk_listener);
835 net = sock_net(sk_listener);
836 max_syn_ack_retries = icsk->icsk_syn_retries ? :
837 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
838 /* Normally all the openreqs are young and become mature
839 * (i.e. converted to established socket) for first timeout.
840 * If synack was not acknowledged for 1 second, it means
841 * one of the following things: synack was lost, ack was lost,
842 * rtt is high or nobody planned to ack (i.e. synflood).
843 * When server is a bit loaded, queue is populated with old
844 * open requests, reducing effective size of queue.
845 * When server is well loaded, queue size reduces to zero
846 * after several minutes of work. It is not synflood,
847 * it is normal operation. The solution is pruning
848 * too old entries overriding normal timeout, when
849 * situation becomes dangerous.
850 *
851 * Essentially, we reserve half of room for young
852 * embrions; and abort old ones without pity, if old
853 * ones are about to clog our table.
854 */
855 queue = &icsk->icsk_accept_queue;
856 qlen = reqsk_queue_len(queue);
857 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
858 int young = reqsk_queue_len_young(queue) << 1;
859
860 while (max_syn_ack_retries > 2) {
861 if (qlen < young)
862 break;
863 max_syn_ack_retries--;
864 young <<= 1;
865 }
866 }
867 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
868 &expire, &resend);
869 req->rsk_ops->syn_ack_timeout(req);
870 if (!expire &&
871 (!resend ||
872 !inet_rtx_syn_ack(sk_listener, req) ||
873 inet_rsk(req)->acked)) {
874 if (req->num_timeout++ == 0)
875 atomic_dec(&queue->young);
876 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
877
878 if (!nreq)
879 return;
880
881 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
882 /* delete timer */
883 inet_csk_reqsk_queue_drop(sk_listener, nreq);
884 goto no_ownership;
885 }
886
887 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
888 reqsk_migrate_reset(oreq);
889 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
890 reqsk_put(oreq);
891
892 reqsk_put(nreq);
893 return;
894 }
895
896 /* Even if we can clone the req, we may need not retransmit any more
897 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
898 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
899 */
900 if (nreq) {
901 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
902 no_ownership:
903 reqsk_migrate_reset(nreq);
904 reqsk_queue_removed(queue, nreq);
905 __reqsk_free(nreq);
906 }
907
908 drop:
909 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
910 }
911
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)912 static void reqsk_queue_hash_req(struct request_sock *req,
913 unsigned long timeout)
914 {
915 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
916 mod_timer(&req->rsk_timer, jiffies + timeout);
917
918 inet_ehash_insert(req_to_sk(req), NULL, NULL);
919 /* before letting lookups find us, make sure all req fields
920 * are committed to memory and refcnt initialized.
921 */
922 smp_wmb();
923 refcount_set(&req->rsk_refcnt, 2 + 1);
924 }
925
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)926 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
927 unsigned long timeout)
928 {
929 reqsk_queue_hash_req(req, timeout);
930 inet_csk_reqsk_queue_added(sk);
931 }
932 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
933
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)934 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
935 const gfp_t priority)
936 {
937 struct inet_connection_sock *icsk = inet_csk(newsk);
938
939 if (!icsk->icsk_ulp_ops)
940 return;
941
942 if (icsk->icsk_ulp_ops->clone)
943 icsk->icsk_ulp_ops->clone(req, newsk, priority);
944 }
945
946 /**
947 * inet_csk_clone_lock - clone an inet socket, and lock its clone
948 * @sk: the socket to clone
949 * @req: request_sock
950 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
951 *
952 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
953 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)954 struct sock *inet_csk_clone_lock(const struct sock *sk,
955 const struct request_sock *req,
956 const gfp_t priority)
957 {
958 struct sock *newsk = sk_clone_lock(sk, priority);
959
960 if (newsk) {
961 struct inet_connection_sock *newicsk = inet_csk(newsk);
962
963 inet_sk_set_state(newsk, TCP_SYN_RECV);
964 newicsk->icsk_bind_hash = NULL;
965
966 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
967 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
968 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
969
970 /* listeners have SOCK_RCU_FREE, not the children */
971 sock_reset_flag(newsk, SOCK_RCU_FREE);
972
973 inet_sk(newsk)->mc_list = NULL;
974
975 newsk->sk_mark = inet_rsk(req)->ir_mark;
976 atomic64_set(&newsk->sk_cookie,
977 atomic64_read(&inet_rsk(req)->ir_cookie));
978
979 newicsk->icsk_retransmits = 0;
980 newicsk->icsk_backoff = 0;
981 newicsk->icsk_probes_out = 0;
982 newicsk->icsk_probes_tstamp = 0;
983
984 /* Deinitialize accept_queue to trap illegal accesses. */
985 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
986
987 inet_clone_ulp(req, newsk, priority);
988
989 security_inet_csk_clone(newsk, req);
990 }
991 return newsk;
992 }
993 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
994
995 /*
996 * At this point, there should be no process reference to this
997 * socket, and thus no user references at all. Therefore we
998 * can assume the socket waitqueue is inactive and nobody will
999 * try to jump onto it.
1000 */
inet_csk_destroy_sock(struct sock * sk)1001 void inet_csk_destroy_sock(struct sock *sk)
1002 {
1003 WARN_ON(sk->sk_state != TCP_CLOSE);
1004 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1005
1006 /* It cannot be in hash table! */
1007 WARN_ON(!sk_unhashed(sk));
1008
1009 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1010 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1011
1012 sk->sk_prot->destroy(sk);
1013
1014 sk_stream_kill_queues(sk);
1015
1016 xfrm_sk_free_policy(sk);
1017
1018 sk_refcnt_debug_release(sk);
1019
1020 this_cpu_dec(*sk->sk_prot->orphan_count);
1021
1022 sock_put(sk);
1023 }
1024 EXPORT_SYMBOL(inet_csk_destroy_sock);
1025
1026 /* This function allows to force a closure of a socket after the call to
1027 * tcp/dccp_create_openreq_child().
1028 */
inet_csk_prepare_forced_close(struct sock * sk)1029 void inet_csk_prepare_forced_close(struct sock *sk)
1030 __releases(&sk->sk_lock.slock)
1031 {
1032 /* sk_clone_lock locked the socket and set refcnt to 2 */
1033 bh_unlock_sock(sk);
1034 sock_put(sk);
1035 inet_csk_prepare_for_destroy_sock(sk);
1036 inet_sk(sk)->inet_num = 0;
1037 }
1038 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1039
inet_csk_listen_start(struct sock * sk)1040 int inet_csk_listen_start(struct sock *sk)
1041 {
1042 struct inet_connection_sock *icsk = inet_csk(sk);
1043 struct inet_sock *inet = inet_sk(sk);
1044 int err = -EADDRINUSE;
1045
1046 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1047
1048 sk->sk_ack_backlog = 0;
1049 inet_csk_delack_init(sk);
1050
1051 if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT)
1052 sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1053
1054 /* There is race window here: we announce ourselves listening,
1055 * but this transition is still not validated by get_port().
1056 * It is OK, because this socket enters to hash table only
1057 * after validation is complete.
1058 */
1059 inet_sk_state_store(sk, TCP_LISTEN);
1060 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
1061 inet->inet_sport = htons(inet->inet_num);
1062
1063 sk_dst_reset(sk);
1064 err = sk->sk_prot->hash(sk);
1065
1066 if (likely(!err))
1067 return 0;
1068 }
1069
1070 inet_sk_set_state(sk, TCP_CLOSE);
1071 return err;
1072 }
1073 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1074
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1075 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1076 struct sock *child)
1077 {
1078 sk->sk_prot->disconnect(child, O_NONBLOCK);
1079
1080 sock_orphan(child);
1081
1082 this_cpu_inc(*sk->sk_prot->orphan_count);
1083
1084 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1085 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1086 BUG_ON(sk != req->rsk_listener);
1087
1088 /* Paranoid, to prevent race condition if
1089 * an inbound pkt destined for child is
1090 * blocked by sock lock in tcp_v4_rcv().
1091 * Also to satisfy an assertion in
1092 * tcp_v4_destroy_sock().
1093 */
1094 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1095 }
1096 inet_csk_destroy_sock(child);
1097 }
1098
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1099 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1100 struct request_sock *req,
1101 struct sock *child)
1102 {
1103 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1104
1105 spin_lock(&queue->rskq_lock);
1106 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1107 inet_child_forget(sk, req, child);
1108 child = NULL;
1109 } else {
1110 req->sk = child;
1111 req->dl_next = NULL;
1112 if (queue->rskq_accept_head == NULL)
1113 WRITE_ONCE(queue->rskq_accept_head, req);
1114 else
1115 queue->rskq_accept_tail->dl_next = req;
1116 queue->rskq_accept_tail = req;
1117 sk_acceptq_added(sk);
1118 }
1119 spin_unlock(&queue->rskq_lock);
1120 return child;
1121 }
1122 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1123
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1124 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1125 struct request_sock *req, bool own_req)
1126 {
1127 if (own_req) {
1128 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1129 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1130
1131 if (sk != req->rsk_listener) {
1132 /* another listening sk has been selected,
1133 * migrate the req to it.
1134 */
1135 struct request_sock *nreq;
1136
1137 /* hold a refcnt for the nreq->rsk_listener
1138 * which is assigned in inet_reqsk_clone()
1139 */
1140 sock_hold(sk);
1141 nreq = inet_reqsk_clone(req, sk);
1142 if (!nreq) {
1143 inet_child_forget(sk, req, child);
1144 goto child_put;
1145 }
1146
1147 refcount_set(&nreq->rsk_refcnt, 1);
1148 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1149 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1150 reqsk_migrate_reset(req);
1151 reqsk_put(req);
1152 return child;
1153 }
1154
1155 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1156 reqsk_migrate_reset(nreq);
1157 __reqsk_free(nreq);
1158 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1159 return child;
1160 }
1161 }
1162 /* Too bad, another child took ownership of the request, undo. */
1163 child_put:
1164 bh_unlock_sock(child);
1165 sock_put(child);
1166 return NULL;
1167 }
1168 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1169
1170 /*
1171 * This routine closes sockets which have been at least partially
1172 * opened, but not yet accepted.
1173 */
inet_csk_listen_stop(struct sock * sk)1174 void inet_csk_listen_stop(struct sock *sk)
1175 {
1176 struct inet_connection_sock *icsk = inet_csk(sk);
1177 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1178 struct request_sock *next, *req;
1179
1180 /* Following specs, it would be better either to send FIN
1181 * (and enter FIN-WAIT-1, it is normal close)
1182 * or to send active reset (abort).
1183 * Certainly, it is pretty dangerous while synflood, but it is
1184 * bad justification for our negligence 8)
1185 * To be honest, we are not able to make either
1186 * of the variants now. --ANK
1187 */
1188 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1189 struct sock *child = req->sk, *nsk;
1190 struct request_sock *nreq;
1191
1192 local_bh_disable();
1193 bh_lock_sock(child);
1194 WARN_ON(sock_owned_by_user(child));
1195 sock_hold(child);
1196
1197 nsk = reuseport_migrate_sock(sk, child, NULL);
1198 if (nsk) {
1199 nreq = inet_reqsk_clone(req, nsk);
1200 if (nreq) {
1201 refcount_set(&nreq->rsk_refcnt, 1);
1202
1203 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1204 __NET_INC_STATS(sock_net(nsk),
1205 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1206 reqsk_migrate_reset(req);
1207 } else {
1208 __NET_INC_STATS(sock_net(nsk),
1209 LINUX_MIB_TCPMIGRATEREQFAILURE);
1210 reqsk_migrate_reset(nreq);
1211 __reqsk_free(nreq);
1212 }
1213
1214 /* inet_csk_reqsk_queue_add() has already
1215 * called inet_child_forget() on failure case.
1216 */
1217 goto skip_child_forget;
1218 }
1219 }
1220
1221 inet_child_forget(sk, req, child);
1222 skip_child_forget:
1223 reqsk_put(req);
1224 bh_unlock_sock(child);
1225 local_bh_enable();
1226 sock_put(child);
1227
1228 cond_resched();
1229 }
1230 if (queue->fastopenq.rskq_rst_head) {
1231 /* Free all the reqs queued in rskq_rst_head. */
1232 spin_lock_bh(&queue->fastopenq.lock);
1233 req = queue->fastopenq.rskq_rst_head;
1234 queue->fastopenq.rskq_rst_head = NULL;
1235 spin_unlock_bh(&queue->fastopenq.lock);
1236 while (req != NULL) {
1237 next = req->dl_next;
1238 reqsk_put(req);
1239 req = next;
1240 }
1241 }
1242 WARN_ON_ONCE(sk->sk_ack_backlog);
1243 }
1244 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1245
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1246 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1247 {
1248 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1249 const struct inet_sock *inet = inet_sk(sk);
1250
1251 sin->sin_family = AF_INET;
1252 sin->sin_addr.s_addr = inet->inet_daddr;
1253 sin->sin_port = inet->inet_dport;
1254 }
1255 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1256
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1257 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1258 {
1259 const struct inet_sock *inet = inet_sk(sk);
1260 const struct ip_options_rcu *inet_opt;
1261 __be32 daddr = inet->inet_daddr;
1262 struct flowi4 *fl4;
1263 struct rtable *rt;
1264
1265 rcu_read_lock();
1266 inet_opt = rcu_dereference(inet->inet_opt);
1267 if (inet_opt && inet_opt->opt.srr)
1268 daddr = inet_opt->opt.faddr;
1269 fl4 = &fl->u.ip4;
1270 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1271 inet->inet_saddr, inet->inet_dport,
1272 inet->inet_sport, sk->sk_protocol,
1273 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1274 if (IS_ERR(rt))
1275 rt = NULL;
1276 if (rt)
1277 sk_setup_caps(sk, &rt->dst);
1278 rcu_read_unlock();
1279
1280 return &rt->dst;
1281 }
1282
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1283 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1284 {
1285 struct dst_entry *dst = __sk_dst_check(sk, 0);
1286 struct inet_sock *inet = inet_sk(sk);
1287
1288 if (!dst) {
1289 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1290 if (!dst)
1291 goto out;
1292 }
1293 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1294
1295 dst = __sk_dst_check(sk, 0);
1296 if (!dst)
1297 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1298 out:
1299 return dst;
1300 }
1301 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1302