1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51 unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58 * Some modules use swappable objects and may try to swap them out under
59 * memory pressure (via the shrinker). Before doing so, they may wish to
60 * check to see if any swap space is available.
61 */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66
67 static const char Bad_file[] = "Bad swap file entry ";
68 static const char Unused_file[] = "Unused swap file entry ";
69 static const char Bad_offset[] = "Bad swap offset entry ";
70 static const char Unused_offset[] = "Unused swap offset entry ";
71
72 /*
73 * all active swap_info_structs
74 * protected with swap_lock, and ordered by priority.
75 */
76 static PLIST_HEAD(swap_active_head);
77
78 /*
79 * all available (active, not full) swap_info_structs
80 * protected with swap_avail_lock, ordered by priority.
81 * This is used by folio_alloc_swap() instead of swap_active_head
82 * because swap_active_head includes all swap_info_structs,
83 * but folio_alloc_swap() doesn't need to look at full ones.
84 * This uses its own lock instead of swap_lock because when a
85 * swap_info_struct changes between not-full/full, it needs to
86 * add/remove itself to/from this list, but the swap_info_struct->lock
87 * is held and the locking order requires swap_lock to be taken
88 * before any swap_info_struct->lock.
89 */
90 static struct plist_head *swap_avail_heads;
91 static DEFINE_SPINLOCK(swap_avail_lock);
92
93 struct swap_info_struct *swap_info[MAX_SWAPFILES];
94
95 static DEFINE_MUTEX(swapon_mutex);
96
97 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
98 /* Activity counter to indicate that a swapon or swapoff has occurred */
99 static atomic_t proc_poll_event = ATOMIC_INIT(0);
100
101 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
102
swap_type_to_swap_info(int type)103 static struct swap_info_struct *swap_type_to_swap_info(int type)
104 {
105 if (type >= MAX_SWAPFILES)
106 return NULL;
107
108 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
109 }
110
swap_count(unsigned char ent)111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
first_se(struct swap_info_struct * sis)155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
next_se(struct swap_extent * se)161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
discard_swap(struct swap_info_struct * si)171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
swap_page_sector(struct page * page)224 sector_t swap_page_sector(struct page *page)
225 {
226 struct swap_info_struct *sis = page_swap_info(page);
227 struct swap_extent *se;
228 sector_t sector;
229 pgoff_t offset;
230
231 offset = __page_file_index(page);
232 se = offset_to_swap_extent(sis, offset);
233 sector = se->start_block + (offset - se->start_page);
234 return sector << (PAGE_SHIFT - 9);
235 }
236
237 /*
238 * swap allocation tell device that a cluster of swap can now be discarded,
239 * to allow the swap device to optimize its wear-levelling.
240 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)241 static void discard_swap_cluster(struct swap_info_struct *si,
242 pgoff_t start_page, pgoff_t nr_pages)
243 {
244 struct swap_extent *se = offset_to_swap_extent(si, start_page);
245
246 while (nr_pages) {
247 pgoff_t offset = start_page - se->start_page;
248 sector_t start_block = se->start_block + offset;
249 sector_t nr_blocks = se->nr_pages - offset;
250
251 if (nr_blocks > nr_pages)
252 nr_blocks = nr_pages;
253 start_page += nr_blocks;
254 nr_pages -= nr_blocks;
255
256 start_block <<= PAGE_SHIFT - 9;
257 nr_blocks <<= PAGE_SHIFT - 9;
258 if (blkdev_issue_discard(si->bdev, start_block,
259 nr_blocks, GFP_NOIO))
260 break;
261
262 se = next_se(se);
263 }
264 }
265
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
268
269 #define swap_entry_size(size) (size)
270 #else
271 #define SWAPFILE_CLUSTER 256
272
273 /*
274 * Define swap_entry_size() as constant to let compiler to optimize
275 * out some code if !CONFIG_THP_SWAP
276 */
277 #define swap_entry_size(size) 1
278 #endif
279 #define LATENCY_LIMIT 256
280
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282 unsigned int flag)
283 {
284 info->flags = flag;
285 }
286
cluster_count(struct swap_cluster_info * info)287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289 return info->data;
290 }
291
cluster_set_count(struct swap_cluster_info * info,unsigned int c)292 static inline void cluster_set_count(struct swap_cluster_info *info,
293 unsigned int c)
294 {
295 info->data = c;
296 }
297
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 unsigned int c, unsigned int f)
300 {
301 info->flags = f;
302 info->data = c;
303 }
304
cluster_next(struct swap_cluster_info * info)305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307 return info->data;
308 }
309
cluster_set_next(struct swap_cluster_info * info,unsigned int n)310 static inline void cluster_set_next(struct swap_cluster_info *info,
311 unsigned int n)
312 {
313 info->data = n;
314 }
315
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 unsigned int n, unsigned int f)
318 {
319 info->flags = f;
320 info->data = n;
321 }
322
cluster_is_free(struct swap_cluster_info * info)323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325 return info->flags & CLUSTER_FLAG_FREE;
326 }
327
cluster_is_null(struct swap_cluster_info * info)328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330 return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332
cluster_set_null(struct swap_cluster_info * info)333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335 info->flags = CLUSTER_FLAG_NEXT_NULL;
336 info->data = 0;
337 }
338
cluster_is_huge(struct swap_cluster_info * info)339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341 if (IS_ENABLED(CONFIG_THP_SWAP))
342 return info->flags & CLUSTER_FLAG_HUGE;
343 return false;
344 }
345
cluster_clear_huge(struct swap_cluster_info * info)346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348 info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350
lock_cluster(struct swap_info_struct * si,unsigned long offset)351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
353 {
354 struct swap_cluster_info *ci;
355
356 ci = si->cluster_info;
357 if (ci) {
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
360 }
361 return ci;
362 }
363
unlock_cluster(struct swap_cluster_info * ci)364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366 if (ci)
367 spin_unlock(&ci->lock);
368 }
369
370 /*
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
373 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
376 {
377 struct swap_cluster_info *ci;
378
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
382 if (!ci)
383 spin_lock(&si->lock);
384
385 return ci;
386 }
387
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
390 {
391 if (ci)
392 unlock_cluster(ci);
393 else
394 spin_unlock(&si->lock);
395 }
396
cluster_list_empty(struct swap_cluster_list * list)397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399 return cluster_is_null(&list->head);
400 }
401
cluster_list_first(struct swap_cluster_list * list)402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404 return cluster_next(&list->head);
405 }
406
cluster_list_init(struct swap_cluster_list * list)407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
411 }
412
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
415 unsigned int idx)
416 {
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 } else {
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
423
424 /*
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
427 */
428 ci_tail = ci + tail;
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
433 }
434 }
435
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
438 {
439 unsigned int idx;
440
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
445 } else
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
448
449 return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 unsigned int idx)
455 {
456 /*
457 * If scan_swap_map_slots() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460 * It will be cleared after discard
461 */
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467 schedule_work(&si->discard_work);
468 }
469
__free_cluster(struct swap_info_struct * si,unsigned long idx)470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472 struct swap_cluster_info *ci = si->cluster_info;
473
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
481 */
swap_do_scheduled_discard(struct swap_info_struct * si)482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484 struct swap_cluster_info *info, *ci;
485 unsigned int idx;
486
487 info = si->cluster_info;
488
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
492
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 SWAPFILE_CLUSTER);
495
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
501 unlock_cluster(ci);
502 }
503 }
504
swap_discard_work(struct work_struct * work)505 static void swap_discard_work(struct work_struct *work)
506 {
507 struct swap_info_struct *si;
508
509 si = container_of(work, struct swap_info_struct, discard_work);
510
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
514 }
515
swap_users_ref_free(struct percpu_ref * ref)516 static void swap_users_ref_free(struct percpu_ref *ref)
517 {
518 struct swap_info_struct *si;
519
520 si = container_of(ref, struct swap_info_struct, users);
521 complete(&si->comp);
522 }
523
alloc_cluster(struct swap_info_struct * si,unsigned long idx)524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526 struct swap_cluster_info *ci = si->cluster_info;
527
528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529 cluster_list_del_first(&si->free_clusters, ci);
530 cluster_set_count_flag(ci + idx, 0, 0);
531 }
532
free_cluster(struct swap_info_struct * si,unsigned long idx)533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534 {
535 struct swap_cluster_info *ci = si->cluster_info + idx;
536
537 VM_BUG_ON(cluster_count(ci) != 0);
538 /*
539 * If the swap is discardable, prepare discard the cluster
540 * instead of free it immediately. The cluster will be freed
541 * after discard.
542 */
543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545 swap_cluster_schedule_discard(si, idx);
546 return;
547 }
548
549 __free_cluster(si, idx);
550 }
551
552 /*
553 * The cluster corresponding to page_nr will be used. The cluster will be
554 * removed from free cluster list and its usage counter will be increased.
555 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)556 static void inc_cluster_info_page(struct swap_info_struct *p,
557 struct swap_cluster_info *cluster_info, unsigned long page_nr)
558 {
559 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
560
561 if (!cluster_info)
562 return;
563 if (cluster_is_free(&cluster_info[idx]))
564 alloc_cluster(p, idx);
565
566 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
567 cluster_set_count(&cluster_info[idx],
568 cluster_count(&cluster_info[idx]) + 1);
569 }
570
571 /*
572 * The cluster corresponding to page_nr decreases one usage. If the usage
573 * counter becomes 0, which means no page in the cluster is in using, we can
574 * optionally discard the cluster and add it to free cluster list.
575 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)576 static void dec_cluster_info_page(struct swap_info_struct *p,
577 struct swap_cluster_info *cluster_info, unsigned long page_nr)
578 {
579 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
580
581 if (!cluster_info)
582 return;
583
584 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
585 cluster_set_count(&cluster_info[idx],
586 cluster_count(&cluster_info[idx]) - 1);
587
588 if (cluster_count(&cluster_info[idx]) == 0)
589 free_cluster(p, idx);
590 }
591
592 /*
593 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
594 * cluster list. Avoiding such abuse to avoid list corruption.
595 */
596 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)597 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
598 unsigned long offset)
599 {
600 struct percpu_cluster *percpu_cluster;
601 bool conflict;
602
603 offset /= SWAPFILE_CLUSTER;
604 conflict = !cluster_list_empty(&si->free_clusters) &&
605 offset != cluster_list_first(&si->free_clusters) &&
606 cluster_is_free(&si->cluster_info[offset]);
607
608 if (!conflict)
609 return false;
610
611 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
612 cluster_set_null(&percpu_cluster->index);
613 return true;
614 }
615
616 /*
617 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
618 * might involve allocating a new cluster for current CPU too.
619 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)620 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
621 unsigned long *offset, unsigned long *scan_base)
622 {
623 struct percpu_cluster *cluster;
624 struct swap_cluster_info *ci;
625 unsigned long tmp, max;
626
627 new_cluster:
628 cluster = this_cpu_ptr(si->percpu_cluster);
629 if (cluster_is_null(&cluster->index)) {
630 if (!cluster_list_empty(&si->free_clusters)) {
631 cluster->index = si->free_clusters.head;
632 cluster->next = cluster_next(&cluster->index) *
633 SWAPFILE_CLUSTER;
634 } else if (!cluster_list_empty(&si->discard_clusters)) {
635 /*
636 * we don't have free cluster but have some clusters in
637 * discarding, do discard now and reclaim them, then
638 * reread cluster_next_cpu since we dropped si->lock
639 */
640 swap_do_scheduled_discard(si);
641 *scan_base = this_cpu_read(*si->cluster_next_cpu);
642 *offset = *scan_base;
643 goto new_cluster;
644 } else
645 return false;
646 }
647
648 /*
649 * Other CPUs can use our cluster if they can't find a free cluster,
650 * check if there is still free entry in the cluster
651 */
652 tmp = cluster->next;
653 max = min_t(unsigned long, si->max,
654 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
655 if (tmp < max) {
656 ci = lock_cluster(si, tmp);
657 while (tmp < max) {
658 if (!si->swap_map[tmp])
659 break;
660 tmp++;
661 }
662 unlock_cluster(ci);
663 }
664 if (tmp >= max) {
665 cluster_set_null(&cluster->index);
666 goto new_cluster;
667 }
668 cluster->next = tmp + 1;
669 *offset = tmp;
670 *scan_base = tmp;
671 return true;
672 }
673
__del_from_avail_list(struct swap_info_struct * p)674 static void __del_from_avail_list(struct swap_info_struct *p)
675 {
676 int nid;
677
678 for_each_node(nid)
679 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
680 }
681
del_from_avail_list(struct swap_info_struct * p)682 static void del_from_avail_list(struct swap_info_struct *p)
683 {
684 spin_lock(&swap_avail_lock);
685 __del_from_avail_list(p);
686 spin_unlock(&swap_avail_lock);
687 }
688
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)689 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
690 unsigned int nr_entries)
691 {
692 unsigned int end = offset + nr_entries - 1;
693
694 if (offset == si->lowest_bit)
695 si->lowest_bit += nr_entries;
696 if (end == si->highest_bit)
697 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
698 si->inuse_pages += nr_entries;
699 if (si->inuse_pages == si->pages) {
700 si->lowest_bit = si->max;
701 si->highest_bit = 0;
702 del_from_avail_list(si);
703 }
704 }
705
add_to_avail_list(struct swap_info_struct * p)706 static void add_to_avail_list(struct swap_info_struct *p)
707 {
708 int nid;
709
710 spin_lock(&swap_avail_lock);
711 for_each_node(nid) {
712 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
713 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
714 }
715 spin_unlock(&swap_avail_lock);
716 }
717
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)718 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
719 unsigned int nr_entries)
720 {
721 unsigned long begin = offset;
722 unsigned long end = offset + nr_entries - 1;
723 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
724
725 if (offset < si->lowest_bit)
726 si->lowest_bit = offset;
727 if (end > si->highest_bit) {
728 bool was_full = !si->highest_bit;
729
730 WRITE_ONCE(si->highest_bit, end);
731 if (was_full && (si->flags & SWP_WRITEOK))
732 add_to_avail_list(si);
733 }
734 atomic_long_add(nr_entries, &nr_swap_pages);
735 si->inuse_pages -= nr_entries;
736 if (si->flags & SWP_BLKDEV)
737 swap_slot_free_notify =
738 si->bdev->bd_disk->fops->swap_slot_free_notify;
739 else
740 swap_slot_free_notify = NULL;
741 while (offset <= end) {
742 arch_swap_invalidate_page(si->type, offset);
743 frontswap_invalidate_page(si->type, offset);
744 if (swap_slot_free_notify)
745 swap_slot_free_notify(si->bdev, offset);
746 offset++;
747 }
748 clear_shadow_from_swap_cache(si->type, begin, end);
749 }
750
set_cluster_next(struct swap_info_struct * si,unsigned long next)751 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
752 {
753 unsigned long prev;
754
755 if (!(si->flags & SWP_SOLIDSTATE)) {
756 si->cluster_next = next;
757 return;
758 }
759
760 prev = this_cpu_read(*si->cluster_next_cpu);
761 /*
762 * Cross the swap address space size aligned trunk, choose
763 * another trunk randomly to avoid lock contention on swap
764 * address space if possible.
765 */
766 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
767 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
768 /* No free swap slots available */
769 if (si->highest_bit <= si->lowest_bit)
770 return;
771 next = si->lowest_bit +
772 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
773 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
774 next = max_t(unsigned int, next, si->lowest_bit);
775 }
776 this_cpu_write(*si->cluster_next_cpu, next);
777 }
778
swap_offset_available_and_locked(struct swap_info_struct * si,unsigned long offset)779 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
780 unsigned long offset)
781 {
782 if (data_race(!si->swap_map[offset])) {
783 spin_lock(&si->lock);
784 return true;
785 }
786
787 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
788 spin_lock(&si->lock);
789 return true;
790 }
791
792 return false;
793 }
794
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])795 static int scan_swap_map_slots(struct swap_info_struct *si,
796 unsigned char usage, int nr,
797 swp_entry_t slots[])
798 {
799 struct swap_cluster_info *ci;
800 unsigned long offset;
801 unsigned long scan_base;
802 unsigned long last_in_cluster = 0;
803 int latency_ration = LATENCY_LIMIT;
804 int n_ret = 0;
805 bool scanned_many = false;
806
807 /*
808 * We try to cluster swap pages by allocating them sequentially
809 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
810 * way, however, we resort to first-free allocation, starting
811 * a new cluster. This prevents us from scattering swap pages
812 * all over the entire swap partition, so that we reduce
813 * overall disk seek times between swap pages. -- sct
814 * But we do now try to find an empty cluster. -Andrea
815 * And we let swap pages go all over an SSD partition. Hugh
816 */
817
818 si->flags += SWP_SCANNING;
819 /*
820 * Use percpu scan base for SSD to reduce lock contention on
821 * cluster and swap cache. For HDD, sequential access is more
822 * important.
823 */
824 if (si->flags & SWP_SOLIDSTATE)
825 scan_base = this_cpu_read(*si->cluster_next_cpu);
826 else
827 scan_base = si->cluster_next;
828 offset = scan_base;
829
830 /* SSD algorithm */
831 if (si->cluster_info) {
832 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
833 goto scan;
834 } else if (unlikely(!si->cluster_nr--)) {
835 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
836 si->cluster_nr = SWAPFILE_CLUSTER - 1;
837 goto checks;
838 }
839
840 spin_unlock(&si->lock);
841
842 /*
843 * If seek is expensive, start searching for new cluster from
844 * start of partition, to minimize the span of allocated swap.
845 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
846 * case, just handled by scan_swap_map_try_ssd_cluster() above.
847 */
848 scan_base = offset = si->lowest_bit;
849 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
850
851 /* Locate the first empty (unaligned) cluster */
852 for (; last_in_cluster <= si->highest_bit; offset++) {
853 if (si->swap_map[offset])
854 last_in_cluster = offset + SWAPFILE_CLUSTER;
855 else if (offset == last_in_cluster) {
856 spin_lock(&si->lock);
857 offset -= SWAPFILE_CLUSTER - 1;
858 si->cluster_next = offset;
859 si->cluster_nr = SWAPFILE_CLUSTER - 1;
860 goto checks;
861 }
862 if (unlikely(--latency_ration < 0)) {
863 cond_resched();
864 latency_ration = LATENCY_LIMIT;
865 }
866 }
867
868 offset = scan_base;
869 spin_lock(&si->lock);
870 si->cluster_nr = SWAPFILE_CLUSTER - 1;
871 }
872
873 checks:
874 if (si->cluster_info) {
875 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
876 /* take a break if we already got some slots */
877 if (n_ret)
878 goto done;
879 if (!scan_swap_map_try_ssd_cluster(si, &offset,
880 &scan_base))
881 goto scan;
882 }
883 }
884 if (!(si->flags & SWP_WRITEOK))
885 goto no_page;
886 if (!si->highest_bit)
887 goto no_page;
888 if (offset > si->highest_bit)
889 scan_base = offset = si->lowest_bit;
890
891 ci = lock_cluster(si, offset);
892 /* reuse swap entry of cache-only swap if not busy. */
893 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
894 int swap_was_freed;
895 unlock_cluster(ci);
896 spin_unlock(&si->lock);
897 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
898 spin_lock(&si->lock);
899 /* entry was freed successfully, try to use this again */
900 if (swap_was_freed)
901 goto checks;
902 goto scan; /* check next one */
903 }
904
905 if (si->swap_map[offset]) {
906 unlock_cluster(ci);
907 if (!n_ret)
908 goto scan;
909 else
910 goto done;
911 }
912 WRITE_ONCE(si->swap_map[offset], usage);
913 inc_cluster_info_page(si, si->cluster_info, offset);
914 unlock_cluster(ci);
915
916 swap_range_alloc(si, offset, 1);
917 slots[n_ret++] = swp_entry(si->type, offset);
918
919 /* got enough slots or reach max slots? */
920 if ((n_ret == nr) || (offset >= si->highest_bit))
921 goto done;
922
923 /* search for next available slot */
924
925 /* time to take a break? */
926 if (unlikely(--latency_ration < 0)) {
927 if (n_ret)
928 goto done;
929 spin_unlock(&si->lock);
930 cond_resched();
931 spin_lock(&si->lock);
932 latency_ration = LATENCY_LIMIT;
933 }
934
935 /* try to get more slots in cluster */
936 if (si->cluster_info) {
937 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
938 goto checks;
939 } else if (si->cluster_nr && !si->swap_map[++offset]) {
940 /* non-ssd case, still more slots in cluster? */
941 --si->cluster_nr;
942 goto checks;
943 }
944
945 /*
946 * Even if there's no free clusters available (fragmented),
947 * try to scan a little more quickly with lock held unless we
948 * have scanned too many slots already.
949 */
950 if (!scanned_many) {
951 unsigned long scan_limit;
952
953 if (offset < scan_base)
954 scan_limit = scan_base;
955 else
956 scan_limit = si->highest_bit;
957 for (; offset <= scan_limit && --latency_ration > 0;
958 offset++) {
959 if (!si->swap_map[offset])
960 goto checks;
961 }
962 }
963
964 done:
965 set_cluster_next(si, offset + 1);
966 si->flags -= SWP_SCANNING;
967 return n_ret;
968
969 scan:
970 spin_unlock(&si->lock);
971 while (++offset <= READ_ONCE(si->highest_bit)) {
972 if (swap_offset_available_and_locked(si, offset))
973 goto checks;
974 if (unlikely(--latency_ration < 0)) {
975 cond_resched();
976 latency_ration = LATENCY_LIMIT;
977 scanned_many = true;
978 }
979 }
980 offset = si->lowest_bit;
981 while (offset < scan_base) {
982 if (swap_offset_available_and_locked(si, offset))
983 goto checks;
984 if (unlikely(--latency_ration < 0)) {
985 cond_resched();
986 latency_ration = LATENCY_LIMIT;
987 scanned_many = true;
988 }
989 offset++;
990 }
991 spin_lock(&si->lock);
992
993 no_page:
994 si->flags -= SWP_SCANNING;
995 return n_ret;
996 }
997
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)998 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
999 {
1000 unsigned long idx;
1001 struct swap_cluster_info *ci;
1002 unsigned long offset;
1003
1004 /*
1005 * Should not even be attempting cluster allocations when huge
1006 * page swap is disabled. Warn and fail the allocation.
1007 */
1008 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1009 VM_WARN_ON_ONCE(1);
1010 return 0;
1011 }
1012
1013 if (cluster_list_empty(&si->free_clusters))
1014 return 0;
1015
1016 idx = cluster_list_first(&si->free_clusters);
1017 offset = idx * SWAPFILE_CLUSTER;
1018 ci = lock_cluster(si, offset);
1019 alloc_cluster(si, idx);
1020 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1021
1022 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1023 unlock_cluster(ci);
1024 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1025 *slot = swp_entry(si->type, offset);
1026
1027 return 1;
1028 }
1029
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1030 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1031 {
1032 unsigned long offset = idx * SWAPFILE_CLUSTER;
1033 struct swap_cluster_info *ci;
1034
1035 ci = lock_cluster(si, offset);
1036 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1037 cluster_set_count_flag(ci, 0, 0);
1038 free_cluster(si, idx);
1039 unlock_cluster(ci);
1040 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1041 }
1042
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1043 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1044 {
1045 unsigned long size = swap_entry_size(entry_size);
1046 struct swap_info_struct *si, *next;
1047 long avail_pgs;
1048 int n_ret = 0;
1049 int node;
1050
1051 /* Only single cluster request supported */
1052 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1053
1054 spin_lock(&swap_avail_lock);
1055
1056 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1057 if (avail_pgs <= 0) {
1058 spin_unlock(&swap_avail_lock);
1059 goto noswap;
1060 }
1061
1062 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1063
1064 atomic_long_sub(n_goal * size, &nr_swap_pages);
1065
1066 start_over:
1067 node = numa_node_id();
1068 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1069 /* requeue si to after same-priority siblings */
1070 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1071 spin_unlock(&swap_avail_lock);
1072 spin_lock(&si->lock);
1073 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1074 spin_lock(&swap_avail_lock);
1075 if (plist_node_empty(&si->avail_lists[node])) {
1076 spin_unlock(&si->lock);
1077 goto nextsi;
1078 }
1079 WARN(!si->highest_bit,
1080 "swap_info %d in list but !highest_bit\n",
1081 si->type);
1082 WARN(!(si->flags & SWP_WRITEOK),
1083 "swap_info %d in list but !SWP_WRITEOK\n",
1084 si->type);
1085 __del_from_avail_list(si);
1086 spin_unlock(&si->lock);
1087 goto nextsi;
1088 }
1089 if (size == SWAPFILE_CLUSTER) {
1090 if (si->flags & SWP_BLKDEV)
1091 n_ret = swap_alloc_cluster(si, swp_entries);
1092 } else
1093 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1094 n_goal, swp_entries);
1095 spin_unlock(&si->lock);
1096 if (n_ret || size == SWAPFILE_CLUSTER)
1097 goto check_out;
1098 pr_debug("scan_swap_map of si %d failed to find offset\n",
1099 si->type);
1100
1101 spin_lock(&swap_avail_lock);
1102 nextsi:
1103 /*
1104 * if we got here, it's likely that si was almost full before,
1105 * and since scan_swap_map_slots() can drop the si->lock,
1106 * multiple callers probably all tried to get a page from the
1107 * same si and it filled up before we could get one; or, the si
1108 * filled up between us dropping swap_avail_lock and taking
1109 * si->lock. Since we dropped the swap_avail_lock, the
1110 * swap_avail_head list may have been modified; so if next is
1111 * still in the swap_avail_head list then try it, otherwise
1112 * start over if we have not gotten any slots.
1113 */
1114 if (plist_node_empty(&next->avail_lists[node]))
1115 goto start_over;
1116 }
1117
1118 spin_unlock(&swap_avail_lock);
1119
1120 check_out:
1121 if (n_ret < n_goal)
1122 atomic_long_add((long)(n_goal - n_ret) * size,
1123 &nr_swap_pages);
1124 noswap:
1125 return n_ret;
1126 }
1127
_swap_info_get(swp_entry_t entry)1128 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1129 {
1130 struct swap_info_struct *p;
1131 unsigned long offset;
1132
1133 if (!entry.val)
1134 goto out;
1135 p = swp_swap_info(entry);
1136 if (!p)
1137 goto bad_nofile;
1138 if (data_race(!(p->flags & SWP_USED)))
1139 goto bad_device;
1140 offset = swp_offset(entry);
1141 if (offset >= p->max)
1142 goto bad_offset;
1143 if (data_race(!p->swap_map[swp_offset(entry)]))
1144 goto bad_free;
1145 return p;
1146
1147 bad_free:
1148 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1149 goto out;
1150 bad_offset:
1151 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1152 goto out;
1153 bad_device:
1154 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1155 goto out;
1156 bad_nofile:
1157 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1158 out:
1159 return NULL;
1160 }
1161
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1162 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1163 struct swap_info_struct *q)
1164 {
1165 struct swap_info_struct *p;
1166
1167 p = _swap_info_get(entry);
1168
1169 if (p != q) {
1170 if (q != NULL)
1171 spin_unlock(&q->lock);
1172 if (p != NULL)
1173 spin_lock(&p->lock);
1174 }
1175 return p;
1176 }
1177
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1178 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1179 unsigned long offset,
1180 unsigned char usage)
1181 {
1182 unsigned char count;
1183 unsigned char has_cache;
1184
1185 count = p->swap_map[offset];
1186
1187 has_cache = count & SWAP_HAS_CACHE;
1188 count &= ~SWAP_HAS_CACHE;
1189
1190 if (usage == SWAP_HAS_CACHE) {
1191 VM_BUG_ON(!has_cache);
1192 has_cache = 0;
1193 } else if (count == SWAP_MAP_SHMEM) {
1194 /*
1195 * Or we could insist on shmem.c using a special
1196 * swap_shmem_free() and free_shmem_swap_and_cache()...
1197 */
1198 count = 0;
1199 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1200 if (count == COUNT_CONTINUED) {
1201 if (swap_count_continued(p, offset, count))
1202 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1203 else
1204 count = SWAP_MAP_MAX;
1205 } else
1206 count--;
1207 }
1208
1209 usage = count | has_cache;
1210 if (usage)
1211 WRITE_ONCE(p->swap_map[offset], usage);
1212 else
1213 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1214
1215 return usage;
1216 }
1217
1218 /*
1219 * Check whether swap entry is valid in the swap device. If so,
1220 * return pointer to swap_info_struct, and keep the swap entry valid
1221 * via preventing the swap device from being swapoff, until
1222 * put_swap_device() is called. Otherwise return NULL.
1223 *
1224 * Notice that swapoff or swapoff+swapon can still happen before the
1225 * percpu_ref_tryget_live() in get_swap_device() or after the
1226 * percpu_ref_put() in put_swap_device() if there isn't any other way
1227 * to prevent swapoff, such as page lock, page table lock, etc. The
1228 * caller must be prepared for that. For example, the following
1229 * situation is possible.
1230 *
1231 * CPU1 CPU2
1232 * do_swap_page()
1233 * ... swapoff+swapon
1234 * __read_swap_cache_async()
1235 * swapcache_prepare()
1236 * __swap_duplicate()
1237 * // check swap_map
1238 * // verify PTE not changed
1239 *
1240 * In __swap_duplicate(), the swap_map need to be checked before
1241 * changing partly because the specified swap entry may be for another
1242 * swap device which has been swapoff. And in do_swap_page(), after
1243 * the page is read from the swap device, the PTE is verified not
1244 * changed with the page table locked to check whether the swap device
1245 * has been swapoff or swapoff+swapon.
1246 */
get_swap_device(swp_entry_t entry)1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249 struct swap_info_struct *si;
1250 unsigned long offset;
1251
1252 if (!entry.val)
1253 goto out;
1254 si = swp_swap_info(entry);
1255 if (!si)
1256 goto bad_nofile;
1257 if (!percpu_ref_tryget_live(&si->users))
1258 goto out;
1259 /*
1260 * Guarantee the si->users are checked before accessing other
1261 * fields of swap_info_struct.
1262 *
1263 * Paired with the spin_unlock() after setup_swap_info() in
1264 * enable_swap_info().
1265 */
1266 smp_rmb();
1267 offset = swp_offset(entry);
1268 if (offset >= si->max)
1269 goto put_out;
1270
1271 return si;
1272 bad_nofile:
1273 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1274 out:
1275 return NULL;
1276 put_out:
1277 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1278 percpu_ref_put(&si->users);
1279 return NULL;
1280 }
1281
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1282 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1283 swp_entry_t entry)
1284 {
1285 struct swap_cluster_info *ci;
1286 unsigned long offset = swp_offset(entry);
1287 unsigned char usage;
1288
1289 ci = lock_cluster_or_swap_info(p, offset);
1290 usage = __swap_entry_free_locked(p, offset, 1);
1291 unlock_cluster_or_swap_info(p, ci);
1292 if (!usage)
1293 free_swap_slot(entry);
1294
1295 return usage;
1296 }
1297
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1298 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1299 {
1300 struct swap_cluster_info *ci;
1301 unsigned long offset = swp_offset(entry);
1302 unsigned char count;
1303
1304 ci = lock_cluster(p, offset);
1305 count = p->swap_map[offset];
1306 VM_BUG_ON(count != SWAP_HAS_CACHE);
1307 p->swap_map[offset] = 0;
1308 dec_cluster_info_page(p, p->cluster_info, offset);
1309 unlock_cluster(ci);
1310
1311 mem_cgroup_uncharge_swap(entry, 1);
1312 swap_range_free(p, offset, 1);
1313 }
1314
1315 /*
1316 * Caller has made sure that the swap device corresponding to entry
1317 * is still around or has not been recycled.
1318 */
swap_free(swp_entry_t entry)1319 void swap_free(swp_entry_t entry)
1320 {
1321 struct swap_info_struct *p;
1322
1323 p = _swap_info_get(entry);
1324 if (p)
1325 __swap_entry_free(p, entry);
1326 }
1327
1328 /*
1329 * Called after dropping swapcache to decrease refcnt to swap entries.
1330 */
put_swap_page(struct page * page,swp_entry_t entry)1331 void put_swap_page(struct page *page, swp_entry_t entry)
1332 {
1333 unsigned long offset = swp_offset(entry);
1334 unsigned long idx = offset / SWAPFILE_CLUSTER;
1335 struct swap_cluster_info *ci;
1336 struct swap_info_struct *si;
1337 unsigned char *map;
1338 unsigned int i, free_entries = 0;
1339 unsigned char val;
1340 int size = swap_entry_size(thp_nr_pages(page));
1341
1342 si = _swap_info_get(entry);
1343 if (!si)
1344 return;
1345
1346 ci = lock_cluster_or_swap_info(si, offset);
1347 if (size == SWAPFILE_CLUSTER) {
1348 VM_BUG_ON(!cluster_is_huge(ci));
1349 map = si->swap_map + offset;
1350 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1351 val = map[i];
1352 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1353 if (val == SWAP_HAS_CACHE)
1354 free_entries++;
1355 }
1356 cluster_clear_huge(ci);
1357 if (free_entries == SWAPFILE_CLUSTER) {
1358 unlock_cluster_or_swap_info(si, ci);
1359 spin_lock(&si->lock);
1360 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1361 swap_free_cluster(si, idx);
1362 spin_unlock(&si->lock);
1363 return;
1364 }
1365 }
1366 for (i = 0; i < size; i++, entry.val++) {
1367 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1368 unlock_cluster_or_swap_info(si, ci);
1369 free_swap_slot(entry);
1370 if (i == size - 1)
1371 return;
1372 lock_cluster_or_swap_info(si, offset);
1373 }
1374 }
1375 unlock_cluster_or_swap_info(si, ci);
1376 }
1377
1378 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1379 int split_swap_cluster(swp_entry_t entry)
1380 {
1381 struct swap_info_struct *si;
1382 struct swap_cluster_info *ci;
1383 unsigned long offset = swp_offset(entry);
1384
1385 si = _swap_info_get(entry);
1386 if (!si)
1387 return -EBUSY;
1388 ci = lock_cluster(si, offset);
1389 cluster_clear_huge(ci);
1390 unlock_cluster(ci);
1391 return 0;
1392 }
1393 #endif
1394
swp_entry_cmp(const void * ent1,const void * ent2)1395 static int swp_entry_cmp(const void *ent1, const void *ent2)
1396 {
1397 const swp_entry_t *e1 = ent1, *e2 = ent2;
1398
1399 return (int)swp_type(*e1) - (int)swp_type(*e2);
1400 }
1401
swapcache_free_entries(swp_entry_t * entries,int n)1402 void swapcache_free_entries(swp_entry_t *entries, int n)
1403 {
1404 struct swap_info_struct *p, *prev;
1405 int i;
1406
1407 if (n <= 0)
1408 return;
1409
1410 prev = NULL;
1411 p = NULL;
1412
1413 /*
1414 * Sort swap entries by swap device, so each lock is only taken once.
1415 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1416 * so low that it isn't necessary to optimize further.
1417 */
1418 if (nr_swapfiles > 1)
1419 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1420 for (i = 0; i < n; ++i) {
1421 p = swap_info_get_cont(entries[i], prev);
1422 if (p)
1423 swap_entry_free(p, entries[i]);
1424 prev = p;
1425 }
1426 if (p)
1427 spin_unlock(&p->lock);
1428 }
1429
1430 /*
1431 * How many references to page are currently swapped out?
1432 * This does not give an exact answer when swap count is continued,
1433 * but does include the high COUNT_CONTINUED flag to allow for that.
1434 */
page_swapcount(struct page * page)1435 static int page_swapcount(struct page *page)
1436 {
1437 int count = 0;
1438 struct swap_info_struct *p;
1439 struct swap_cluster_info *ci;
1440 swp_entry_t entry;
1441 unsigned long offset;
1442
1443 entry.val = page_private(page);
1444 p = _swap_info_get(entry);
1445 if (p) {
1446 offset = swp_offset(entry);
1447 ci = lock_cluster_or_swap_info(p, offset);
1448 count = swap_count(p->swap_map[offset]);
1449 unlock_cluster_or_swap_info(p, ci);
1450 }
1451 return count;
1452 }
1453
__swap_count(swp_entry_t entry)1454 int __swap_count(swp_entry_t entry)
1455 {
1456 struct swap_info_struct *si;
1457 pgoff_t offset = swp_offset(entry);
1458 int count = 0;
1459
1460 si = get_swap_device(entry);
1461 if (si) {
1462 count = swap_count(si->swap_map[offset]);
1463 put_swap_device(si);
1464 }
1465 return count;
1466 }
1467
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1468 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1469 {
1470 int count = 0;
1471 pgoff_t offset = swp_offset(entry);
1472 struct swap_cluster_info *ci;
1473
1474 ci = lock_cluster_or_swap_info(si, offset);
1475 count = swap_count(si->swap_map[offset]);
1476 unlock_cluster_or_swap_info(si, ci);
1477 return count;
1478 }
1479
1480 /*
1481 * How many references to @entry are currently swapped out?
1482 * This does not give an exact answer when swap count is continued,
1483 * but does include the high COUNT_CONTINUED flag to allow for that.
1484 */
__swp_swapcount(swp_entry_t entry)1485 int __swp_swapcount(swp_entry_t entry)
1486 {
1487 int count = 0;
1488 struct swap_info_struct *si;
1489
1490 si = get_swap_device(entry);
1491 if (si) {
1492 count = swap_swapcount(si, entry);
1493 put_swap_device(si);
1494 }
1495 return count;
1496 }
1497
1498 /*
1499 * How many references to @entry are currently swapped out?
1500 * This considers COUNT_CONTINUED so it returns exact answer.
1501 */
swp_swapcount(swp_entry_t entry)1502 int swp_swapcount(swp_entry_t entry)
1503 {
1504 int count, tmp_count, n;
1505 struct swap_info_struct *p;
1506 struct swap_cluster_info *ci;
1507 struct page *page;
1508 pgoff_t offset;
1509 unsigned char *map;
1510
1511 p = _swap_info_get(entry);
1512 if (!p)
1513 return 0;
1514
1515 offset = swp_offset(entry);
1516
1517 ci = lock_cluster_or_swap_info(p, offset);
1518
1519 count = swap_count(p->swap_map[offset]);
1520 if (!(count & COUNT_CONTINUED))
1521 goto out;
1522
1523 count &= ~COUNT_CONTINUED;
1524 n = SWAP_MAP_MAX + 1;
1525
1526 page = vmalloc_to_page(p->swap_map + offset);
1527 offset &= ~PAGE_MASK;
1528 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1529
1530 do {
1531 page = list_next_entry(page, lru);
1532 map = kmap_atomic(page);
1533 tmp_count = map[offset];
1534 kunmap_atomic(map);
1535
1536 count += (tmp_count & ~COUNT_CONTINUED) * n;
1537 n *= (SWAP_CONT_MAX + 1);
1538 } while (tmp_count & COUNT_CONTINUED);
1539 out:
1540 unlock_cluster_or_swap_info(p, ci);
1541 return count;
1542 }
1543
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1544 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1545 swp_entry_t entry)
1546 {
1547 struct swap_cluster_info *ci;
1548 unsigned char *map = si->swap_map;
1549 unsigned long roffset = swp_offset(entry);
1550 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1551 int i;
1552 bool ret = false;
1553
1554 ci = lock_cluster_or_swap_info(si, offset);
1555 if (!ci || !cluster_is_huge(ci)) {
1556 if (swap_count(map[roffset]))
1557 ret = true;
1558 goto unlock_out;
1559 }
1560 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1561 if (swap_count(map[offset + i])) {
1562 ret = true;
1563 break;
1564 }
1565 }
1566 unlock_out:
1567 unlock_cluster_or_swap_info(si, ci);
1568 return ret;
1569 }
1570
page_swapped(struct page * page)1571 static bool page_swapped(struct page *page)
1572 {
1573 swp_entry_t entry;
1574 struct swap_info_struct *si;
1575
1576 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1577 return page_swapcount(page) != 0;
1578
1579 page = compound_head(page);
1580 entry.val = page_private(page);
1581 si = _swap_info_get(entry);
1582 if (si)
1583 return swap_page_trans_huge_swapped(si, entry);
1584 return false;
1585 }
1586
1587 /*
1588 * If swap is getting full, or if there are no more mappings of this page,
1589 * then try_to_free_swap is called to free its swap space.
1590 */
try_to_free_swap(struct page * page)1591 int try_to_free_swap(struct page *page)
1592 {
1593 VM_BUG_ON_PAGE(!PageLocked(page), page);
1594
1595 if (!PageSwapCache(page))
1596 return 0;
1597 if (PageWriteback(page))
1598 return 0;
1599 if (page_swapped(page))
1600 return 0;
1601
1602 /*
1603 * Once hibernation has begun to create its image of memory,
1604 * there's a danger that one of the calls to try_to_free_swap()
1605 * - most probably a call from __try_to_reclaim_swap() while
1606 * hibernation is allocating its own swap pages for the image,
1607 * but conceivably even a call from memory reclaim - will free
1608 * the swap from a page which has already been recorded in the
1609 * image as a clean swapcache page, and then reuse its swap for
1610 * another page of the image. On waking from hibernation, the
1611 * original page might be freed under memory pressure, then
1612 * later read back in from swap, now with the wrong data.
1613 *
1614 * Hibernation suspends storage while it is writing the image
1615 * to disk so check that here.
1616 */
1617 if (pm_suspended_storage())
1618 return 0;
1619
1620 page = compound_head(page);
1621 delete_from_swap_cache(page);
1622 SetPageDirty(page);
1623 return 1;
1624 }
1625
1626 /*
1627 * Free the swap entry like above, but also try to
1628 * free the page cache entry if it is the last user.
1629 */
free_swap_and_cache(swp_entry_t entry)1630 int free_swap_and_cache(swp_entry_t entry)
1631 {
1632 struct swap_info_struct *p;
1633 unsigned char count;
1634
1635 if (non_swap_entry(entry))
1636 return 1;
1637
1638 p = _swap_info_get(entry);
1639 if (p) {
1640 count = __swap_entry_free(p, entry);
1641 if (count == SWAP_HAS_CACHE &&
1642 !swap_page_trans_huge_swapped(p, entry))
1643 __try_to_reclaim_swap(p, swp_offset(entry),
1644 TTRS_UNMAPPED | TTRS_FULL);
1645 }
1646 return p != NULL;
1647 }
1648
1649 #ifdef CONFIG_HIBERNATION
1650
get_swap_page_of_type(int type)1651 swp_entry_t get_swap_page_of_type(int type)
1652 {
1653 struct swap_info_struct *si = swap_type_to_swap_info(type);
1654 swp_entry_t entry = {0};
1655
1656 if (!si)
1657 goto fail;
1658
1659 /* This is called for allocating swap entry, not cache */
1660 spin_lock(&si->lock);
1661 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1662 atomic_long_dec(&nr_swap_pages);
1663 spin_unlock(&si->lock);
1664 fail:
1665 return entry;
1666 }
1667
1668 /*
1669 * Find the swap type that corresponds to given device (if any).
1670 *
1671 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1672 * from 0, in which the swap header is expected to be located.
1673 *
1674 * This is needed for the suspend to disk (aka swsusp).
1675 */
swap_type_of(dev_t device,sector_t offset)1676 int swap_type_of(dev_t device, sector_t offset)
1677 {
1678 int type;
1679
1680 if (!device)
1681 return -1;
1682
1683 spin_lock(&swap_lock);
1684 for (type = 0; type < nr_swapfiles; type++) {
1685 struct swap_info_struct *sis = swap_info[type];
1686
1687 if (!(sis->flags & SWP_WRITEOK))
1688 continue;
1689
1690 if (device == sis->bdev->bd_dev) {
1691 struct swap_extent *se = first_se(sis);
1692
1693 if (se->start_block == offset) {
1694 spin_unlock(&swap_lock);
1695 return type;
1696 }
1697 }
1698 }
1699 spin_unlock(&swap_lock);
1700 return -ENODEV;
1701 }
1702
find_first_swap(dev_t * device)1703 int find_first_swap(dev_t *device)
1704 {
1705 int type;
1706
1707 spin_lock(&swap_lock);
1708 for (type = 0; type < nr_swapfiles; type++) {
1709 struct swap_info_struct *sis = swap_info[type];
1710
1711 if (!(sis->flags & SWP_WRITEOK))
1712 continue;
1713 *device = sis->bdev->bd_dev;
1714 spin_unlock(&swap_lock);
1715 return type;
1716 }
1717 spin_unlock(&swap_lock);
1718 return -ENODEV;
1719 }
1720
1721 /*
1722 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1723 * corresponding to given index in swap_info (swap type).
1724 */
swapdev_block(int type,pgoff_t offset)1725 sector_t swapdev_block(int type, pgoff_t offset)
1726 {
1727 struct swap_info_struct *si = swap_type_to_swap_info(type);
1728 struct swap_extent *se;
1729
1730 if (!si || !(si->flags & SWP_WRITEOK))
1731 return 0;
1732 se = offset_to_swap_extent(si, offset);
1733 return se->start_block + (offset - se->start_page);
1734 }
1735
1736 /*
1737 * Return either the total number of swap pages of given type, or the number
1738 * of free pages of that type (depending on @free)
1739 *
1740 * This is needed for software suspend
1741 */
count_swap_pages(int type,int free)1742 unsigned int count_swap_pages(int type, int free)
1743 {
1744 unsigned int n = 0;
1745
1746 spin_lock(&swap_lock);
1747 if ((unsigned int)type < nr_swapfiles) {
1748 struct swap_info_struct *sis = swap_info[type];
1749
1750 spin_lock(&sis->lock);
1751 if (sis->flags & SWP_WRITEOK) {
1752 n = sis->pages;
1753 if (free)
1754 n -= sis->inuse_pages;
1755 }
1756 spin_unlock(&sis->lock);
1757 }
1758 spin_unlock(&swap_lock);
1759 return n;
1760 }
1761 #endif /* CONFIG_HIBERNATION */
1762
pte_same_as_swp(pte_t pte,pte_t swp_pte)1763 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1764 {
1765 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1766 }
1767
1768 /*
1769 * No need to decide whether this PTE shares the swap entry with others,
1770 * just let do_wp_page work it out if a write is requested later - to
1771 * force COW, vm_page_prot omits write permission from any private vma.
1772 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1773 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1774 unsigned long addr, swp_entry_t entry, struct page *page)
1775 {
1776 struct page *swapcache;
1777 spinlock_t *ptl;
1778 pte_t *pte, new_pte;
1779 int ret = 1;
1780
1781 swapcache = page;
1782 page = ksm_might_need_to_copy(page, vma, addr);
1783 if (unlikely(!page))
1784 return -ENOMEM;
1785
1786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1787 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1788 ret = 0;
1789 goto out;
1790 }
1791
1792 if (unlikely(!PageUptodate(page))) {
1793 pte_t pteval;
1794
1795 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1797 set_pte_at(vma->vm_mm, addr, pte, pteval);
1798 swap_free(entry);
1799 ret = 0;
1800 goto out;
1801 }
1802
1803 /* See do_swap_page() */
1804 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1805 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1806
1807 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1808 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1809 get_page(page);
1810 if (page == swapcache) {
1811 rmap_t rmap_flags = RMAP_NONE;
1812
1813 /*
1814 * See do_swap_page(): PageWriteback() would be problematic.
1815 * However, we do a wait_on_page_writeback() just before this
1816 * call and have the page locked.
1817 */
1818 VM_BUG_ON_PAGE(PageWriteback(page), page);
1819 if (pte_swp_exclusive(*pte))
1820 rmap_flags |= RMAP_EXCLUSIVE;
1821
1822 page_add_anon_rmap(page, vma, addr, rmap_flags);
1823 } else { /* ksm created a completely new copy */
1824 page_add_new_anon_rmap(page, vma, addr);
1825 lru_cache_add_inactive_or_unevictable(page, vma);
1826 }
1827 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1828 if (pte_swp_soft_dirty(*pte))
1829 new_pte = pte_mksoft_dirty(new_pte);
1830 if (pte_swp_uffd_wp(*pte))
1831 new_pte = pte_mkuffd_wp(new_pte);
1832 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1833 swap_free(entry);
1834 out:
1835 pte_unmap_unlock(pte, ptl);
1836 if (page != swapcache) {
1837 unlock_page(page);
1838 put_page(page);
1839 }
1840 return ret;
1841 }
1842
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)1843 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1844 unsigned long addr, unsigned long end,
1845 unsigned int type)
1846 {
1847 struct page *page;
1848 swp_entry_t entry;
1849 pte_t *pte;
1850 struct swap_info_struct *si;
1851 unsigned long offset;
1852 int ret = 0;
1853 volatile unsigned char *swap_map;
1854
1855 si = swap_info[type];
1856 pte = pte_offset_map(pmd, addr);
1857 do {
1858 if (!is_swap_pte(*pte))
1859 continue;
1860
1861 entry = pte_to_swp_entry(*pte);
1862 if (swp_type(entry) != type)
1863 continue;
1864
1865 offset = swp_offset(entry);
1866 pte_unmap(pte);
1867 swap_map = &si->swap_map[offset];
1868 page = lookup_swap_cache(entry, vma, addr);
1869 if (!page) {
1870 struct vm_fault vmf = {
1871 .vma = vma,
1872 .address = addr,
1873 .real_address = addr,
1874 .pmd = pmd,
1875 };
1876
1877 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1878 &vmf);
1879 }
1880 if (!page) {
1881 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1882 goto try_next;
1883 return -ENOMEM;
1884 }
1885
1886 lock_page(page);
1887 wait_on_page_writeback(page);
1888 ret = unuse_pte(vma, pmd, addr, entry, page);
1889 if (ret < 0) {
1890 unlock_page(page);
1891 put_page(page);
1892 goto out;
1893 }
1894
1895 try_to_free_swap(page);
1896 unlock_page(page);
1897 put_page(page);
1898 try_next:
1899 pte = pte_offset_map(pmd, addr);
1900 } while (pte++, addr += PAGE_SIZE, addr != end);
1901 pte_unmap(pte - 1);
1902
1903 ret = 0;
1904 out:
1905 return ret;
1906 }
1907
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)1908 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1909 unsigned long addr, unsigned long end,
1910 unsigned int type)
1911 {
1912 pmd_t *pmd;
1913 unsigned long next;
1914 int ret;
1915
1916 pmd = pmd_offset(pud, addr);
1917 do {
1918 cond_resched();
1919 next = pmd_addr_end(addr, end);
1920 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1921 continue;
1922 ret = unuse_pte_range(vma, pmd, addr, next, type);
1923 if (ret)
1924 return ret;
1925 } while (pmd++, addr = next, addr != end);
1926 return 0;
1927 }
1928
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)1929 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1930 unsigned long addr, unsigned long end,
1931 unsigned int type)
1932 {
1933 pud_t *pud;
1934 unsigned long next;
1935 int ret;
1936
1937 pud = pud_offset(p4d, addr);
1938 do {
1939 next = pud_addr_end(addr, end);
1940 if (pud_none_or_clear_bad(pud))
1941 continue;
1942 ret = unuse_pmd_range(vma, pud, addr, next, type);
1943 if (ret)
1944 return ret;
1945 } while (pud++, addr = next, addr != end);
1946 return 0;
1947 }
1948
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)1949 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1950 unsigned long addr, unsigned long end,
1951 unsigned int type)
1952 {
1953 p4d_t *p4d;
1954 unsigned long next;
1955 int ret;
1956
1957 p4d = p4d_offset(pgd, addr);
1958 do {
1959 next = p4d_addr_end(addr, end);
1960 if (p4d_none_or_clear_bad(p4d))
1961 continue;
1962 ret = unuse_pud_range(vma, p4d, addr, next, type);
1963 if (ret)
1964 return ret;
1965 } while (p4d++, addr = next, addr != end);
1966 return 0;
1967 }
1968
unuse_vma(struct vm_area_struct * vma,unsigned int type)1969 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1970 {
1971 pgd_t *pgd;
1972 unsigned long addr, end, next;
1973 int ret;
1974
1975 addr = vma->vm_start;
1976 end = vma->vm_end;
1977
1978 pgd = pgd_offset(vma->vm_mm, addr);
1979 do {
1980 next = pgd_addr_end(addr, end);
1981 if (pgd_none_or_clear_bad(pgd))
1982 continue;
1983 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1984 if (ret)
1985 return ret;
1986 } while (pgd++, addr = next, addr != end);
1987 return 0;
1988 }
1989
unuse_mm(struct mm_struct * mm,unsigned int type)1990 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1991 {
1992 struct vm_area_struct *vma;
1993 int ret = 0;
1994
1995 mmap_read_lock(mm);
1996 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1997 if (vma->anon_vma) {
1998 ret = unuse_vma(vma, type);
1999 if (ret)
2000 break;
2001 }
2002 cond_resched();
2003 }
2004 mmap_read_unlock(mm);
2005 return ret;
2006 }
2007
2008 /*
2009 * Scan swap_map from current position to next entry still in use.
2010 * Return 0 if there are no inuse entries after prev till end of
2011 * the map.
2012 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2013 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2014 unsigned int prev)
2015 {
2016 unsigned int i;
2017 unsigned char count;
2018
2019 /*
2020 * No need for swap_lock here: we're just looking
2021 * for whether an entry is in use, not modifying it; false
2022 * hits are okay, and sys_swapoff() has already prevented new
2023 * allocations from this area (while holding swap_lock).
2024 */
2025 for (i = prev + 1; i < si->max; i++) {
2026 count = READ_ONCE(si->swap_map[i]);
2027 if (count && swap_count(count) != SWAP_MAP_BAD)
2028 break;
2029 if ((i % LATENCY_LIMIT) == 0)
2030 cond_resched();
2031 }
2032
2033 if (i == si->max)
2034 i = 0;
2035
2036 return i;
2037 }
2038
try_to_unuse(unsigned int type)2039 static int try_to_unuse(unsigned int type)
2040 {
2041 struct mm_struct *prev_mm;
2042 struct mm_struct *mm;
2043 struct list_head *p;
2044 int retval = 0;
2045 struct swap_info_struct *si = swap_info[type];
2046 struct page *page;
2047 swp_entry_t entry;
2048 unsigned int i;
2049
2050 if (!READ_ONCE(si->inuse_pages))
2051 return 0;
2052
2053 retry:
2054 retval = shmem_unuse(type);
2055 if (retval)
2056 return retval;
2057
2058 prev_mm = &init_mm;
2059 mmget(prev_mm);
2060
2061 spin_lock(&mmlist_lock);
2062 p = &init_mm.mmlist;
2063 while (READ_ONCE(si->inuse_pages) &&
2064 !signal_pending(current) &&
2065 (p = p->next) != &init_mm.mmlist) {
2066
2067 mm = list_entry(p, struct mm_struct, mmlist);
2068 if (!mmget_not_zero(mm))
2069 continue;
2070 spin_unlock(&mmlist_lock);
2071 mmput(prev_mm);
2072 prev_mm = mm;
2073 retval = unuse_mm(mm, type);
2074 if (retval) {
2075 mmput(prev_mm);
2076 return retval;
2077 }
2078
2079 /*
2080 * Make sure that we aren't completely killing
2081 * interactive performance.
2082 */
2083 cond_resched();
2084 spin_lock(&mmlist_lock);
2085 }
2086 spin_unlock(&mmlist_lock);
2087
2088 mmput(prev_mm);
2089
2090 i = 0;
2091 while (READ_ONCE(si->inuse_pages) &&
2092 !signal_pending(current) &&
2093 (i = find_next_to_unuse(si, i)) != 0) {
2094
2095 entry = swp_entry(type, i);
2096 page = find_get_page(swap_address_space(entry), i);
2097 if (!page)
2098 continue;
2099
2100 /*
2101 * It is conceivable that a racing task removed this page from
2102 * swap cache just before we acquired the page lock. The page
2103 * might even be back in swap cache on another swap area. But
2104 * that is okay, try_to_free_swap() only removes stale pages.
2105 */
2106 lock_page(page);
2107 wait_on_page_writeback(page);
2108 try_to_free_swap(page);
2109 unlock_page(page);
2110 put_page(page);
2111 }
2112
2113 /*
2114 * Lets check again to see if there are still swap entries in the map.
2115 * If yes, we would need to do retry the unuse logic again.
2116 * Under global memory pressure, swap entries can be reinserted back
2117 * into process space after the mmlist loop above passes over them.
2118 *
2119 * Limit the number of retries? No: when mmget_not_zero()
2120 * above fails, that mm is likely to be freeing swap from
2121 * exit_mmap(), which proceeds at its own independent pace;
2122 * and even shmem_writepage() could have been preempted after
2123 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2124 * and robust (though cpu-intensive) just to keep retrying.
2125 */
2126 if (READ_ONCE(si->inuse_pages)) {
2127 if (!signal_pending(current))
2128 goto retry;
2129 return -EINTR;
2130 }
2131
2132 return 0;
2133 }
2134
2135 /*
2136 * After a successful try_to_unuse, if no swap is now in use, we know
2137 * we can empty the mmlist. swap_lock must be held on entry and exit.
2138 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2139 * added to the mmlist just after page_duplicate - before would be racy.
2140 */
drain_mmlist(void)2141 static void drain_mmlist(void)
2142 {
2143 struct list_head *p, *next;
2144 unsigned int type;
2145
2146 for (type = 0; type < nr_swapfiles; type++)
2147 if (swap_info[type]->inuse_pages)
2148 return;
2149 spin_lock(&mmlist_lock);
2150 list_for_each_safe(p, next, &init_mm.mmlist)
2151 list_del_init(p);
2152 spin_unlock(&mmlist_lock);
2153 }
2154
2155 /*
2156 * Free all of a swapdev's extent information
2157 */
destroy_swap_extents(struct swap_info_struct * sis)2158 static void destroy_swap_extents(struct swap_info_struct *sis)
2159 {
2160 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2161 struct rb_node *rb = sis->swap_extent_root.rb_node;
2162 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2163
2164 rb_erase(rb, &sis->swap_extent_root);
2165 kfree(se);
2166 }
2167
2168 if (sis->flags & SWP_ACTIVATED) {
2169 struct file *swap_file = sis->swap_file;
2170 struct address_space *mapping = swap_file->f_mapping;
2171
2172 sis->flags &= ~SWP_ACTIVATED;
2173 if (mapping->a_ops->swap_deactivate)
2174 mapping->a_ops->swap_deactivate(swap_file);
2175 }
2176 }
2177
2178 /*
2179 * Add a block range (and the corresponding page range) into this swapdev's
2180 * extent tree.
2181 *
2182 * This function rather assumes that it is called in ascending page order.
2183 */
2184 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2185 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2186 unsigned long nr_pages, sector_t start_block)
2187 {
2188 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2189 struct swap_extent *se;
2190 struct swap_extent *new_se;
2191
2192 /*
2193 * place the new node at the right most since the
2194 * function is called in ascending page order.
2195 */
2196 while (*link) {
2197 parent = *link;
2198 link = &parent->rb_right;
2199 }
2200
2201 if (parent) {
2202 se = rb_entry(parent, struct swap_extent, rb_node);
2203 BUG_ON(se->start_page + se->nr_pages != start_page);
2204 if (se->start_block + se->nr_pages == start_block) {
2205 /* Merge it */
2206 se->nr_pages += nr_pages;
2207 return 0;
2208 }
2209 }
2210
2211 /* No merge, insert a new extent. */
2212 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2213 if (new_se == NULL)
2214 return -ENOMEM;
2215 new_se->start_page = start_page;
2216 new_se->nr_pages = nr_pages;
2217 new_se->start_block = start_block;
2218
2219 rb_link_node(&new_se->rb_node, parent, link);
2220 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2221 return 1;
2222 }
2223 EXPORT_SYMBOL_GPL(add_swap_extent);
2224
2225 /*
2226 * A `swap extent' is a simple thing which maps a contiguous range of pages
2227 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2228 * built at swapon time and is then used at swap_writepage/swap_readpage
2229 * time for locating where on disk a page belongs.
2230 *
2231 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2232 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2233 * swap files identically.
2234 *
2235 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2236 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2237 * swapfiles are handled *identically* after swapon time.
2238 *
2239 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2240 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2241 * blocks are found which do not fall within the PAGE_SIZE alignment
2242 * requirements, they are simply tossed out - we will never use those blocks
2243 * for swapping.
2244 *
2245 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2246 * prevents users from writing to the swap device, which will corrupt memory.
2247 *
2248 * The amount of disk space which a single swap extent represents varies.
2249 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2250 * extents in the rbtree. - akpm.
2251 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2252 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2253 {
2254 struct file *swap_file = sis->swap_file;
2255 struct address_space *mapping = swap_file->f_mapping;
2256 struct inode *inode = mapping->host;
2257 int ret;
2258
2259 if (S_ISBLK(inode->i_mode)) {
2260 ret = add_swap_extent(sis, 0, sis->max, 0);
2261 *span = sis->pages;
2262 return ret;
2263 }
2264
2265 if (mapping->a_ops->swap_activate) {
2266 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2267 if (ret < 0)
2268 return ret;
2269 sis->flags |= SWP_ACTIVATED;
2270 if ((sis->flags & SWP_FS_OPS) &&
2271 sio_pool_init() != 0) {
2272 destroy_swap_extents(sis);
2273 return -ENOMEM;
2274 }
2275 return ret;
2276 }
2277
2278 return generic_swapfile_activate(sis, swap_file, span);
2279 }
2280
swap_node(struct swap_info_struct * p)2281 static int swap_node(struct swap_info_struct *p)
2282 {
2283 struct block_device *bdev;
2284
2285 if (p->bdev)
2286 bdev = p->bdev;
2287 else
2288 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2289
2290 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2291 }
2292
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2293 static void setup_swap_info(struct swap_info_struct *p, int prio,
2294 unsigned char *swap_map,
2295 struct swap_cluster_info *cluster_info)
2296 {
2297 int i;
2298
2299 if (prio >= 0)
2300 p->prio = prio;
2301 else
2302 p->prio = --least_priority;
2303 /*
2304 * the plist prio is negated because plist ordering is
2305 * low-to-high, while swap ordering is high-to-low
2306 */
2307 p->list.prio = -p->prio;
2308 for_each_node(i) {
2309 if (p->prio >= 0)
2310 p->avail_lists[i].prio = -p->prio;
2311 else {
2312 if (swap_node(p) == i)
2313 p->avail_lists[i].prio = 1;
2314 else
2315 p->avail_lists[i].prio = -p->prio;
2316 }
2317 }
2318 p->swap_map = swap_map;
2319 p->cluster_info = cluster_info;
2320 }
2321
_enable_swap_info(struct swap_info_struct * p)2322 static void _enable_swap_info(struct swap_info_struct *p)
2323 {
2324 p->flags |= SWP_WRITEOK;
2325 atomic_long_add(p->pages, &nr_swap_pages);
2326 total_swap_pages += p->pages;
2327
2328 assert_spin_locked(&swap_lock);
2329 /*
2330 * both lists are plists, and thus priority ordered.
2331 * swap_active_head needs to be priority ordered for swapoff(),
2332 * which on removal of any swap_info_struct with an auto-assigned
2333 * (i.e. negative) priority increments the auto-assigned priority
2334 * of any lower-priority swap_info_structs.
2335 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2336 * which allocates swap pages from the highest available priority
2337 * swap_info_struct.
2338 */
2339 plist_add(&p->list, &swap_active_head);
2340 add_to_avail_list(p);
2341 }
2342
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2343 static void enable_swap_info(struct swap_info_struct *p, int prio,
2344 unsigned char *swap_map,
2345 struct swap_cluster_info *cluster_info,
2346 unsigned long *frontswap_map)
2347 {
2348 if (IS_ENABLED(CONFIG_FRONTSWAP))
2349 frontswap_init(p->type, frontswap_map);
2350 spin_lock(&swap_lock);
2351 spin_lock(&p->lock);
2352 setup_swap_info(p, prio, swap_map, cluster_info);
2353 spin_unlock(&p->lock);
2354 spin_unlock(&swap_lock);
2355 /*
2356 * Finished initializing swap device, now it's safe to reference it.
2357 */
2358 percpu_ref_resurrect(&p->users);
2359 spin_lock(&swap_lock);
2360 spin_lock(&p->lock);
2361 _enable_swap_info(p);
2362 spin_unlock(&p->lock);
2363 spin_unlock(&swap_lock);
2364 }
2365
reinsert_swap_info(struct swap_info_struct * p)2366 static void reinsert_swap_info(struct swap_info_struct *p)
2367 {
2368 spin_lock(&swap_lock);
2369 spin_lock(&p->lock);
2370 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2371 _enable_swap_info(p);
2372 spin_unlock(&p->lock);
2373 spin_unlock(&swap_lock);
2374 }
2375
has_usable_swap(void)2376 bool has_usable_swap(void)
2377 {
2378 bool ret = true;
2379
2380 spin_lock(&swap_lock);
2381 if (plist_head_empty(&swap_active_head))
2382 ret = false;
2383 spin_unlock(&swap_lock);
2384 return ret;
2385 }
2386
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2387 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2388 {
2389 struct swap_info_struct *p = NULL;
2390 unsigned char *swap_map;
2391 struct swap_cluster_info *cluster_info;
2392 unsigned long *frontswap_map;
2393 struct file *swap_file, *victim;
2394 struct address_space *mapping;
2395 struct inode *inode;
2396 struct filename *pathname;
2397 int err, found = 0;
2398 unsigned int old_block_size;
2399
2400 if (!capable(CAP_SYS_ADMIN))
2401 return -EPERM;
2402
2403 BUG_ON(!current->mm);
2404
2405 pathname = getname(specialfile);
2406 if (IS_ERR(pathname))
2407 return PTR_ERR(pathname);
2408
2409 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2410 err = PTR_ERR(victim);
2411 if (IS_ERR(victim))
2412 goto out;
2413
2414 mapping = victim->f_mapping;
2415 spin_lock(&swap_lock);
2416 plist_for_each_entry(p, &swap_active_head, list) {
2417 if (p->flags & SWP_WRITEOK) {
2418 if (p->swap_file->f_mapping == mapping) {
2419 found = 1;
2420 break;
2421 }
2422 }
2423 }
2424 if (!found) {
2425 err = -EINVAL;
2426 spin_unlock(&swap_lock);
2427 goto out_dput;
2428 }
2429 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2430 vm_unacct_memory(p->pages);
2431 else {
2432 err = -ENOMEM;
2433 spin_unlock(&swap_lock);
2434 goto out_dput;
2435 }
2436 del_from_avail_list(p);
2437 spin_lock(&p->lock);
2438 if (p->prio < 0) {
2439 struct swap_info_struct *si = p;
2440 int nid;
2441
2442 plist_for_each_entry_continue(si, &swap_active_head, list) {
2443 si->prio++;
2444 si->list.prio--;
2445 for_each_node(nid) {
2446 if (si->avail_lists[nid].prio != 1)
2447 si->avail_lists[nid].prio--;
2448 }
2449 }
2450 least_priority++;
2451 }
2452 plist_del(&p->list, &swap_active_head);
2453 atomic_long_sub(p->pages, &nr_swap_pages);
2454 total_swap_pages -= p->pages;
2455 p->flags &= ~SWP_WRITEOK;
2456 spin_unlock(&p->lock);
2457 spin_unlock(&swap_lock);
2458
2459 disable_swap_slots_cache_lock();
2460
2461 set_current_oom_origin();
2462 err = try_to_unuse(p->type);
2463 clear_current_oom_origin();
2464
2465 if (err) {
2466 /* re-insert swap space back into swap_list */
2467 reinsert_swap_info(p);
2468 reenable_swap_slots_cache_unlock();
2469 goto out_dput;
2470 }
2471
2472 reenable_swap_slots_cache_unlock();
2473
2474 /*
2475 * Wait for swap operations protected by get/put_swap_device()
2476 * to complete.
2477 *
2478 * We need synchronize_rcu() here to protect the accessing to
2479 * the swap cache data structure.
2480 */
2481 percpu_ref_kill(&p->users);
2482 synchronize_rcu();
2483 wait_for_completion(&p->comp);
2484
2485 flush_work(&p->discard_work);
2486
2487 destroy_swap_extents(p);
2488 if (p->flags & SWP_CONTINUED)
2489 free_swap_count_continuations(p);
2490
2491 if (!p->bdev || !bdev_nonrot(p->bdev))
2492 atomic_dec(&nr_rotate_swap);
2493
2494 mutex_lock(&swapon_mutex);
2495 spin_lock(&swap_lock);
2496 spin_lock(&p->lock);
2497 drain_mmlist();
2498
2499 /* wait for anyone still in scan_swap_map_slots */
2500 p->highest_bit = 0; /* cuts scans short */
2501 while (p->flags >= SWP_SCANNING) {
2502 spin_unlock(&p->lock);
2503 spin_unlock(&swap_lock);
2504 schedule_timeout_uninterruptible(1);
2505 spin_lock(&swap_lock);
2506 spin_lock(&p->lock);
2507 }
2508
2509 swap_file = p->swap_file;
2510 old_block_size = p->old_block_size;
2511 p->swap_file = NULL;
2512 p->max = 0;
2513 swap_map = p->swap_map;
2514 p->swap_map = NULL;
2515 cluster_info = p->cluster_info;
2516 p->cluster_info = NULL;
2517 frontswap_map = frontswap_map_get(p);
2518 spin_unlock(&p->lock);
2519 spin_unlock(&swap_lock);
2520 arch_swap_invalidate_area(p->type);
2521 frontswap_invalidate_area(p->type);
2522 frontswap_map_set(p, NULL);
2523 mutex_unlock(&swapon_mutex);
2524 free_percpu(p->percpu_cluster);
2525 p->percpu_cluster = NULL;
2526 free_percpu(p->cluster_next_cpu);
2527 p->cluster_next_cpu = NULL;
2528 vfree(swap_map);
2529 kvfree(cluster_info);
2530 kvfree(frontswap_map);
2531 /* Destroy swap account information */
2532 swap_cgroup_swapoff(p->type);
2533 exit_swap_address_space(p->type);
2534
2535 inode = mapping->host;
2536 if (S_ISBLK(inode->i_mode)) {
2537 struct block_device *bdev = I_BDEV(inode);
2538
2539 set_blocksize(bdev, old_block_size);
2540 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2541 }
2542
2543 inode_lock(inode);
2544 inode->i_flags &= ~S_SWAPFILE;
2545 inode_unlock(inode);
2546 filp_close(swap_file, NULL);
2547
2548 /*
2549 * Clear the SWP_USED flag after all resources are freed so that swapon
2550 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2551 * not hold p->lock after we cleared its SWP_WRITEOK.
2552 */
2553 spin_lock(&swap_lock);
2554 p->flags = 0;
2555 spin_unlock(&swap_lock);
2556
2557 err = 0;
2558 atomic_inc(&proc_poll_event);
2559 wake_up_interruptible(&proc_poll_wait);
2560
2561 out_dput:
2562 filp_close(victim, NULL);
2563 out:
2564 putname(pathname);
2565 return err;
2566 }
2567
2568 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2569 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2570 {
2571 struct seq_file *seq = file->private_data;
2572
2573 poll_wait(file, &proc_poll_wait, wait);
2574
2575 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2576 seq->poll_event = atomic_read(&proc_poll_event);
2577 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2578 }
2579
2580 return EPOLLIN | EPOLLRDNORM;
2581 }
2582
2583 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2584 static void *swap_start(struct seq_file *swap, loff_t *pos)
2585 {
2586 struct swap_info_struct *si;
2587 int type;
2588 loff_t l = *pos;
2589
2590 mutex_lock(&swapon_mutex);
2591
2592 if (!l)
2593 return SEQ_START_TOKEN;
2594
2595 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2596 if (!(si->flags & SWP_USED) || !si->swap_map)
2597 continue;
2598 if (!--l)
2599 return si;
2600 }
2601
2602 return NULL;
2603 }
2604
swap_next(struct seq_file * swap,void * v,loff_t * pos)2605 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2606 {
2607 struct swap_info_struct *si = v;
2608 int type;
2609
2610 if (v == SEQ_START_TOKEN)
2611 type = 0;
2612 else
2613 type = si->type + 1;
2614
2615 ++(*pos);
2616 for (; (si = swap_type_to_swap_info(type)); type++) {
2617 if (!(si->flags & SWP_USED) || !si->swap_map)
2618 continue;
2619 return si;
2620 }
2621
2622 return NULL;
2623 }
2624
swap_stop(struct seq_file * swap,void * v)2625 static void swap_stop(struct seq_file *swap, void *v)
2626 {
2627 mutex_unlock(&swapon_mutex);
2628 }
2629
swap_show(struct seq_file * swap,void * v)2630 static int swap_show(struct seq_file *swap, void *v)
2631 {
2632 struct swap_info_struct *si = v;
2633 struct file *file;
2634 int len;
2635 unsigned long bytes, inuse;
2636
2637 if (si == SEQ_START_TOKEN) {
2638 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2639 return 0;
2640 }
2641
2642 bytes = si->pages << (PAGE_SHIFT - 10);
2643 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2644
2645 file = si->swap_file;
2646 len = seq_file_path(swap, file, " \t\n\\");
2647 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2648 len < 40 ? 40 - len : 1, " ",
2649 S_ISBLK(file_inode(file)->i_mode) ?
2650 "partition" : "file\t",
2651 bytes, bytes < 10000000 ? "\t" : "",
2652 inuse, inuse < 10000000 ? "\t" : "",
2653 si->prio);
2654 return 0;
2655 }
2656
2657 static const struct seq_operations swaps_op = {
2658 .start = swap_start,
2659 .next = swap_next,
2660 .stop = swap_stop,
2661 .show = swap_show
2662 };
2663
swaps_open(struct inode * inode,struct file * file)2664 static int swaps_open(struct inode *inode, struct file *file)
2665 {
2666 struct seq_file *seq;
2667 int ret;
2668
2669 ret = seq_open(file, &swaps_op);
2670 if (ret)
2671 return ret;
2672
2673 seq = file->private_data;
2674 seq->poll_event = atomic_read(&proc_poll_event);
2675 return 0;
2676 }
2677
2678 static const struct proc_ops swaps_proc_ops = {
2679 .proc_flags = PROC_ENTRY_PERMANENT,
2680 .proc_open = swaps_open,
2681 .proc_read = seq_read,
2682 .proc_lseek = seq_lseek,
2683 .proc_release = seq_release,
2684 .proc_poll = swaps_poll,
2685 };
2686
procswaps_init(void)2687 static int __init procswaps_init(void)
2688 {
2689 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2690 return 0;
2691 }
2692 __initcall(procswaps_init);
2693 #endif /* CONFIG_PROC_FS */
2694
2695 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2696 static int __init max_swapfiles_check(void)
2697 {
2698 MAX_SWAPFILES_CHECK();
2699 return 0;
2700 }
2701 late_initcall(max_swapfiles_check);
2702 #endif
2703
alloc_swap_info(void)2704 static struct swap_info_struct *alloc_swap_info(void)
2705 {
2706 struct swap_info_struct *p;
2707 struct swap_info_struct *defer = NULL;
2708 unsigned int type;
2709 int i;
2710
2711 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2712 if (!p)
2713 return ERR_PTR(-ENOMEM);
2714
2715 if (percpu_ref_init(&p->users, swap_users_ref_free,
2716 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2717 kvfree(p);
2718 return ERR_PTR(-ENOMEM);
2719 }
2720
2721 spin_lock(&swap_lock);
2722 for (type = 0; type < nr_swapfiles; type++) {
2723 if (!(swap_info[type]->flags & SWP_USED))
2724 break;
2725 }
2726 if (type >= MAX_SWAPFILES) {
2727 spin_unlock(&swap_lock);
2728 percpu_ref_exit(&p->users);
2729 kvfree(p);
2730 return ERR_PTR(-EPERM);
2731 }
2732 if (type >= nr_swapfiles) {
2733 p->type = type;
2734 /*
2735 * Publish the swap_info_struct after initializing it.
2736 * Note that kvzalloc() above zeroes all its fields.
2737 */
2738 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2739 nr_swapfiles++;
2740 } else {
2741 defer = p;
2742 p = swap_info[type];
2743 /*
2744 * Do not memset this entry: a racing procfs swap_next()
2745 * would be relying on p->type to remain valid.
2746 */
2747 }
2748 p->swap_extent_root = RB_ROOT;
2749 plist_node_init(&p->list, 0);
2750 for_each_node(i)
2751 plist_node_init(&p->avail_lists[i], 0);
2752 p->flags = SWP_USED;
2753 spin_unlock(&swap_lock);
2754 if (defer) {
2755 percpu_ref_exit(&defer->users);
2756 kvfree(defer);
2757 }
2758 spin_lock_init(&p->lock);
2759 spin_lock_init(&p->cont_lock);
2760 init_completion(&p->comp);
2761
2762 return p;
2763 }
2764
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2765 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2766 {
2767 int error;
2768
2769 if (S_ISBLK(inode->i_mode)) {
2770 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2771 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2772 if (IS_ERR(p->bdev)) {
2773 error = PTR_ERR(p->bdev);
2774 p->bdev = NULL;
2775 return error;
2776 }
2777 p->old_block_size = block_size(p->bdev);
2778 error = set_blocksize(p->bdev, PAGE_SIZE);
2779 if (error < 0)
2780 return error;
2781 /*
2782 * Zoned block devices contain zones that have a sequential
2783 * write only restriction. Hence zoned block devices are not
2784 * suitable for swapping. Disallow them here.
2785 */
2786 if (bdev_is_zoned(p->bdev))
2787 return -EINVAL;
2788 p->flags |= SWP_BLKDEV;
2789 } else if (S_ISREG(inode->i_mode)) {
2790 p->bdev = inode->i_sb->s_bdev;
2791 }
2792
2793 return 0;
2794 }
2795
2796
2797 /*
2798 * Find out how many pages are allowed for a single swap device. There
2799 * are two limiting factors:
2800 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2801 * 2) the number of bits in the swap pte, as defined by the different
2802 * architectures.
2803 *
2804 * In order to find the largest possible bit mask, a swap entry with
2805 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2806 * decoded to a swp_entry_t again, and finally the swap offset is
2807 * extracted.
2808 *
2809 * This will mask all the bits from the initial ~0UL mask that can't
2810 * be encoded in either the swp_entry_t or the architecture definition
2811 * of a swap pte.
2812 */
generic_max_swapfile_size(void)2813 unsigned long generic_max_swapfile_size(void)
2814 {
2815 return swp_offset(pte_to_swp_entry(
2816 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2817 }
2818
2819 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2820 __weak unsigned long max_swapfile_size(void)
2821 {
2822 return generic_max_swapfile_size();
2823 }
2824
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2825 static unsigned long read_swap_header(struct swap_info_struct *p,
2826 union swap_header *swap_header,
2827 struct inode *inode)
2828 {
2829 int i;
2830 unsigned long maxpages;
2831 unsigned long swapfilepages;
2832 unsigned long last_page;
2833
2834 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2835 pr_err("Unable to find swap-space signature\n");
2836 return 0;
2837 }
2838
2839 /* swap partition endianness hack... */
2840 if (swab32(swap_header->info.version) == 1) {
2841 swab32s(&swap_header->info.version);
2842 swab32s(&swap_header->info.last_page);
2843 swab32s(&swap_header->info.nr_badpages);
2844 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2845 return 0;
2846 for (i = 0; i < swap_header->info.nr_badpages; i++)
2847 swab32s(&swap_header->info.badpages[i]);
2848 }
2849 /* Check the swap header's sub-version */
2850 if (swap_header->info.version != 1) {
2851 pr_warn("Unable to handle swap header version %d\n",
2852 swap_header->info.version);
2853 return 0;
2854 }
2855
2856 p->lowest_bit = 1;
2857 p->cluster_next = 1;
2858 p->cluster_nr = 0;
2859
2860 maxpages = max_swapfile_size();
2861 last_page = swap_header->info.last_page;
2862 if (!last_page) {
2863 pr_warn("Empty swap-file\n");
2864 return 0;
2865 }
2866 if (last_page > maxpages) {
2867 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2868 maxpages << (PAGE_SHIFT - 10),
2869 last_page << (PAGE_SHIFT - 10));
2870 }
2871 if (maxpages > last_page) {
2872 maxpages = last_page + 1;
2873 /* p->max is an unsigned int: don't overflow it */
2874 if ((unsigned int)maxpages == 0)
2875 maxpages = UINT_MAX;
2876 }
2877 p->highest_bit = maxpages - 1;
2878
2879 if (!maxpages)
2880 return 0;
2881 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2882 if (swapfilepages && maxpages > swapfilepages) {
2883 pr_warn("Swap area shorter than signature indicates\n");
2884 return 0;
2885 }
2886 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2887 return 0;
2888 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2889 return 0;
2890
2891 return maxpages;
2892 }
2893
2894 #define SWAP_CLUSTER_INFO_COLS \
2895 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2896 #define SWAP_CLUSTER_SPACE_COLS \
2897 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2898 #define SWAP_CLUSTER_COLS \
2899 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2900
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)2901 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2902 union swap_header *swap_header,
2903 unsigned char *swap_map,
2904 struct swap_cluster_info *cluster_info,
2905 unsigned long maxpages,
2906 sector_t *span)
2907 {
2908 unsigned int j, k;
2909 unsigned int nr_good_pages;
2910 int nr_extents;
2911 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2912 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2913 unsigned long i, idx;
2914
2915 nr_good_pages = maxpages - 1; /* omit header page */
2916
2917 cluster_list_init(&p->free_clusters);
2918 cluster_list_init(&p->discard_clusters);
2919
2920 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2921 unsigned int page_nr = swap_header->info.badpages[i];
2922 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2923 return -EINVAL;
2924 if (page_nr < maxpages) {
2925 swap_map[page_nr] = SWAP_MAP_BAD;
2926 nr_good_pages--;
2927 /*
2928 * Haven't marked the cluster free yet, no list
2929 * operation involved
2930 */
2931 inc_cluster_info_page(p, cluster_info, page_nr);
2932 }
2933 }
2934
2935 /* Haven't marked the cluster free yet, no list operation involved */
2936 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2937 inc_cluster_info_page(p, cluster_info, i);
2938
2939 if (nr_good_pages) {
2940 swap_map[0] = SWAP_MAP_BAD;
2941 /*
2942 * Not mark the cluster free yet, no list
2943 * operation involved
2944 */
2945 inc_cluster_info_page(p, cluster_info, 0);
2946 p->max = maxpages;
2947 p->pages = nr_good_pages;
2948 nr_extents = setup_swap_extents(p, span);
2949 if (nr_extents < 0)
2950 return nr_extents;
2951 nr_good_pages = p->pages;
2952 }
2953 if (!nr_good_pages) {
2954 pr_warn("Empty swap-file\n");
2955 return -EINVAL;
2956 }
2957
2958 if (!cluster_info)
2959 return nr_extents;
2960
2961
2962 /*
2963 * Reduce false cache line sharing between cluster_info and
2964 * sharing same address space.
2965 */
2966 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2967 j = (k + col) % SWAP_CLUSTER_COLS;
2968 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2969 idx = i * SWAP_CLUSTER_COLS + j;
2970 if (idx >= nr_clusters)
2971 continue;
2972 if (cluster_count(&cluster_info[idx]))
2973 continue;
2974 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2975 cluster_list_add_tail(&p->free_clusters, cluster_info,
2976 idx);
2977 }
2978 }
2979 return nr_extents;
2980 }
2981
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)2982 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2983 {
2984 struct swap_info_struct *p;
2985 struct filename *name;
2986 struct file *swap_file = NULL;
2987 struct address_space *mapping;
2988 struct dentry *dentry;
2989 int prio;
2990 int error;
2991 union swap_header *swap_header;
2992 int nr_extents;
2993 sector_t span;
2994 unsigned long maxpages;
2995 unsigned char *swap_map = NULL;
2996 struct swap_cluster_info *cluster_info = NULL;
2997 unsigned long *frontswap_map = NULL;
2998 struct page *page = NULL;
2999 struct inode *inode = NULL;
3000 bool inced_nr_rotate_swap = false;
3001
3002 if (swap_flags & ~SWAP_FLAGS_VALID)
3003 return -EINVAL;
3004
3005 if (!capable(CAP_SYS_ADMIN))
3006 return -EPERM;
3007
3008 if (!swap_avail_heads)
3009 return -ENOMEM;
3010
3011 p = alloc_swap_info();
3012 if (IS_ERR(p))
3013 return PTR_ERR(p);
3014
3015 INIT_WORK(&p->discard_work, swap_discard_work);
3016
3017 name = getname(specialfile);
3018 if (IS_ERR(name)) {
3019 error = PTR_ERR(name);
3020 name = NULL;
3021 goto bad_swap;
3022 }
3023 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3024 if (IS_ERR(swap_file)) {
3025 error = PTR_ERR(swap_file);
3026 swap_file = NULL;
3027 goto bad_swap;
3028 }
3029
3030 p->swap_file = swap_file;
3031 mapping = swap_file->f_mapping;
3032 dentry = swap_file->f_path.dentry;
3033 inode = mapping->host;
3034
3035 error = claim_swapfile(p, inode);
3036 if (unlikely(error))
3037 goto bad_swap;
3038
3039 inode_lock(inode);
3040 if (d_unlinked(dentry) || cant_mount(dentry)) {
3041 error = -ENOENT;
3042 goto bad_swap_unlock_inode;
3043 }
3044 if (IS_SWAPFILE(inode)) {
3045 error = -EBUSY;
3046 goto bad_swap_unlock_inode;
3047 }
3048
3049 /*
3050 * Read the swap header.
3051 */
3052 if (!mapping->a_ops->read_folio) {
3053 error = -EINVAL;
3054 goto bad_swap_unlock_inode;
3055 }
3056 page = read_mapping_page(mapping, 0, swap_file);
3057 if (IS_ERR(page)) {
3058 error = PTR_ERR(page);
3059 goto bad_swap_unlock_inode;
3060 }
3061 swap_header = kmap(page);
3062
3063 maxpages = read_swap_header(p, swap_header, inode);
3064 if (unlikely(!maxpages)) {
3065 error = -EINVAL;
3066 goto bad_swap_unlock_inode;
3067 }
3068
3069 /* OK, set up the swap map and apply the bad block list */
3070 swap_map = vzalloc(maxpages);
3071 if (!swap_map) {
3072 error = -ENOMEM;
3073 goto bad_swap_unlock_inode;
3074 }
3075
3076 if (p->bdev && bdev_stable_writes(p->bdev))
3077 p->flags |= SWP_STABLE_WRITES;
3078
3079 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3080 p->flags |= SWP_SYNCHRONOUS_IO;
3081
3082 if (p->bdev && bdev_nonrot(p->bdev)) {
3083 int cpu;
3084 unsigned long ci, nr_cluster;
3085
3086 p->flags |= SWP_SOLIDSTATE;
3087 p->cluster_next_cpu = alloc_percpu(unsigned int);
3088 if (!p->cluster_next_cpu) {
3089 error = -ENOMEM;
3090 goto bad_swap_unlock_inode;
3091 }
3092 /*
3093 * select a random position to start with to help wear leveling
3094 * SSD
3095 */
3096 for_each_possible_cpu(cpu) {
3097 per_cpu(*p->cluster_next_cpu, cpu) =
3098 1 + prandom_u32_max(p->highest_bit);
3099 }
3100 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3101
3102 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3103 GFP_KERNEL);
3104 if (!cluster_info) {
3105 error = -ENOMEM;
3106 goto bad_swap_unlock_inode;
3107 }
3108
3109 for (ci = 0; ci < nr_cluster; ci++)
3110 spin_lock_init(&((cluster_info + ci)->lock));
3111
3112 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3113 if (!p->percpu_cluster) {
3114 error = -ENOMEM;
3115 goto bad_swap_unlock_inode;
3116 }
3117 for_each_possible_cpu(cpu) {
3118 struct percpu_cluster *cluster;
3119 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3120 cluster_set_null(&cluster->index);
3121 }
3122 } else {
3123 atomic_inc(&nr_rotate_swap);
3124 inced_nr_rotate_swap = true;
3125 }
3126
3127 error = swap_cgroup_swapon(p->type, maxpages);
3128 if (error)
3129 goto bad_swap_unlock_inode;
3130
3131 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3132 cluster_info, maxpages, &span);
3133 if (unlikely(nr_extents < 0)) {
3134 error = nr_extents;
3135 goto bad_swap_unlock_inode;
3136 }
3137 /* frontswap enabled? set up bit-per-page map for frontswap */
3138 if (IS_ENABLED(CONFIG_FRONTSWAP))
3139 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3140 sizeof(long),
3141 GFP_KERNEL);
3142
3143 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3144 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3145 /*
3146 * When discard is enabled for swap with no particular
3147 * policy flagged, we set all swap discard flags here in
3148 * order to sustain backward compatibility with older
3149 * swapon(8) releases.
3150 */
3151 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3152 SWP_PAGE_DISCARD);
3153
3154 /*
3155 * By flagging sys_swapon, a sysadmin can tell us to
3156 * either do single-time area discards only, or to just
3157 * perform discards for released swap page-clusters.
3158 * Now it's time to adjust the p->flags accordingly.
3159 */
3160 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3161 p->flags &= ~SWP_PAGE_DISCARD;
3162 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3163 p->flags &= ~SWP_AREA_DISCARD;
3164
3165 /* issue a swapon-time discard if it's still required */
3166 if (p->flags & SWP_AREA_DISCARD) {
3167 int err = discard_swap(p);
3168 if (unlikely(err))
3169 pr_err("swapon: discard_swap(%p): %d\n",
3170 p, err);
3171 }
3172 }
3173
3174 error = init_swap_address_space(p->type, maxpages);
3175 if (error)
3176 goto bad_swap_unlock_inode;
3177
3178 /*
3179 * Flush any pending IO and dirty mappings before we start using this
3180 * swap device.
3181 */
3182 inode->i_flags |= S_SWAPFILE;
3183 error = inode_drain_writes(inode);
3184 if (error) {
3185 inode->i_flags &= ~S_SWAPFILE;
3186 goto free_swap_address_space;
3187 }
3188
3189 mutex_lock(&swapon_mutex);
3190 prio = -1;
3191 if (swap_flags & SWAP_FLAG_PREFER)
3192 prio =
3193 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3194 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3195
3196 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3197 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3198 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3199 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3200 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3201 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3202 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3203 (frontswap_map) ? "FS" : "");
3204
3205 mutex_unlock(&swapon_mutex);
3206 atomic_inc(&proc_poll_event);
3207 wake_up_interruptible(&proc_poll_wait);
3208
3209 error = 0;
3210 goto out;
3211 free_swap_address_space:
3212 exit_swap_address_space(p->type);
3213 bad_swap_unlock_inode:
3214 inode_unlock(inode);
3215 bad_swap:
3216 free_percpu(p->percpu_cluster);
3217 p->percpu_cluster = NULL;
3218 free_percpu(p->cluster_next_cpu);
3219 p->cluster_next_cpu = NULL;
3220 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3221 set_blocksize(p->bdev, p->old_block_size);
3222 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3223 }
3224 inode = NULL;
3225 destroy_swap_extents(p);
3226 swap_cgroup_swapoff(p->type);
3227 spin_lock(&swap_lock);
3228 p->swap_file = NULL;
3229 p->flags = 0;
3230 spin_unlock(&swap_lock);
3231 vfree(swap_map);
3232 kvfree(cluster_info);
3233 kvfree(frontswap_map);
3234 if (inced_nr_rotate_swap)
3235 atomic_dec(&nr_rotate_swap);
3236 if (swap_file)
3237 filp_close(swap_file, NULL);
3238 out:
3239 if (page && !IS_ERR(page)) {
3240 kunmap(page);
3241 put_page(page);
3242 }
3243 if (name)
3244 putname(name);
3245 if (inode)
3246 inode_unlock(inode);
3247 if (!error)
3248 enable_swap_slots_cache();
3249 return error;
3250 }
3251
si_swapinfo(struct sysinfo * val)3252 void si_swapinfo(struct sysinfo *val)
3253 {
3254 unsigned int type;
3255 unsigned long nr_to_be_unused = 0;
3256
3257 spin_lock(&swap_lock);
3258 for (type = 0; type < nr_swapfiles; type++) {
3259 struct swap_info_struct *si = swap_info[type];
3260
3261 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3262 nr_to_be_unused += si->inuse_pages;
3263 }
3264 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3265 val->totalswap = total_swap_pages + nr_to_be_unused;
3266 spin_unlock(&swap_lock);
3267 }
3268
3269 /*
3270 * Verify that a swap entry is valid and increment its swap map count.
3271 *
3272 * Returns error code in following case.
3273 * - success -> 0
3274 * - swp_entry is invalid -> EINVAL
3275 * - swp_entry is migration entry -> EINVAL
3276 * - swap-cache reference is requested but there is already one. -> EEXIST
3277 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3278 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3279 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3280 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3281 {
3282 struct swap_info_struct *p;
3283 struct swap_cluster_info *ci;
3284 unsigned long offset;
3285 unsigned char count;
3286 unsigned char has_cache;
3287 int err;
3288
3289 p = get_swap_device(entry);
3290 if (!p)
3291 return -EINVAL;
3292
3293 offset = swp_offset(entry);
3294 ci = lock_cluster_or_swap_info(p, offset);
3295
3296 count = p->swap_map[offset];
3297
3298 /*
3299 * swapin_readahead() doesn't check if a swap entry is valid, so the
3300 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3301 */
3302 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3303 err = -ENOENT;
3304 goto unlock_out;
3305 }
3306
3307 has_cache = count & SWAP_HAS_CACHE;
3308 count &= ~SWAP_HAS_CACHE;
3309 err = 0;
3310
3311 if (usage == SWAP_HAS_CACHE) {
3312
3313 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3314 if (!has_cache && count)
3315 has_cache = SWAP_HAS_CACHE;
3316 else if (has_cache) /* someone else added cache */
3317 err = -EEXIST;
3318 else /* no users remaining */
3319 err = -ENOENT;
3320
3321 } else if (count || has_cache) {
3322
3323 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3324 count += usage;
3325 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3326 err = -EINVAL;
3327 else if (swap_count_continued(p, offset, count))
3328 count = COUNT_CONTINUED;
3329 else
3330 err = -ENOMEM;
3331 } else
3332 err = -ENOENT; /* unused swap entry */
3333
3334 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3335
3336 unlock_out:
3337 unlock_cluster_or_swap_info(p, ci);
3338 put_swap_device(p);
3339 return err;
3340 }
3341
3342 /*
3343 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3344 * (in which case its reference count is never incremented).
3345 */
swap_shmem_alloc(swp_entry_t entry)3346 void swap_shmem_alloc(swp_entry_t entry)
3347 {
3348 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3349 }
3350
3351 /*
3352 * Increase reference count of swap entry by 1.
3353 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3354 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3355 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3356 * might occur if a page table entry has got corrupted.
3357 */
swap_duplicate(swp_entry_t entry)3358 int swap_duplicate(swp_entry_t entry)
3359 {
3360 int err = 0;
3361
3362 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3363 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3364 return err;
3365 }
3366
3367 /*
3368 * @entry: swap entry for which we allocate swap cache.
3369 *
3370 * Called when allocating swap cache for existing swap entry,
3371 * This can return error codes. Returns 0 at success.
3372 * -EEXIST means there is a swap cache.
3373 * Note: return code is different from swap_duplicate().
3374 */
swapcache_prepare(swp_entry_t entry)3375 int swapcache_prepare(swp_entry_t entry)
3376 {
3377 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3378 }
3379
swp_swap_info(swp_entry_t entry)3380 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3381 {
3382 return swap_type_to_swap_info(swp_type(entry));
3383 }
3384
page_swap_info(struct page * page)3385 struct swap_info_struct *page_swap_info(struct page *page)
3386 {
3387 swp_entry_t entry = { .val = page_private(page) };
3388 return swp_swap_info(entry);
3389 }
3390
3391 /*
3392 * out-of-line methods to avoid include hell.
3393 */
swapcache_mapping(struct folio * folio)3394 struct address_space *swapcache_mapping(struct folio *folio)
3395 {
3396 return page_swap_info(&folio->page)->swap_file->f_mapping;
3397 }
3398 EXPORT_SYMBOL_GPL(swapcache_mapping);
3399
__page_file_index(struct page * page)3400 pgoff_t __page_file_index(struct page *page)
3401 {
3402 swp_entry_t swap = { .val = page_private(page) };
3403 return swp_offset(swap);
3404 }
3405 EXPORT_SYMBOL_GPL(__page_file_index);
3406
3407 /*
3408 * add_swap_count_continuation - called when a swap count is duplicated
3409 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3410 * page of the original vmalloc'ed swap_map, to hold the continuation count
3411 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3412 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3413 *
3414 * These continuation pages are seldom referenced: the common paths all work
3415 * on the original swap_map, only referring to a continuation page when the
3416 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3417 *
3418 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3419 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3420 * can be called after dropping locks.
3421 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3422 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3423 {
3424 struct swap_info_struct *si;
3425 struct swap_cluster_info *ci;
3426 struct page *head;
3427 struct page *page;
3428 struct page *list_page;
3429 pgoff_t offset;
3430 unsigned char count;
3431 int ret = 0;
3432
3433 /*
3434 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3435 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3436 */
3437 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3438
3439 si = get_swap_device(entry);
3440 if (!si) {
3441 /*
3442 * An acceptable race has occurred since the failing
3443 * __swap_duplicate(): the swap device may be swapoff
3444 */
3445 goto outer;
3446 }
3447 spin_lock(&si->lock);
3448
3449 offset = swp_offset(entry);
3450
3451 ci = lock_cluster(si, offset);
3452
3453 count = swap_count(si->swap_map[offset]);
3454
3455 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3456 /*
3457 * The higher the swap count, the more likely it is that tasks
3458 * will race to add swap count continuation: we need to avoid
3459 * over-provisioning.
3460 */
3461 goto out;
3462 }
3463
3464 if (!page) {
3465 ret = -ENOMEM;
3466 goto out;
3467 }
3468
3469 /*
3470 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3471 * no architecture is using highmem pages for kernel page tables: so it
3472 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3473 */
3474 head = vmalloc_to_page(si->swap_map + offset);
3475 offset &= ~PAGE_MASK;
3476
3477 spin_lock(&si->cont_lock);
3478 /*
3479 * Page allocation does not initialize the page's lru field,
3480 * but it does always reset its private field.
3481 */
3482 if (!page_private(head)) {
3483 BUG_ON(count & COUNT_CONTINUED);
3484 INIT_LIST_HEAD(&head->lru);
3485 set_page_private(head, SWP_CONTINUED);
3486 si->flags |= SWP_CONTINUED;
3487 }
3488
3489 list_for_each_entry(list_page, &head->lru, lru) {
3490 unsigned char *map;
3491
3492 /*
3493 * If the previous map said no continuation, but we've found
3494 * a continuation page, free our allocation and use this one.
3495 */
3496 if (!(count & COUNT_CONTINUED))
3497 goto out_unlock_cont;
3498
3499 map = kmap_atomic(list_page) + offset;
3500 count = *map;
3501 kunmap_atomic(map);
3502
3503 /*
3504 * If this continuation count now has some space in it,
3505 * free our allocation and use this one.
3506 */
3507 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3508 goto out_unlock_cont;
3509 }
3510
3511 list_add_tail(&page->lru, &head->lru);
3512 page = NULL; /* now it's attached, don't free it */
3513 out_unlock_cont:
3514 spin_unlock(&si->cont_lock);
3515 out:
3516 unlock_cluster(ci);
3517 spin_unlock(&si->lock);
3518 put_swap_device(si);
3519 outer:
3520 if (page)
3521 __free_page(page);
3522 return ret;
3523 }
3524
3525 /*
3526 * swap_count_continued - when the original swap_map count is incremented
3527 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3528 * into, carry if so, or else fail until a new continuation page is allocated;
3529 * when the original swap_map count is decremented from 0 with continuation,
3530 * borrow from the continuation and report whether it still holds more.
3531 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3532 * lock.
3533 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3534 static bool swap_count_continued(struct swap_info_struct *si,
3535 pgoff_t offset, unsigned char count)
3536 {
3537 struct page *head;
3538 struct page *page;
3539 unsigned char *map;
3540 bool ret;
3541
3542 head = vmalloc_to_page(si->swap_map + offset);
3543 if (page_private(head) != SWP_CONTINUED) {
3544 BUG_ON(count & COUNT_CONTINUED);
3545 return false; /* need to add count continuation */
3546 }
3547
3548 spin_lock(&si->cont_lock);
3549 offset &= ~PAGE_MASK;
3550 page = list_next_entry(head, lru);
3551 map = kmap_atomic(page) + offset;
3552
3553 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3554 goto init_map; /* jump over SWAP_CONT_MAX checks */
3555
3556 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3557 /*
3558 * Think of how you add 1 to 999
3559 */
3560 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3561 kunmap_atomic(map);
3562 page = list_next_entry(page, lru);
3563 BUG_ON(page == head);
3564 map = kmap_atomic(page) + offset;
3565 }
3566 if (*map == SWAP_CONT_MAX) {
3567 kunmap_atomic(map);
3568 page = list_next_entry(page, lru);
3569 if (page == head) {
3570 ret = false; /* add count continuation */
3571 goto out;
3572 }
3573 map = kmap_atomic(page) + offset;
3574 init_map: *map = 0; /* we didn't zero the page */
3575 }
3576 *map += 1;
3577 kunmap_atomic(map);
3578 while ((page = list_prev_entry(page, lru)) != head) {
3579 map = kmap_atomic(page) + offset;
3580 *map = COUNT_CONTINUED;
3581 kunmap_atomic(map);
3582 }
3583 ret = true; /* incremented */
3584
3585 } else { /* decrementing */
3586 /*
3587 * Think of how you subtract 1 from 1000
3588 */
3589 BUG_ON(count != COUNT_CONTINUED);
3590 while (*map == COUNT_CONTINUED) {
3591 kunmap_atomic(map);
3592 page = list_next_entry(page, lru);
3593 BUG_ON(page == head);
3594 map = kmap_atomic(page) + offset;
3595 }
3596 BUG_ON(*map == 0);
3597 *map -= 1;
3598 if (*map == 0)
3599 count = 0;
3600 kunmap_atomic(map);
3601 while ((page = list_prev_entry(page, lru)) != head) {
3602 map = kmap_atomic(page) + offset;
3603 *map = SWAP_CONT_MAX | count;
3604 count = COUNT_CONTINUED;
3605 kunmap_atomic(map);
3606 }
3607 ret = count == COUNT_CONTINUED;
3608 }
3609 out:
3610 spin_unlock(&si->cont_lock);
3611 return ret;
3612 }
3613
3614 /*
3615 * free_swap_count_continuations - swapoff free all the continuation pages
3616 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3617 */
free_swap_count_continuations(struct swap_info_struct * si)3618 static void free_swap_count_continuations(struct swap_info_struct *si)
3619 {
3620 pgoff_t offset;
3621
3622 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3623 struct page *head;
3624 head = vmalloc_to_page(si->swap_map + offset);
3625 if (page_private(head)) {
3626 struct page *page, *next;
3627
3628 list_for_each_entry_safe(page, next, &head->lru, lru) {
3629 list_del(&page->lru);
3630 __free_page(page);
3631 }
3632 }
3633 }
3634 }
3635
3636 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3637 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3638 {
3639 struct swap_info_struct *si, *next;
3640 int nid = page_to_nid(page);
3641
3642 if (!(gfp_mask & __GFP_IO))
3643 return;
3644
3645 if (!blk_cgroup_congested())
3646 return;
3647
3648 /*
3649 * We've already scheduled a throttle, avoid taking the global swap
3650 * lock.
3651 */
3652 if (current->throttle_queue)
3653 return;
3654
3655 spin_lock(&swap_avail_lock);
3656 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3657 avail_lists[nid]) {
3658 if (si->bdev) {
3659 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3660 break;
3661 }
3662 }
3663 spin_unlock(&swap_avail_lock);
3664 }
3665 #endif
3666
swapfile_init(void)3667 static int __init swapfile_init(void)
3668 {
3669 int nid;
3670
3671 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3672 GFP_KERNEL);
3673 if (!swap_avail_heads) {
3674 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3675 return -ENOMEM;
3676 }
3677
3678 for_each_node(nid)
3679 plist_head_init(&swap_avail_heads[nid]);
3680
3681 return 0;
3682 }
3683 subsys_initcall(swapfile_init);
3684