1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/kmem.h>
31 
32 #include "internal.h"
33 
34 #include "slab.h"
35 
36 enum slab_state slab_state;
37 LIST_HEAD(slab_caches);
38 DEFINE_MUTEX(slab_mutex);
39 struct kmem_cache *kmem_cache;
40 
41 static LIST_HEAD(slab_caches_to_rcu_destroy);
42 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
43 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
44 		    slab_caches_to_rcu_destroy_workfn);
45 
46 /*
47  * Set of flags that will prevent slab merging
48  */
49 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
50 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
51 		SLAB_FAILSLAB | kasan_never_merge())
52 
53 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
54 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
55 
56 /*
57  * Merge control. If this is set then no merging of slab caches will occur.
58  */
59 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
60 
setup_slab_nomerge(char * str)61 static int __init setup_slab_nomerge(char *str)
62 {
63 	slab_nomerge = true;
64 	return 1;
65 }
66 
setup_slab_merge(char * str)67 static int __init setup_slab_merge(char *str)
68 {
69 	slab_nomerge = false;
70 	return 1;
71 }
72 
73 #ifdef CONFIG_SLUB
74 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
75 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
76 #endif
77 
78 __setup("slab_nomerge", setup_slab_nomerge);
79 __setup("slab_merge", setup_slab_merge);
80 
81 /*
82  * Determine the size of a slab object
83  */
kmem_cache_size(struct kmem_cache * s)84 unsigned int kmem_cache_size(struct kmem_cache *s)
85 {
86 	return s->object_size;
87 }
88 EXPORT_SYMBOL(kmem_cache_size);
89 
90 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)91 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 {
93 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 		return -EINVAL;
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
kmem_cache_sanity_check(const char * name,unsigned int size)102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 	return 0;
105 }
106 #endif
107 
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 {
110 	size_t i;
111 
112 	for (i = 0; i < nr; i++) {
113 		if (s)
114 			kmem_cache_free(s, p[i]);
115 		else
116 			kfree(p[i]);
117 	}
118 }
119 
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 								void **p)
122 {
123 	size_t i;
124 
125 	for (i = 0; i < nr; i++) {
126 		void *x = p[i] = kmem_cache_alloc(s, flags);
127 		if (!x) {
128 			__kmem_cache_free_bulk(s, i, p);
129 			return 0;
130 		}
131 	}
132 	return i;
133 }
134 
135 /*
136  * Figure out what the alignment of the objects will be given a set of
137  * flags, a user specified alignment and the size of the objects.
138  */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)139 static unsigned int calculate_alignment(slab_flags_t flags,
140 		unsigned int align, unsigned int size)
141 {
142 	/*
143 	 * If the user wants hardware cache aligned objects then follow that
144 	 * suggestion if the object is sufficiently large.
145 	 *
146 	 * The hardware cache alignment cannot override the specified
147 	 * alignment though. If that is greater then use it.
148 	 */
149 	if (flags & SLAB_HWCACHE_ALIGN) {
150 		unsigned int ralign;
151 
152 		ralign = cache_line_size();
153 		while (size <= ralign / 2)
154 			ralign /= 2;
155 		align = max(align, ralign);
156 	}
157 
158 	align = max(align, arch_slab_minalign());
159 
160 	return ALIGN(align, sizeof(void *));
161 }
162 
163 /*
164  * Find a mergeable slab cache
165  */
slab_unmergeable(struct kmem_cache * s)166 int slab_unmergeable(struct kmem_cache *s)
167 {
168 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 		return 1;
170 
171 	if (s->ctor)
172 		return 1;
173 
174 	if (s->usersize)
175 		return 1;
176 
177 	/*
178 	 * We may have set a slab to be unmergeable during bootstrap.
179 	 */
180 	if (s->refcount < 0)
181 		return 1;
182 
183 	return 0;
184 }
185 
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187 		slab_flags_t flags, const char *name, void (*ctor)(void *))
188 {
189 	struct kmem_cache *s;
190 
191 	if (slab_nomerge)
192 		return NULL;
193 
194 	if (ctor)
195 		return NULL;
196 
197 	size = ALIGN(size, sizeof(void *));
198 	align = calculate_alignment(flags, align, size);
199 	size = ALIGN(size, align);
200 	flags = kmem_cache_flags(size, flags, name);
201 
202 	if (flags & SLAB_NEVER_MERGE)
203 		return NULL;
204 
205 	list_for_each_entry_reverse(s, &slab_caches, list) {
206 		if (slab_unmergeable(s))
207 			continue;
208 
209 		if (size > s->size)
210 			continue;
211 
212 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 			continue;
214 		/*
215 		 * Check if alignment is compatible.
216 		 * Courtesy of Adrian Drzewiecki
217 		 */
218 		if ((s->size & ~(align - 1)) != s->size)
219 			continue;
220 
221 		if (s->size - size >= sizeof(void *))
222 			continue;
223 
224 		if (IS_ENABLED(CONFIG_SLAB) && align &&
225 			(align > s->align || s->align % align))
226 			continue;
227 
228 		return s;
229 	}
230 	return NULL;
231 }
232 
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)233 static struct kmem_cache *create_cache(const char *name,
234 		unsigned int object_size, unsigned int align,
235 		slab_flags_t flags, unsigned int useroffset,
236 		unsigned int usersize, void (*ctor)(void *),
237 		struct kmem_cache *root_cache)
238 {
239 	struct kmem_cache *s;
240 	int err;
241 
242 	if (WARN_ON(useroffset + usersize > object_size))
243 		useroffset = usersize = 0;
244 
245 	err = -ENOMEM;
246 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 	if (!s)
248 		goto out;
249 
250 	s->name = name;
251 	s->size = s->object_size = object_size;
252 	s->align = align;
253 	s->ctor = ctor;
254 	s->useroffset = useroffset;
255 	s->usersize = usersize;
256 
257 	err = __kmem_cache_create(s, flags);
258 	if (err)
259 		goto out_free_cache;
260 
261 	s->refcount = 1;
262 	list_add(&s->list, &slab_caches);
263 out:
264 	if (err)
265 		return ERR_PTR(err);
266 	return s;
267 
268 out_free_cache:
269 	kmem_cache_free(kmem_cache, s);
270 	goto out;
271 }
272 
273 /**
274  * kmem_cache_create_usercopy - Create a cache with a region suitable
275  * for copying to userspace
276  * @name: A string which is used in /proc/slabinfo to identify this cache.
277  * @size: The size of objects to be created in this cache.
278  * @align: The required alignment for the objects.
279  * @flags: SLAB flags
280  * @useroffset: Usercopy region offset
281  * @usersize: Usercopy region size
282  * @ctor: A constructor for the objects.
283  *
284  * Cannot be called within a interrupt, but can be interrupted.
285  * The @ctor is run when new pages are allocated by the cache.
286  *
287  * The flags are
288  *
289  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290  * to catch references to uninitialised memory.
291  *
292  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293  * for buffer overruns.
294  *
295  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296  * cacheline.  This can be beneficial if you're counting cycles as closely
297  * as davem.
298  *
299  * Return: a pointer to the cache on success, NULL on failure.
300  */
301 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))302 kmem_cache_create_usercopy(const char *name,
303 		  unsigned int size, unsigned int align,
304 		  slab_flags_t flags,
305 		  unsigned int useroffset, unsigned int usersize,
306 		  void (*ctor)(void *))
307 {
308 	struct kmem_cache *s = NULL;
309 	const char *cache_name;
310 	int err;
311 
312 #ifdef CONFIG_SLUB_DEBUG
313 	/*
314 	 * If no slub_debug was enabled globally, the static key is not yet
315 	 * enabled by setup_slub_debug(). Enable it if the cache is being
316 	 * created with any of the debugging flags passed explicitly.
317 	 * It's also possible that this is the first cache created with
318 	 * SLAB_STORE_USER and we should init stack_depot for it.
319 	 */
320 	if (flags & SLAB_DEBUG_FLAGS)
321 		static_branch_enable(&slub_debug_enabled);
322 	if (flags & SLAB_STORE_USER)
323 		stack_depot_init();
324 #endif
325 
326 	mutex_lock(&slab_mutex);
327 
328 	err = kmem_cache_sanity_check(name, size);
329 	if (err) {
330 		goto out_unlock;
331 	}
332 
333 	/* Refuse requests with allocator specific flags */
334 	if (flags & ~SLAB_FLAGS_PERMITTED) {
335 		err = -EINVAL;
336 		goto out_unlock;
337 	}
338 
339 	/*
340 	 * Some allocators will constraint the set of valid flags to a subset
341 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
342 	 * case, and we'll just provide them with a sanitized version of the
343 	 * passed flags.
344 	 */
345 	flags &= CACHE_CREATE_MASK;
346 
347 	/* Fail closed on bad usersize of useroffset values. */
348 	if (WARN_ON(!usersize && useroffset) ||
349 	    WARN_ON(size < usersize || size - usersize < useroffset))
350 		usersize = useroffset = 0;
351 
352 	if (!usersize)
353 		s = __kmem_cache_alias(name, size, align, flags, ctor);
354 	if (s)
355 		goto out_unlock;
356 
357 	cache_name = kstrdup_const(name, GFP_KERNEL);
358 	if (!cache_name) {
359 		err = -ENOMEM;
360 		goto out_unlock;
361 	}
362 
363 	s = create_cache(cache_name, size,
364 			 calculate_alignment(flags, align, size),
365 			 flags, useroffset, usersize, ctor, NULL);
366 	if (IS_ERR(s)) {
367 		err = PTR_ERR(s);
368 		kfree_const(cache_name);
369 	}
370 
371 out_unlock:
372 	mutex_unlock(&slab_mutex);
373 
374 	if (err) {
375 		if (flags & SLAB_PANIC)
376 			panic("%s: Failed to create slab '%s'. Error %d\n",
377 				__func__, name, err);
378 		else {
379 			pr_warn("%s(%s) failed with error %d\n",
380 				__func__, name, err);
381 			dump_stack();
382 		}
383 		return NULL;
384 	}
385 	return s;
386 }
387 EXPORT_SYMBOL(kmem_cache_create_usercopy);
388 
389 /**
390  * kmem_cache_create - Create a cache.
391  * @name: A string which is used in /proc/slabinfo to identify this cache.
392  * @size: The size of objects to be created in this cache.
393  * @align: The required alignment for the objects.
394  * @flags: SLAB flags
395  * @ctor: A constructor for the objects.
396  *
397  * Cannot be called within a interrupt, but can be interrupted.
398  * The @ctor is run when new pages are allocated by the cache.
399  *
400  * The flags are
401  *
402  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
403  * to catch references to uninitialised memory.
404  *
405  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
406  * for buffer overruns.
407  *
408  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
409  * cacheline.  This can be beneficial if you're counting cycles as closely
410  * as davem.
411  *
412  * Return: a pointer to the cache on success, NULL on failure.
413  */
414 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))415 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
416 		slab_flags_t flags, void (*ctor)(void *))
417 {
418 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
419 					  ctor);
420 }
421 EXPORT_SYMBOL(kmem_cache_create);
422 
423 #ifdef SLAB_SUPPORTS_SYSFS
424 /*
425  * For a given kmem_cache, kmem_cache_destroy() should only be called
426  * once or there will be a use-after-free problem. The actual deletion
427  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
428  * protection. So they are now done without holding those locks.
429  *
430  * Note that there will be a slight delay in the deletion of sysfs files
431  * if kmem_cache_release() is called indrectly from a work function.
432  */
kmem_cache_release(struct kmem_cache * s)433 static void kmem_cache_release(struct kmem_cache *s)
434 {
435 	sysfs_slab_unlink(s);
436 	sysfs_slab_release(s);
437 }
438 #else
kmem_cache_release(struct kmem_cache * s)439 static void kmem_cache_release(struct kmem_cache *s)
440 {
441 	slab_kmem_cache_release(s);
442 }
443 #endif
444 
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)445 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
446 {
447 	LIST_HEAD(to_destroy);
448 	struct kmem_cache *s, *s2;
449 
450 	/*
451 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
452 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
453 	 * through RCU and the associated kmem_cache are dereferenced
454 	 * while freeing the pages, so the kmem_caches should be freed only
455 	 * after the pending RCU operations are finished.  As rcu_barrier()
456 	 * is a pretty slow operation, we batch all pending destructions
457 	 * asynchronously.
458 	 */
459 	mutex_lock(&slab_mutex);
460 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
461 	mutex_unlock(&slab_mutex);
462 
463 	if (list_empty(&to_destroy))
464 		return;
465 
466 	rcu_barrier();
467 
468 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
469 		debugfs_slab_release(s);
470 		kfence_shutdown_cache(s);
471 		kmem_cache_release(s);
472 	}
473 }
474 
shutdown_cache(struct kmem_cache * s)475 static int shutdown_cache(struct kmem_cache *s)
476 {
477 	/* free asan quarantined objects */
478 	kasan_cache_shutdown(s);
479 
480 	if (__kmem_cache_shutdown(s) != 0)
481 		return -EBUSY;
482 
483 	list_del(&s->list);
484 
485 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
486 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
487 		schedule_work(&slab_caches_to_rcu_destroy_work);
488 	} else {
489 		kfence_shutdown_cache(s);
490 		debugfs_slab_release(s);
491 	}
492 
493 	return 0;
494 }
495 
slab_kmem_cache_release(struct kmem_cache * s)496 void slab_kmem_cache_release(struct kmem_cache *s)
497 {
498 	__kmem_cache_release(s);
499 	kfree_const(s->name);
500 	kmem_cache_free(kmem_cache, s);
501 }
502 
kmem_cache_destroy(struct kmem_cache * s)503 void kmem_cache_destroy(struct kmem_cache *s)
504 {
505 	int refcnt;
506 
507 	if (unlikely(!s) || !kasan_check_byte(s))
508 		return;
509 
510 	cpus_read_lock();
511 	mutex_lock(&slab_mutex);
512 
513 	refcnt = --s->refcount;
514 	if (refcnt)
515 		goto out_unlock;
516 
517 	WARN(shutdown_cache(s),
518 	     "%s %s: Slab cache still has objects when called from %pS",
519 	     __func__, s->name, (void *)_RET_IP_);
520 out_unlock:
521 	mutex_unlock(&slab_mutex);
522 	cpus_read_unlock();
523 	if (!refcnt && !(s->flags & SLAB_TYPESAFE_BY_RCU))
524 		kmem_cache_release(s);
525 }
526 EXPORT_SYMBOL(kmem_cache_destroy);
527 
528 /**
529  * kmem_cache_shrink - Shrink a cache.
530  * @cachep: The cache to shrink.
531  *
532  * Releases as many slabs as possible for a cache.
533  * To help debugging, a zero exit status indicates all slabs were released.
534  *
535  * Return: %0 if all slabs were released, non-zero otherwise
536  */
kmem_cache_shrink(struct kmem_cache * cachep)537 int kmem_cache_shrink(struct kmem_cache *cachep)
538 {
539 	int ret;
540 
541 
542 	kasan_cache_shrink(cachep);
543 	ret = __kmem_cache_shrink(cachep);
544 
545 	return ret;
546 }
547 EXPORT_SYMBOL(kmem_cache_shrink);
548 
slab_is_available(void)549 bool slab_is_available(void)
550 {
551 	return slab_state >= UP;
552 }
553 
554 #ifdef CONFIG_PRINTK
555 /**
556  * kmem_valid_obj - does the pointer reference a valid slab object?
557  * @object: pointer to query.
558  *
559  * Return: %true if the pointer is to a not-yet-freed object from
560  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
561  * is to an already-freed object, and %false otherwise.
562  */
kmem_valid_obj(void * object)563 bool kmem_valid_obj(void *object)
564 {
565 	struct folio *folio;
566 
567 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
568 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
569 		return false;
570 	folio = virt_to_folio(object);
571 	return folio_test_slab(folio);
572 }
573 EXPORT_SYMBOL_GPL(kmem_valid_obj);
574 
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)575 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
576 {
577 	if (__kfence_obj_info(kpp, object, slab))
578 		return;
579 	__kmem_obj_info(kpp, object, slab);
580 }
581 
582 /**
583  * kmem_dump_obj - Print available slab provenance information
584  * @object: slab object for which to find provenance information.
585  *
586  * This function uses pr_cont(), so that the caller is expected to have
587  * printed out whatever preamble is appropriate.  The provenance information
588  * depends on the type of object and on how much debugging is enabled.
589  * For a slab-cache object, the fact that it is a slab object is printed,
590  * and, if available, the slab name, return address, and stack trace from
591  * the allocation and last free path of that object.
592  *
593  * This function will splat if passed a pointer to a non-slab object.
594  * If you are not sure what type of object you have, you should instead
595  * use mem_dump_obj().
596  */
kmem_dump_obj(void * object)597 void kmem_dump_obj(void *object)
598 {
599 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
600 	int i;
601 	struct slab *slab;
602 	unsigned long ptroffset;
603 	struct kmem_obj_info kp = { };
604 
605 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
606 		return;
607 	slab = virt_to_slab(object);
608 	if (WARN_ON_ONCE(!slab)) {
609 		pr_cont(" non-slab memory.\n");
610 		return;
611 	}
612 	kmem_obj_info(&kp, object, slab);
613 	if (kp.kp_slab_cache)
614 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
615 	else
616 		pr_cont(" slab%s", cp);
617 	if (is_kfence_address(object))
618 		pr_cont(" (kfence)");
619 	if (kp.kp_objp)
620 		pr_cont(" start %px", kp.kp_objp);
621 	if (kp.kp_data_offset)
622 		pr_cont(" data offset %lu", kp.kp_data_offset);
623 	if (kp.kp_objp) {
624 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
625 		pr_cont(" pointer offset %lu", ptroffset);
626 	}
627 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
628 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
629 	if (kp.kp_ret)
630 		pr_cont(" allocated at %pS\n", kp.kp_ret);
631 	else
632 		pr_cont("\n");
633 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
634 		if (!kp.kp_stack[i])
635 			break;
636 		pr_info("    %pS\n", kp.kp_stack[i]);
637 	}
638 
639 	if (kp.kp_free_stack[0])
640 		pr_cont(" Free path:\n");
641 
642 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
643 		if (!kp.kp_free_stack[i])
644 			break;
645 		pr_info("    %pS\n", kp.kp_free_stack[i]);
646 	}
647 
648 }
649 EXPORT_SYMBOL_GPL(kmem_dump_obj);
650 #endif
651 
652 #ifndef CONFIG_SLOB
653 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)654 void __init create_boot_cache(struct kmem_cache *s, const char *name,
655 		unsigned int size, slab_flags_t flags,
656 		unsigned int useroffset, unsigned int usersize)
657 {
658 	int err;
659 	unsigned int align = ARCH_KMALLOC_MINALIGN;
660 
661 	s->name = name;
662 	s->size = s->object_size = size;
663 
664 	/*
665 	 * For power of two sizes, guarantee natural alignment for kmalloc
666 	 * caches, regardless of SL*B debugging options.
667 	 */
668 	if (is_power_of_2(size))
669 		align = max(align, size);
670 	s->align = calculate_alignment(flags, align, size);
671 
672 	s->useroffset = useroffset;
673 	s->usersize = usersize;
674 
675 	err = __kmem_cache_create(s, flags);
676 
677 	if (err)
678 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
679 					name, size, err);
680 
681 	s->refcount = -1;	/* Exempt from merging for now */
682 }
683 
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)684 struct kmem_cache *__init create_kmalloc_cache(const char *name,
685 		unsigned int size, slab_flags_t flags,
686 		unsigned int useroffset, unsigned int usersize)
687 {
688 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
689 
690 	if (!s)
691 		panic("Out of memory when creating slab %s\n", name);
692 
693 	create_boot_cache(s, name, size, flags, useroffset, usersize);
694 	kasan_cache_create_kmalloc(s);
695 	list_add(&s->list, &slab_caches);
696 	s->refcount = 1;
697 	return s;
698 }
699 
700 struct kmem_cache *
701 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
702 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
703 EXPORT_SYMBOL(kmalloc_caches);
704 
705 /*
706  * Conversion table for small slabs sizes / 8 to the index in the
707  * kmalloc array. This is necessary for slabs < 192 since we have non power
708  * of two cache sizes there. The size of larger slabs can be determined using
709  * fls.
710  */
711 static u8 size_index[24] __ro_after_init = {
712 	3,	/* 8 */
713 	4,	/* 16 */
714 	5,	/* 24 */
715 	5,	/* 32 */
716 	6,	/* 40 */
717 	6,	/* 48 */
718 	6,	/* 56 */
719 	6,	/* 64 */
720 	1,	/* 72 */
721 	1,	/* 80 */
722 	1,	/* 88 */
723 	1,	/* 96 */
724 	7,	/* 104 */
725 	7,	/* 112 */
726 	7,	/* 120 */
727 	7,	/* 128 */
728 	2,	/* 136 */
729 	2,	/* 144 */
730 	2,	/* 152 */
731 	2,	/* 160 */
732 	2,	/* 168 */
733 	2,	/* 176 */
734 	2,	/* 184 */
735 	2	/* 192 */
736 };
737 
size_index_elem(unsigned int bytes)738 static inline unsigned int size_index_elem(unsigned int bytes)
739 {
740 	return (bytes - 1) / 8;
741 }
742 
743 /*
744  * Find the kmem_cache structure that serves a given size of
745  * allocation
746  */
kmalloc_slab(size_t size,gfp_t flags)747 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
748 {
749 	unsigned int index;
750 
751 	if (size <= 192) {
752 		if (!size)
753 			return ZERO_SIZE_PTR;
754 
755 		index = size_index[size_index_elem(size)];
756 	} else {
757 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
758 			return NULL;
759 		index = fls(size - 1);
760 	}
761 
762 	return kmalloc_caches[kmalloc_type(flags)][index];
763 }
764 
765 #ifdef CONFIG_ZONE_DMA
766 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
767 #else
768 #define KMALLOC_DMA_NAME(sz)
769 #endif
770 
771 #ifdef CONFIG_MEMCG_KMEM
772 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
773 #else
774 #define KMALLOC_CGROUP_NAME(sz)
775 #endif
776 
777 #define INIT_KMALLOC_INFO(__size, __short_size)			\
778 {								\
779 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
780 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
781 	KMALLOC_CGROUP_NAME(__short_size)			\
782 	KMALLOC_DMA_NAME(__short_size)				\
783 	.size = __size,						\
784 }
785 
786 /*
787  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
788  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
789  * kmalloc-32M.
790  */
791 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
792 	INIT_KMALLOC_INFO(0, 0),
793 	INIT_KMALLOC_INFO(96, 96),
794 	INIT_KMALLOC_INFO(192, 192),
795 	INIT_KMALLOC_INFO(8, 8),
796 	INIT_KMALLOC_INFO(16, 16),
797 	INIT_KMALLOC_INFO(32, 32),
798 	INIT_KMALLOC_INFO(64, 64),
799 	INIT_KMALLOC_INFO(128, 128),
800 	INIT_KMALLOC_INFO(256, 256),
801 	INIT_KMALLOC_INFO(512, 512),
802 	INIT_KMALLOC_INFO(1024, 1k),
803 	INIT_KMALLOC_INFO(2048, 2k),
804 	INIT_KMALLOC_INFO(4096, 4k),
805 	INIT_KMALLOC_INFO(8192, 8k),
806 	INIT_KMALLOC_INFO(16384, 16k),
807 	INIT_KMALLOC_INFO(32768, 32k),
808 	INIT_KMALLOC_INFO(65536, 64k),
809 	INIT_KMALLOC_INFO(131072, 128k),
810 	INIT_KMALLOC_INFO(262144, 256k),
811 	INIT_KMALLOC_INFO(524288, 512k),
812 	INIT_KMALLOC_INFO(1048576, 1M),
813 	INIT_KMALLOC_INFO(2097152, 2M),
814 	INIT_KMALLOC_INFO(4194304, 4M),
815 	INIT_KMALLOC_INFO(8388608, 8M),
816 	INIT_KMALLOC_INFO(16777216, 16M),
817 	INIT_KMALLOC_INFO(33554432, 32M)
818 };
819 
820 /*
821  * Patch up the size_index table if we have strange large alignment
822  * requirements for the kmalloc array. This is only the case for
823  * MIPS it seems. The standard arches will not generate any code here.
824  *
825  * Largest permitted alignment is 256 bytes due to the way we
826  * handle the index determination for the smaller caches.
827  *
828  * Make sure that nothing crazy happens if someone starts tinkering
829  * around with ARCH_KMALLOC_MINALIGN
830  */
setup_kmalloc_cache_index_table(void)831 void __init setup_kmalloc_cache_index_table(void)
832 {
833 	unsigned int i;
834 
835 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
836 		!is_power_of_2(KMALLOC_MIN_SIZE));
837 
838 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
839 		unsigned int elem = size_index_elem(i);
840 
841 		if (elem >= ARRAY_SIZE(size_index))
842 			break;
843 		size_index[elem] = KMALLOC_SHIFT_LOW;
844 	}
845 
846 	if (KMALLOC_MIN_SIZE >= 64) {
847 		/*
848 		 * The 96 byte sized cache is not used if the alignment
849 		 * is 64 byte.
850 		 */
851 		for (i = 64 + 8; i <= 96; i += 8)
852 			size_index[size_index_elem(i)] = 7;
853 
854 	}
855 
856 	if (KMALLOC_MIN_SIZE >= 128) {
857 		/*
858 		 * The 192 byte sized cache is not used if the alignment
859 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
860 		 * instead.
861 		 */
862 		for (i = 128 + 8; i <= 192; i += 8)
863 			size_index[size_index_elem(i)] = 8;
864 	}
865 }
866 
867 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)868 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
869 {
870 	if (type == KMALLOC_RECLAIM) {
871 		flags |= SLAB_RECLAIM_ACCOUNT;
872 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
873 		if (mem_cgroup_kmem_disabled()) {
874 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
875 			return;
876 		}
877 		flags |= SLAB_ACCOUNT;
878 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
879 		flags |= SLAB_CACHE_DMA;
880 	}
881 
882 	kmalloc_caches[type][idx] = create_kmalloc_cache(
883 					kmalloc_info[idx].name[type],
884 					kmalloc_info[idx].size, flags, 0,
885 					kmalloc_info[idx].size);
886 
887 	/*
888 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
889 	 * KMALLOC_NORMAL caches.
890 	 */
891 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
892 		kmalloc_caches[type][idx]->refcount = -1;
893 }
894 
895 /*
896  * Create the kmalloc array. Some of the regular kmalloc arrays
897  * may already have been created because they were needed to
898  * enable allocations for slab creation.
899  */
create_kmalloc_caches(slab_flags_t flags)900 void __init create_kmalloc_caches(slab_flags_t flags)
901 {
902 	int i;
903 	enum kmalloc_cache_type type;
904 
905 	/*
906 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
907 	 */
908 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
909 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
910 			if (!kmalloc_caches[type][i])
911 				new_kmalloc_cache(i, type, flags);
912 
913 			/*
914 			 * Caches that are not of the two-to-the-power-of size.
915 			 * These have to be created immediately after the
916 			 * earlier power of two caches
917 			 */
918 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
919 					!kmalloc_caches[type][1])
920 				new_kmalloc_cache(1, type, flags);
921 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
922 					!kmalloc_caches[type][2])
923 				new_kmalloc_cache(2, type, flags);
924 		}
925 	}
926 
927 	/* Kmalloc array is now usable */
928 	slab_state = UP;
929 }
930 #endif /* !CONFIG_SLOB */
931 
kmalloc_fix_flags(gfp_t flags)932 gfp_t kmalloc_fix_flags(gfp_t flags)
933 {
934 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
935 
936 	flags &= ~GFP_SLAB_BUG_MASK;
937 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
938 			invalid_mask, &invalid_mask, flags, &flags);
939 	dump_stack();
940 
941 	return flags;
942 }
943 
944 /*
945  * To avoid unnecessary overhead, we pass through large allocation requests
946  * directly to the page allocator. We use __GFP_COMP, because we will need to
947  * know the allocation order to free the pages properly in kfree.
948  */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)949 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
950 {
951 	void *ret = NULL;
952 	struct page *page;
953 
954 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
955 		flags = kmalloc_fix_flags(flags);
956 
957 	flags |= __GFP_COMP;
958 	page = alloc_pages(flags, order);
959 	if (likely(page)) {
960 		ret = page_address(page);
961 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
962 				      PAGE_SIZE << order);
963 	}
964 	ret = kasan_kmalloc_large(ret, size, flags);
965 	/* As ret might get tagged, call kmemleak hook after KASAN. */
966 	kmemleak_alloc(ret, size, 1, flags);
967 	return ret;
968 }
969 EXPORT_SYMBOL(kmalloc_order);
970 
971 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)972 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
973 {
974 	void *ret = kmalloc_order(size, flags, order);
975 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
976 	return ret;
977 }
978 EXPORT_SYMBOL(kmalloc_order_trace);
979 #endif
980 
981 #ifdef CONFIG_SLAB_FREELIST_RANDOM
982 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)983 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
984 			       unsigned int count)
985 {
986 	unsigned int rand;
987 	unsigned int i;
988 
989 	for (i = 0; i < count; i++)
990 		list[i] = i;
991 
992 	/* Fisher-Yates shuffle */
993 	for (i = count - 1; i > 0; i--) {
994 		rand = prandom_u32_state(state);
995 		rand %= (i + 1);
996 		swap(list[i], list[rand]);
997 	}
998 }
999 
1000 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1001 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1002 				    gfp_t gfp)
1003 {
1004 	struct rnd_state state;
1005 
1006 	if (count < 2 || cachep->random_seq)
1007 		return 0;
1008 
1009 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1010 	if (!cachep->random_seq)
1011 		return -ENOMEM;
1012 
1013 	/* Get best entropy at this stage of boot */
1014 	prandom_seed_state(&state, get_random_long());
1015 
1016 	freelist_randomize(&state, cachep->random_seq, count);
1017 	return 0;
1018 }
1019 
1020 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1021 void cache_random_seq_destroy(struct kmem_cache *cachep)
1022 {
1023 	kfree(cachep->random_seq);
1024 	cachep->random_seq = NULL;
1025 }
1026 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1027 
1028 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1029 #ifdef CONFIG_SLAB
1030 #define SLABINFO_RIGHTS (0600)
1031 #else
1032 #define SLABINFO_RIGHTS (0400)
1033 #endif
1034 
print_slabinfo_header(struct seq_file * m)1035 static void print_slabinfo_header(struct seq_file *m)
1036 {
1037 	/*
1038 	 * Output format version, so at least we can change it
1039 	 * without _too_ many complaints.
1040 	 */
1041 #ifdef CONFIG_DEBUG_SLAB
1042 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1043 #else
1044 	seq_puts(m, "slabinfo - version: 2.1\n");
1045 #endif
1046 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1047 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1048 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1049 #ifdef CONFIG_DEBUG_SLAB
1050 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1051 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1052 #endif
1053 	seq_putc(m, '\n');
1054 }
1055 
slab_start(struct seq_file * m,loff_t * pos)1056 static void *slab_start(struct seq_file *m, loff_t *pos)
1057 {
1058 	mutex_lock(&slab_mutex);
1059 	return seq_list_start(&slab_caches, *pos);
1060 }
1061 
slab_next(struct seq_file * m,void * p,loff_t * pos)1062 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1063 {
1064 	return seq_list_next(p, &slab_caches, pos);
1065 }
1066 
slab_stop(struct seq_file * m,void * p)1067 static void slab_stop(struct seq_file *m, void *p)
1068 {
1069 	mutex_unlock(&slab_mutex);
1070 }
1071 
cache_show(struct kmem_cache * s,struct seq_file * m)1072 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1073 {
1074 	struct slabinfo sinfo;
1075 
1076 	memset(&sinfo, 0, sizeof(sinfo));
1077 	get_slabinfo(s, &sinfo);
1078 
1079 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1080 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1081 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1082 
1083 	seq_printf(m, " : tunables %4u %4u %4u",
1084 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1085 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1086 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1087 	slabinfo_show_stats(m, s);
1088 	seq_putc(m, '\n');
1089 }
1090 
slab_show(struct seq_file * m,void * p)1091 static int slab_show(struct seq_file *m, void *p)
1092 {
1093 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1094 
1095 	if (p == slab_caches.next)
1096 		print_slabinfo_header(m);
1097 	cache_show(s, m);
1098 	return 0;
1099 }
1100 
dump_unreclaimable_slab(void)1101 void dump_unreclaimable_slab(void)
1102 {
1103 	struct kmem_cache *s;
1104 	struct slabinfo sinfo;
1105 
1106 	/*
1107 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1108 	 * sleep in oom path. But, without mutex hold, it may introduce a
1109 	 * risk of crash.
1110 	 * Use mutex_trylock to protect the list traverse, dump nothing
1111 	 * without acquiring the mutex.
1112 	 */
1113 	if (!mutex_trylock(&slab_mutex)) {
1114 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1115 		return;
1116 	}
1117 
1118 	pr_info("Unreclaimable slab info:\n");
1119 	pr_info("Name                      Used          Total\n");
1120 
1121 	list_for_each_entry(s, &slab_caches, list) {
1122 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1123 			continue;
1124 
1125 		get_slabinfo(s, &sinfo);
1126 
1127 		if (sinfo.num_objs > 0)
1128 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1129 				(sinfo.active_objs * s->size) / 1024,
1130 				(sinfo.num_objs * s->size) / 1024);
1131 	}
1132 	mutex_unlock(&slab_mutex);
1133 }
1134 
1135 /*
1136  * slabinfo_op - iterator that generates /proc/slabinfo
1137  *
1138  * Output layout:
1139  * cache-name
1140  * num-active-objs
1141  * total-objs
1142  * object size
1143  * num-active-slabs
1144  * total-slabs
1145  * num-pages-per-slab
1146  * + further values on SMP and with statistics enabled
1147  */
1148 static const struct seq_operations slabinfo_op = {
1149 	.start = slab_start,
1150 	.next = slab_next,
1151 	.stop = slab_stop,
1152 	.show = slab_show,
1153 };
1154 
slabinfo_open(struct inode * inode,struct file * file)1155 static int slabinfo_open(struct inode *inode, struct file *file)
1156 {
1157 	return seq_open(file, &slabinfo_op);
1158 }
1159 
1160 static const struct proc_ops slabinfo_proc_ops = {
1161 	.proc_flags	= PROC_ENTRY_PERMANENT,
1162 	.proc_open	= slabinfo_open,
1163 	.proc_read	= seq_read,
1164 	.proc_write	= slabinfo_write,
1165 	.proc_lseek	= seq_lseek,
1166 	.proc_release	= seq_release,
1167 };
1168 
slab_proc_init(void)1169 static int __init slab_proc_init(void)
1170 {
1171 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1172 	return 0;
1173 }
1174 module_init(slab_proc_init);
1175 
1176 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1177 
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1178 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1179 					   gfp_t flags)
1180 {
1181 	void *ret;
1182 	size_t ks;
1183 
1184 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1185 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1186 		if (!kasan_check_byte(p))
1187 			return NULL;
1188 		ks = kfence_ksize(p) ?: __ksize(p);
1189 	} else
1190 		ks = 0;
1191 
1192 	/* If the object still fits, repoison it precisely. */
1193 	if (ks >= new_size) {
1194 		p = kasan_krealloc((void *)p, new_size, flags);
1195 		return (void *)p;
1196 	}
1197 
1198 	ret = kmalloc_track_caller(new_size, flags);
1199 	if (ret && p) {
1200 		/* Disable KASAN checks as the object's redzone is accessed. */
1201 		kasan_disable_current();
1202 		memcpy(ret, kasan_reset_tag(p), ks);
1203 		kasan_enable_current();
1204 	}
1205 
1206 	return ret;
1207 }
1208 
1209 /**
1210  * krealloc - reallocate memory. The contents will remain unchanged.
1211  * @p: object to reallocate memory for.
1212  * @new_size: how many bytes of memory are required.
1213  * @flags: the type of memory to allocate.
1214  *
1215  * The contents of the object pointed to are preserved up to the
1216  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1217  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1218  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1219  *
1220  * Return: pointer to the allocated memory or %NULL in case of error
1221  */
krealloc(const void * p,size_t new_size,gfp_t flags)1222 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1223 {
1224 	void *ret;
1225 
1226 	if (unlikely(!new_size)) {
1227 		kfree(p);
1228 		return ZERO_SIZE_PTR;
1229 	}
1230 
1231 	ret = __do_krealloc(p, new_size, flags);
1232 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1233 		kfree(p);
1234 
1235 	return ret;
1236 }
1237 EXPORT_SYMBOL(krealloc);
1238 
1239 /**
1240  * kfree_sensitive - Clear sensitive information in memory before freeing
1241  * @p: object to free memory of
1242  *
1243  * The memory of the object @p points to is zeroed before freed.
1244  * If @p is %NULL, kfree_sensitive() does nothing.
1245  *
1246  * Note: this function zeroes the whole allocated buffer which can be a good
1247  * deal bigger than the requested buffer size passed to kmalloc(). So be
1248  * careful when using this function in performance sensitive code.
1249  */
kfree_sensitive(const void * p)1250 void kfree_sensitive(const void *p)
1251 {
1252 	size_t ks;
1253 	void *mem = (void *)p;
1254 
1255 	ks = ksize(mem);
1256 	if (ks)
1257 		memzero_explicit(mem, ks);
1258 	kfree(mem);
1259 }
1260 EXPORT_SYMBOL(kfree_sensitive);
1261 
1262 /**
1263  * ksize - get the actual amount of memory allocated for a given object
1264  * @objp: Pointer to the object
1265  *
1266  * kmalloc may internally round up allocations and return more memory
1267  * than requested. ksize() can be used to determine the actual amount of
1268  * memory allocated. The caller may use this additional memory, even though
1269  * a smaller amount of memory was initially specified with the kmalloc call.
1270  * The caller must guarantee that objp points to a valid object previously
1271  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1272  * must not be freed during the duration of the call.
1273  *
1274  * Return: size of the actual memory used by @objp in bytes
1275  */
ksize(const void * objp)1276 size_t ksize(const void *objp)
1277 {
1278 	size_t size;
1279 
1280 	/*
1281 	 * We need to first check that the pointer to the object is valid, and
1282 	 * only then unpoison the memory. The report printed from ksize() is
1283 	 * more useful, then when it's printed later when the behaviour could
1284 	 * be undefined due to a potential use-after-free or double-free.
1285 	 *
1286 	 * We use kasan_check_byte(), which is supported for the hardware
1287 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1288 	 *
1289 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1290 	 * ksize() writing to and potentially corrupting the memory region.
1291 	 *
1292 	 * We want to perform the check before __ksize(), to avoid potentially
1293 	 * crashing in __ksize() due to accessing invalid metadata.
1294 	 */
1295 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1296 		return 0;
1297 
1298 	size = kfence_ksize(objp) ?: __ksize(objp);
1299 	/*
1300 	 * We assume that ksize callers could use whole allocated area,
1301 	 * so we need to unpoison this area.
1302 	 */
1303 	kasan_unpoison_range(objp, size);
1304 	return size;
1305 }
1306 EXPORT_SYMBOL(ksize);
1307 
1308 /* Tracepoints definitions. */
1309 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1310 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1311 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1312 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1313 EXPORT_TRACEPOINT_SYMBOL(kfree);
1314 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1315 
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1316 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1317 {
1318 	if (__should_failslab(s, gfpflags))
1319 		return -ENOMEM;
1320 	return 0;
1321 }
1322 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1323