1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Pressure stall information for CPU, memory and IO
4 *
5 * Copyright (c) 2018 Facebook, Inc.
6 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 *
8 * Polling support by Suren Baghdasaryan <surenb@google.com>
9 * Copyright (c) 2018 Google, Inc.
10 *
11 * When CPU, memory and IO are contended, tasks experience delays that
12 * reduce throughput and introduce latencies into the workload. Memory
13 * and IO contention, in addition, can cause a full loss of forward
14 * progress in which the CPU goes idle.
15 *
16 * This code aggregates individual task delays into resource pressure
17 * metrics that indicate problems with both workload health and
18 * resource utilization.
19 *
20 * Model
21 *
22 * The time in which a task can execute on a CPU is our baseline for
23 * productivity. Pressure expresses the amount of time in which this
24 * potential cannot be realized due to resource contention.
25 *
26 * This concept of productivity has two components: the workload and
27 * the CPU. To measure the impact of pressure on both, we define two
28 * contention states for a resource: SOME and FULL.
29 *
30 * In the SOME state of a given resource, one or more tasks are
31 * delayed on that resource. This affects the workload's ability to
32 * perform work, but the CPU may still be executing other tasks.
33 *
34 * In the FULL state of a given resource, all non-idle tasks are
35 * delayed on that resource such that nobody is advancing and the CPU
36 * goes idle. This leaves both workload and CPU unproductive.
37 *
38 * SOME = nr_delayed_tasks != 0
39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40 *
41 * What it means for a task to be productive is defined differently
42 * for each resource. For IO, productive means a running task. For
43 * memory, productive means a running task that isn't a reclaimer. For
44 * CPU, productive means an oncpu task.
45 *
46 * Naturally, the FULL state doesn't exist for the CPU resource at the
47 * system level, but exist at the cgroup level. At the cgroup level,
48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49 * resource which is being used by others outside of the cgroup or
50 * throttled by the cgroup cpu.max configuration.
51 *
52 * The percentage of wallclock time spent in those compound stall
53 * states gives pressure numbers between 0 and 100 for each resource,
54 * where the SOME percentage indicates workload slowdowns and the FULL
55 * percentage indicates reduced CPU utilization:
56 *
57 * %SOME = time(SOME) / period
58 * %FULL = time(FULL) / period
59 *
60 * Multiple CPUs
61 *
62 * The more tasks and available CPUs there are, the more work can be
63 * performed concurrently. This means that the potential that can go
64 * unrealized due to resource contention *also* scales with non-idle
65 * tasks and CPUs.
66 *
67 * Consider a scenario where 257 number crunching tasks are trying to
68 * run concurrently on 256 CPUs. If we simply aggregated the task
69 * states, we would have to conclude a CPU SOME pressure number of
70 * 100%, since *somebody* is waiting on a runqueue at all
71 * times. However, that is clearly not the amount of contention the
72 * workload is experiencing: only one out of 256 possible execution
73 * threads will be contended at any given time, or about 0.4%.
74 *
75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76 * given time *one* of the tasks is delayed due to a lack of memory.
77 * Again, looking purely at the task state would yield a memory FULL
78 * pressure number of 0%, since *somebody* is always making forward
79 * progress. But again this wouldn't capture the amount of execution
80 * potential lost, which is 1 out of 4 CPUs, or 25%.
81 *
82 * To calculate wasted potential (pressure) with multiple processors,
83 * we have to base our calculation on the number of non-idle tasks in
84 * conjunction with the number of available CPUs, which is the number
85 * of potential execution threads. SOME becomes then the proportion of
86 * delayed tasks to possible threads, and FULL is the share of possible
87 * threads that are unproductive due to delays:
88 *
89 * threads = min(nr_nonidle_tasks, nr_cpus)
90 * SOME = min(nr_delayed_tasks / threads, 1)
91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads
92 *
93 * For the 257 number crunchers on 256 CPUs, this yields:
94 *
95 * threads = min(257, 256)
96 * SOME = min(1 / 256, 1) = 0.4%
97 * FULL = (256 - min(256, 256)) / 256 = 0%
98 *
99 * For the 1 out of 4 memory-delayed tasks, this yields:
100 *
101 * threads = min(4, 4)
102 * SOME = min(1 / 4, 1) = 25%
103 * FULL = (4 - min(3, 4)) / 4 = 25%
104 *
105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
106 * extension of the single-CPU model. ]
107 *
108 * Implementation
109 *
110 * To assess the precise time spent in each such state, we would have
111 * to freeze the system on task changes and start/stop the state
112 * clocks accordingly. Obviously that doesn't scale in practice.
113 *
114 * Because the scheduler aims to distribute the compute load evenly
115 * among the available CPUs, we can track task state locally to each
116 * CPU and, at much lower frequency, extrapolate the global state for
117 * the cumulative stall times and the running averages.
118 *
119 * For each runqueue, we track:
120 *
121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124 *
125 * and then periodically aggregate:
126 *
127 * tNONIDLE = sum(tNONIDLE[i])
128 *
129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131 *
132 * %SOME = tSOME / period
133 * %FULL = tFULL / period
134 *
135 * This gives us an approximation of pressure that is practical
136 * cost-wise, yet way more sensitive and accurate than periodic
137 * sampling of the aggregate task states would be.
138 */
139
140 static int psi_bug __read_mostly;
141
142 DEFINE_STATIC_KEY_FALSE(psi_disabled);
143 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
144
145 #ifdef CONFIG_PSI_DEFAULT_DISABLED
146 static bool psi_enable;
147 #else
148 static bool psi_enable = true;
149 #endif
setup_psi(char * str)150 static int __init setup_psi(char *str)
151 {
152 return kstrtobool(str, &psi_enable) == 0;
153 }
154 __setup("psi=", setup_psi);
155
156 /* Running averages - we need to be higher-res than loadavg */
157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
159 #define EXP_60s 1981 /* 1/exp(2s/60s) */
160 #define EXP_300s 2034 /* 1/exp(2s/300s) */
161
162 /* PSI trigger definitions */
163 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
164 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
165 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
166
167 /* Sampling frequency in nanoseconds */
168 static u64 psi_period __read_mostly;
169
170 /* System-level pressure and stall tracking */
171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
172 struct psi_group psi_system = {
173 .pcpu = &system_group_pcpu,
174 };
175
176 static void psi_avgs_work(struct work_struct *work);
177
178 static void poll_timer_fn(struct timer_list *t);
179
group_init(struct psi_group * group)180 static void group_init(struct psi_group *group)
181 {
182 int cpu;
183
184 for_each_possible_cpu(cpu)
185 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
186 group->avg_last_update = sched_clock();
187 group->avg_next_update = group->avg_last_update + psi_period;
188 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
189 mutex_init(&group->avgs_lock);
190 /* Init trigger-related members */
191 mutex_init(&group->trigger_lock);
192 INIT_LIST_HEAD(&group->triggers);
193 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
194 group->poll_states = 0;
195 group->poll_min_period = U32_MAX;
196 memset(group->polling_total, 0, sizeof(group->polling_total));
197 group->polling_next_update = ULLONG_MAX;
198 group->polling_until = 0;
199 init_waitqueue_head(&group->poll_wait);
200 timer_setup(&group->poll_timer, poll_timer_fn, 0);
201 rcu_assign_pointer(group->poll_task, NULL);
202 }
203
psi_init(void)204 void __init psi_init(void)
205 {
206 if (!psi_enable) {
207 static_branch_enable(&psi_disabled);
208 return;
209 }
210
211 if (!cgroup_psi_enabled())
212 static_branch_disable(&psi_cgroups_enabled);
213
214 psi_period = jiffies_to_nsecs(PSI_FREQ);
215 group_init(&psi_system);
216 }
217
test_state(unsigned int * tasks,enum psi_states state)218 static bool test_state(unsigned int *tasks, enum psi_states state)
219 {
220 switch (state) {
221 case PSI_IO_SOME:
222 return unlikely(tasks[NR_IOWAIT]);
223 case PSI_IO_FULL:
224 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
225 case PSI_MEM_SOME:
226 return unlikely(tasks[NR_MEMSTALL]);
227 case PSI_MEM_FULL:
228 return unlikely(tasks[NR_MEMSTALL] &&
229 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
230 case PSI_CPU_SOME:
231 return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
232 case PSI_CPU_FULL:
233 return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
234 case PSI_NONIDLE:
235 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
236 tasks[NR_RUNNING];
237 default:
238 return false;
239 }
240 }
241
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)242 static void get_recent_times(struct psi_group *group, int cpu,
243 enum psi_aggregators aggregator, u32 *times,
244 u32 *pchanged_states)
245 {
246 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
247 u64 now, state_start;
248 enum psi_states s;
249 unsigned int seq;
250 u32 state_mask;
251
252 *pchanged_states = 0;
253
254 /* Snapshot a coherent view of the CPU state */
255 do {
256 seq = read_seqcount_begin(&groupc->seq);
257 now = cpu_clock(cpu);
258 memcpy(times, groupc->times, sizeof(groupc->times));
259 state_mask = groupc->state_mask;
260 state_start = groupc->state_start;
261 } while (read_seqcount_retry(&groupc->seq, seq));
262
263 /* Calculate state time deltas against the previous snapshot */
264 for (s = 0; s < NR_PSI_STATES; s++) {
265 u32 delta;
266 /*
267 * In addition to already concluded states, we also
268 * incorporate currently active states on the CPU,
269 * since states may last for many sampling periods.
270 *
271 * This way we keep our delta sampling buckets small
272 * (u32) and our reported pressure close to what's
273 * actually happening.
274 */
275 if (state_mask & (1 << s))
276 times[s] += now - state_start;
277
278 delta = times[s] - groupc->times_prev[aggregator][s];
279 groupc->times_prev[aggregator][s] = times[s];
280
281 times[s] = delta;
282 if (delta)
283 *pchanged_states |= (1 << s);
284 }
285 }
286
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)287 static void calc_avgs(unsigned long avg[3], int missed_periods,
288 u64 time, u64 period)
289 {
290 unsigned long pct;
291
292 /* Fill in zeroes for periods of no activity */
293 if (missed_periods) {
294 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
295 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
296 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
297 }
298
299 /* Sample the most recent active period */
300 pct = div_u64(time * 100, period);
301 pct *= FIXED_1;
302 avg[0] = calc_load(avg[0], EXP_10s, pct);
303 avg[1] = calc_load(avg[1], EXP_60s, pct);
304 avg[2] = calc_load(avg[2], EXP_300s, pct);
305 }
306
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)307 static void collect_percpu_times(struct psi_group *group,
308 enum psi_aggregators aggregator,
309 u32 *pchanged_states)
310 {
311 u64 deltas[NR_PSI_STATES - 1] = { 0, };
312 unsigned long nonidle_total = 0;
313 u32 changed_states = 0;
314 int cpu;
315 int s;
316
317 /*
318 * Collect the per-cpu time buckets and average them into a
319 * single time sample that is normalized to wallclock time.
320 *
321 * For averaging, each CPU is weighted by its non-idle time in
322 * the sampling period. This eliminates artifacts from uneven
323 * loading, or even entirely idle CPUs.
324 */
325 for_each_possible_cpu(cpu) {
326 u32 times[NR_PSI_STATES];
327 u32 nonidle;
328 u32 cpu_changed_states;
329
330 get_recent_times(group, cpu, aggregator, times,
331 &cpu_changed_states);
332 changed_states |= cpu_changed_states;
333
334 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
335 nonidle_total += nonidle;
336
337 for (s = 0; s < PSI_NONIDLE; s++)
338 deltas[s] += (u64)times[s] * nonidle;
339 }
340
341 /*
342 * Integrate the sample into the running statistics that are
343 * reported to userspace: the cumulative stall times and the
344 * decaying averages.
345 *
346 * Pressure percentages are sampled at PSI_FREQ. We might be
347 * called more often when the user polls more frequently than
348 * that; we might be called less often when there is no task
349 * activity, thus no data, and clock ticks are sporadic. The
350 * below handles both.
351 */
352
353 /* total= */
354 for (s = 0; s < NR_PSI_STATES - 1; s++)
355 group->total[aggregator][s] +=
356 div_u64(deltas[s], max(nonidle_total, 1UL));
357
358 if (pchanged_states)
359 *pchanged_states = changed_states;
360 }
361
update_averages(struct psi_group * group,u64 now)362 static u64 update_averages(struct psi_group *group, u64 now)
363 {
364 unsigned long missed_periods = 0;
365 u64 expires, period;
366 u64 avg_next_update;
367 int s;
368
369 /* avgX= */
370 expires = group->avg_next_update;
371 if (now - expires >= psi_period)
372 missed_periods = div_u64(now - expires, psi_period);
373
374 /*
375 * The periodic clock tick can get delayed for various
376 * reasons, especially on loaded systems. To avoid clock
377 * drift, we schedule the clock in fixed psi_period intervals.
378 * But the deltas we sample out of the per-cpu buckets above
379 * are based on the actual time elapsing between clock ticks.
380 */
381 avg_next_update = expires + ((1 + missed_periods) * psi_period);
382 period = now - (group->avg_last_update + (missed_periods * psi_period));
383 group->avg_last_update = now;
384
385 for (s = 0; s < NR_PSI_STATES - 1; s++) {
386 u32 sample;
387
388 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
389 /*
390 * Due to the lockless sampling of the time buckets,
391 * recorded time deltas can slip into the next period,
392 * which under full pressure can result in samples in
393 * excess of the period length.
394 *
395 * We don't want to report non-sensical pressures in
396 * excess of 100%, nor do we want to drop such events
397 * on the floor. Instead we punt any overage into the
398 * future until pressure subsides. By doing this we
399 * don't underreport the occurring pressure curve, we
400 * just report it delayed by one period length.
401 *
402 * The error isn't cumulative. As soon as another
403 * delta slips from a period P to P+1, by definition
404 * it frees up its time T in P.
405 */
406 if (sample > period)
407 sample = period;
408 group->avg_total[s] += sample;
409 calc_avgs(group->avg[s], missed_periods, sample, period);
410 }
411
412 return avg_next_update;
413 }
414
psi_avgs_work(struct work_struct * work)415 static void psi_avgs_work(struct work_struct *work)
416 {
417 struct delayed_work *dwork;
418 struct psi_group *group;
419 u32 changed_states;
420 bool nonidle;
421 u64 now;
422
423 dwork = to_delayed_work(work);
424 group = container_of(dwork, struct psi_group, avgs_work);
425
426 mutex_lock(&group->avgs_lock);
427
428 now = sched_clock();
429
430 collect_percpu_times(group, PSI_AVGS, &changed_states);
431 nonidle = changed_states & (1 << PSI_NONIDLE);
432 /*
433 * If there is task activity, periodically fold the per-cpu
434 * times and feed samples into the running averages. If things
435 * are idle and there is no data to process, stop the clock.
436 * Once restarted, we'll catch up the running averages in one
437 * go - see calc_avgs() and missed_periods.
438 */
439 if (now >= group->avg_next_update)
440 group->avg_next_update = update_averages(group, now);
441
442 if (nonidle) {
443 schedule_delayed_work(dwork, nsecs_to_jiffies(
444 group->avg_next_update - now) + 1);
445 }
446
447 mutex_unlock(&group->avgs_lock);
448 }
449
450 /* Trigger tracking window manipulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)451 static void window_reset(struct psi_window *win, u64 now, u64 value,
452 u64 prev_growth)
453 {
454 win->start_time = now;
455 win->start_value = value;
456 win->prev_growth = prev_growth;
457 }
458
459 /*
460 * PSI growth tracking window update and growth calculation routine.
461 *
462 * This approximates a sliding tracking window by interpolating
463 * partially elapsed windows using historical growth data from the
464 * previous intervals. This minimizes memory requirements (by not storing
465 * all the intermediate values in the previous window) and simplifies
466 * the calculations. It works well because PSI signal changes only in
467 * positive direction and over relatively small window sizes the growth
468 * is close to linear.
469 */
window_update(struct psi_window * win,u64 now,u64 value)470 static u64 window_update(struct psi_window *win, u64 now, u64 value)
471 {
472 u64 elapsed;
473 u64 growth;
474
475 elapsed = now - win->start_time;
476 growth = value - win->start_value;
477 /*
478 * After each tracking window passes win->start_value and
479 * win->start_time get reset and win->prev_growth stores
480 * the average per-window growth of the previous window.
481 * win->prev_growth is then used to interpolate additional
482 * growth from the previous window assuming it was linear.
483 */
484 if (elapsed > win->size)
485 window_reset(win, now, value, growth);
486 else {
487 u32 remaining;
488
489 remaining = win->size - elapsed;
490 growth += div64_u64(win->prev_growth * remaining, win->size);
491 }
492
493 return growth;
494 }
495
init_triggers(struct psi_group * group,u64 now)496 static void init_triggers(struct psi_group *group, u64 now)
497 {
498 struct psi_trigger *t;
499
500 list_for_each_entry(t, &group->triggers, node)
501 window_reset(&t->win, now,
502 group->total[PSI_POLL][t->state], 0);
503 memcpy(group->polling_total, group->total[PSI_POLL],
504 sizeof(group->polling_total));
505 group->polling_next_update = now + group->poll_min_period;
506 }
507
update_triggers(struct psi_group * group,u64 now)508 static u64 update_triggers(struct psi_group *group, u64 now)
509 {
510 struct psi_trigger *t;
511 bool update_total = false;
512 u64 *total = group->total[PSI_POLL];
513
514 /*
515 * On subsequent updates, calculate growth deltas and let
516 * watchers know when their specified thresholds are exceeded.
517 */
518 list_for_each_entry(t, &group->triggers, node) {
519 u64 growth;
520 bool new_stall;
521
522 new_stall = group->polling_total[t->state] != total[t->state];
523
524 /* Check for stall activity or a previous threshold breach */
525 if (!new_stall && !t->pending_event)
526 continue;
527 /*
528 * Check for new stall activity, as well as deferred
529 * events that occurred in the last window after the
530 * trigger had already fired (we want to ratelimit
531 * events without dropping any).
532 */
533 if (new_stall) {
534 /*
535 * Multiple triggers might be looking at the same state,
536 * remember to update group->polling_total[] once we've
537 * been through all of them. Also remember to extend the
538 * polling time if we see new stall activity.
539 */
540 update_total = true;
541
542 /* Calculate growth since last update */
543 growth = window_update(&t->win, now, total[t->state]);
544 if (growth < t->threshold)
545 continue;
546
547 t->pending_event = true;
548 }
549 /* Limit event signaling to once per window */
550 if (now < t->last_event_time + t->win.size)
551 continue;
552
553 /* Generate an event */
554 if (cmpxchg(&t->event, 0, 1) == 0)
555 wake_up_interruptible(&t->event_wait);
556 t->last_event_time = now;
557 /* Reset threshold breach flag once event got generated */
558 t->pending_event = false;
559 }
560
561 if (update_total)
562 memcpy(group->polling_total, total,
563 sizeof(group->polling_total));
564
565 return now + group->poll_min_period;
566 }
567
568 /* Schedule polling if it's not already scheduled. */
psi_schedule_poll_work(struct psi_group * group,unsigned long delay)569 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
570 {
571 struct task_struct *task;
572
573 /*
574 * Do not reschedule if already scheduled.
575 * Possible race with a timer scheduled after this check but before
576 * mod_timer below can be tolerated because group->polling_next_update
577 * will keep updates on schedule.
578 */
579 if (timer_pending(&group->poll_timer))
580 return;
581
582 rcu_read_lock();
583
584 task = rcu_dereference(group->poll_task);
585 /*
586 * kworker might be NULL in case psi_trigger_destroy races with
587 * psi_task_change (hotpath) which can't use locks
588 */
589 if (likely(task))
590 mod_timer(&group->poll_timer, jiffies + delay);
591
592 rcu_read_unlock();
593 }
594
psi_poll_work(struct psi_group * group)595 static void psi_poll_work(struct psi_group *group)
596 {
597 u32 changed_states;
598 u64 now;
599
600 mutex_lock(&group->trigger_lock);
601
602 now = sched_clock();
603
604 collect_percpu_times(group, PSI_POLL, &changed_states);
605
606 if (changed_states & group->poll_states) {
607 /* Initialize trigger windows when entering polling mode */
608 if (now > group->polling_until)
609 init_triggers(group, now);
610
611 /*
612 * Keep the monitor active for at least the duration of the
613 * minimum tracking window as long as monitor states are
614 * changing.
615 */
616 group->polling_until = now +
617 group->poll_min_period * UPDATES_PER_WINDOW;
618 }
619
620 if (now > group->polling_until) {
621 group->polling_next_update = ULLONG_MAX;
622 goto out;
623 }
624
625 if (now >= group->polling_next_update)
626 group->polling_next_update = update_triggers(group, now);
627
628 psi_schedule_poll_work(group,
629 nsecs_to_jiffies(group->polling_next_update - now) + 1);
630
631 out:
632 mutex_unlock(&group->trigger_lock);
633 }
634
psi_poll_worker(void * data)635 static int psi_poll_worker(void *data)
636 {
637 struct psi_group *group = (struct psi_group *)data;
638
639 sched_set_fifo_low(current);
640
641 while (true) {
642 wait_event_interruptible(group->poll_wait,
643 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
644 kthread_should_stop());
645 if (kthread_should_stop())
646 break;
647
648 psi_poll_work(group);
649 }
650 return 0;
651 }
652
poll_timer_fn(struct timer_list * t)653 static void poll_timer_fn(struct timer_list *t)
654 {
655 struct psi_group *group = from_timer(group, t, poll_timer);
656
657 atomic_set(&group->poll_wakeup, 1);
658 wake_up_interruptible(&group->poll_wait);
659 }
660
record_times(struct psi_group_cpu * groupc,u64 now)661 static void record_times(struct psi_group_cpu *groupc, u64 now)
662 {
663 u32 delta;
664
665 delta = now - groupc->state_start;
666 groupc->state_start = now;
667
668 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
669 groupc->times[PSI_IO_SOME] += delta;
670 if (groupc->state_mask & (1 << PSI_IO_FULL))
671 groupc->times[PSI_IO_FULL] += delta;
672 }
673
674 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
675 groupc->times[PSI_MEM_SOME] += delta;
676 if (groupc->state_mask & (1 << PSI_MEM_FULL))
677 groupc->times[PSI_MEM_FULL] += delta;
678 }
679
680 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
681 groupc->times[PSI_CPU_SOME] += delta;
682 if (groupc->state_mask & (1 << PSI_CPU_FULL))
683 groupc->times[PSI_CPU_FULL] += delta;
684 }
685
686 if (groupc->state_mask & (1 << PSI_NONIDLE))
687 groupc->times[PSI_NONIDLE] += delta;
688 }
689
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,u64 now,bool wake_clock)690 static void psi_group_change(struct psi_group *group, int cpu,
691 unsigned int clear, unsigned int set, u64 now,
692 bool wake_clock)
693 {
694 struct psi_group_cpu *groupc;
695 u32 state_mask = 0;
696 unsigned int t, m;
697 enum psi_states s;
698
699 groupc = per_cpu_ptr(group->pcpu, cpu);
700
701 /*
702 * First we assess the aggregate resource states this CPU's
703 * tasks have been in since the last change, and account any
704 * SOME and FULL time these may have resulted in.
705 *
706 * Then we update the task counts according to the state
707 * change requested through the @clear and @set bits.
708 */
709 write_seqcount_begin(&groupc->seq);
710
711 record_times(groupc, now);
712
713 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
714 if (!(m & (1 << t)))
715 continue;
716 if (groupc->tasks[t]) {
717 groupc->tasks[t]--;
718 } else if (!psi_bug) {
719 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u %u] clear=%x set=%x\n",
720 cpu, t, groupc->tasks[0],
721 groupc->tasks[1], groupc->tasks[2],
722 groupc->tasks[3], groupc->tasks[4],
723 clear, set);
724 psi_bug = 1;
725 }
726 }
727
728 for (t = 0; set; set &= ~(1 << t), t++)
729 if (set & (1 << t))
730 groupc->tasks[t]++;
731
732 /* Calculate state mask representing active states */
733 for (s = 0; s < NR_PSI_STATES; s++) {
734 if (test_state(groupc->tasks, s))
735 state_mask |= (1 << s);
736 }
737
738 /*
739 * Since we care about lost potential, a memstall is FULL
740 * when there are no other working tasks, but also when
741 * the CPU is actively reclaiming and nothing productive
742 * could run even if it were runnable. So when the current
743 * task in a cgroup is in_memstall, the corresponding groupc
744 * on that cpu is in PSI_MEM_FULL state.
745 */
746 if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
747 state_mask |= (1 << PSI_MEM_FULL);
748
749 groupc->state_mask = state_mask;
750
751 write_seqcount_end(&groupc->seq);
752
753 if (state_mask & group->poll_states)
754 psi_schedule_poll_work(group, 1);
755
756 if (wake_clock && !delayed_work_pending(&group->avgs_work))
757 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
758 }
759
iterate_groups(struct task_struct * task,void ** iter)760 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
761 {
762 if (*iter == &psi_system)
763 return NULL;
764
765 #ifdef CONFIG_CGROUPS
766 if (static_branch_likely(&psi_cgroups_enabled)) {
767 struct cgroup *cgroup = NULL;
768
769 if (!*iter)
770 cgroup = task->cgroups->dfl_cgrp;
771 else
772 cgroup = cgroup_parent(*iter);
773
774 if (cgroup && cgroup_parent(cgroup)) {
775 *iter = cgroup;
776 return cgroup_psi(cgroup);
777 }
778 }
779 #endif
780 *iter = &psi_system;
781 return &psi_system;
782 }
783
psi_flags_change(struct task_struct * task,int clear,int set)784 static void psi_flags_change(struct task_struct *task, int clear, int set)
785 {
786 if (((task->psi_flags & set) ||
787 (task->psi_flags & clear) != clear) &&
788 !psi_bug) {
789 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
790 task->pid, task->comm, task_cpu(task),
791 task->psi_flags, clear, set);
792 psi_bug = 1;
793 }
794
795 task->psi_flags &= ~clear;
796 task->psi_flags |= set;
797 }
798
psi_task_change(struct task_struct * task,int clear,int set)799 void psi_task_change(struct task_struct *task, int clear, int set)
800 {
801 int cpu = task_cpu(task);
802 struct psi_group *group;
803 bool wake_clock = true;
804 void *iter = NULL;
805 u64 now;
806
807 if (!task->pid)
808 return;
809
810 psi_flags_change(task, clear, set);
811
812 now = cpu_clock(cpu);
813 /*
814 * Periodic aggregation shuts off if there is a period of no
815 * task changes, so we wake it back up if necessary. However,
816 * don't do this if the task change is the aggregation worker
817 * itself going to sleep, or we'll ping-pong forever.
818 */
819 if (unlikely((clear & TSK_RUNNING) &&
820 (task->flags & PF_WQ_WORKER) &&
821 wq_worker_last_func(task) == psi_avgs_work))
822 wake_clock = false;
823
824 while ((group = iterate_groups(task, &iter)))
825 psi_group_change(group, cpu, clear, set, now, wake_clock);
826 }
827
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)828 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
829 bool sleep)
830 {
831 struct psi_group *group, *common = NULL;
832 int cpu = task_cpu(prev);
833 void *iter;
834 u64 now = cpu_clock(cpu);
835
836 if (next->pid) {
837 bool identical_state;
838
839 psi_flags_change(next, 0, TSK_ONCPU);
840 /*
841 * When switching between tasks that have an identical
842 * runtime state, the cgroup that contains both tasks
843 * we reach the first common ancestor. Iterate @next's
844 * ancestors only until we encounter @prev's ONCPU.
845 */
846 identical_state = prev->psi_flags == next->psi_flags;
847 iter = NULL;
848 while ((group = iterate_groups(next, &iter))) {
849 if (identical_state &&
850 per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
851 common = group;
852 break;
853 }
854
855 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
856 }
857 }
858
859 if (prev->pid) {
860 int clear = TSK_ONCPU, set = 0;
861
862 /*
863 * When we're going to sleep, psi_dequeue() lets us
864 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
865 * TSK_IOWAIT here, where we can combine it with
866 * TSK_ONCPU and save walking common ancestors twice.
867 */
868 if (sleep) {
869 clear |= TSK_RUNNING;
870 if (prev->in_memstall)
871 clear |= TSK_MEMSTALL_RUNNING;
872 if (prev->in_iowait)
873 set |= TSK_IOWAIT;
874 }
875
876 psi_flags_change(prev, clear, set);
877
878 iter = NULL;
879 while ((group = iterate_groups(prev, &iter)) && group != common)
880 psi_group_change(group, cpu, clear, set, now, true);
881
882 /*
883 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
884 * with dequeuing too, finish that for the rest of the hierarchy.
885 */
886 if (sleep) {
887 clear &= ~TSK_ONCPU;
888 for (; group; group = iterate_groups(prev, &iter))
889 psi_group_change(group, cpu, clear, set, now, true);
890 }
891 }
892 }
893
894 /**
895 * psi_memstall_enter - mark the beginning of a memory stall section
896 * @flags: flags to handle nested sections
897 *
898 * Marks the calling task as being stalled due to a lack of memory,
899 * such as waiting for a refault or performing reclaim.
900 */
psi_memstall_enter(unsigned long * flags)901 void psi_memstall_enter(unsigned long *flags)
902 {
903 struct rq_flags rf;
904 struct rq *rq;
905
906 if (static_branch_likely(&psi_disabled))
907 return;
908
909 *flags = current->in_memstall;
910 if (*flags)
911 return;
912 /*
913 * in_memstall setting & accounting needs to be atomic wrt
914 * changes to the task's scheduling state, otherwise we can
915 * race with CPU migration.
916 */
917 rq = this_rq_lock_irq(&rf);
918
919 current->in_memstall = 1;
920 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
921
922 rq_unlock_irq(rq, &rf);
923 }
924
925 /**
926 * psi_memstall_leave - mark the end of an memory stall section
927 * @flags: flags to handle nested memdelay sections
928 *
929 * Marks the calling task as no longer stalled due to lack of memory.
930 */
psi_memstall_leave(unsigned long * flags)931 void psi_memstall_leave(unsigned long *flags)
932 {
933 struct rq_flags rf;
934 struct rq *rq;
935
936 if (static_branch_likely(&psi_disabled))
937 return;
938
939 if (*flags)
940 return;
941 /*
942 * in_memstall clearing & accounting needs to be atomic wrt
943 * changes to the task's scheduling state, otherwise we could
944 * race with CPU migration.
945 */
946 rq = this_rq_lock_irq(&rf);
947
948 current->in_memstall = 0;
949 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
950
951 rq_unlock_irq(rq, &rf);
952 }
953
954 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)955 int psi_cgroup_alloc(struct cgroup *cgroup)
956 {
957 if (static_branch_likely(&psi_disabled))
958 return 0;
959
960 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
961 if (!cgroup->psi.pcpu)
962 return -ENOMEM;
963 group_init(&cgroup->psi);
964 return 0;
965 }
966
psi_cgroup_free(struct cgroup * cgroup)967 void psi_cgroup_free(struct cgroup *cgroup)
968 {
969 if (static_branch_likely(&psi_disabled))
970 return;
971
972 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
973 free_percpu(cgroup->psi.pcpu);
974 /* All triggers must be removed by now */
975 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
976 }
977
978 /**
979 * cgroup_move_task - move task to a different cgroup
980 * @task: the task
981 * @to: the target css_set
982 *
983 * Move task to a new cgroup and safely migrate its associated stall
984 * state between the different groups.
985 *
986 * This function acquires the task's rq lock to lock out concurrent
987 * changes to the task's scheduling state and - in case the task is
988 * running - concurrent changes to its stall state.
989 */
cgroup_move_task(struct task_struct * task,struct css_set * to)990 void cgroup_move_task(struct task_struct *task, struct css_set *to)
991 {
992 unsigned int task_flags;
993 struct rq_flags rf;
994 struct rq *rq;
995
996 if (static_branch_likely(&psi_disabled)) {
997 /*
998 * Lame to do this here, but the scheduler cannot be locked
999 * from the outside, so we move cgroups from inside sched/.
1000 */
1001 rcu_assign_pointer(task->cgroups, to);
1002 return;
1003 }
1004
1005 rq = task_rq_lock(task, &rf);
1006
1007 /*
1008 * We may race with schedule() dropping the rq lock between
1009 * deactivating prev and switching to next. Because the psi
1010 * updates from the deactivation are deferred to the switch
1011 * callback to save cgroup tree updates, the task's scheduling
1012 * state here is not coherent with its psi state:
1013 *
1014 * schedule() cgroup_move_task()
1015 * rq_lock()
1016 * deactivate_task()
1017 * p->on_rq = 0
1018 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1019 * pick_next_task()
1020 * rq_unlock()
1021 * rq_lock()
1022 * psi_task_change() // old cgroup
1023 * task->cgroups = to
1024 * psi_task_change() // new cgroup
1025 * rq_unlock()
1026 * rq_lock()
1027 * psi_sched_switch() // does deferred updates in new cgroup
1028 *
1029 * Don't rely on the scheduling state. Use psi_flags instead.
1030 */
1031 task_flags = task->psi_flags;
1032
1033 if (task_flags)
1034 psi_task_change(task, task_flags, 0);
1035
1036 /* See comment above */
1037 rcu_assign_pointer(task->cgroups, to);
1038
1039 if (task_flags)
1040 psi_task_change(task, 0, task_flags);
1041
1042 task_rq_unlock(rq, task, &rf);
1043 }
1044 #endif /* CONFIG_CGROUPS */
1045
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1046 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1047 {
1048 int full;
1049 u64 now;
1050
1051 if (static_branch_likely(&psi_disabled))
1052 return -EOPNOTSUPP;
1053
1054 /* Update averages before reporting them */
1055 mutex_lock(&group->avgs_lock);
1056 now = sched_clock();
1057 collect_percpu_times(group, PSI_AVGS, NULL);
1058 if (now >= group->avg_next_update)
1059 group->avg_next_update = update_averages(group, now);
1060 mutex_unlock(&group->avgs_lock);
1061
1062 for (full = 0; full < 2; full++) {
1063 unsigned long avg[3] = { 0, };
1064 u64 total = 0;
1065 int w;
1066
1067 /* CPU FULL is undefined at the system level */
1068 if (!(group == &psi_system && res == PSI_CPU && full)) {
1069 for (w = 0; w < 3; w++)
1070 avg[w] = group->avg[res * 2 + full][w];
1071 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1072 NSEC_PER_USEC);
1073 }
1074
1075 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1076 full ? "full" : "some",
1077 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1078 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1079 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1080 total);
1081 }
1082
1083 return 0;
1084 }
1085
psi_trigger_create(struct psi_group * group,char * buf,size_t nbytes,enum psi_res res)1086 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1087 char *buf, size_t nbytes, enum psi_res res)
1088 {
1089 struct psi_trigger *t;
1090 enum psi_states state;
1091 u32 threshold_us;
1092 u32 window_us;
1093
1094 if (static_branch_likely(&psi_disabled))
1095 return ERR_PTR(-EOPNOTSUPP);
1096
1097 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1098 state = PSI_IO_SOME + res * 2;
1099 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1100 state = PSI_IO_FULL + res * 2;
1101 else
1102 return ERR_PTR(-EINVAL);
1103
1104 if (state >= PSI_NONIDLE)
1105 return ERR_PTR(-EINVAL);
1106
1107 if (window_us < WINDOW_MIN_US ||
1108 window_us > WINDOW_MAX_US)
1109 return ERR_PTR(-EINVAL);
1110
1111 /* Check threshold */
1112 if (threshold_us == 0 || threshold_us > window_us)
1113 return ERR_PTR(-EINVAL);
1114
1115 t = kmalloc(sizeof(*t), GFP_KERNEL);
1116 if (!t)
1117 return ERR_PTR(-ENOMEM);
1118
1119 t->group = group;
1120 t->state = state;
1121 t->threshold = threshold_us * NSEC_PER_USEC;
1122 t->win.size = window_us * NSEC_PER_USEC;
1123 window_reset(&t->win, sched_clock(),
1124 group->total[PSI_POLL][t->state], 0);
1125
1126 t->event = 0;
1127 t->last_event_time = 0;
1128 init_waitqueue_head(&t->event_wait);
1129 t->pending_event = false;
1130
1131 mutex_lock(&group->trigger_lock);
1132
1133 if (!rcu_access_pointer(group->poll_task)) {
1134 struct task_struct *task;
1135
1136 task = kthread_create(psi_poll_worker, group, "psimon");
1137 if (IS_ERR(task)) {
1138 kfree(t);
1139 mutex_unlock(&group->trigger_lock);
1140 return ERR_CAST(task);
1141 }
1142 atomic_set(&group->poll_wakeup, 0);
1143 wake_up_process(task);
1144 rcu_assign_pointer(group->poll_task, task);
1145 }
1146
1147 list_add(&t->node, &group->triggers);
1148 group->poll_min_period = min(group->poll_min_period,
1149 div_u64(t->win.size, UPDATES_PER_WINDOW));
1150 group->nr_triggers[t->state]++;
1151 group->poll_states |= (1 << t->state);
1152
1153 mutex_unlock(&group->trigger_lock);
1154
1155 return t;
1156 }
1157
psi_trigger_destroy(struct psi_trigger * t)1158 void psi_trigger_destroy(struct psi_trigger *t)
1159 {
1160 struct psi_group *group;
1161 struct task_struct *task_to_destroy = NULL;
1162
1163 /*
1164 * We do not check psi_disabled since it might have been disabled after
1165 * the trigger got created.
1166 */
1167 if (!t)
1168 return;
1169
1170 group = t->group;
1171 /*
1172 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1173 * from under a polling process.
1174 */
1175 wake_up_interruptible(&t->event_wait);
1176
1177 mutex_lock(&group->trigger_lock);
1178
1179 if (!list_empty(&t->node)) {
1180 struct psi_trigger *tmp;
1181 u64 period = ULLONG_MAX;
1182
1183 list_del(&t->node);
1184 group->nr_triggers[t->state]--;
1185 if (!group->nr_triggers[t->state])
1186 group->poll_states &= ~(1 << t->state);
1187 /* reset min update period for the remaining triggers */
1188 list_for_each_entry(tmp, &group->triggers, node)
1189 period = min(period, div_u64(tmp->win.size,
1190 UPDATES_PER_WINDOW));
1191 group->poll_min_period = period;
1192 /* Destroy poll_task when the last trigger is destroyed */
1193 if (group->poll_states == 0) {
1194 group->polling_until = 0;
1195 task_to_destroy = rcu_dereference_protected(
1196 group->poll_task,
1197 lockdep_is_held(&group->trigger_lock));
1198 rcu_assign_pointer(group->poll_task, NULL);
1199 del_timer(&group->poll_timer);
1200 }
1201 }
1202
1203 mutex_unlock(&group->trigger_lock);
1204
1205 /*
1206 * Wait for psi_schedule_poll_work RCU to complete its read-side
1207 * critical section before destroying the trigger and optionally the
1208 * poll_task.
1209 */
1210 synchronize_rcu();
1211 /*
1212 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1213 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1214 */
1215 if (task_to_destroy) {
1216 /*
1217 * After the RCU grace period has expired, the worker
1218 * can no longer be found through group->poll_task.
1219 */
1220 kthread_stop(task_to_destroy);
1221 }
1222 kfree(t);
1223 }
1224
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1225 __poll_t psi_trigger_poll(void **trigger_ptr,
1226 struct file *file, poll_table *wait)
1227 {
1228 __poll_t ret = DEFAULT_POLLMASK;
1229 struct psi_trigger *t;
1230
1231 if (static_branch_likely(&psi_disabled))
1232 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1233
1234 t = smp_load_acquire(trigger_ptr);
1235 if (!t)
1236 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1237
1238 poll_wait(file, &t->event_wait, wait);
1239
1240 if (cmpxchg(&t->event, 1, 0) == 1)
1241 ret |= EPOLLPRI;
1242
1243 return ret;
1244 }
1245
1246 #ifdef CONFIG_PROC_FS
psi_io_show(struct seq_file * m,void * v)1247 static int psi_io_show(struct seq_file *m, void *v)
1248 {
1249 return psi_show(m, &psi_system, PSI_IO);
1250 }
1251
psi_memory_show(struct seq_file * m,void * v)1252 static int psi_memory_show(struct seq_file *m, void *v)
1253 {
1254 return psi_show(m, &psi_system, PSI_MEM);
1255 }
1256
psi_cpu_show(struct seq_file * m,void * v)1257 static int psi_cpu_show(struct seq_file *m, void *v)
1258 {
1259 return psi_show(m, &psi_system, PSI_CPU);
1260 }
1261
psi_open(struct file * file,int (* psi_show)(struct seq_file *,void *))1262 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1263 {
1264 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1265 return -EPERM;
1266
1267 return single_open(file, psi_show, NULL);
1268 }
1269
psi_io_open(struct inode * inode,struct file * file)1270 static int psi_io_open(struct inode *inode, struct file *file)
1271 {
1272 return psi_open(file, psi_io_show);
1273 }
1274
psi_memory_open(struct inode * inode,struct file * file)1275 static int psi_memory_open(struct inode *inode, struct file *file)
1276 {
1277 return psi_open(file, psi_memory_show);
1278 }
1279
psi_cpu_open(struct inode * inode,struct file * file)1280 static int psi_cpu_open(struct inode *inode, struct file *file)
1281 {
1282 return psi_open(file, psi_cpu_show);
1283 }
1284
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1285 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1286 size_t nbytes, enum psi_res res)
1287 {
1288 char buf[32];
1289 size_t buf_size;
1290 struct seq_file *seq;
1291 struct psi_trigger *new;
1292
1293 if (static_branch_likely(&psi_disabled))
1294 return -EOPNOTSUPP;
1295
1296 if (!nbytes)
1297 return -EINVAL;
1298
1299 buf_size = min(nbytes, sizeof(buf));
1300 if (copy_from_user(buf, user_buf, buf_size))
1301 return -EFAULT;
1302
1303 buf[buf_size - 1] = '\0';
1304
1305 seq = file->private_data;
1306
1307 /* Take seq->lock to protect seq->private from concurrent writes */
1308 mutex_lock(&seq->lock);
1309
1310 /* Allow only one trigger per file descriptor */
1311 if (seq->private) {
1312 mutex_unlock(&seq->lock);
1313 return -EBUSY;
1314 }
1315
1316 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1317 if (IS_ERR(new)) {
1318 mutex_unlock(&seq->lock);
1319 return PTR_ERR(new);
1320 }
1321
1322 smp_store_release(&seq->private, new);
1323 mutex_unlock(&seq->lock);
1324
1325 return nbytes;
1326 }
1327
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1328 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1329 size_t nbytes, loff_t *ppos)
1330 {
1331 return psi_write(file, user_buf, nbytes, PSI_IO);
1332 }
1333
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1334 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1335 size_t nbytes, loff_t *ppos)
1336 {
1337 return psi_write(file, user_buf, nbytes, PSI_MEM);
1338 }
1339
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1340 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1341 size_t nbytes, loff_t *ppos)
1342 {
1343 return psi_write(file, user_buf, nbytes, PSI_CPU);
1344 }
1345
psi_fop_poll(struct file * file,poll_table * wait)1346 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1347 {
1348 struct seq_file *seq = file->private_data;
1349
1350 return psi_trigger_poll(&seq->private, file, wait);
1351 }
1352
psi_fop_release(struct inode * inode,struct file * file)1353 static int psi_fop_release(struct inode *inode, struct file *file)
1354 {
1355 struct seq_file *seq = file->private_data;
1356
1357 psi_trigger_destroy(seq->private);
1358 return single_release(inode, file);
1359 }
1360
1361 static const struct proc_ops psi_io_proc_ops = {
1362 .proc_open = psi_io_open,
1363 .proc_read = seq_read,
1364 .proc_lseek = seq_lseek,
1365 .proc_write = psi_io_write,
1366 .proc_poll = psi_fop_poll,
1367 .proc_release = psi_fop_release,
1368 };
1369
1370 static const struct proc_ops psi_memory_proc_ops = {
1371 .proc_open = psi_memory_open,
1372 .proc_read = seq_read,
1373 .proc_lseek = seq_lseek,
1374 .proc_write = psi_memory_write,
1375 .proc_poll = psi_fop_poll,
1376 .proc_release = psi_fop_release,
1377 };
1378
1379 static const struct proc_ops psi_cpu_proc_ops = {
1380 .proc_open = psi_cpu_open,
1381 .proc_read = seq_read,
1382 .proc_lseek = seq_lseek,
1383 .proc_write = psi_cpu_write,
1384 .proc_poll = psi_fop_poll,
1385 .proc_release = psi_fop_release,
1386 };
1387
psi_proc_init(void)1388 static int __init psi_proc_init(void)
1389 {
1390 if (psi_enable) {
1391 proc_mkdir("pressure", NULL);
1392 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1393 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1394 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1395 }
1396 return 0;
1397 }
1398 module_init(psi_proc_init);
1399
1400 #endif /* CONFIG_PROC_FS */
1401