1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5
6 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
7
8 /*
9 * There are no locks covering percpu hardirq/softirq time.
10 * They are only modified in vtime_account, on corresponding CPU
11 * with interrupts disabled. So, writes are safe.
12 * They are read and saved off onto struct rq in update_rq_clock().
13 * This may result in other CPU reading this CPU's irq time and can
14 * race with irq/vtime_account on this CPU. We would either get old
15 * or new value with a side effect of accounting a slice of irq time to wrong
16 * task when irq is in progress while we read rq->clock. That is a worthy
17 * compromise in place of having locks on each irq in account_system_time.
18 */
19 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
20
21 static int sched_clock_irqtime;
22
enable_sched_clock_irqtime(void)23 void enable_sched_clock_irqtime(void)
24 {
25 sched_clock_irqtime = 1;
26 }
27
disable_sched_clock_irqtime(void)28 void disable_sched_clock_irqtime(void)
29 {
30 sched_clock_irqtime = 0;
31 }
32
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)33 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
34 enum cpu_usage_stat idx)
35 {
36 u64 *cpustat = kcpustat_this_cpu->cpustat;
37
38 u64_stats_update_begin(&irqtime->sync);
39 cpustat[idx] += delta;
40 irqtime->total += delta;
41 irqtime->tick_delta += delta;
42 u64_stats_update_end(&irqtime->sync);
43 }
44
45 /*
46 * Called after incrementing preempt_count on {soft,}irq_enter
47 * and before decrementing preempt_count on {soft,}irq_exit.
48 */
irqtime_account_irq(struct task_struct * curr,unsigned int offset)49 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
50 {
51 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
52 unsigned int pc;
53 s64 delta;
54 int cpu;
55
56 if (!sched_clock_irqtime)
57 return;
58
59 cpu = smp_processor_id();
60 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
61 irqtime->irq_start_time += delta;
62 pc = irq_count() - offset;
63
64 /*
65 * We do not account for softirq time from ksoftirqd here.
66 * We want to continue accounting softirq time to ksoftirqd thread
67 * in that case, so as not to confuse scheduler with a special task
68 * that do not consume any time, but still wants to run.
69 */
70 if (pc & HARDIRQ_MASK)
71 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
72 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
73 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
74 }
75
irqtime_tick_accounted(u64 maxtime)76 static u64 irqtime_tick_accounted(u64 maxtime)
77 {
78 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
79 u64 delta;
80
81 delta = min(irqtime->tick_delta, maxtime);
82 irqtime->tick_delta -= delta;
83
84 return delta;
85 }
86
87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
88
89 #define sched_clock_irqtime (0)
90
irqtime_tick_accounted(u64 dummy)91 static u64 irqtime_tick_accounted(u64 dummy)
92 {
93 return 0;
94 }
95
96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
97
task_group_account_field(struct task_struct * p,int index,u64 tmp)98 static inline void task_group_account_field(struct task_struct *p, int index,
99 u64 tmp)
100 {
101 /*
102 * Since all updates are sure to touch the root cgroup, we
103 * get ourselves ahead and touch it first. If the root cgroup
104 * is the only cgroup, then nothing else should be necessary.
105 *
106 */
107 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
108
109 cgroup_account_cputime_field(p, index, tmp);
110 }
111
112 /*
113 * Account user CPU time to a process.
114 * @p: the process that the CPU time gets accounted to
115 * @cputime: the CPU time spent in user space since the last update
116 */
account_user_time(struct task_struct * p,u64 cputime)117 void account_user_time(struct task_struct *p, u64 cputime)
118 {
119 int index;
120
121 /* Add user time to process. */
122 p->utime += cputime;
123 account_group_user_time(p, cputime);
124
125 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
126
127 /* Add user time to cpustat. */
128 task_group_account_field(p, index, cputime);
129
130 /* Account for user time used */
131 acct_account_cputime(p);
132 }
133
134 /*
135 * Account guest CPU time to a process.
136 * @p: the process that the CPU time gets accounted to
137 * @cputime: the CPU time spent in virtual machine since the last update
138 */
account_guest_time(struct task_struct * p,u64 cputime)139 void account_guest_time(struct task_struct *p, u64 cputime)
140 {
141 u64 *cpustat = kcpustat_this_cpu->cpustat;
142
143 /* Add guest time to process. */
144 p->utime += cputime;
145 account_group_user_time(p, cputime);
146 p->gtime += cputime;
147
148 /* Add guest time to cpustat. */
149 if (task_nice(p) > 0) {
150 task_group_account_field(p, CPUTIME_NICE, cputime);
151 cpustat[CPUTIME_GUEST_NICE] += cputime;
152 } else {
153 task_group_account_field(p, CPUTIME_USER, cputime);
154 cpustat[CPUTIME_GUEST] += cputime;
155 }
156 }
157
158 /*
159 * Account system CPU time to a process and desired cpustat field
160 * @p: the process that the CPU time gets accounted to
161 * @cputime: the CPU time spent in kernel space since the last update
162 * @index: pointer to cpustat field that has to be updated
163 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)164 void account_system_index_time(struct task_struct *p,
165 u64 cputime, enum cpu_usage_stat index)
166 {
167 /* Add system time to process. */
168 p->stime += cputime;
169 account_group_system_time(p, cputime);
170
171 /* Add system time to cpustat. */
172 task_group_account_field(p, index, cputime);
173
174 /* Account for system time used */
175 acct_account_cputime(p);
176 }
177
178 /*
179 * Account system CPU time to a process.
180 * @p: the process that the CPU time gets accounted to
181 * @hardirq_offset: the offset to subtract from hardirq_count()
182 * @cputime: the CPU time spent in kernel space since the last update
183 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
185 {
186 int index;
187
188 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
189 account_guest_time(p, cputime);
190 return;
191 }
192
193 if (hardirq_count() - hardirq_offset)
194 index = CPUTIME_IRQ;
195 else if (in_serving_softirq())
196 index = CPUTIME_SOFTIRQ;
197 else
198 index = CPUTIME_SYSTEM;
199
200 account_system_index_time(p, cputime, index);
201 }
202
203 /*
204 * Account for involuntary wait time.
205 * @cputime: the CPU time spent in involuntary wait
206 */
account_steal_time(u64 cputime)207 void account_steal_time(u64 cputime)
208 {
209 u64 *cpustat = kcpustat_this_cpu->cpustat;
210
211 cpustat[CPUTIME_STEAL] += cputime;
212 }
213
214 /*
215 * Account for idle time.
216 * @cputime: the CPU time spent in idle wait
217 */
account_idle_time(u64 cputime)218 void account_idle_time(u64 cputime)
219 {
220 u64 *cpustat = kcpustat_this_cpu->cpustat;
221 struct rq *rq = this_rq();
222
223 if (atomic_read(&rq->nr_iowait) > 0)
224 cpustat[CPUTIME_IOWAIT] += cputime;
225 else
226 cpustat[CPUTIME_IDLE] += cputime;
227 }
228
229 /*
230 * When a guest is interrupted for a longer amount of time, missed clock
231 * ticks are not redelivered later. Due to that, this function may on
232 * occasion account more time than the calling functions think elapsed.
233 */
steal_account_process_time(u64 maxtime)234 static __always_inline u64 steal_account_process_time(u64 maxtime)
235 {
236 #ifdef CONFIG_PARAVIRT
237 if (static_key_false(¶virt_steal_enabled)) {
238 u64 steal;
239
240 steal = paravirt_steal_clock(smp_processor_id());
241 steal -= this_rq()->prev_steal_time;
242 steal = min(steal, maxtime);
243 account_steal_time(steal);
244 this_rq()->prev_steal_time += steal;
245
246 return steal;
247 }
248 #endif
249 return 0;
250 }
251
252 /*
253 * Account how much elapsed time was spent in steal, irq, or softirq time.
254 */
account_other_time(u64 max)255 static inline u64 account_other_time(u64 max)
256 {
257 u64 accounted;
258
259 lockdep_assert_irqs_disabled();
260
261 accounted = steal_account_process_time(max);
262
263 if (accounted < max)
264 accounted += irqtime_tick_accounted(max - accounted);
265
266 return accounted;
267 }
268
269 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)270 static inline u64 read_sum_exec_runtime(struct task_struct *t)
271 {
272 return t->se.sum_exec_runtime;
273 }
274 #else
read_sum_exec_runtime(struct task_struct * t)275 static u64 read_sum_exec_runtime(struct task_struct *t)
276 {
277 u64 ns;
278 struct rq_flags rf;
279 struct rq *rq;
280
281 rq = task_rq_lock(t, &rf);
282 ns = t->se.sum_exec_runtime;
283 task_rq_unlock(rq, t, &rf);
284
285 return ns;
286 }
287 #endif
288
289 /*
290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291 * tasks (sum on group iteration) belonging to @tsk's group.
292 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
294 {
295 struct signal_struct *sig = tsk->signal;
296 u64 utime, stime;
297 struct task_struct *t;
298 unsigned int seq, nextseq;
299 unsigned long flags;
300
301 /*
302 * Update current task runtime to account pending time since last
303 * scheduler action or thread_group_cputime() call. This thread group
304 * might have other running tasks on different CPUs, but updating
305 * their runtime can affect syscall performance, so we skip account
306 * those pending times and rely only on values updated on tick or
307 * other scheduler action.
308 */
309 if (same_thread_group(current, tsk))
310 (void) task_sched_runtime(current);
311
312 rcu_read_lock();
313 /* Attempt a lockless read on the first round. */
314 nextseq = 0;
315 do {
316 seq = nextseq;
317 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
318 times->utime = sig->utime;
319 times->stime = sig->stime;
320 times->sum_exec_runtime = sig->sum_sched_runtime;
321
322 for_each_thread(tsk, t) {
323 task_cputime(t, &utime, &stime);
324 times->utime += utime;
325 times->stime += stime;
326 times->sum_exec_runtime += read_sum_exec_runtime(t);
327 }
328 /* If lockless access failed, take the lock. */
329 nextseq = 1;
330 } while (need_seqretry(&sig->stats_lock, seq));
331 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
332 rcu_read_unlock();
333 }
334
335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
336 /*
337 * Account a tick to a process and cpustat
338 * @p: the process that the CPU time gets accounted to
339 * @user_tick: is the tick from userspace
340 * @rq: the pointer to rq
341 *
342 * Tick demultiplexing follows the order
343 * - pending hardirq update
344 * - pending softirq update
345 * - user_time
346 * - idle_time
347 * - system time
348 * - check for guest_time
349 * - else account as system_time
350 *
351 * Check for hardirq is done both for system and user time as there is
352 * no timer going off while we are on hardirq and hence we may never get an
353 * opportunity to update it solely in system time.
354 * p->stime and friends are only updated on system time and not on irq
355 * softirq as those do not count in task exec_runtime any more.
356 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
358 int ticks)
359 {
360 u64 other, cputime = TICK_NSEC * ticks;
361
362 /*
363 * When returning from idle, many ticks can get accounted at
364 * once, including some ticks of steal, irq, and softirq time.
365 * Subtract those ticks from the amount of time accounted to
366 * idle, or potentially user or system time. Due to rounding,
367 * other time can exceed ticks occasionally.
368 */
369 other = account_other_time(ULONG_MAX);
370 if (other >= cputime)
371 return;
372
373 cputime -= other;
374
375 if (this_cpu_ksoftirqd() == p) {
376 /*
377 * ksoftirqd time do not get accounted in cpu_softirq_time.
378 * So, we have to handle it separately here.
379 * Also, p->stime needs to be updated for ksoftirqd.
380 */
381 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
382 } else if (user_tick) {
383 account_user_time(p, cputime);
384 } else if (p == this_rq()->idle) {
385 account_idle_time(cputime);
386 } else if (p->flags & PF_VCPU) { /* System time or guest time */
387 account_guest_time(p, cputime);
388 } else {
389 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
390 }
391 }
392
irqtime_account_idle_ticks(int ticks)393 static void irqtime_account_idle_ticks(int ticks)
394 {
395 irqtime_account_process_tick(current, 0, ticks);
396 }
397 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)398 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)399 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
400 int nr_ticks) { }
401 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
402
403 /*
404 * Use precise platform statistics if available:
405 */
406 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
407
408 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)409 void vtime_task_switch(struct task_struct *prev)
410 {
411 if (is_idle_task(prev))
412 vtime_account_idle(prev);
413 else
414 vtime_account_kernel(prev);
415
416 vtime_flush(prev);
417 arch_vtime_task_switch(prev);
418 }
419 # endif
420
vtime_account_irq(struct task_struct * tsk,unsigned int offset)421 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
422 {
423 unsigned int pc = irq_count() - offset;
424
425 if (pc & HARDIRQ_OFFSET) {
426 vtime_account_hardirq(tsk);
427 } else if (pc & SOFTIRQ_OFFSET) {
428 vtime_account_softirq(tsk);
429 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
430 is_idle_task(tsk)) {
431 vtime_account_idle(tsk);
432 } else {
433 vtime_account_kernel(tsk);
434 }
435 }
436
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)437 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
438 u64 *ut, u64 *st)
439 {
440 *ut = curr->utime;
441 *st = curr->stime;
442 }
443
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)444 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
445 {
446 *ut = p->utime;
447 *st = p->stime;
448 }
449 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
450
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)451 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
452 {
453 struct task_cputime cputime;
454
455 thread_group_cputime(p, &cputime);
456
457 *ut = cputime.utime;
458 *st = cputime.stime;
459 }
460
461 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
462
463 /*
464 * Account a single tick of CPU time.
465 * @p: the process that the CPU time gets accounted to
466 * @user_tick: indicates if the tick is a user or a system tick
467 */
account_process_tick(struct task_struct * p,int user_tick)468 void account_process_tick(struct task_struct *p, int user_tick)
469 {
470 u64 cputime, steal;
471
472 if (vtime_accounting_enabled_this_cpu())
473 return;
474
475 if (sched_clock_irqtime) {
476 irqtime_account_process_tick(p, user_tick, 1);
477 return;
478 }
479
480 cputime = TICK_NSEC;
481 steal = steal_account_process_time(ULONG_MAX);
482
483 if (steal >= cputime)
484 return;
485
486 cputime -= steal;
487
488 if (user_tick)
489 account_user_time(p, cputime);
490 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
491 account_system_time(p, HARDIRQ_OFFSET, cputime);
492 else
493 account_idle_time(cputime);
494 }
495
496 /*
497 * Account multiple ticks of idle time.
498 * @ticks: number of stolen ticks
499 */
account_idle_ticks(unsigned long ticks)500 void account_idle_ticks(unsigned long ticks)
501 {
502 u64 cputime, steal;
503
504 if (sched_clock_irqtime) {
505 irqtime_account_idle_ticks(ticks);
506 return;
507 }
508
509 cputime = ticks * TICK_NSEC;
510 steal = steal_account_process_time(ULONG_MAX);
511
512 if (steal >= cputime)
513 return;
514
515 cputime -= steal;
516 account_idle_time(cputime);
517 }
518
519 /*
520 * Adjust tick based cputime random precision against scheduler runtime
521 * accounting.
522 *
523 * Tick based cputime accounting depend on random scheduling timeslices of a
524 * task to be interrupted or not by the timer. Depending on these
525 * circumstances, the number of these interrupts may be over or
526 * under-optimistic, matching the real user and system cputime with a variable
527 * precision.
528 *
529 * Fix this by scaling these tick based values against the total runtime
530 * accounted by the CFS scheduler.
531 *
532 * This code provides the following guarantees:
533 *
534 * stime + utime == rtime
535 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
536 *
537 * Assuming that rtime_i+1 >= rtime_i.
538 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)539 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
540 u64 *ut, u64 *st)
541 {
542 u64 rtime, stime, utime;
543 unsigned long flags;
544
545 /* Serialize concurrent callers such that we can honour our guarantees */
546 raw_spin_lock_irqsave(&prev->lock, flags);
547 rtime = curr->sum_exec_runtime;
548
549 /*
550 * This is possible under two circumstances:
551 * - rtime isn't monotonic after all (a bug);
552 * - we got reordered by the lock.
553 *
554 * In both cases this acts as a filter such that the rest of the code
555 * can assume it is monotonic regardless of anything else.
556 */
557 if (prev->stime + prev->utime >= rtime)
558 goto out;
559
560 stime = curr->stime;
561 utime = curr->utime;
562
563 /*
564 * If either stime or utime are 0, assume all runtime is userspace.
565 * Once a task gets some ticks, the monotonicity code at 'update:'
566 * will ensure things converge to the observed ratio.
567 */
568 if (stime == 0) {
569 utime = rtime;
570 goto update;
571 }
572
573 if (utime == 0) {
574 stime = rtime;
575 goto update;
576 }
577
578 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
579
580 update:
581 /*
582 * Make sure stime doesn't go backwards; this preserves monotonicity
583 * for utime because rtime is monotonic.
584 *
585 * utime_i+1 = rtime_i+1 - stime_i
586 * = rtime_i+1 - (rtime_i - utime_i)
587 * = (rtime_i+1 - rtime_i) + utime_i
588 * >= utime_i
589 */
590 if (stime < prev->stime)
591 stime = prev->stime;
592 utime = rtime - stime;
593
594 /*
595 * Make sure utime doesn't go backwards; this still preserves
596 * monotonicity for stime, analogous argument to above.
597 */
598 if (utime < prev->utime) {
599 utime = prev->utime;
600 stime = rtime - utime;
601 }
602
603 prev->stime = stime;
604 prev->utime = utime;
605 out:
606 *ut = prev->utime;
607 *st = prev->stime;
608 raw_spin_unlock_irqrestore(&prev->lock, flags);
609 }
610
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)611 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
612 {
613 struct task_cputime cputime = {
614 .sum_exec_runtime = p->se.sum_exec_runtime,
615 };
616
617 if (task_cputime(p, &cputime.utime, &cputime.stime))
618 cputime.sum_exec_runtime = task_sched_runtime(p);
619 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
620 }
621 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
622
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)623 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
624 {
625 struct task_cputime cputime;
626
627 thread_group_cputime(p, &cputime);
628 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
629 }
630 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
631
632 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)633 static u64 vtime_delta(struct vtime *vtime)
634 {
635 unsigned long long clock;
636
637 clock = sched_clock();
638 if (clock < vtime->starttime)
639 return 0;
640
641 return clock - vtime->starttime;
642 }
643
get_vtime_delta(struct vtime * vtime)644 static u64 get_vtime_delta(struct vtime *vtime)
645 {
646 u64 delta = vtime_delta(vtime);
647 u64 other;
648
649 /*
650 * Unlike tick based timing, vtime based timing never has lost
651 * ticks, and no need for steal time accounting to make up for
652 * lost ticks. Vtime accounts a rounded version of actual
653 * elapsed time. Limit account_other_time to prevent rounding
654 * errors from causing elapsed vtime to go negative.
655 */
656 other = account_other_time(delta);
657 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
658 vtime->starttime += delta;
659
660 return delta - other;
661 }
662
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)663 static void vtime_account_system(struct task_struct *tsk,
664 struct vtime *vtime)
665 {
666 vtime->stime += get_vtime_delta(vtime);
667 if (vtime->stime >= TICK_NSEC) {
668 account_system_time(tsk, irq_count(), vtime->stime);
669 vtime->stime = 0;
670 }
671 }
672
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)673 static void vtime_account_guest(struct task_struct *tsk,
674 struct vtime *vtime)
675 {
676 vtime->gtime += get_vtime_delta(vtime);
677 if (vtime->gtime >= TICK_NSEC) {
678 account_guest_time(tsk, vtime->gtime);
679 vtime->gtime = 0;
680 }
681 }
682
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)683 static void __vtime_account_kernel(struct task_struct *tsk,
684 struct vtime *vtime)
685 {
686 /* We might have scheduled out from guest path */
687 if (vtime->state == VTIME_GUEST)
688 vtime_account_guest(tsk, vtime);
689 else
690 vtime_account_system(tsk, vtime);
691 }
692
vtime_account_kernel(struct task_struct * tsk)693 void vtime_account_kernel(struct task_struct *tsk)
694 {
695 struct vtime *vtime = &tsk->vtime;
696
697 if (!vtime_delta(vtime))
698 return;
699
700 write_seqcount_begin(&vtime->seqcount);
701 __vtime_account_kernel(tsk, vtime);
702 write_seqcount_end(&vtime->seqcount);
703 }
704
vtime_user_enter(struct task_struct * tsk)705 void vtime_user_enter(struct task_struct *tsk)
706 {
707 struct vtime *vtime = &tsk->vtime;
708
709 write_seqcount_begin(&vtime->seqcount);
710 vtime_account_system(tsk, vtime);
711 vtime->state = VTIME_USER;
712 write_seqcount_end(&vtime->seqcount);
713 }
714
vtime_user_exit(struct task_struct * tsk)715 void vtime_user_exit(struct task_struct *tsk)
716 {
717 struct vtime *vtime = &tsk->vtime;
718
719 write_seqcount_begin(&vtime->seqcount);
720 vtime->utime += get_vtime_delta(vtime);
721 if (vtime->utime >= TICK_NSEC) {
722 account_user_time(tsk, vtime->utime);
723 vtime->utime = 0;
724 }
725 vtime->state = VTIME_SYS;
726 write_seqcount_end(&vtime->seqcount);
727 }
728
vtime_guest_enter(struct task_struct * tsk)729 void vtime_guest_enter(struct task_struct *tsk)
730 {
731 struct vtime *vtime = &tsk->vtime;
732 /*
733 * The flags must be updated under the lock with
734 * the vtime_starttime flush and update.
735 * That enforces a right ordering and update sequence
736 * synchronization against the reader (task_gtime())
737 * that can thus safely catch up with a tickless delta.
738 */
739 write_seqcount_begin(&vtime->seqcount);
740 vtime_account_system(tsk, vtime);
741 tsk->flags |= PF_VCPU;
742 vtime->state = VTIME_GUEST;
743 write_seqcount_end(&vtime->seqcount);
744 }
745 EXPORT_SYMBOL_GPL(vtime_guest_enter);
746
vtime_guest_exit(struct task_struct * tsk)747 void vtime_guest_exit(struct task_struct *tsk)
748 {
749 struct vtime *vtime = &tsk->vtime;
750
751 write_seqcount_begin(&vtime->seqcount);
752 vtime_account_guest(tsk, vtime);
753 tsk->flags &= ~PF_VCPU;
754 vtime->state = VTIME_SYS;
755 write_seqcount_end(&vtime->seqcount);
756 }
757 EXPORT_SYMBOL_GPL(vtime_guest_exit);
758
vtime_account_idle(struct task_struct * tsk)759 void vtime_account_idle(struct task_struct *tsk)
760 {
761 account_idle_time(get_vtime_delta(&tsk->vtime));
762 }
763
vtime_task_switch_generic(struct task_struct * prev)764 void vtime_task_switch_generic(struct task_struct *prev)
765 {
766 struct vtime *vtime = &prev->vtime;
767
768 write_seqcount_begin(&vtime->seqcount);
769 if (vtime->state == VTIME_IDLE)
770 vtime_account_idle(prev);
771 else
772 __vtime_account_kernel(prev, vtime);
773 vtime->state = VTIME_INACTIVE;
774 vtime->cpu = -1;
775 write_seqcount_end(&vtime->seqcount);
776
777 vtime = ¤t->vtime;
778
779 write_seqcount_begin(&vtime->seqcount);
780 if (is_idle_task(current))
781 vtime->state = VTIME_IDLE;
782 else if (current->flags & PF_VCPU)
783 vtime->state = VTIME_GUEST;
784 else
785 vtime->state = VTIME_SYS;
786 vtime->starttime = sched_clock();
787 vtime->cpu = smp_processor_id();
788 write_seqcount_end(&vtime->seqcount);
789 }
790
vtime_init_idle(struct task_struct * t,int cpu)791 void vtime_init_idle(struct task_struct *t, int cpu)
792 {
793 struct vtime *vtime = &t->vtime;
794 unsigned long flags;
795
796 local_irq_save(flags);
797 write_seqcount_begin(&vtime->seqcount);
798 vtime->state = VTIME_IDLE;
799 vtime->starttime = sched_clock();
800 vtime->cpu = cpu;
801 write_seqcount_end(&vtime->seqcount);
802 local_irq_restore(flags);
803 }
804
task_gtime(struct task_struct * t)805 u64 task_gtime(struct task_struct *t)
806 {
807 struct vtime *vtime = &t->vtime;
808 unsigned int seq;
809 u64 gtime;
810
811 if (!vtime_accounting_enabled())
812 return t->gtime;
813
814 do {
815 seq = read_seqcount_begin(&vtime->seqcount);
816
817 gtime = t->gtime;
818 if (vtime->state == VTIME_GUEST)
819 gtime += vtime->gtime + vtime_delta(vtime);
820
821 } while (read_seqcount_retry(&vtime->seqcount, seq));
822
823 return gtime;
824 }
825
826 /*
827 * Fetch cputime raw values from fields of task_struct and
828 * add up the pending nohz execution time since the last
829 * cputime snapshot.
830 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)831 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
832 {
833 struct vtime *vtime = &t->vtime;
834 unsigned int seq;
835 u64 delta;
836 int ret;
837
838 if (!vtime_accounting_enabled()) {
839 *utime = t->utime;
840 *stime = t->stime;
841 return false;
842 }
843
844 do {
845 ret = false;
846 seq = read_seqcount_begin(&vtime->seqcount);
847
848 *utime = t->utime;
849 *stime = t->stime;
850
851 /* Task is sleeping or idle, nothing to add */
852 if (vtime->state < VTIME_SYS)
853 continue;
854
855 ret = true;
856 delta = vtime_delta(vtime);
857
858 /*
859 * Task runs either in user (including guest) or kernel space,
860 * add pending nohz time to the right place.
861 */
862 if (vtime->state == VTIME_SYS)
863 *stime += vtime->stime + delta;
864 else
865 *utime += vtime->utime + delta;
866 } while (read_seqcount_retry(&vtime->seqcount, seq));
867
868 return ret;
869 }
870
vtime_state_fetch(struct vtime * vtime,int cpu)871 static int vtime_state_fetch(struct vtime *vtime, int cpu)
872 {
873 int state = READ_ONCE(vtime->state);
874
875 /*
876 * We raced against a context switch, fetch the
877 * kcpustat task again.
878 */
879 if (vtime->cpu != cpu && vtime->cpu != -1)
880 return -EAGAIN;
881
882 /*
883 * Two possible things here:
884 * 1) We are seeing the scheduling out task (prev) or any past one.
885 * 2) We are seeing the scheduling in task (next) but it hasn't
886 * passed though vtime_task_switch() yet so the pending
887 * cputime of the prev task may not be flushed yet.
888 *
889 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
890 */
891 if (state == VTIME_INACTIVE)
892 return -EAGAIN;
893
894 return state;
895 }
896
kcpustat_user_vtime(struct vtime * vtime)897 static u64 kcpustat_user_vtime(struct vtime *vtime)
898 {
899 if (vtime->state == VTIME_USER)
900 return vtime->utime + vtime_delta(vtime);
901 else if (vtime->state == VTIME_GUEST)
902 return vtime->gtime + vtime_delta(vtime);
903 return 0;
904 }
905
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)906 static int kcpustat_field_vtime(u64 *cpustat,
907 struct task_struct *tsk,
908 enum cpu_usage_stat usage,
909 int cpu, u64 *val)
910 {
911 struct vtime *vtime = &tsk->vtime;
912 unsigned int seq;
913
914 do {
915 int state;
916
917 seq = read_seqcount_begin(&vtime->seqcount);
918
919 state = vtime_state_fetch(vtime, cpu);
920 if (state < 0)
921 return state;
922
923 *val = cpustat[usage];
924
925 /*
926 * Nice VS unnice cputime accounting may be inaccurate if
927 * the nice value has changed since the last vtime update.
928 * But proper fix would involve interrupting target on nice
929 * updates which is a no go on nohz_full (although the scheduler
930 * may still interrupt the target if rescheduling is needed...)
931 */
932 switch (usage) {
933 case CPUTIME_SYSTEM:
934 if (state == VTIME_SYS)
935 *val += vtime->stime + vtime_delta(vtime);
936 break;
937 case CPUTIME_USER:
938 if (task_nice(tsk) <= 0)
939 *val += kcpustat_user_vtime(vtime);
940 break;
941 case CPUTIME_NICE:
942 if (task_nice(tsk) > 0)
943 *val += kcpustat_user_vtime(vtime);
944 break;
945 case CPUTIME_GUEST:
946 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
947 *val += vtime->gtime + vtime_delta(vtime);
948 break;
949 case CPUTIME_GUEST_NICE:
950 if (state == VTIME_GUEST && task_nice(tsk) > 0)
951 *val += vtime->gtime + vtime_delta(vtime);
952 break;
953 default:
954 break;
955 }
956 } while (read_seqcount_retry(&vtime->seqcount, seq));
957
958 return 0;
959 }
960
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)961 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
962 enum cpu_usage_stat usage, int cpu)
963 {
964 u64 *cpustat = kcpustat->cpustat;
965 u64 val = cpustat[usage];
966 struct rq *rq;
967 int err;
968
969 if (!vtime_accounting_enabled_cpu(cpu))
970 return val;
971
972 rq = cpu_rq(cpu);
973
974 for (;;) {
975 struct task_struct *curr;
976
977 rcu_read_lock();
978 curr = rcu_dereference(rq->curr);
979 if (WARN_ON_ONCE(!curr)) {
980 rcu_read_unlock();
981 return cpustat[usage];
982 }
983
984 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
985 rcu_read_unlock();
986
987 if (!err)
988 return val;
989
990 cpu_relax();
991 }
992 }
993 EXPORT_SYMBOL_GPL(kcpustat_field);
994
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)995 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
996 const struct kernel_cpustat *src,
997 struct task_struct *tsk, int cpu)
998 {
999 struct vtime *vtime = &tsk->vtime;
1000 unsigned int seq;
1001
1002 do {
1003 u64 *cpustat;
1004 u64 delta;
1005 int state;
1006
1007 seq = read_seqcount_begin(&vtime->seqcount);
1008
1009 state = vtime_state_fetch(vtime, cpu);
1010 if (state < 0)
1011 return state;
1012
1013 *dst = *src;
1014 cpustat = dst->cpustat;
1015
1016 /* Task is sleeping, dead or idle, nothing to add */
1017 if (state < VTIME_SYS)
1018 continue;
1019
1020 delta = vtime_delta(vtime);
1021
1022 /*
1023 * Task runs either in user (including guest) or kernel space,
1024 * add pending nohz time to the right place.
1025 */
1026 if (state == VTIME_SYS) {
1027 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1028 } else if (state == VTIME_USER) {
1029 if (task_nice(tsk) > 0)
1030 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1031 else
1032 cpustat[CPUTIME_USER] += vtime->utime + delta;
1033 } else {
1034 WARN_ON_ONCE(state != VTIME_GUEST);
1035 if (task_nice(tsk) > 0) {
1036 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1037 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1038 } else {
1039 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1040 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1041 }
1042 }
1043 } while (read_seqcount_retry(&vtime->seqcount, seq));
1044
1045 return 0;
1046 }
1047
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1048 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1049 {
1050 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1051 struct rq *rq;
1052 int err;
1053
1054 if (!vtime_accounting_enabled_cpu(cpu)) {
1055 *dst = *src;
1056 return;
1057 }
1058
1059 rq = cpu_rq(cpu);
1060
1061 for (;;) {
1062 struct task_struct *curr;
1063
1064 rcu_read_lock();
1065 curr = rcu_dereference(rq->curr);
1066 if (WARN_ON_ONCE(!curr)) {
1067 rcu_read_unlock();
1068 *dst = *src;
1069 return;
1070 }
1071
1072 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1073 rcu_read_unlock();
1074
1075 if (!err)
1076 return;
1077
1078 cpu_relax();
1079 }
1080 }
1081 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1082
1083 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1084