1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
14 * unnecessary i-cache flushing.
15 * 04/07/.. ak Better overflow handling. Assorted fixes.
16 * 05/09/10 linville Add support for syncing ranges, support syncing for
17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb Add highmem support
19 */
20
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55
56 /*
57 * Minimum IO TLB size to bother booting with. Systems with mainly
58 * 64bit capable cards will only lightly use the swiotlb. If we can't
59 * allocate a contiguous 1MB, we're probably in trouble anyway.
60 */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64
65 static bool swiotlb_force_bounce;
66 static bool swiotlb_force_disable;
67
68 struct io_tlb_mem io_tlb_default_mem;
69
70 phys_addr_t swiotlb_unencrypted_base;
71
72 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
73
74 static int __init
setup_io_tlb_npages(char * str)75 setup_io_tlb_npages(char *str)
76 {
77 if (isdigit(*str)) {
78 /* avoid tail segment of size < IO_TLB_SEGSIZE */
79 default_nslabs =
80 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
81 }
82 if (*str == ',')
83 ++str;
84 if (!strcmp(str, "force"))
85 swiotlb_force_bounce = true;
86 else if (!strcmp(str, "noforce"))
87 swiotlb_force_disable = true;
88
89 return 0;
90 }
91 early_param("swiotlb", setup_io_tlb_npages);
92
swiotlb_max_segment(void)93 unsigned int swiotlb_max_segment(void)
94 {
95 if (!io_tlb_default_mem.nslabs)
96 return 0;
97 return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE);
98 }
99 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
100
swiotlb_size_or_default(void)101 unsigned long swiotlb_size_or_default(void)
102 {
103 return default_nslabs << IO_TLB_SHIFT;
104 }
105
swiotlb_adjust_size(unsigned long size)106 void __init swiotlb_adjust_size(unsigned long size)
107 {
108 /*
109 * If swiotlb parameter has not been specified, give a chance to
110 * architectures such as those supporting memory encryption to
111 * adjust/expand SWIOTLB size for their use.
112 */
113 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
114 return;
115 size = ALIGN(size, IO_TLB_SIZE);
116 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
117 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
118 }
119
swiotlb_print_info(void)120 void swiotlb_print_info(void)
121 {
122 struct io_tlb_mem *mem = &io_tlb_default_mem;
123
124 if (!mem->nslabs) {
125 pr_warn("No low mem\n");
126 return;
127 }
128
129 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
130 (mem->nslabs << IO_TLB_SHIFT) >> 20);
131 }
132
io_tlb_offset(unsigned long val)133 static inline unsigned long io_tlb_offset(unsigned long val)
134 {
135 return val & (IO_TLB_SEGSIZE - 1);
136 }
137
nr_slots(u64 val)138 static inline unsigned long nr_slots(u64 val)
139 {
140 return DIV_ROUND_UP(val, IO_TLB_SIZE);
141 }
142
143 /*
144 * Remap swioltb memory in the unencrypted physical address space
145 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
146 * Isolation VMs).
147 */
148 #ifdef CONFIG_HAS_IOMEM
swiotlb_mem_remap(struct io_tlb_mem * mem,unsigned long bytes)149 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
150 {
151 void *vaddr = NULL;
152
153 if (swiotlb_unencrypted_base) {
154 phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
155
156 vaddr = memremap(paddr, bytes, MEMREMAP_WB);
157 if (!vaddr)
158 pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
159 &paddr, bytes);
160 }
161
162 return vaddr;
163 }
164 #else
swiotlb_mem_remap(struct io_tlb_mem * mem,unsigned long bytes)165 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
166 {
167 return NULL;
168 }
169 #endif
170
171 /*
172 * Early SWIOTLB allocation may be too early to allow an architecture to
173 * perform the desired operations. This function allows the architecture to
174 * call SWIOTLB when the operations are possible. It needs to be called
175 * before the SWIOTLB memory is used.
176 */
swiotlb_update_mem_attributes(void)177 void __init swiotlb_update_mem_attributes(void)
178 {
179 struct io_tlb_mem *mem = &io_tlb_default_mem;
180 void *vaddr;
181 unsigned long bytes;
182
183 if (!mem->nslabs || mem->late_alloc)
184 return;
185 vaddr = phys_to_virt(mem->start);
186 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
187 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
188
189 mem->vaddr = swiotlb_mem_remap(mem, bytes);
190 if (!mem->vaddr)
191 mem->vaddr = vaddr;
192 }
193
swiotlb_init_io_tlb_mem(struct io_tlb_mem * mem,phys_addr_t start,unsigned long nslabs,unsigned int flags,bool late_alloc)194 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
195 unsigned long nslabs, unsigned int flags, bool late_alloc)
196 {
197 void *vaddr = phys_to_virt(start);
198 unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
199
200 mem->nslabs = nslabs;
201 mem->start = start;
202 mem->end = mem->start + bytes;
203 mem->index = 0;
204 mem->late_alloc = late_alloc;
205
206 mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
207
208 spin_lock_init(&mem->lock);
209 for (i = 0; i < mem->nslabs; i++) {
210 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
211 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
212 mem->slots[i].alloc_size = 0;
213 }
214
215 /*
216 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
217 * be remapped and cleared in swiotlb_update_mem_attributes.
218 */
219 if (swiotlb_unencrypted_base)
220 return;
221
222 memset(vaddr, 0, bytes);
223 mem->vaddr = vaddr;
224 return;
225 }
226
227 /*
228 * Statically reserve bounce buffer space and initialize bounce buffer data
229 * structures for the software IO TLB used to implement the DMA API.
230 */
swiotlb_init_remap(bool addressing_limit,unsigned int flags,int (* remap)(void * tlb,unsigned long nslabs))231 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
232 int (*remap)(void *tlb, unsigned long nslabs))
233 {
234 struct io_tlb_mem *mem = &io_tlb_default_mem;
235 unsigned long nslabs = default_nslabs;
236 size_t alloc_size;
237 size_t bytes;
238 void *tlb;
239
240 if (!addressing_limit && !swiotlb_force_bounce)
241 return;
242 if (swiotlb_force_disable)
243 return;
244
245 /*
246 * By default allocate the bounce buffer memory from low memory, but
247 * allow to pick a location everywhere for hypervisors with guest
248 * memory encryption.
249 */
250 retry:
251 bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
252 if (flags & SWIOTLB_ANY)
253 tlb = memblock_alloc(bytes, PAGE_SIZE);
254 else
255 tlb = memblock_alloc_low(bytes, PAGE_SIZE);
256 if (!tlb) {
257 pr_warn("%s: failed to allocate tlb structure\n", __func__);
258 return;
259 }
260
261 if (remap && remap(tlb, nslabs) < 0) {
262 memblock_free(tlb, PAGE_ALIGN(bytes));
263
264 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
265 if (nslabs < IO_TLB_MIN_SLABS)
266 panic("%s: Failed to remap %zu bytes\n",
267 __func__, bytes);
268 goto retry;
269 }
270
271 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
272 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
273 if (!mem->slots)
274 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
275 __func__, alloc_size, PAGE_SIZE);
276
277 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false);
278
279 if (flags & SWIOTLB_VERBOSE)
280 swiotlb_print_info();
281 }
282
swiotlb_init(bool addressing_limit,unsigned int flags)283 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
284 {
285 return swiotlb_init_remap(addressing_limit, flags, NULL);
286 }
287
288 /*
289 * Systems with larger DMA zones (those that don't support ISA) can
290 * initialize the swiotlb later using the slab allocator if needed.
291 * This should be just like above, but with some error catching.
292 */
swiotlb_init_late(size_t size,gfp_t gfp_mask,int (* remap)(void * tlb,unsigned long nslabs))293 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
294 int (*remap)(void *tlb, unsigned long nslabs))
295 {
296 struct io_tlb_mem *mem = &io_tlb_default_mem;
297 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
298 unsigned char *vstart = NULL;
299 unsigned int order;
300 bool retried = false;
301 int rc = 0;
302
303 if (swiotlb_force_disable)
304 return 0;
305
306 retry:
307 order = get_order(nslabs << IO_TLB_SHIFT);
308 nslabs = SLABS_PER_PAGE << order;
309
310 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
311 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
312 order);
313 if (vstart)
314 break;
315 order--;
316 nslabs = SLABS_PER_PAGE << order;
317 retried = true;
318 }
319
320 if (!vstart)
321 return -ENOMEM;
322
323 if (remap)
324 rc = remap(vstart, nslabs);
325 if (rc) {
326 free_pages((unsigned long)vstart, order);
327
328 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
329 if (nslabs < IO_TLB_MIN_SLABS)
330 return rc;
331 retried = true;
332 goto retry;
333 }
334
335 if (retried) {
336 pr_warn("only able to allocate %ld MB\n",
337 (PAGE_SIZE << order) >> 20);
338 }
339
340 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
341 get_order(array_size(sizeof(*mem->slots), nslabs)));
342 if (!mem->slots) {
343 free_pages((unsigned long)vstart, order);
344 return -ENOMEM;
345 }
346
347 set_memory_decrypted((unsigned long)vstart,
348 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
349 swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true);
350
351 swiotlb_print_info();
352 return 0;
353 }
354
swiotlb_exit(void)355 void __init swiotlb_exit(void)
356 {
357 struct io_tlb_mem *mem = &io_tlb_default_mem;
358 unsigned long tbl_vaddr;
359 size_t tbl_size, slots_size;
360
361 if (swiotlb_force_bounce)
362 return;
363
364 if (!mem->nslabs)
365 return;
366
367 pr_info("tearing down default memory pool\n");
368 tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
369 tbl_size = PAGE_ALIGN(mem->end - mem->start);
370 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
371
372 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
373 if (mem->late_alloc) {
374 free_pages(tbl_vaddr, get_order(tbl_size));
375 free_pages((unsigned long)mem->slots, get_order(slots_size));
376 } else {
377 memblock_free_late(mem->start, tbl_size);
378 memblock_free_late(__pa(mem->slots), slots_size);
379 }
380
381 memset(mem, 0, sizeof(*mem));
382 }
383
384 /*
385 * Return the offset into a iotlb slot required to keep the device happy.
386 */
swiotlb_align_offset(struct device * dev,u64 addr)387 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
388 {
389 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
390 }
391
392 /*
393 * Bounce: copy the swiotlb buffer from or back to the original dma location
394 */
swiotlb_bounce(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)395 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
396 enum dma_data_direction dir)
397 {
398 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
399 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
400 phys_addr_t orig_addr = mem->slots[index].orig_addr;
401 size_t alloc_size = mem->slots[index].alloc_size;
402 unsigned long pfn = PFN_DOWN(orig_addr);
403 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
404 unsigned int tlb_offset, orig_addr_offset;
405
406 if (orig_addr == INVALID_PHYS_ADDR)
407 return;
408
409 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
410 orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
411 if (tlb_offset < orig_addr_offset) {
412 dev_WARN_ONCE(dev, 1,
413 "Access before mapping start detected. orig offset %u, requested offset %u.\n",
414 orig_addr_offset, tlb_offset);
415 return;
416 }
417
418 tlb_offset -= orig_addr_offset;
419 if (tlb_offset > alloc_size) {
420 dev_WARN_ONCE(dev, 1,
421 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
422 alloc_size, size, tlb_offset);
423 return;
424 }
425
426 orig_addr += tlb_offset;
427 alloc_size -= tlb_offset;
428
429 if (size > alloc_size) {
430 dev_WARN_ONCE(dev, 1,
431 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
432 alloc_size, size);
433 size = alloc_size;
434 }
435
436 if (PageHighMem(pfn_to_page(pfn))) {
437 /* The buffer does not have a mapping. Map it in and copy */
438 unsigned int offset = orig_addr & ~PAGE_MASK;
439 char *buffer;
440 unsigned int sz = 0;
441 unsigned long flags;
442
443 while (size) {
444 sz = min_t(size_t, PAGE_SIZE - offset, size);
445
446 local_irq_save(flags);
447 buffer = kmap_atomic(pfn_to_page(pfn));
448 if (dir == DMA_TO_DEVICE)
449 memcpy(vaddr, buffer + offset, sz);
450 else
451 memcpy(buffer + offset, vaddr, sz);
452 kunmap_atomic(buffer);
453 local_irq_restore(flags);
454
455 size -= sz;
456 pfn++;
457 vaddr += sz;
458 offset = 0;
459 }
460 } else if (dir == DMA_TO_DEVICE) {
461 memcpy(vaddr, phys_to_virt(orig_addr), size);
462 } else {
463 memcpy(phys_to_virt(orig_addr), vaddr, size);
464 }
465 }
466
slot_addr(phys_addr_t start,phys_addr_t idx)467 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
468 {
469 return start + (idx << IO_TLB_SHIFT);
470 }
471
472 /*
473 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
474 */
get_max_slots(unsigned long boundary_mask)475 static inline unsigned long get_max_slots(unsigned long boundary_mask)
476 {
477 if (boundary_mask == ~0UL)
478 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
479 return nr_slots(boundary_mask + 1);
480 }
481
wrap_index(struct io_tlb_mem * mem,unsigned int index)482 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
483 {
484 if (index >= mem->nslabs)
485 return 0;
486 return index;
487 }
488
489 /*
490 * Find a suitable number of IO TLB entries size that will fit this request and
491 * allocate a buffer from that IO TLB pool.
492 */
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)493 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
494 size_t alloc_size, unsigned int alloc_align_mask)
495 {
496 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
497 unsigned long boundary_mask = dma_get_seg_boundary(dev);
498 dma_addr_t tbl_dma_addr =
499 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
500 unsigned long max_slots = get_max_slots(boundary_mask);
501 unsigned int iotlb_align_mask =
502 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
503 unsigned int nslots = nr_slots(alloc_size), stride;
504 unsigned int index, wrap, count = 0, i;
505 unsigned int offset = swiotlb_align_offset(dev, orig_addr);
506 unsigned long flags;
507
508 BUG_ON(!nslots);
509
510 /*
511 * For mappings with an alignment requirement don't bother looping to
512 * unaligned slots once we found an aligned one. For allocations of
513 * PAGE_SIZE or larger only look for page aligned allocations.
514 */
515 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
516 if (alloc_size >= PAGE_SIZE)
517 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
518 stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
519
520 spin_lock_irqsave(&mem->lock, flags);
521 if (unlikely(nslots > mem->nslabs - mem->used))
522 goto not_found;
523
524 index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
525 do {
526 if (orig_addr &&
527 (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
528 (orig_addr & iotlb_align_mask)) {
529 index = wrap_index(mem, index + 1);
530 continue;
531 }
532
533 /*
534 * If we find a slot that indicates we have 'nslots' number of
535 * contiguous buffers, we allocate the buffers from that slot
536 * and mark the entries as '0' indicating unavailable.
537 */
538 if (!iommu_is_span_boundary(index, nslots,
539 nr_slots(tbl_dma_addr),
540 max_slots)) {
541 if (mem->slots[index].list >= nslots)
542 goto found;
543 }
544 index = wrap_index(mem, index + stride);
545 } while (index != wrap);
546
547 not_found:
548 spin_unlock_irqrestore(&mem->lock, flags);
549 return -1;
550
551 found:
552 for (i = index; i < index + nslots; i++) {
553 mem->slots[i].list = 0;
554 mem->slots[i].alloc_size =
555 alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
556 }
557 for (i = index - 1;
558 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
559 mem->slots[i].list; i--)
560 mem->slots[i].list = ++count;
561
562 /*
563 * Update the indices to avoid searching in the next round.
564 */
565 if (index + nslots < mem->nslabs)
566 mem->index = index + nslots;
567 else
568 mem->index = 0;
569 mem->used += nslots;
570
571 spin_unlock_irqrestore(&mem->lock, flags);
572 return index;
573 }
574
swiotlb_tbl_map_single(struct device * dev,phys_addr_t orig_addr,size_t mapping_size,size_t alloc_size,unsigned int alloc_align_mask,enum dma_data_direction dir,unsigned long attrs)575 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
576 size_t mapping_size, size_t alloc_size,
577 unsigned int alloc_align_mask, enum dma_data_direction dir,
578 unsigned long attrs)
579 {
580 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
581 unsigned int offset = swiotlb_align_offset(dev, orig_addr);
582 unsigned int i;
583 int index;
584 phys_addr_t tlb_addr;
585
586 if (!mem || !mem->nslabs)
587 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
588
589 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
590 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
591
592 if (mapping_size > alloc_size) {
593 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
594 mapping_size, alloc_size);
595 return (phys_addr_t)DMA_MAPPING_ERROR;
596 }
597
598 index = swiotlb_find_slots(dev, orig_addr,
599 alloc_size + offset, alloc_align_mask);
600 if (index == -1) {
601 if (!(attrs & DMA_ATTR_NO_WARN))
602 dev_warn_ratelimited(dev,
603 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
604 alloc_size, mem->nslabs, mem->used);
605 return (phys_addr_t)DMA_MAPPING_ERROR;
606 }
607
608 /*
609 * Save away the mapping from the original address to the DMA address.
610 * This is needed when we sync the memory. Then we sync the buffer if
611 * needed.
612 */
613 for (i = 0; i < nr_slots(alloc_size + offset); i++)
614 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
615 tlb_addr = slot_addr(mem->start, index) + offset;
616 /*
617 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
618 * to the tlb buffer, if we knew for sure the device will
619 * overwirte the entire current content. But we don't. Thus
620 * unconditional bounce may prevent leaking swiotlb content (i.e.
621 * kernel memory) to user-space.
622 */
623 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
624 return tlb_addr;
625 }
626
swiotlb_release_slots(struct device * dev,phys_addr_t tlb_addr)627 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
628 {
629 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
630 unsigned long flags;
631 unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
632 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
633 int nslots = nr_slots(mem->slots[index].alloc_size + offset);
634 int count, i;
635
636 /*
637 * Return the buffer to the free list by setting the corresponding
638 * entries to indicate the number of contiguous entries available.
639 * While returning the entries to the free list, we merge the entries
640 * with slots below and above the pool being returned.
641 */
642 spin_lock_irqsave(&mem->lock, flags);
643 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
644 count = mem->slots[index + nslots].list;
645 else
646 count = 0;
647
648 /*
649 * Step 1: return the slots to the free list, merging the slots with
650 * superceeding slots
651 */
652 for (i = index + nslots - 1; i >= index; i--) {
653 mem->slots[i].list = ++count;
654 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
655 mem->slots[i].alloc_size = 0;
656 }
657
658 /*
659 * Step 2: merge the returned slots with the preceding slots, if
660 * available (non zero)
661 */
662 for (i = index - 1;
663 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
664 i--)
665 mem->slots[i].list = ++count;
666 mem->used -= nslots;
667 spin_unlock_irqrestore(&mem->lock, flags);
668 }
669
670 /*
671 * tlb_addr is the physical address of the bounce buffer to unmap.
672 */
swiotlb_tbl_unmap_single(struct device * dev,phys_addr_t tlb_addr,size_t mapping_size,enum dma_data_direction dir,unsigned long attrs)673 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
674 size_t mapping_size, enum dma_data_direction dir,
675 unsigned long attrs)
676 {
677 /*
678 * First, sync the memory before unmapping the entry
679 */
680 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
681 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
682 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
683
684 swiotlb_release_slots(dev, tlb_addr);
685 }
686
swiotlb_sync_single_for_device(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)687 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
688 size_t size, enum dma_data_direction dir)
689 {
690 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
691 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
692 else
693 BUG_ON(dir != DMA_FROM_DEVICE);
694 }
695
swiotlb_sync_single_for_cpu(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)696 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
697 size_t size, enum dma_data_direction dir)
698 {
699 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
700 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
701 else
702 BUG_ON(dir != DMA_TO_DEVICE);
703 }
704
705 /*
706 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
707 * to the device copy the data into it as well.
708 */
swiotlb_map(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)709 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
710 enum dma_data_direction dir, unsigned long attrs)
711 {
712 phys_addr_t swiotlb_addr;
713 dma_addr_t dma_addr;
714
715 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
716
717 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
718 attrs);
719 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
720 return DMA_MAPPING_ERROR;
721
722 /* Ensure that the address returned is DMA'ble */
723 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
724 if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
725 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
726 attrs | DMA_ATTR_SKIP_CPU_SYNC);
727 dev_WARN_ONCE(dev, 1,
728 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
729 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
730 return DMA_MAPPING_ERROR;
731 }
732
733 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
734 arch_sync_dma_for_device(swiotlb_addr, size, dir);
735 return dma_addr;
736 }
737
swiotlb_max_mapping_size(struct device * dev)738 size_t swiotlb_max_mapping_size(struct device *dev)
739 {
740 int min_align_mask = dma_get_min_align_mask(dev);
741 int min_align = 0;
742
743 /*
744 * swiotlb_find_slots() skips slots according to
745 * min align mask. This affects max mapping size.
746 * Take it into acount here.
747 */
748 if (min_align_mask)
749 min_align = roundup(min_align_mask, IO_TLB_SIZE);
750
751 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
752 }
753
is_swiotlb_active(struct device * dev)754 bool is_swiotlb_active(struct device *dev)
755 {
756 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
757
758 return mem && mem->nslabs;
759 }
760 EXPORT_SYMBOL_GPL(is_swiotlb_active);
761
swiotlb_create_debugfs_files(struct io_tlb_mem * mem,const char * dirname)762 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
763 const char *dirname)
764 {
765 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
766 if (!mem->nslabs)
767 return;
768
769 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
770 debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
771 }
772
swiotlb_create_default_debugfs(void)773 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
774 {
775 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
776 return 0;
777 }
778
779 #ifdef CONFIG_DEBUG_FS
780 late_initcall(swiotlb_create_default_debugfs);
781 #endif
782
783 #ifdef CONFIG_DMA_RESTRICTED_POOL
784
swiotlb_alloc(struct device * dev,size_t size)785 struct page *swiotlb_alloc(struct device *dev, size_t size)
786 {
787 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
788 phys_addr_t tlb_addr;
789 int index;
790
791 if (!mem)
792 return NULL;
793
794 index = swiotlb_find_slots(dev, 0, size, 0);
795 if (index == -1)
796 return NULL;
797
798 tlb_addr = slot_addr(mem->start, index);
799
800 return pfn_to_page(PFN_DOWN(tlb_addr));
801 }
802
swiotlb_free(struct device * dev,struct page * page,size_t size)803 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
804 {
805 phys_addr_t tlb_addr = page_to_phys(page);
806
807 if (!is_swiotlb_buffer(dev, tlb_addr))
808 return false;
809
810 swiotlb_release_slots(dev, tlb_addr);
811
812 return true;
813 }
814
rmem_swiotlb_device_init(struct reserved_mem * rmem,struct device * dev)815 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
816 struct device *dev)
817 {
818 struct io_tlb_mem *mem = rmem->priv;
819 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
820
821 /*
822 * Since multiple devices can share the same pool, the private data,
823 * io_tlb_mem struct, will be initialized by the first device attached
824 * to it.
825 */
826 if (!mem) {
827 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
828 if (!mem)
829 return -ENOMEM;
830
831 mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
832 if (!mem->slots) {
833 kfree(mem);
834 return -ENOMEM;
835 }
836
837 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
838 rmem->size >> PAGE_SHIFT);
839 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
840 false);
841 mem->for_alloc = true;
842
843 rmem->priv = mem;
844
845 swiotlb_create_debugfs_files(mem, rmem->name);
846 }
847
848 dev->dma_io_tlb_mem = mem;
849
850 return 0;
851 }
852
rmem_swiotlb_device_release(struct reserved_mem * rmem,struct device * dev)853 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
854 struct device *dev)
855 {
856 dev->dma_io_tlb_mem = &io_tlb_default_mem;
857 }
858
859 static const struct reserved_mem_ops rmem_swiotlb_ops = {
860 .device_init = rmem_swiotlb_device_init,
861 .device_release = rmem_swiotlb_device_release,
862 };
863
rmem_swiotlb_setup(struct reserved_mem * rmem)864 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
865 {
866 unsigned long node = rmem->fdt_node;
867
868 if (of_get_flat_dt_prop(node, "reusable", NULL) ||
869 of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
870 of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
871 of_get_flat_dt_prop(node, "no-map", NULL))
872 return -EINVAL;
873
874 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
875 pr_err("Restricted DMA pool must be accessible within the linear mapping.");
876 return -EINVAL;
877 }
878
879 rmem->ops = &rmem_swiotlb_ops;
880 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
881 &rmem->base, (unsigned long)rmem->size / SZ_1M);
882 return 0;
883 }
884
885 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
886 #endif /* CONFIG_DMA_RESTRICTED_POOL */
887