1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71
72 /*
73 * There could be abnormal cpuset configurations for cpu or memory
74 * node binding, add this key to provide a quick low-cost judgment
75 * of the situation.
76 */
77 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
78
79 /* See "Frequency meter" comments, below. */
80
81 struct fmeter {
82 int cnt; /* unprocessed events count */
83 int val; /* most recent output value */
84 time64_t time; /* clock (secs) when val computed */
85 spinlock_t lock; /* guards read or write of above */
86 };
87
88 struct cpuset {
89 struct cgroup_subsys_state css;
90
91 unsigned long flags; /* "unsigned long" so bitops work */
92
93 /*
94 * On default hierarchy:
95 *
96 * The user-configured masks can only be changed by writing to
97 * cpuset.cpus and cpuset.mems, and won't be limited by the
98 * parent masks.
99 *
100 * The effective masks is the real masks that apply to the tasks
101 * in the cpuset. They may be changed if the configured masks are
102 * changed or hotplug happens.
103 *
104 * effective_mask == configured_mask & parent's effective_mask,
105 * and if it ends up empty, it will inherit the parent's mask.
106 *
107 *
108 * On legacy hierarchy:
109 *
110 * The user-configured masks are always the same with effective masks.
111 */
112
113 /* user-configured CPUs and Memory Nodes allow to tasks */
114 cpumask_var_t cpus_allowed;
115 nodemask_t mems_allowed;
116
117 /* effective CPUs and Memory Nodes allow to tasks */
118 cpumask_var_t effective_cpus;
119 nodemask_t effective_mems;
120
121 /*
122 * CPUs allocated to child sub-partitions (default hierarchy only)
123 * - CPUs granted by the parent = effective_cpus U subparts_cpus
124 * - effective_cpus and subparts_cpus are mutually exclusive.
125 *
126 * effective_cpus contains only onlined CPUs, but subparts_cpus
127 * may have offlined ones.
128 */
129 cpumask_var_t subparts_cpus;
130
131 /*
132 * This is old Memory Nodes tasks took on.
133 *
134 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
135 * - A new cpuset's old_mems_allowed is initialized when some
136 * task is moved into it.
137 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
138 * cpuset.mems_allowed and have tasks' nodemask updated, and
139 * then old_mems_allowed is updated to mems_allowed.
140 */
141 nodemask_t old_mems_allowed;
142
143 struct fmeter fmeter; /* memory_pressure filter */
144
145 /*
146 * Tasks are being attached to this cpuset. Used to prevent
147 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
148 */
149 int attach_in_progress;
150
151 /* partition number for rebuild_sched_domains() */
152 int pn;
153
154 /* for custom sched domain */
155 int relax_domain_level;
156
157 /* number of CPUs in subparts_cpus */
158 int nr_subparts_cpus;
159
160 /* partition root state */
161 int partition_root_state;
162
163 /*
164 * Default hierarchy only:
165 * use_parent_ecpus - set if using parent's effective_cpus
166 * child_ecpus_count - # of children with use_parent_ecpus set
167 */
168 int use_parent_ecpus;
169 int child_ecpus_count;
170
171 /* Handle for cpuset.cpus.partition */
172 struct cgroup_file partition_file;
173 };
174
175 /*
176 * Partition root states:
177 *
178 * 0 - not a partition root
179 *
180 * 1 - partition root
181 *
182 * -1 - invalid partition root
183 * None of the cpus in cpus_allowed can be put into the parent's
184 * subparts_cpus. In this case, the cpuset is not a real partition
185 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
186 * and the cpuset can be restored back to a partition root if the
187 * parent cpuset can give more CPUs back to this child cpuset.
188 */
189 #define PRS_DISABLED 0
190 #define PRS_ENABLED 1
191 #define PRS_ERROR -1
192
193 /*
194 * Temporary cpumasks for working with partitions that are passed among
195 * functions to avoid memory allocation in inner functions.
196 */
197 struct tmpmasks {
198 cpumask_var_t addmask, delmask; /* For partition root */
199 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
200 };
201
css_cs(struct cgroup_subsys_state * css)202 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
203 {
204 return css ? container_of(css, struct cpuset, css) : NULL;
205 }
206
207 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)208 static inline struct cpuset *task_cs(struct task_struct *task)
209 {
210 return css_cs(task_css(task, cpuset_cgrp_id));
211 }
212
parent_cs(struct cpuset * cs)213 static inline struct cpuset *parent_cs(struct cpuset *cs)
214 {
215 return css_cs(cs->css.parent);
216 }
217
218 /* bits in struct cpuset flags field */
219 typedef enum {
220 CS_ONLINE,
221 CS_CPU_EXCLUSIVE,
222 CS_MEM_EXCLUSIVE,
223 CS_MEM_HARDWALL,
224 CS_MEMORY_MIGRATE,
225 CS_SCHED_LOAD_BALANCE,
226 CS_SPREAD_PAGE,
227 CS_SPREAD_SLAB,
228 } cpuset_flagbits_t;
229
230 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)231 static inline bool is_cpuset_online(struct cpuset *cs)
232 {
233 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
234 }
235
is_cpu_exclusive(const struct cpuset * cs)236 static inline int is_cpu_exclusive(const struct cpuset *cs)
237 {
238 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
239 }
240
is_mem_exclusive(const struct cpuset * cs)241 static inline int is_mem_exclusive(const struct cpuset *cs)
242 {
243 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
244 }
245
is_mem_hardwall(const struct cpuset * cs)246 static inline int is_mem_hardwall(const struct cpuset *cs)
247 {
248 return test_bit(CS_MEM_HARDWALL, &cs->flags);
249 }
250
is_sched_load_balance(const struct cpuset * cs)251 static inline int is_sched_load_balance(const struct cpuset *cs)
252 {
253 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
254 }
255
is_memory_migrate(const struct cpuset * cs)256 static inline int is_memory_migrate(const struct cpuset *cs)
257 {
258 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
259 }
260
is_spread_page(const struct cpuset * cs)261 static inline int is_spread_page(const struct cpuset *cs)
262 {
263 return test_bit(CS_SPREAD_PAGE, &cs->flags);
264 }
265
is_spread_slab(const struct cpuset * cs)266 static inline int is_spread_slab(const struct cpuset *cs)
267 {
268 return test_bit(CS_SPREAD_SLAB, &cs->flags);
269 }
270
is_partition_root(const struct cpuset * cs)271 static inline int is_partition_root(const struct cpuset *cs)
272 {
273 return cs->partition_root_state > 0;
274 }
275
276 /*
277 * Send notification event of whenever partition_root_state changes.
278 */
notify_partition_change(struct cpuset * cs,int old_prs,int new_prs)279 static inline void notify_partition_change(struct cpuset *cs,
280 int old_prs, int new_prs)
281 {
282 if (old_prs != new_prs)
283 cgroup_file_notify(&cs->partition_file);
284 }
285
286 static struct cpuset top_cpuset = {
287 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
288 (1 << CS_MEM_EXCLUSIVE)),
289 .partition_root_state = PRS_ENABLED,
290 };
291
292 /**
293 * cpuset_for_each_child - traverse online children of a cpuset
294 * @child_cs: loop cursor pointing to the current child
295 * @pos_css: used for iteration
296 * @parent_cs: target cpuset to walk children of
297 *
298 * Walk @child_cs through the online children of @parent_cs. Must be used
299 * with RCU read locked.
300 */
301 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
302 css_for_each_child((pos_css), &(parent_cs)->css) \
303 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
304
305 /**
306 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
307 * @des_cs: loop cursor pointing to the current descendant
308 * @pos_css: used for iteration
309 * @root_cs: target cpuset to walk ancestor of
310 *
311 * Walk @des_cs through the online descendants of @root_cs. Must be used
312 * with RCU read locked. The caller may modify @pos_css by calling
313 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
314 * iteration and the first node to be visited.
315 */
316 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
317 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
318 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
319
320 /*
321 * There are two global locks guarding cpuset structures - cpuset_rwsem and
322 * callback_lock. We also require taking task_lock() when dereferencing a
323 * task's cpuset pointer. See "The task_lock() exception", at the end of this
324 * comment. The cpuset code uses only cpuset_rwsem write lock. Other
325 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
326 * prevent change to cpuset structures.
327 *
328 * A task must hold both locks to modify cpusets. If a task holds
329 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
330 * is the only task able to also acquire callback_lock and be able to
331 * modify cpusets. It can perform various checks on the cpuset structure
332 * first, knowing nothing will change. It can also allocate memory while
333 * just holding cpuset_rwsem. While it is performing these checks, various
334 * callback routines can briefly acquire callback_lock to query cpusets.
335 * Once it is ready to make the changes, it takes callback_lock, blocking
336 * everyone else.
337 *
338 * Calls to the kernel memory allocator can not be made while holding
339 * callback_lock, as that would risk double tripping on callback_lock
340 * from one of the callbacks into the cpuset code from within
341 * __alloc_pages().
342 *
343 * If a task is only holding callback_lock, then it has read-only
344 * access to cpusets.
345 *
346 * Now, the task_struct fields mems_allowed and mempolicy may be changed
347 * by other task, we use alloc_lock in the task_struct fields to protect
348 * them.
349 *
350 * The cpuset_common_file_read() handlers only hold callback_lock across
351 * small pieces of code, such as when reading out possibly multi-word
352 * cpumasks and nodemasks.
353 *
354 * Accessing a task's cpuset should be done in accordance with the
355 * guidelines for accessing subsystem state in kernel/cgroup.c
356 */
357
358 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
359
cpuset_read_lock(void)360 void cpuset_read_lock(void)
361 {
362 percpu_down_read(&cpuset_rwsem);
363 }
364
cpuset_read_unlock(void)365 void cpuset_read_unlock(void)
366 {
367 percpu_up_read(&cpuset_rwsem);
368 }
369
370 static DEFINE_SPINLOCK(callback_lock);
371
372 static struct workqueue_struct *cpuset_migrate_mm_wq;
373
374 /*
375 * CPU / memory hotplug is handled asynchronously.
376 */
377 static void cpuset_hotplug_workfn(struct work_struct *work);
378 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
379
380 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
381
check_insane_mems_config(nodemask_t * nodes)382 static inline void check_insane_mems_config(nodemask_t *nodes)
383 {
384 if (!cpusets_insane_config() &&
385 movable_only_nodes(nodes)) {
386 static_branch_enable(&cpusets_insane_config_key);
387 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
388 "Cpuset allocations might fail even with a lot of memory available.\n",
389 nodemask_pr_args(nodes));
390 }
391 }
392
393 /*
394 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
395 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
396 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
397 * With v2 behavior, "cpus" and "mems" are always what the users have
398 * requested and won't be changed by hotplug events. Only the effective
399 * cpus or mems will be affected.
400 */
is_in_v2_mode(void)401 static inline bool is_in_v2_mode(void)
402 {
403 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
404 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
405 }
406
407 /*
408 * Return in pmask the portion of a task's cpusets's cpus_allowed that
409 * are online and are capable of running the task. If none are found,
410 * walk up the cpuset hierarchy until we find one that does have some
411 * appropriate cpus.
412 *
413 * One way or another, we guarantee to return some non-empty subset
414 * of cpu_online_mask.
415 *
416 * Call with callback_lock or cpuset_rwsem held.
417 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)418 static void guarantee_online_cpus(struct task_struct *tsk,
419 struct cpumask *pmask)
420 {
421 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
422 struct cpuset *cs;
423
424 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
425 cpumask_copy(pmask, cpu_online_mask);
426
427 rcu_read_lock();
428 cs = task_cs(tsk);
429
430 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
431 cs = parent_cs(cs);
432 if (unlikely(!cs)) {
433 /*
434 * The top cpuset doesn't have any online cpu as a
435 * consequence of a race between cpuset_hotplug_work
436 * and cpu hotplug notifier. But we know the top
437 * cpuset's effective_cpus is on its way to be
438 * identical to cpu_online_mask.
439 */
440 goto out_unlock;
441 }
442 }
443 cpumask_and(pmask, pmask, cs->effective_cpus);
444
445 out_unlock:
446 rcu_read_unlock();
447 }
448
449 /*
450 * Return in *pmask the portion of a cpusets's mems_allowed that
451 * are online, with memory. If none are online with memory, walk
452 * up the cpuset hierarchy until we find one that does have some
453 * online mems. The top cpuset always has some mems online.
454 *
455 * One way or another, we guarantee to return some non-empty subset
456 * of node_states[N_MEMORY].
457 *
458 * Call with callback_lock or cpuset_rwsem held.
459 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)460 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
461 {
462 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
463 cs = parent_cs(cs);
464 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
465 }
466
467 /*
468 * update task's spread flag if cpuset's page/slab spread flag is set
469 *
470 * Call with callback_lock or cpuset_rwsem held.
471 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)472 static void cpuset_update_task_spread_flag(struct cpuset *cs,
473 struct task_struct *tsk)
474 {
475 if (is_spread_page(cs))
476 task_set_spread_page(tsk);
477 else
478 task_clear_spread_page(tsk);
479
480 if (is_spread_slab(cs))
481 task_set_spread_slab(tsk);
482 else
483 task_clear_spread_slab(tsk);
484 }
485
486 /*
487 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
488 *
489 * One cpuset is a subset of another if all its allowed CPUs and
490 * Memory Nodes are a subset of the other, and its exclusive flags
491 * are only set if the other's are set. Call holding cpuset_rwsem.
492 */
493
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)494 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
495 {
496 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
497 nodes_subset(p->mems_allowed, q->mems_allowed) &&
498 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
499 is_mem_exclusive(p) <= is_mem_exclusive(q);
500 }
501
502 /**
503 * alloc_cpumasks - allocate three cpumasks for cpuset
504 * @cs: the cpuset that have cpumasks to be allocated.
505 * @tmp: the tmpmasks structure pointer
506 * Return: 0 if successful, -ENOMEM otherwise.
507 *
508 * Only one of the two input arguments should be non-NULL.
509 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)510 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
511 {
512 cpumask_var_t *pmask1, *pmask2, *pmask3;
513
514 if (cs) {
515 pmask1 = &cs->cpus_allowed;
516 pmask2 = &cs->effective_cpus;
517 pmask3 = &cs->subparts_cpus;
518 } else {
519 pmask1 = &tmp->new_cpus;
520 pmask2 = &tmp->addmask;
521 pmask3 = &tmp->delmask;
522 }
523
524 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
525 return -ENOMEM;
526
527 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
528 goto free_one;
529
530 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
531 goto free_two;
532
533 return 0;
534
535 free_two:
536 free_cpumask_var(*pmask2);
537 free_one:
538 free_cpumask_var(*pmask1);
539 return -ENOMEM;
540 }
541
542 /**
543 * free_cpumasks - free cpumasks in a tmpmasks structure
544 * @cs: the cpuset that have cpumasks to be free.
545 * @tmp: the tmpmasks structure pointer
546 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)547 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
548 {
549 if (cs) {
550 free_cpumask_var(cs->cpus_allowed);
551 free_cpumask_var(cs->effective_cpus);
552 free_cpumask_var(cs->subparts_cpus);
553 }
554 if (tmp) {
555 free_cpumask_var(tmp->new_cpus);
556 free_cpumask_var(tmp->addmask);
557 free_cpumask_var(tmp->delmask);
558 }
559 }
560
561 /**
562 * alloc_trial_cpuset - allocate a trial cpuset
563 * @cs: the cpuset that the trial cpuset duplicates
564 */
alloc_trial_cpuset(struct cpuset * cs)565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
566 {
567 struct cpuset *trial;
568
569 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
570 if (!trial)
571 return NULL;
572
573 if (alloc_cpumasks(trial, NULL)) {
574 kfree(trial);
575 return NULL;
576 }
577
578 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
579 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
580 return trial;
581 }
582
583 /**
584 * free_cpuset - free the cpuset
585 * @cs: the cpuset to be freed
586 */
free_cpuset(struct cpuset * cs)587 static inline void free_cpuset(struct cpuset *cs)
588 {
589 free_cpumasks(cs, NULL);
590 kfree(cs);
591 }
592
593 /*
594 * validate_change_legacy() - Validate conditions specific to legacy (v1)
595 * behavior.
596 */
validate_change_legacy(struct cpuset * cur,struct cpuset * trial)597 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
598 {
599 struct cgroup_subsys_state *css;
600 struct cpuset *c, *par;
601 int ret;
602
603 WARN_ON_ONCE(!rcu_read_lock_held());
604
605 /* Each of our child cpusets must be a subset of us */
606 ret = -EBUSY;
607 cpuset_for_each_child(c, css, cur)
608 if (!is_cpuset_subset(c, trial))
609 goto out;
610
611 /* On legacy hierarchy, we must be a subset of our parent cpuset. */
612 ret = -EACCES;
613 par = parent_cs(cur);
614 if (par && !is_cpuset_subset(trial, par))
615 goto out;
616
617 ret = 0;
618 out:
619 return ret;
620 }
621
622 /*
623 * validate_change() - Used to validate that any proposed cpuset change
624 * follows the structural rules for cpusets.
625 *
626 * If we replaced the flag and mask values of the current cpuset
627 * (cur) with those values in the trial cpuset (trial), would
628 * our various subset and exclusive rules still be valid? Presumes
629 * cpuset_rwsem held.
630 *
631 * 'cur' is the address of an actual, in-use cpuset. Operations
632 * such as list traversal that depend on the actual address of the
633 * cpuset in the list must use cur below, not trial.
634 *
635 * 'trial' is the address of bulk structure copy of cur, with
636 * perhaps one or more of the fields cpus_allowed, mems_allowed,
637 * or flags changed to new, trial values.
638 *
639 * Return 0 if valid, -errno if not.
640 */
641
validate_change(struct cpuset * cur,struct cpuset * trial)642 static int validate_change(struct cpuset *cur, struct cpuset *trial)
643 {
644 struct cgroup_subsys_state *css;
645 struct cpuset *c, *par;
646 int ret = 0;
647
648 rcu_read_lock();
649
650 if (!is_in_v2_mode())
651 ret = validate_change_legacy(cur, trial);
652 if (ret)
653 goto out;
654
655 /* Remaining checks don't apply to root cpuset */
656 if (cur == &top_cpuset)
657 goto out;
658
659 par = parent_cs(cur);
660
661 /*
662 * If either I or some sibling (!= me) is exclusive, we can't
663 * overlap
664 */
665 ret = -EINVAL;
666 cpuset_for_each_child(c, css, par) {
667 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
668 c != cur &&
669 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
670 goto out;
671 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
672 c != cur &&
673 nodes_intersects(trial->mems_allowed, c->mems_allowed))
674 goto out;
675 }
676
677 /*
678 * Cpusets with tasks - existing or newly being attached - can't
679 * be changed to have empty cpus_allowed or mems_allowed.
680 */
681 ret = -ENOSPC;
682 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
683 if (!cpumask_empty(cur->cpus_allowed) &&
684 cpumask_empty(trial->cpus_allowed))
685 goto out;
686 if (!nodes_empty(cur->mems_allowed) &&
687 nodes_empty(trial->mems_allowed))
688 goto out;
689 }
690
691 /*
692 * We can't shrink if we won't have enough room for SCHED_DEADLINE
693 * tasks.
694 */
695 ret = -EBUSY;
696 if (is_cpu_exclusive(cur) &&
697 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
698 trial->cpus_allowed))
699 goto out;
700
701 ret = 0;
702 out:
703 rcu_read_unlock();
704 return ret;
705 }
706
707 #ifdef CONFIG_SMP
708 /*
709 * Helper routine for generate_sched_domains().
710 * Do cpusets a, b have overlapping effective cpus_allowed masks?
711 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)712 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
713 {
714 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
715 }
716
717 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)718 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
719 {
720 if (dattr->relax_domain_level < c->relax_domain_level)
721 dattr->relax_domain_level = c->relax_domain_level;
722 return;
723 }
724
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)725 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
726 struct cpuset *root_cs)
727 {
728 struct cpuset *cp;
729 struct cgroup_subsys_state *pos_css;
730
731 rcu_read_lock();
732 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
733 /* skip the whole subtree if @cp doesn't have any CPU */
734 if (cpumask_empty(cp->cpus_allowed)) {
735 pos_css = css_rightmost_descendant(pos_css);
736 continue;
737 }
738
739 if (is_sched_load_balance(cp))
740 update_domain_attr(dattr, cp);
741 }
742 rcu_read_unlock();
743 }
744
745 /* Must be called with cpuset_rwsem held. */
nr_cpusets(void)746 static inline int nr_cpusets(void)
747 {
748 /* jump label reference count + the top-level cpuset */
749 return static_key_count(&cpusets_enabled_key.key) + 1;
750 }
751
752 /*
753 * generate_sched_domains()
754 *
755 * This function builds a partial partition of the systems CPUs
756 * A 'partial partition' is a set of non-overlapping subsets whose
757 * union is a subset of that set.
758 * The output of this function needs to be passed to kernel/sched/core.c
759 * partition_sched_domains() routine, which will rebuild the scheduler's
760 * load balancing domains (sched domains) as specified by that partial
761 * partition.
762 *
763 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
764 * for a background explanation of this.
765 *
766 * Does not return errors, on the theory that the callers of this
767 * routine would rather not worry about failures to rebuild sched
768 * domains when operating in the severe memory shortage situations
769 * that could cause allocation failures below.
770 *
771 * Must be called with cpuset_rwsem held.
772 *
773 * The three key local variables below are:
774 * cp - cpuset pointer, used (together with pos_css) to perform a
775 * top-down scan of all cpusets. For our purposes, rebuilding
776 * the schedulers sched domains, we can ignore !is_sched_load_
777 * balance cpusets.
778 * csa - (for CpuSet Array) Array of pointers to all the cpusets
779 * that need to be load balanced, for convenient iterative
780 * access by the subsequent code that finds the best partition,
781 * i.e the set of domains (subsets) of CPUs such that the
782 * cpus_allowed of every cpuset marked is_sched_load_balance
783 * is a subset of one of these domains, while there are as
784 * many such domains as possible, each as small as possible.
785 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
786 * the kernel/sched/core.c routine partition_sched_domains() in a
787 * convenient format, that can be easily compared to the prior
788 * value to determine what partition elements (sched domains)
789 * were changed (added or removed.)
790 *
791 * Finding the best partition (set of domains):
792 * The triple nested loops below over i, j, k scan over the
793 * load balanced cpusets (using the array of cpuset pointers in
794 * csa[]) looking for pairs of cpusets that have overlapping
795 * cpus_allowed, but which don't have the same 'pn' partition
796 * number and gives them in the same partition number. It keeps
797 * looping on the 'restart' label until it can no longer find
798 * any such pairs.
799 *
800 * The union of the cpus_allowed masks from the set of
801 * all cpusets having the same 'pn' value then form the one
802 * element of the partition (one sched domain) to be passed to
803 * partition_sched_domains().
804 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)805 static int generate_sched_domains(cpumask_var_t **domains,
806 struct sched_domain_attr **attributes)
807 {
808 struct cpuset *cp; /* top-down scan of cpusets */
809 struct cpuset **csa; /* array of all cpuset ptrs */
810 int csn; /* how many cpuset ptrs in csa so far */
811 int i, j, k; /* indices for partition finding loops */
812 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
813 struct sched_domain_attr *dattr; /* attributes for custom domains */
814 int ndoms = 0; /* number of sched domains in result */
815 int nslot; /* next empty doms[] struct cpumask slot */
816 struct cgroup_subsys_state *pos_css;
817 bool root_load_balance = is_sched_load_balance(&top_cpuset);
818
819 doms = NULL;
820 dattr = NULL;
821 csa = NULL;
822
823 /* Special case for the 99% of systems with one, full, sched domain */
824 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
825 ndoms = 1;
826 doms = alloc_sched_domains(ndoms);
827 if (!doms)
828 goto done;
829
830 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
831 if (dattr) {
832 *dattr = SD_ATTR_INIT;
833 update_domain_attr_tree(dattr, &top_cpuset);
834 }
835 cpumask_and(doms[0], top_cpuset.effective_cpus,
836 housekeeping_cpumask(HK_TYPE_DOMAIN));
837
838 goto done;
839 }
840
841 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
842 if (!csa)
843 goto done;
844 csn = 0;
845
846 rcu_read_lock();
847 if (root_load_balance)
848 csa[csn++] = &top_cpuset;
849 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
850 if (cp == &top_cpuset)
851 continue;
852 /*
853 * Continue traversing beyond @cp iff @cp has some CPUs and
854 * isn't load balancing. The former is obvious. The
855 * latter: All child cpusets contain a subset of the
856 * parent's cpus, so just skip them, and then we call
857 * update_domain_attr_tree() to calc relax_domain_level of
858 * the corresponding sched domain.
859 *
860 * If root is load-balancing, we can skip @cp if it
861 * is a subset of the root's effective_cpus.
862 */
863 if (!cpumask_empty(cp->cpus_allowed) &&
864 !(is_sched_load_balance(cp) &&
865 cpumask_intersects(cp->cpus_allowed,
866 housekeeping_cpumask(HK_TYPE_DOMAIN))))
867 continue;
868
869 if (root_load_balance &&
870 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
871 continue;
872
873 if (is_sched_load_balance(cp) &&
874 !cpumask_empty(cp->effective_cpus))
875 csa[csn++] = cp;
876
877 /* skip @cp's subtree if not a partition root */
878 if (!is_partition_root(cp))
879 pos_css = css_rightmost_descendant(pos_css);
880 }
881 rcu_read_unlock();
882
883 for (i = 0; i < csn; i++)
884 csa[i]->pn = i;
885 ndoms = csn;
886
887 restart:
888 /* Find the best partition (set of sched domains) */
889 for (i = 0; i < csn; i++) {
890 struct cpuset *a = csa[i];
891 int apn = a->pn;
892
893 for (j = 0; j < csn; j++) {
894 struct cpuset *b = csa[j];
895 int bpn = b->pn;
896
897 if (apn != bpn && cpusets_overlap(a, b)) {
898 for (k = 0; k < csn; k++) {
899 struct cpuset *c = csa[k];
900
901 if (c->pn == bpn)
902 c->pn = apn;
903 }
904 ndoms--; /* one less element */
905 goto restart;
906 }
907 }
908 }
909
910 /*
911 * Now we know how many domains to create.
912 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
913 */
914 doms = alloc_sched_domains(ndoms);
915 if (!doms)
916 goto done;
917
918 /*
919 * The rest of the code, including the scheduler, can deal with
920 * dattr==NULL case. No need to abort if alloc fails.
921 */
922 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
923 GFP_KERNEL);
924
925 for (nslot = 0, i = 0; i < csn; i++) {
926 struct cpuset *a = csa[i];
927 struct cpumask *dp;
928 int apn = a->pn;
929
930 if (apn < 0) {
931 /* Skip completed partitions */
932 continue;
933 }
934
935 dp = doms[nslot];
936
937 if (nslot == ndoms) {
938 static int warnings = 10;
939 if (warnings) {
940 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
941 nslot, ndoms, csn, i, apn);
942 warnings--;
943 }
944 continue;
945 }
946
947 cpumask_clear(dp);
948 if (dattr)
949 *(dattr + nslot) = SD_ATTR_INIT;
950 for (j = i; j < csn; j++) {
951 struct cpuset *b = csa[j];
952
953 if (apn == b->pn) {
954 cpumask_or(dp, dp, b->effective_cpus);
955 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
956 if (dattr)
957 update_domain_attr_tree(dattr + nslot, b);
958
959 /* Done with this partition */
960 b->pn = -1;
961 }
962 }
963 nslot++;
964 }
965 BUG_ON(nslot != ndoms);
966
967 done:
968 kfree(csa);
969
970 /*
971 * Fallback to the default domain if kmalloc() failed.
972 * See comments in partition_sched_domains().
973 */
974 if (doms == NULL)
975 ndoms = 1;
976
977 *domains = doms;
978 *attributes = dattr;
979 return ndoms;
980 }
981
update_tasks_root_domain(struct cpuset * cs)982 static void update_tasks_root_domain(struct cpuset *cs)
983 {
984 struct css_task_iter it;
985 struct task_struct *task;
986
987 css_task_iter_start(&cs->css, 0, &it);
988
989 while ((task = css_task_iter_next(&it)))
990 dl_add_task_root_domain(task);
991
992 css_task_iter_end(&it);
993 }
994
rebuild_root_domains(void)995 static void rebuild_root_domains(void)
996 {
997 struct cpuset *cs = NULL;
998 struct cgroup_subsys_state *pos_css;
999
1000 percpu_rwsem_assert_held(&cpuset_rwsem);
1001 lockdep_assert_cpus_held();
1002 lockdep_assert_held(&sched_domains_mutex);
1003
1004 rcu_read_lock();
1005
1006 /*
1007 * Clear default root domain DL accounting, it will be computed again
1008 * if a task belongs to it.
1009 */
1010 dl_clear_root_domain(&def_root_domain);
1011
1012 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1013
1014 if (cpumask_empty(cs->effective_cpus)) {
1015 pos_css = css_rightmost_descendant(pos_css);
1016 continue;
1017 }
1018
1019 css_get(&cs->css);
1020
1021 rcu_read_unlock();
1022
1023 update_tasks_root_domain(cs);
1024
1025 rcu_read_lock();
1026 css_put(&cs->css);
1027 }
1028 rcu_read_unlock();
1029 }
1030
1031 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1032 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1033 struct sched_domain_attr *dattr_new)
1034 {
1035 mutex_lock(&sched_domains_mutex);
1036 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1037 rebuild_root_domains();
1038 mutex_unlock(&sched_domains_mutex);
1039 }
1040
1041 /*
1042 * Rebuild scheduler domains.
1043 *
1044 * If the flag 'sched_load_balance' of any cpuset with non-empty
1045 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1046 * which has that flag enabled, or if any cpuset with a non-empty
1047 * 'cpus' is removed, then call this routine to rebuild the
1048 * scheduler's dynamic sched domains.
1049 *
1050 * Call with cpuset_rwsem held. Takes cpus_read_lock().
1051 */
rebuild_sched_domains_locked(void)1052 static void rebuild_sched_domains_locked(void)
1053 {
1054 struct cgroup_subsys_state *pos_css;
1055 struct sched_domain_attr *attr;
1056 cpumask_var_t *doms;
1057 struct cpuset *cs;
1058 int ndoms;
1059
1060 lockdep_assert_cpus_held();
1061 percpu_rwsem_assert_held(&cpuset_rwsem);
1062
1063 /*
1064 * If we have raced with CPU hotplug, return early to avoid
1065 * passing doms with offlined cpu to partition_sched_domains().
1066 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1067 *
1068 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1069 * should be the same as the active CPUs, so checking only top_cpuset
1070 * is enough to detect racing CPU offlines.
1071 */
1072 if (!top_cpuset.nr_subparts_cpus &&
1073 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1074 return;
1075
1076 /*
1077 * With subpartition CPUs, however, the effective CPUs of a partition
1078 * root should be only a subset of the active CPUs. Since a CPU in any
1079 * partition root could be offlined, all must be checked.
1080 */
1081 if (top_cpuset.nr_subparts_cpus) {
1082 rcu_read_lock();
1083 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1084 if (!is_partition_root(cs)) {
1085 pos_css = css_rightmost_descendant(pos_css);
1086 continue;
1087 }
1088 if (!cpumask_subset(cs->effective_cpus,
1089 cpu_active_mask)) {
1090 rcu_read_unlock();
1091 return;
1092 }
1093 }
1094 rcu_read_unlock();
1095 }
1096
1097 /* Generate domain masks and attrs */
1098 ndoms = generate_sched_domains(&doms, &attr);
1099
1100 /* Have scheduler rebuild the domains */
1101 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1102 }
1103 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1104 static void rebuild_sched_domains_locked(void)
1105 {
1106 }
1107 #endif /* CONFIG_SMP */
1108
rebuild_sched_domains(void)1109 void rebuild_sched_domains(void)
1110 {
1111 cpus_read_lock();
1112 percpu_down_write(&cpuset_rwsem);
1113 rebuild_sched_domains_locked();
1114 percpu_up_write(&cpuset_rwsem);
1115 cpus_read_unlock();
1116 }
1117
1118 /**
1119 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1120 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1121 *
1122 * Iterate through each task of @cs updating its cpus_allowed to the
1123 * effective cpuset's. As this function is called with cpuset_rwsem held,
1124 * cpuset membership stays stable.
1125 */
update_tasks_cpumask(struct cpuset * cs)1126 static void update_tasks_cpumask(struct cpuset *cs)
1127 {
1128 struct css_task_iter it;
1129 struct task_struct *task;
1130
1131 css_task_iter_start(&cs->css, 0, &it);
1132 while ((task = css_task_iter_next(&it)))
1133 set_cpus_allowed_ptr(task, cs->effective_cpus);
1134 css_task_iter_end(&it);
1135 }
1136
1137 /**
1138 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1139 * @new_cpus: the temp variable for the new effective_cpus mask
1140 * @cs: the cpuset the need to recompute the new effective_cpus mask
1141 * @parent: the parent cpuset
1142 *
1143 * If the parent has subpartition CPUs, include them in the list of
1144 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1145 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1146 * to mask those out.
1147 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1148 static void compute_effective_cpumask(struct cpumask *new_cpus,
1149 struct cpuset *cs, struct cpuset *parent)
1150 {
1151 if (parent->nr_subparts_cpus) {
1152 cpumask_or(new_cpus, parent->effective_cpus,
1153 parent->subparts_cpus);
1154 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1155 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1156 } else {
1157 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1158 }
1159 }
1160
1161 /*
1162 * Commands for update_parent_subparts_cpumask
1163 */
1164 enum subparts_cmd {
1165 partcmd_enable, /* Enable partition root */
1166 partcmd_disable, /* Disable partition root */
1167 partcmd_update, /* Update parent's subparts_cpus */
1168 };
1169
1170 /**
1171 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1172 * @cpuset: The cpuset that requests change in partition root state
1173 * @cmd: Partition root state change command
1174 * @newmask: Optional new cpumask for partcmd_update
1175 * @tmp: Temporary addmask and delmask
1176 * Return: 0, 1 or an error code
1177 *
1178 * For partcmd_enable, the cpuset is being transformed from a non-partition
1179 * root to a partition root. The cpus_allowed mask of the given cpuset will
1180 * be put into parent's subparts_cpus and taken away from parent's
1181 * effective_cpus. The function will return 0 if all the CPUs listed in
1182 * cpus_allowed can be granted or an error code will be returned.
1183 *
1184 * For partcmd_disable, the cpuset is being transformed from a partition
1185 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1186 * parent's subparts_cpus will be taken away from that cpumask and put back
1187 * into parent's effective_cpus. 0 should always be returned.
1188 *
1189 * For partcmd_update, if the optional newmask is specified, the cpu
1190 * list is to be changed from cpus_allowed to newmask. Otherwise,
1191 * cpus_allowed is assumed to remain the same. The cpuset should either
1192 * be a partition root or an invalid partition root. The partition root
1193 * state may change if newmask is NULL and none of the requested CPUs can
1194 * be granted by the parent. The function will return 1 if changes to
1195 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1196 * Error code should only be returned when newmask is non-NULL.
1197 *
1198 * The partcmd_enable and partcmd_disable commands are used by
1199 * update_prstate(). The partcmd_update command is used by
1200 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1201 * newmask set.
1202 *
1203 * The checking is more strict when enabling partition root than the
1204 * other two commands.
1205 *
1206 * Because of the implicit cpu exclusive nature of a partition root,
1207 * cpumask changes that violates the cpu exclusivity rule will not be
1208 * permitted when checked by validate_change().
1209 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1210 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1211 struct cpumask *newmask,
1212 struct tmpmasks *tmp)
1213 {
1214 struct cpuset *parent = parent_cs(cpuset);
1215 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1216 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1217 int old_prs, new_prs;
1218 bool part_error = false; /* Partition error? */
1219
1220 percpu_rwsem_assert_held(&cpuset_rwsem);
1221
1222 /*
1223 * The parent must be a partition root.
1224 * The new cpumask, if present, or the current cpus_allowed must
1225 * not be empty.
1226 */
1227 if (!is_partition_root(parent) ||
1228 (newmask && cpumask_empty(newmask)) ||
1229 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1230 return -EINVAL;
1231
1232 /*
1233 * Enabling/disabling partition root is not allowed if there are
1234 * online children.
1235 */
1236 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1237 return -EBUSY;
1238
1239 /*
1240 * Enabling partition root is not allowed if not all the CPUs
1241 * can be granted from parent's effective_cpus or at least one
1242 * CPU will be left after that.
1243 */
1244 if ((cmd == partcmd_enable) &&
1245 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1246 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1247 return -EINVAL;
1248
1249 /*
1250 * A cpumask update cannot make parent's effective_cpus become empty.
1251 */
1252 adding = deleting = false;
1253 old_prs = new_prs = cpuset->partition_root_state;
1254 if (cmd == partcmd_enable) {
1255 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1256 adding = true;
1257 } else if (cmd == partcmd_disable) {
1258 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1259 parent->subparts_cpus);
1260 } else if (newmask) {
1261 /*
1262 * partcmd_update with newmask:
1263 *
1264 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1265 * addmask = newmask & parent->effective_cpus
1266 * & ~parent->subparts_cpus
1267 */
1268 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1269 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1270 parent->subparts_cpus);
1271
1272 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1273 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1274 parent->subparts_cpus);
1275 /*
1276 * Return error if the new effective_cpus could become empty.
1277 */
1278 if (adding &&
1279 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1280 if (!deleting)
1281 return -EINVAL;
1282 /*
1283 * As some of the CPUs in subparts_cpus might have
1284 * been offlined, we need to compute the real delmask
1285 * to confirm that.
1286 */
1287 if (!cpumask_and(tmp->addmask, tmp->delmask,
1288 cpu_active_mask))
1289 return -EINVAL;
1290 cpumask_copy(tmp->addmask, parent->effective_cpus);
1291 }
1292 } else {
1293 /*
1294 * partcmd_update w/o newmask:
1295 *
1296 * addmask = cpus_allowed & parent->effective_cpus
1297 *
1298 * Note that parent's subparts_cpus may have been
1299 * pre-shrunk in case there is a change in the cpu list.
1300 * So no deletion is needed.
1301 */
1302 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1303 parent->effective_cpus);
1304 part_error = cpumask_equal(tmp->addmask,
1305 parent->effective_cpus);
1306 }
1307
1308 if (cmd == partcmd_update) {
1309 int prev_prs = cpuset->partition_root_state;
1310
1311 /*
1312 * Check for possible transition between PRS_ENABLED
1313 * and PRS_ERROR.
1314 */
1315 switch (cpuset->partition_root_state) {
1316 case PRS_ENABLED:
1317 if (part_error)
1318 new_prs = PRS_ERROR;
1319 break;
1320 case PRS_ERROR:
1321 if (!part_error)
1322 new_prs = PRS_ENABLED;
1323 break;
1324 }
1325 /*
1326 * Set part_error if previously in invalid state.
1327 */
1328 part_error = (prev_prs == PRS_ERROR);
1329 }
1330
1331 if (!part_error && (new_prs == PRS_ERROR))
1332 return 0; /* Nothing need to be done */
1333
1334 if (new_prs == PRS_ERROR) {
1335 /*
1336 * Remove all its cpus from parent's subparts_cpus.
1337 */
1338 adding = false;
1339 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1340 parent->subparts_cpus);
1341 }
1342
1343 if (!adding && !deleting && (new_prs == old_prs))
1344 return 0;
1345
1346 /*
1347 * Change the parent's subparts_cpus.
1348 * Newly added CPUs will be removed from effective_cpus and
1349 * newly deleted ones will be added back to effective_cpus.
1350 */
1351 spin_lock_irq(&callback_lock);
1352 if (adding) {
1353 cpumask_or(parent->subparts_cpus,
1354 parent->subparts_cpus, tmp->addmask);
1355 cpumask_andnot(parent->effective_cpus,
1356 parent->effective_cpus, tmp->addmask);
1357 }
1358 if (deleting) {
1359 cpumask_andnot(parent->subparts_cpus,
1360 parent->subparts_cpus, tmp->delmask);
1361 /*
1362 * Some of the CPUs in subparts_cpus might have been offlined.
1363 */
1364 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1365 cpumask_or(parent->effective_cpus,
1366 parent->effective_cpus, tmp->delmask);
1367 }
1368
1369 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1370
1371 if (old_prs != new_prs)
1372 cpuset->partition_root_state = new_prs;
1373
1374 spin_unlock_irq(&callback_lock);
1375 notify_partition_change(cpuset, old_prs, new_prs);
1376
1377 return cmd == partcmd_update;
1378 }
1379
1380 /*
1381 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1382 * @cs: the cpuset to consider
1383 * @tmp: temp variables for calculating effective_cpus & partition setup
1384 *
1385 * When configured cpumask is changed, the effective cpumasks of this cpuset
1386 * and all its descendants need to be updated.
1387 *
1388 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1389 *
1390 * Called with cpuset_rwsem held
1391 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1392 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1393 {
1394 struct cpuset *cp;
1395 struct cgroup_subsys_state *pos_css;
1396 bool need_rebuild_sched_domains = false;
1397 int old_prs, new_prs;
1398
1399 rcu_read_lock();
1400 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1401 struct cpuset *parent = parent_cs(cp);
1402
1403 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1404
1405 /*
1406 * If it becomes empty, inherit the effective mask of the
1407 * parent, which is guaranteed to have some CPUs.
1408 */
1409 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1410 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1411 if (!cp->use_parent_ecpus) {
1412 cp->use_parent_ecpus = true;
1413 parent->child_ecpus_count++;
1414 }
1415 } else if (cp->use_parent_ecpus) {
1416 cp->use_parent_ecpus = false;
1417 WARN_ON_ONCE(!parent->child_ecpus_count);
1418 parent->child_ecpus_count--;
1419 }
1420
1421 /*
1422 * Skip the whole subtree if the cpumask remains the same
1423 * and has no partition root state.
1424 */
1425 if (!cp->partition_root_state &&
1426 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1427 pos_css = css_rightmost_descendant(pos_css);
1428 continue;
1429 }
1430
1431 /*
1432 * update_parent_subparts_cpumask() should have been called
1433 * for cs already in update_cpumask(). We should also call
1434 * update_tasks_cpumask() again for tasks in the parent
1435 * cpuset if the parent's subparts_cpus changes.
1436 */
1437 old_prs = new_prs = cp->partition_root_state;
1438 if ((cp != cs) && old_prs) {
1439 switch (parent->partition_root_state) {
1440 case PRS_DISABLED:
1441 /*
1442 * If parent is not a partition root or an
1443 * invalid partition root, clear its state
1444 * and its CS_CPU_EXCLUSIVE flag.
1445 */
1446 WARN_ON_ONCE(cp->partition_root_state
1447 != PRS_ERROR);
1448 new_prs = PRS_DISABLED;
1449
1450 /*
1451 * clear_bit() is an atomic operation and
1452 * readers aren't interested in the state
1453 * of CS_CPU_EXCLUSIVE anyway. So we can
1454 * just update the flag without holding
1455 * the callback_lock.
1456 */
1457 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1458 break;
1459
1460 case PRS_ENABLED:
1461 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1462 update_tasks_cpumask(parent);
1463 break;
1464
1465 case PRS_ERROR:
1466 /*
1467 * When parent is invalid, it has to be too.
1468 */
1469 new_prs = PRS_ERROR;
1470 break;
1471 }
1472 }
1473
1474 if (!css_tryget_online(&cp->css))
1475 continue;
1476 rcu_read_unlock();
1477
1478 spin_lock_irq(&callback_lock);
1479
1480 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1481 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1482 cp->nr_subparts_cpus = 0;
1483 cpumask_clear(cp->subparts_cpus);
1484 } else if (cp->nr_subparts_cpus) {
1485 /*
1486 * Make sure that effective_cpus & subparts_cpus
1487 * are mutually exclusive.
1488 *
1489 * In the unlikely event that effective_cpus
1490 * becomes empty. we clear cp->nr_subparts_cpus and
1491 * let its child partition roots to compete for
1492 * CPUs again.
1493 */
1494 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1495 cp->subparts_cpus);
1496 if (cpumask_empty(cp->effective_cpus)) {
1497 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1498 cpumask_clear(cp->subparts_cpus);
1499 cp->nr_subparts_cpus = 0;
1500 } else if (!cpumask_subset(cp->subparts_cpus,
1501 tmp->new_cpus)) {
1502 cpumask_andnot(cp->subparts_cpus,
1503 cp->subparts_cpus, tmp->new_cpus);
1504 cp->nr_subparts_cpus
1505 = cpumask_weight(cp->subparts_cpus);
1506 }
1507 }
1508
1509 if (new_prs != old_prs)
1510 cp->partition_root_state = new_prs;
1511
1512 spin_unlock_irq(&callback_lock);
1513 notify_partition_change(cp, old_prs, new_prs);
1514
1515 WARN_ON(!is_in_v2_mode() &&
1516 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1517
1518 update_tasks_cpumask(cp);
1519
1520 /*
1521 * On legacy hierarchy, if the effective cpumask of any non-
1522 * empty cpuset is changed, we need to rebuild sched domains.
1523 * On default hierarchy, the cpuset needs to be a partition
1524 * root as well.
1525 */
1526 if (!cpumask_empty(cp->cpus_allowed) &&
1527 is_sched_load_balance(cp) &&
1528 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1529 is_partition_root(cp)))
1530 need_rebuild_sched_domains = true;
1531
1532 rcu_read_lock();
1533 css_put(&cp->css);
1534 }
1535 rcu_read_unlock();
1536
1537 if (need_rebuild_sched_domains)
1538 rebuild_sched_domains_locked();
1539 }
1540
1541 /**
1542 * update_sibling_cpumasks - Update siblings cpumasks
1543 * @parent: Parent cpuset
1544 * @cs: Current cpuset
1545 * @tmp: Temp variables
1546 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1547 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1548 struct tmpmasks *tmp)
1549 {
1550 struct cpuset *sibling;
1551 struct cgroup_subsys_state *pos_css;
1552
1553 percpu_rwsem_assert_held(&cpuset_rwsem);
1554
1555 /*
1556 * Check all its siblings and call update_cpumasks_hier()
1557 * if their use_parent_ecpus flag is set in order for them
1558 * to use the right effective_cpus value.
1559 *
1560 * The update_cpumasks_hier() function may sleep. So we have to
1561 * release the RCU read lock before calling it.
1562 */
1563 rcu_read_lock();
1564 cpuset_for_each_child(sibling, pos_css, parent) {
1565 if (sibling == cs)
1566 continue;
1567 if (!sibling->use_parent_ecpus)
1568 continue;
1569 if (!css_tryget_online(&sibling->css))
1570 continue;
1571
1572 rcu_read_unlock();
1573 update_cpumasks_hier(sibling, tmp);
1574 rcu_read_lock();
1575 css_put(&sibling->css);
1576 }
1577 rcu_read_unlock();
1578 }
1579
1580 /**
1581 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1582 * @cs: the cpuset to consider
1583 * @trialcs: trial cpuset
1584 * @buf: buffer of cpu numbers written to this cpuset
1585 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1586 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1587 const char *buf)
1588 {
1589 int retval;
1590 struct tmpmasks tmp;
1591
1592 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1593 if (cs == &top_cpuset)
1594 return -EACCES;
1595
1596 /*
1597 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1598 * Since cpulist_parse() fails on an empty mask, we special case
1599 * that parsing. The validate_change() call ensures that cpusets
1600 * with tasks have cpus.
1601 */
1602 if (!*buf) {
1603 cpumask_clear(trialcs->cpus_allowed);
1604 } else {
1605 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1606 if (retval < 0)
1607 return retval;
1608
1609 if (!cpumask_subset(trialcs->cpus_allowed,
1610 top_cpuset.cpus_allowed))
1611 return -EINVAL;
1612 }
1613
1614 /* Nothing to do if the cpus didn't change */
1615 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1616 return 0;
1617
1618 retval = validate_change(cs, trialcs);
1619 if (retval < 0)
1620 return retval;
1621
1622 #ifdef CONFIG_CPUMASK_OFFSTACK
1623 /*
1624 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1625 * to allocated cpumasks.
1626 */
1627 tmp.addmask = trialcs->subparts_cpus;
1628 tmp.delmask = trialcs->effective_cpus;
1629 tmp.new_cpus = trialcs->cpus_allowed;
1630 #endif
1631
1632 if (cs->partition_root_state) {
1633 /* Cpumask of a partition root cannot be empty */
1634 if (cpumask_empty(trialcs->cpus_allowed))
1635 return -EINVAL;
1636 if (update_parent_subparts_cpumask(cs, partcmd_update,
1637 trialcs->cpus_allowed, &tmp) < 0)
1638 return -EINVAL;
1639 }
1640
1641 spin_lock_irq(&callback_lock);
1642 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1643
1644 /*
1645 * Make sure that subparts_cpus is a subset of cpus_allowed.
1646 */
1647 if (cs->nr_subparts_cpus) {
1648 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1649 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1650 }
1651 spin_unlock_irq(&callback_lock);
1652
1653 update_cpumasks_hier(cs, &tmp);
1654
1655 if (cs->partition_root_state) {
1656 struct cpuset *parent = parent_cs(cs);
1657
1658 /*
1659 * For partition root, update the cpumasks of sibling
1660 * cpusets if they use parent's effective_cpus.
1661 */
1662 if (parent->child_ecpus_count)
1663 update_sibling_cpumasks(parent, cs, &tmp);
1664 }
1665 return 0;
1666 }
1667
1668 /*
1669 * Migrate memory region from one set of nodes to another. This is
1670 * performed asynchronously as it can be called from process migration path
1671 * holding locks involved in process management. All mm migrations are
1672 * performed in the queued order and can be waited for by flushing
1673 * cpuset_migrate_mm_wq.
1674 */
1675
1676 struct cpuset_migrate_mm_work {
1677 struct work_struct work;
1678 struct mm_struct *mm;
1679 nodemask_t from;
1680 nodemask_t to;
1681 };
1682
cpuset_migrate_mm_workfn(struct work_struct * work)1683 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1684 {
1685 struct cpuset_migrate_mm_work *mwork =
1686 container_of(work, struct cpuset_migrate_mm_work, work);
1687
1688 /* on a wq worker, no need to worry about %current's mems_allowed */
1689 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1690 mmput(mwork->mm);
1691 kfree(mwork);
1692 }
1693
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1694 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1695 const nodemask_t *to)
1696 {
1697 struct cpuset_migrate_mm_work *mwork;
1698
1699 if (nodes_equal(*from, *to)) {
1700 mmput(mm);
1701 return;
1702 }
1703
1704 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1705 if (mwork) {
1706 mwork->mm = mm;
1707 mwork->from = *from;
1708 mwork->to = *to;
1709 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1710 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1711 } else {
1712 mmput(mm);
1713 }
1714 }
1715
cpuset_post_attach(void)1716 static void cpuset_post_attach(void)
1717 {
1718 flush_workqueue(cpuset_migrate_mm_wq);
1719 }
1720
1721 /*
1722 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1723 * @tsk: the task to change
1724 * @newmems: new nodes that the task will be set
1725 *
1726 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1727 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1728 * parallel, it might temporarily see an empty intersection, which results in
1729 * a seqlock check and retry before OOM or allocation failure.
1730 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1731 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1732 nodemask_t *newmems)
1733 {
1734 task_lock(tsk);
1735
1736 local_irq_disable();
1737 write_seqcount_begin(&tsk->mems_allowed_seq);
1738
1739 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1740 mpol_rebind_task(tsk, newmems);
1741 tsk->mems_allowed = *newmems;
1742
1743 write_seqcount_end(&tsk->mems_allowed_seq);
1744 local_irq_enable();
1745
1746 task_unlock(tsk);
1747 }
1748
1749 static void *cpuset_being_rebound;
1750
1751 /**
1752 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1753 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1754 *
1755 * Iterate through each task of @cs updating its mems_allowed to the
1756 * effective cpuset's. As this function is called with cpuset_rwsem held,
1757 * cpuset membership stays stable.
1758 */
update_tasks_nodemask(struct cpuset * cs)1759 static void update_tasks_nodemask(struct cpuset *cs)
1760 {
1761 static nodemask_t newmems; /* protected by cpuset_rwsem */
1762 struct css_task_iter it;
1763 struct task_struct *task;
1764
1765 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1766
1767 guarantee_online_mems(cs, &newmems);
1768
1769 /*
1770 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1771 * take while holding tasklist_lock. Forks can happen - the
1772 * mpol_dup() cpuset_being_rebound check will catch such forks,
1773 * and rebind their vma mempolicies too. Because we still hold
1774 * the global cpuset_rwsem, we know that no other rebind effort
1775 * will be contending for the global variable cpuset_being_rebound.
1776 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1777 * is idempotent. Also migrate pages in each mm to new nodes.
1778 */
1779 css_task_iter_start(&cs->css, 0, &it);
1780 while ((task = css_task_iter_next(&it))) {
1781 struct mm_struct *mm;
1782 bool migrate;
1783
1784 cpuset_change_task_nodemask(task, &newmems);
1785
1786 mm = get_task_mm(task);
1787 if (!mm)
1788 continue;
1789
1790 migrate = is_memory_migrate(cs);
1791
1792 mpol_rebind_mm(mm, &cs->mems_allowed);
1793 if (migrate)
1794 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1795 else
1796 mmput(mm);
1797 }
1798 css_task_iter_end(&it);
1799
1800 /*
1801 * All the tasks' nodemasks have been updated, update
1802 * cs->old_mems_allowed.
1803 */
1804 cs->old_mems_allowed = newmems;
1805
1806 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1807 cpuset_being_rebound = NULL;
1808 }
1809
1810 /*
1811 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1812 * @cs: the cpuset to consider
1813 * @new_mems: a temp variable for calculating new effective_mems
1814 *
1815 * When configured nodemask is changed, the effective nodemasks of this cpuset
1816 * and all its descendants need to be updated.
1817 *
1818 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1819 *
1820 * Called with cpuset_rwsem held
1821 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1822 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1823 {
1824 struct cpuset *cp;
1825 struct cgroup_subsys_state *pos_css;
1826
1827 rcu_read_lock();
1828 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1829 struct cpuset *parent = parent_cs(cp);
1830
1831 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1832
1833 /*
1834 * If it becomes empty, inherit the effective mask of the
1835 * parent, which is guaranteed to have some MEMs.
1836 */
1837 if (is_in_v2_mode() && nodes_empty(*new_mems))
1838 *new_mems = parent->effective_mems;
1839
1840 /* Skip the whole subtree if the nodemask remains the same. */
1841 if (nodes_equal(*new_mems, cp->effective_mems)) {
1842 pos_css = css_rightmost_descendant(pos_css);
1843 continue;
1844 }
1845
1846 if (!css_tryget_online(&cp->css))
1847 continue;
1848 rcu_read_unlock();
1849
1850 spin_lock_irq(&callback_lock);
1851 cp->effective_mems = *new_mems;
1852 spin_unlock_irq(&callback_lock);
1853
1854 WARN_ON(!is_in_v2_mode() &&
1855 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1856
1857 update_tasks_nodemask(cp);
1858
1859 rcu_read_lock();
1860 css_put(&cp->css);
1861 }
1862 rcu_read_unlock();
1863 }
1864
1865 /*
1866 * Handle user request to change the 'mems' memory placement
1867 * of a cpuset. Needs to validate the request, update the
1868 * cpusets mems_allowed, and for each task in the cpuset,
1869 * update mems_allowed and rebind task's mempolicy and any vma
1870 * mempolicies and if the cpuset is marked 'memory_migrate',
1871 * migrate the tasks pages to the new memory.
1872 *
1873 * Call with cpuset_rwsem held. May take callback_lock during call.
1874 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1875 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1876 * their mempolicies to the cpusets new mems_allowed.
1877 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1878 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1879 const char *buf)
1880 {
1881 int retval;
1882
1883 /*
1884 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1885 * it's read-only
1886 */
1887 if (cs == &top_cpuset) {
1888 retval = -EACCES;
1889 goto done;
1890 }
1891
1892 /*
1893 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1894 * Since nodelist_parse() fails on an empty mask, we special case
1895 * that parsing. The validate_change() call ensures that cpusets
1896 * with tasks have memory.
1897 */
1898 if (!*buf) {
1899 nodes_clear(trialcs->mems_allowed);
1900 } else {
1901 retval = nodelist_parse(buf, trialcs->mems_allowed);
1902 if (retval < 0)
1903 goto done;
1904
1905 if (!nodes_subset(trialcs->mems_allowed,
1906 top_cpuset.mems_allowed)) {
1907 retval = -EINVAL;
1908 goto done;
1909 }
1910 }
1911
1912 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1913 retval = 0; /* Too easy - nothing to do */
1914 goto done;
1915 }
1916 retval = validate_change(cs, trialcs);
1917 if (retval < 0)
1918 goto done;
1919
1920 check_insane_mems_config(&trialcs->mems_allowed);
1921
1922 spin_lock_irq(&callback_lock);
1923 cs->mems_allowed = trialcs->mems_allowed;
1924 spin_unlock_irq(&callback_lock);
1925
1926 /* use trialcs->mems_allowed as a temp variable */
1927 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1928 done:
1929 return retval;
1930 }
1931
current_cpuset_is_being_rebound(void)1932 bool current_cpuset_is_being_rebound(void)
1933 {
1934 bool ret;
1935
1936 rcu_read_lock();
1937 ret = task_cs(current) == cpuset_being_rebound;
1938 rcu_read_unlock();
1939
1940 return ret;
1941 }
1942
update_relax_domain_level(struct cpuset * cs,s64 val)1943 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1944 {
1945 #ifdef CONFIG_SMP
1946 if (val < -1 || val >= sched_domain_level_max)
1947 return -EINVAL;
1948 #endif
1949
1950 if (val != cs->relax_domain_level) {
1951 cs->relax_domain_level = val;
1952 if (!cpumask_empty(cs->cpus_allowed) &&
1953 is_sched_load_balance(cs))
1954 rebuild_sched_domains_locked();
1955 }
1956
1957 return 0;
1958 }
1959
1960 /**
1961 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1962 * @cs: the cpuset in which each task's spread flags needs to be changed
1963 *
1964 * Iterate through each task of @cs updating its spread flags. As this
1965 * function is called with cpuset_rwsem held, cpuset membership stays
1966 * stable.
1967 */
update_tasks_flags(struct cpuset * cs)1968 static void update_tasks_flags(struct cpuset *cs)
1969 {
1970 struct css_task_iter it;
1971 struct task_struct *task;
1972
1973 css_task_iter_start(&cs->css, 0, &it);
1974 while ((task = css_task_iter_next(&it)))
1975 cpuset_update_task_spread_flag(cs, task);
1976 css_task_iter_end(&it);
1977 }
1978
1979 /*
1980 * update_flag - read a 0 or a 1 in a file and update associated flag
1981 * bit: the bit to update (see cpuset_flagbits_t)
1982 * cs: the cpuset to update
1983 * turning_on: whether the flag is being set or cleared
1984 *
1985 * Call with cpuset_rwsem held.
1986 */
1987
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1988 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1989 int turning_on)
1990 {
1991 struct cpuset *trialcs;
1992 int balance_flag_changed;
1993 int spread_flag_changed;
1994 int err;
1995
1996 trialcs = alloc_trial_cpuset(cs);
1997 if (!trialcs)
1998 return -ENOMEM;
1999
2000 if (turning_on)
2001 set_bit(bit, &trialcs->flags);
2002 else
2003 clear_bit(bit, &trialcs->flags);
2004
2005 err = validate_change(cs, trialcs);
2006 if (err < 0)
2007 goto out;
2008
2009 balance_flag_changed = (is_sched_load_balance(cs) !=
2010 is_sched_load_balance(trialcs));
2011
2012 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2013 || (is_spread_page(cs) != is_spread_page(trialcs)));
2014
2015 spin_lock_irq(&callback_lock);
2016 cs->flags = trialcs->flags;
2017 spin_unlock_irq(&callback_lock);
2018
2019 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2020 rebuild_sched_domains_locked();
2021
2022 if (spread_flag_changed)
2023 update_tasks_flags(cs);
2024 out:
2025 free_cpuset(trialcs);
2026 return err;
2027 }
2028
2029 /*
2030 * update_prstate - update partition_root_state
2031 * cs: the cpuset to update
2032 * new_prs: new partition root state
2033 *
2034 * Call with cpuset_rwsem held.
2035 */
update_prstate(struct cpuset * cs,int new_prs)2036 static int update_prstate(struct cpuset *cs, int new_prs)
2037 {
2038 int err, old_prs = cs->partition_root_state;
2039 struct cpuset *parent = parent_cs(cs);
2040 struct tmpmasks tmpmask;
2041
2042 if (old_prs == new_prs)
2043 return 0;
2044
2045 /*
2046 * Cannot force a partial or invalid partition root to a full
2047 * partition root.
2048 */
2049 if (new_prs && (old_prs == PRS_ERROR))
2050 return -EINVAL;
2051
2052 if (alloc_cpumasks(NULL, &tmpmask))
2053 return -ENOMEM;
2054
2055 err = -EINVAL;
2056 if (!old_prs) {
2057 /*
2058 * Turning on partition root requires setting the
2059 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2060 * cannot be NULL.
2061 */
2062 if (cpumask_empty(cs->cpus_allowed))
2063 goto out;
2064
2065 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2066 if (err)
2067 goto out;
2068
2069 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2070 NULL, &tmpmask);
2071 if (err) {
2072 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2073 goto out;
2074 }
2075 } else {
2076 /*
2077 * Turning off partition root will clear the
2078 * CS_CPU_EXCLUSIVE bit.
2079 */
2080 if (old_prs == PRS_ERROR) {
2081 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2082 err = 0;
2083 goto out;
2084 }
2085
2086 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2087 NULL, &tmpmask);
2088 if (err)
2089 goto out;
2090
2091 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2092 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2093 }
2094
2095 /*
2096 * Update cpumask of parent's tasks except when it is the top
2097 * cpuset as some system daemons cannot be mapped to other CPUs.
2098 */
2099 if (parent != &top_cpuset)
2100 update_tasks_cpumask(parent);
2101
2102 if (parent->child_ecpus_count)
2103 update_sibling_cpumasks(parent, cs, &tmpmask);
2104
2105 rebuild_sched_domains_locked();
2106 out:
2107 if (!err) {
2108 spin_lock_irq(&callback_lock);
2109 cs->partition_root_state = new_prs;
2110 spin_unlock_irq(&callback_lock);
2111 notify_partition_change(cs, old_prs, new_prs);
2112 }
2113
2114 free_cpumasks(NULL, &tmpmask);
2115 return err;
2116 }
2117
2118 /*
2119 * Frequency meter - How fast is some event occurring?
2120 *
2121 * These routines manage a digitally filtered, constant time based,
2122 * event frequency meter. There are four routines:
2123 * fmeter_init() - initialize a frequency meter.
2124 * fmeter_markevent() - called each time the event happens.
2125 * fmeter_getrate() - returns the recent rate of such events.
2126 * fmeter_update() - internal routine used to update fmeter.
2127 *
2128 * A common data structure is passed to each of these routines,
2129 * which is used to keep track of the state required to manage the
2130 * frequency meter and its digital filter.
2131 *
2132 * The filter works on the number of events marked per unit time.
2133 * The filter is single-pole low-pass recursive (IIR). The time unit
2134 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2135 * simulate 3 decimal digits of precision (multiplied by 1000).
2136 *
2137 * With an FM_COEF of 933, and a time base of 1 second, the filter
2138 * has a half-life of 10 seconds, meaning that if the events quit
2139 * happening, then the rate returned from the fmeter_getrate()
2140 * will be cut in half each 10 seconds, until it converges to zero.
2141 *
2142 * It is not worth doing a real infinitely recursive filter. If more
2143 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2144 * just compute FM_MAXTICKS ticks worth, by which point the level
2145 * will be stable.
2146 *
2147 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2148 * arithmetic overflow in the fmeter_update() routine.
2149 *
2150 * Given the simple 32 bit integer arithmetic used, this meter works
2151 * best for reporting rates between one per millisecond (msec) and
2152 * one per 32 (approx) seconds. At constant rates faster than one
2153 * per msec it maxes out at values just under 1,000,000. At constant
2154 * rates between one per msec, and one per second it will stabilize
2155 * to a value N*1000, where N is the rate of events per second.
2156 * At constant rates between one per second and one per 32 seconds,
2157 * it will be choppy, moving up on the seconds that have an event,
2158 * and then decaying until the next event. At rates slower than
2159 * about one in 32 seconds, it decays all the way back to zero between
2160 * each event.
2161 */
2162
2163 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2164 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2165 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2166 #define FM_SCALE 1000 /* faux fixed point scale */
2167
2168 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2169 static void fmeter_init(struct fmeter *fmp)
2170 {
2171 fmp->cnt = 0;
2172 fmp->val = 0;
2173 fmp->time = 0;
2174 spin_lock_init(&fmp->lock);
2175 }
2176
2177 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2178 static void fmeter_update(struct fmeter *fmp)
2179 {
2180 time64_t now;
2181 u32 ticks;
2182
2183 now = ktime_get_seconds();
2184 ticks = now - fmp->time;
2185
2186 if (ticks == 0)
2187 return;
2188
2189 ticks = min(FM_MAXTICKS, ticks);
2190 while (ticks-- > 0)
2191 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2192 fmp->time = now;
2193
2194 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2195 fmp->cnt = 0;
2196 }
2197
2198 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2199 static void fmeter_markevent(struct fmeter *fmp)
2200 {
2201 spin_lock(&fmp->lock);
2202 fmeter_update(fmp);
2203 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2204 spin_unlock(&fmp->lock);
2205 }
2206
2207 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2208 static int fmeter_getrate(struct fmeter *fmp)
2209 {
2210 int val;
2211
2212 spin_lock(&fmp->lock);
2213 fmeter_update(fmp);
2214 val = fmp->val;
2215 spin_unlock(&fmp->lock);
2216 return val;
2217 }
2218
2219 static struct cpuset *cpuset_attach_old_cs;
2220
2221 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
cpuset_can_attach(struct cgroup_taskset * tset)2222 static int cpuset_can_attach(struct cgroup_taskset *tset)
2223 {
2224 struct cgroup_subsys_state *css;
2225 struct cpuset *cs;
2226 struct task_struct *task;
2227 int ret;
2228
2229 /* used later by cpuset_attach() */
2230 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2231 cs = css_cs(css);
2232
2233 percpu_down_write(&cpuset_rwsem);
2234
2235 /* allow moving tasks into an empty cpuset if on default hierarchy */
2236 ret = -ENOSPC;
2237 if (!is_in_v2_mode() &&
2238 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2239 goto out_unlock;
2240
2241 cgroup_taskset_for_each(task, css, tset) {
2242 ret = task_can_attach(task, cs->effective_cpus);
2243 if (ret)
2244 goto out_unlock;
2245 ret = security_task_setscheduler(task);
2246 if (ret)
2247 goto out_unlock;
2248 }
2249
2250 /*
2251 * Mark attach is in progress. This makes validate_change() fail
2252 * changes which zero cpus/mems_allowed.
2253 */
2254 cs->attach_in_progress++;
2255 ret = 0;
2256 out_unlock:
2257 percpu_up_write(&cpuset_rwsem);
2258 return ret;
2259 }
2260
cpuset_cancel_attach(struct cgroup_taskset * tset)2261 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2262 {
2263 struct cgroup_subsys_state *css;
2264
2265 cgroup_taskset_first(tset, &css);
2266
2267 percpu_down_write(&cpuset_rwsem);
2268 css_cs(css)->attach_in_progress--;
2269 percpu_up_write(&cpuset_rwsem);
2270 }
2271
2272 /*
2273 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach()
2274 * but we can't allocate it dynamically there. Define it global and
2275 * allocate from cpuset_init().
2276 */
2277 static cpumask_var_t cpus_attach;
2278
cpuset_attach(struct cgroup_taskset * tset)2279 static void cpuset_attach(struct cgroup_taskset *tset)
2280 {
2281 /* static buf protected by cpuset_rwsem */
2282 static nodemask_t cpuset_attach_nodemask_to;
2283 struct task_struct *task;
2284 struct task_struct *leader;
2285 struct cgroup_subsys_state *css;
2286 struct cpuset *cs;
2287 struct cpuset *oldcs = cpuset_attach_old_cs;
2288
2289 cgroup_taskset_first(tset, &css);
2290 cs = css_cs(css);
2291
2292 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2293 percpu_down_write(&cpuset_rwsem);
2294
2295 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2296
2297 cgroup_taskset_for_each(task, css, tset) {
2298 if (cs != &top_cpuset)
2299 guarantee_online_cpus(task, cpus_attach);
2300 else
2301 cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2302 /*
2303 * can_attach beforehand should guarantee that this doesn't
2304 * fail. TODO: have a better way to handle failure here
2305 */
2306 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2307
2308 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2309 cpuset_update_task_spread_flag(cs, task);
2310 }
2311
2312 /*
2313 * Change mm for all threadgroup leaders. This is expensive and may
2314 * sleep and should be moved outside migration path proper.
2315 */
2316 cpuset_attach_nodemask_to = cs->effective_mems;
2317 cgroup_taskset_for_each_leader(leader, css, tset) {
2318 struct mm_struct *mm = get_task_mm(leader);
2319
2320 if (mm) {
2321 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2322
2323 /*
2324 * old_mems_allowed is the same with mems_allowed
2325 * here, except if this task is being moved
2326 * automatically due to hotplug. In that case
2327 * @mems_allowed has been updated and is empty, so
2328 * @old_mems_allowed is the right nodesets that we
2329 * migrate mm from.
2330 */
2331 if (is_memory_migrate(cs))
2332 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2333 &cpuset_attach_nodemask_to);
2334 else
2335 mmput(mm);
2336 }
2337 }
2338
2339 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2340
2341 cs->attach_in_progress--;
2342 if (!cs->attach_in_progress)
2343 wake_up(&cpuset_attach_wq);
2344
2345 percpu_up_write(&cpuset_rwsem);
2346 }
2347
2348 /* The various types of files and directories in a cpuset file system */
2349
2350 typedef enum {
2351 FILE_MEMORY_MIGRATE,
2352 FILE_CPULIST,
2353 FILE_MEMLIST,
2354 FILE_EFFECTIVE_CPULIST,
2355 FILE_EFFECTIVE_MEMLIST,
2356 FILE_SUBPARTS_CPULIST,
2357 FILE_CPU_EXCLUSIVE,
2358 FILE_MEM_EXCLUSIVE,
2359 FILE_MEM_HARDWALL,
2360 FILE_SCHED_LOAD_BALANCE,
2361 FILE_PARTITION_ROOT,
2362 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2363 FILE_MEMORY_PRESSURE_ENABLED,
2364 FILE_MEMORY_PRESSURE,
2365 FILE_SPREAD_PAGE,
2366 FILE_SPREAD_SLAB,
2367 } cpuset_filetype_t;
2368
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2369 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2370 u64 val)
2371 {
2372 struct cpuset *cs = css_cs(css);
2373 cpuset_filetype_t type = cft->private;
2374 int retval = 0;
2375
2376 cpus_read_lock();
2377 percpu_down_write(&cpuset_rwsem);
2378 if (!is_cpuset_online(cs)) {
2379 retval = -ENODEV;
2380 goto out_unlock;
2381 }
2382
2383 switch (type) {
2384 case FILE_CPU_EXCLUSIVE:
2385 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2386 break;
2387 case FILE_MEM_EXCLUSIVE:
2388 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2389 break;
2390 case FILE_MEM_HARDWALL:
2391 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2392 break;
2393 case FILE_SCHED_LOAD_BALANCE:
2394 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2395 break;
2396 case FILE_MEMORY_MIGRATE:
2397 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2398 break;
2399 case FILE_MEMORY_PRESSURE_ENABLED:
2400 cpuset_memory_pressure_enabled = !!val;
2401 break;
2402 case FILE_SPREAD_PAGE:
2403 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2404 break;
2405 case FILE_SPREAD_SLAB:
2406 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2407 break;
2408 default:
2409 retval = -EINVAL;
2410 break;
2411 }
2412 out_unlock:
2413 percpu_up_write(&cpuset_rwsem);
2414 cpus_read_unlock();
2415 return retval;
2416 }
2417
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2418 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2419 s64 val)
2420 {
2421 struct cpuset *cs = css_cs(css);
2422 cpuset_filetype_t type = cft->private;
2423 int retval = -ENODEV;
2424
2425 cpus_read_lock();
2426 percpu_down_write(&cpuset_rwsem);
2427 if (!is_cpuset_online(cs))
2428 goto out_unlock;
2429
2430 switch (type) {
2431 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2432 retval = update_relax_domain_level(cs, val);
2433 break;
2434 default:
2435 retval = -EINVAL;
2436 break;
2437 }
2438 out_unlock:
2439 percpu_up_write(&cpuset_rwsem);
2440 cpus_read_unlock();
2441 return retval;
2442 }
2443
2444 /*
2445 * Common handling for a write to a "cpus" or "mems" file.
2446 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2447 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2448 char *buf, size_t nbytes, loff_t off)
2449 {
2450 struct cpuset *cs = css_cs(of_css(of));
2451 struct cpuset *trialcs;
2452 int retval = -ENODEV;
2453
2454 buf = strstrip(buf);
2455
2456 /*
2457 * CPU or memory hotunplug may leave @cs w/o any execution
2458 * resources, in which case the hotplug code asynchronously updates
2459 * configuration and transfers all tasks to the nearest ancestor
2460 * which can execute.
2461 *
2462 * As writes to "cpus" or "mems" may restore @cs's execution
2463 * resources, wait for the previously scheduled operations before
2464 * proceeding, so that we don't end up keep removing tasks added
2465 * after execution capability is restored.
2466 *
2467 * cpuset_hotplug_work calls back into cgroup core via
2468 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2469 * operation like this one can lead to a deadlock through kernfs
2470 * active_ref protection. Let's break the protection. Losing the
2471 * protection is okay as we check whether @cs is online after
2472 * grabbing cpuset_rwsem anyway. This only happens on the legacy
2473 * hierarchies.
2474 */
2475 css_get(&cs->css);
2476 kernfs_break_active_protection(of->kn);
2477 flush_work(&cpuset_hotplug_work);
2478
2479 cpus_read_lock();
2480 percpu_down_write(&cpuset_rwsem);
2481 if (!is_cpuset_online(cs))
2482 goto out_unlock;
2483
2484 trialcs = alloc_trial_cpuset(cs);
2485 if (!trialcs) {
2486 retval = -ENOMEM;
2487 goto out_unlock;
2488 }
2489
2490 switch (of_cft(of)->private) {
2491 case FILE_CPULIST:
2492 retval = update_cpumask(cs, trialcs, buf);
2493 break;
2494 case FILE_MEMLIST:
2495 retval = update_nodemask(cs, trialcs, buf);
2496 break;
2497 default:
2498 retval = -EINVAL;
2499 break;
2500 }
2501
2502 free_cpuset(trialcs);
2503 out_unlock:
2504 percpu_up_write(&cpuset_rwsem);
2505 cpus_read_unlock();
2506 kernfs_unbreak_active_protection(of->kn);
2507 css_put(&cs->css);
2508 flush_workqueue(cpuset_migrate_mm_wq);
2509 return retval ?: nbytes;
2510 }
2511
2512 /*
2513 * These ascii lists should be read in a single call, by using a user
2514 * buffer large enough to hold the entire map. If read in smaller
2515 * chunks, there is no guarantee of atomicity. Since the display format
2516 * used, list of ranges of sequential numbers, is variable length,
2517 * and since these maps can change value dynamically, one could read
2518 * gibberish by doing partial reads while a list was changing.
2519 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2520 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2521 {
2522 struct cpuset *cs = css_cs(seq_css(sf));
2523 cpuset_filetype_t type = seq_cft(sf)->private;
2524 int ret = 0;
2525
2526 spin_lock_irq(&callback_lock);
2527
2528 switch (type) {
2529 case FILE_CPULIST:
2530 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2531 break;
2532 case FILE_MEMLIST:
2533 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2534 break;
2535 case FILE_EFFECTIVE_CPULIST:
2536 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2537 break;
2538 case FILE_EFFECTIVE_MEMLIST:
2539 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2540 break;
2541 case FILE_SUBPARTS_CPULIST:
2542 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2543 break;
2544 default:
2545 ret = -EINVAL;
2546 }
2547
2548 spin_unlock_irq(&callback_lock);
2549 return ret;
2550 }
2551
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2552 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2553 {
2554 struct cpuset *cs = css_cs(css);
2555 cpuset_filetype_t type = cft->private;
2556 switch (type) {
2557 case FILE_CPU_EXCLUSIVE:
2558 return is_cpu_exclusive(cs);
2559 case FILE_MEM_EXCLUSIVE:
2560 return is_mem_exclusive(cs);
2561 case FILE_MEM_HARDWALL:
2562 return is_mem_hardwall(cs);
2563 case FILE_SCHED_LOAD_BALANCE:
2564 return is_sched_load_balance(cs);
2565 case FILE_MEMORY_MIGRATE:
2566 return is_memory_migrate(cs);
2567 case FILE_MEMORY_PRESSURE_ENABLED:
2568 return cpuset_memory_pressure_enabled;
2569 case FILE_MEMORY_PRESSURE:
2570 return fmeter_getrate(&cs->fmeter);
2571 case FILE_SPREAD_PAGE:
2572 return is_spread_page(cs);
2573 case FILE_SPREAD_SLAB:
2574 return is_spread_slab(cs);
2575 default:
2576 BUG();
2577 }
2578
2579 /* Unreachable but makes gcc happy */
2580 return 0;
2581 }
2582
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2583 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2584 {
2585 struct cpuset *cs = css_cs(css);
2586 cpuset_filetype_t type = cft->private;
2587 switch (type) {
2588 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2589 return cs->relax_domain_level;
2590 default:
2591 BUG();
2592 }
2593
2594 /* Unreachable but makes gcc happy */
2595 return 0;
2596 }
2597
sched_partition_show(struct seq_file * seq,void * v)2598 static int sched_partition_show(struct seq_file *seq, void *v)
2599 {
2600 struct cpuset *cs = css_cs(seq_css(seq));
2601
2602 switch (cs->partition_root_state) {
2603 case PRS_ENABLED:
2604 seq_puts(seq, "root\n");
2605 break;
2606 case PRS_DISABLED:
2607 seq_puts(seq, "member\n");
2608 break;
2609 case PRS_ERROR:
2610 seq_puts(seq, "root invalid\n");
2611 break;
2612 }
2613 return 0;
2614 }
2615
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2616 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2617 size_t nbytes, loff_t off)
2618 {
2619 struct cpuset *cs = css_cs(of_css(of));
2620 int val;
2621 int retval = -ENODEV;
2622
2623 buf = strstrip(buf);
2624
2625 /*
2626 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2627 */
2628 if (!strcmp(buf, "root"))
2629 val = PRS_ENABLED;
2630 else if (!strcmp(buf, "member"))
2631 val = PRS_DISABLED;
2632 else
2633 return -EINVAL;
2634
2635 css_get(&cs->css);
2636 cpus_read_lock();
2637 percpu_down_write(&cpuset_rwsem);
2638 if (!is_cpuset_online(cs))
2639 goto out_unlock;
2640
2641 retval = update_prstate(cs, val);
2642 out_unlock:
2643 percpu_up_write(&cpuset_rwsem);
2644 cpus_read_unlock();
2645 css_put(&cs->css);
2646 return retval ?: nbytes;
2647 }
2648
2649 /*
2650 * for the common functions, 'private' gives the type of file
2651 */
2652
2653 static struct cftype legacy_files[] = {
2654 {
2655 .name = "cpus",
2656 .seq_show = cpuset_common_seq_show,
2657 .write = cpuset_write_resmask,
2658 .max_write_len = (100U + 6 * NR_CPUS),
2659 .private = FILE_CPULIST,
2660 },
2661
2662 {
2663 .name = "mems",
2664 .seq_show = cpuset_common_seq_show,
2665 .write = cpuset_write_resmask,
2666 .max_write_len = (100U + 6 * MAX_NUMNODES),
2667 .private = FILE_MEMLIST,
2668 },
2669
2670 {
2671 .name = "effective_cpus",
2672 .seq_show = cpuset_common_seq_show,
2673 .private = FILE_EFFECTIVE_CPULIST,
2674 },
2675
2676 {
2677 .name = "effective_mems",
2678 .seq_show = cpuset_common_seq_show,
2679 .private = FILE_EFFECTIVE_MEMLIST,
2680 },
2681
2682 {
2683 .name = "cpu_exclusive",
2684 .read_u64 = cpuset_read_u64,
2685 .write_u64 = cpuset_write_u64,
2686 .private = FILE_CPU_EXCLUSIVE,
2687 },
2688
2689 {
2690 .name = "mem_exclusive",
2691 .read_u64 = cpuset_read_u64,
2692 .write_u64 = cpuset_write_u64,
2693 .private = FILE_MEM_EXCLUSIVE,
2694 },
2695
2696 {
2697 .name = "mem_hardwall",
2698 .read_u64 = cpuset_read_u64,
2699 .write_u64 = cpuset_write_u64,
2700 .private = FILE_MEM_HARDWALL,
2701 },
2702
2703 {
2704 .name = "sched_load_balance",
2705 .read_u64 = cpuset_read_u64,
2706 .write_u64 = cpuset_write_u64,
2707 .private = FILE_SCHED_LOAD_BALANCE,
2708 },
2709
2710 {
2711 .name = "sched_relax_domain_level",
2712 .read_s64 = cpuset_read_s64,
2713 .write_s64 = cpuset_write_s64,
2714 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2715 },
2716
2717 {
2718 .name = "memory_migrate",
2719 .read_u64 = cpuset_read_u64,
2720 .write_u64 = cpuset_write_u64,
2721 .private = FILE_MEMORY_MIGRATE,
2722 },
2723
2724 {
2725 .name = "memory_pressure",
2726 .read_u64 = cpuset_read_u64,
2727 .private = FILE_MEMORY_PRESSURE,
2728 },
2729
2730 {
2731 .name = "memory_spread_page",
2732 .read_u64 = cpuset_read_u64,
2733 .write_u64 = cpuset_write_u64,
2734 .private = FILE_SPREAD_PAGE,
2735 },
2736
2737 {
2738 .name = "memory_spread_slab",
2739 .read_u64 = cpuset_read_u64,
2740 .write_u64 = cpuset_write_u64,
2741 .private = FILE_SPREAD_SLAB,
2742 },
2743
2744 {
2745 .name = "memory_pressure_enabled",
2746 .flags = CFTYPE_ONLY_ON_ROOT,
2747 .read_u64 = cpuset_read_u64,
2748 .write_u64 = cpuset_write_u64,
2749 .private = FILE_MEMORY_PRESSURE_ENABLED,
2750 },
2751
2752 { } /* terminate */
2753 };
2754
2755 /*
2756 * This is currently a minimal set for the default hierarchy. It can be
2757 * expanded later on by migrating more features and control files from v1.
2758 */
2759 static struct cftype dfl_files[] = {
2760 {
2761 .name = "cpus",
2762 .seq_show = cpuset_common_seq_show,
2763 .write = cpuset_write_resmask,
2764 .max_write_len = (100U + 6 * NR_CPUS),
2765 .private = FILE_CPULIST,
2766 .flags = CFTYPE_NOT_ON_ROOT,
2767 },
2768
2769 {
2770 .name = "mems",
2771 .seq_show = cpuset_common_seq_show,
2772 .write = cpuset_write_resmask,
2773 .max_write_len = (100U + 6 * MAX_NUMNODES),
2774 .private = FILE_MEMLIST,
2775 .flags = CFTYPE_NOT_ON_ROOT,
2776 },
2777
2778 {
2779 .name = "cpus.effective",
2780 .seq_show = cpuset_common_seq_show,
2781 .private = FILE_EFFECTIVE_CPULIST,
2782 },
2783
2784 {
2785 .name = "mems.effective",
2786 .seq_show = cpuset_common_seq_show,
2787 .private = FILE_EFFECTIVE_MEMLIST,
2788 },
2789
2790 {
2791 .name = "cpus.partition",
2792 .seq_show = sched_partition_show,
2793 .write = sched_partition_write,
2794 .private = FILE_PARTITION_ROOT,
2795 .flags = CFTYPE_NOT_ON_ROOT,
2796 .file_offset = offsetof(struct cpuset, partition_file),
2797 },
2798
2799 {
2800 .name = "cpus.subpartitions",
2801 .seq_show = cpuset_common_seq_show,
2802 .private = FILE_SUBPARTS_CPULIST,
2803 .flags = CFTYPE_DEBUG,
2804 },
2805
2806 { } /* terminate */
2807 };
2808
2809
2810 /*
2811 * cpuset_css_alloc - allocate a cpuset css
2812 * cgrp: control group that the new cpuset will be part of
2813 */
2814
2815 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2816 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2817 {
2818 struct cpuset *cs;
2819
2820 if (!parent_css)
2821 return &top_cpuset.css;
2822
2823 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2824 if (!cs)
2825 return ERR_PTR(-ENOMEM);
2826
2827 if (alloc_cpumasks(cs, NULL)) {
2828 kfree(cs);
2829 return ERR_PTR(-ENOMEM);
2830 }
2831
2832 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2833 nodes_clear(cs->mems_allowed);
2834 nodes_clear(cs->effective_mems);
2835 fmeter_init(&cs->fmeter);
2836 cs->relax_domain_level = -1;
2837
2838 /* Set CS_MEMORY_MIGRATE for default hierarchy */
2839 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2840 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2841
2842 return &cs->css;
2843 }
2844
cpuset_css_online(struct cgroup_subsys_state * css)2845 static int cpuset_css_online(struct cgroup_subsys_state *css)
2846 {
2847 struct cpuset *cs = css_cs(css);
2848 struct cpuset *parent = parent_cs(cs);
2849 struct cpuset *tmp_cs;
2850 struct cgroup_subsys_state *pos_css;
2851
2852 if (!parent)
2853 return 0;
2854
2855 cpus_read_lock();
2856 percpu_down_write(&cpuset_rwsem);
2857
2858 set_bit(CS_ONLINE, &cs->flags);
2859 if (is_spread_page(parent))
2860 set_bit(CS_SPREAD_PAGE, &cs->flags);
2861 if (is_spread_slab(parent))
2862 set_bit(CS_SPREAD_SLAB, &cs->flags);
2863
2864 cpuset_inc();
2865
2866 spin_lock_irq(&callback_lock);
2867 if (is_in_v2_mode()) {
2868 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2869 cs->effective_mems = parent->effective_mems;
2870 cs->use_parent_ecpus = true;
2871 parent->child_ecpus_count++;
2872 }
2873 spin_unlock_irq(&callback_lock);
2874
2875 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2876 goto out_unlock;
2877
2878 /*
2879 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2880 * set. This flag handling is implemented in cgroup core for
2881 * historical reasons - the flag may be specified during mount.
2882 *
2883 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2884 * refuse to clone the configuration - thereby refusing the task to
2885 * be entered, and as a result refusing the sys_unshare() or
2886 * clone() which initiated it. If this becomes a problem for some
2887 * users who wish to allow that scenario, then this could be
2888 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2889 * (and likewise for mems) to the new cgroup.
2890 */
2891 rcu_read_lock();
2892 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2893 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2894 rcu_read_unlock();
2895 goto out_unlock;
2896 }
2897 }
2898 rcu_read_unlock();
2899
2900 spin_lock_irq(&callback_lock);
2901 cs->mems_allowed = parent->mems_allowed;
2902 cs->effective_mems = parent->mems_allowed;
2903 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2904 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2905 spin_unlock_irq(&callback_lock);
2906 out_unlock:
2907 percpu_up_write(&cpuset_rwsem);
2908 cpus_read_unlock();
2909 return 0;
2910 }
2911
2912 /*
2913 * If the cpuset being removed has its flag 'sched_load_balance'
2914 * enabled, then simulate turning sched_load_balance off, which
2915 * will call rebuild_sched_domains_locked(). That is not needed
2916 * in the default hierarchy where only changes in partition
2917 * will cause repartitioning.
2918 *
2919 * If the cpuset has the 'sched.partition' flag enabled, simulate
2920 * turning 'sched.partition" off.
2921 */
2922
cpuset_css_offline(struct cgroup_subsys_state * css)2923 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2924 {
2925 struct cpuset *cs = css_cs(css);
2926
2927 cpus_read_lock();
2928 percpu_down_write(&cpuset_rwsem);
2929
2930 if (is_partition_root(cs))
2931 update_prstate(cs, 0);
2932
2933 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2934 is_sched_load_balance(cs))
2935 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2936
2937 if (cs->use_parent_ecpus) {
2938 struct cpuset *parent = parent_cs(cs);
2939
2940 cs->use_parent_ecpus = false;
2941 parent->child_ecpus_count--;
2942 }
2943
2944 cpuset_dec();
2945 clear_bit(CS_ONLINE, &cs->flags);
2946
2947 percpu_up_write(&cpuset_rwsem);
2948 cpus_read_unlock();
2949 }
2950
cpuset_css_free(struct cgroup_subsys_state * css)2951 static void cpuset_css_free(struct cgroup_subsys_state *css)
2952 {
2953 struct cpuset *cs = css_cs(css);
2954
2955 free_cpuset(cs);
2956 }
2957
cpuset_bind(struct cgroup_subsys_state * root_css)2958 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2959 {
2960 percpu_down_write(&cpuset_rwsem);
2961 spin_lock_irq(&callback_lock);
2962
2963 if (is_in_v2_mode()) {
2964 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2965 top_cpuset.mems_allowed = node_possible_map;
2966 } else {
2967 cpumask_copy(top_cpuset.cpus_allowed,
2968 top_cpuset.effective_cpus);
2969 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2970 }
2971
2972 spin_unlock_irq(&callback_lock);
2973 percpu_up_write(&cpuset_rwsem);
2974 }
2975
2976 /*
2977 * Make sure the new task conform to the current state of its parent,
2978 * which could have been changed by cpuset just after it inherits the
2979 * state from the parent and before it sits on the cgroup's task list.
2980 */
cpuset_fork(struct task_struct * task)2981 static void cpuset_fork(struct task_struct *task)
2982 {
2983 if (task_css_is_root(task, cpuset_cgrp_id))
2984 return;
2985
2986 set_cpus_allowed_ptr(task, current->cpus_ptr);
2987 task->mems_allowed = current->mems_allowed;
2988 }
2989
2990 struct cgroup_subsys cpuset_cgrp_subsys = {
2991 .css_alloc = cpuset_css_alloc,
2992 .css_online = cpuset_css_online,
2993 .css_offline = cpuset_css_offline,
2994 .css_free = cpuset_css_free,
2995 .can_attach = cpuset_can_attach,
2996 .cancel_attach = cpuset_cancel_attach,
2997 .attach = cpuset_attach,
2998 .post_attach = cpuset_post_attach,
2999 .bind = cpuset_bind,
3000 .fork = cpuset_fork,
3001 .legacy_cftypes = legacy_files,
3002 .dfl_cftypes = dfl_files,
3003 .early_init = true,
3004 .threaded = true,
3005 };
3006
3007 /**
3008 * cpuset_init - initialize cpusets at system boot
3009 *
3010 * Description: Initialize top_cpuset
3011 **/
3012
cpuset_init(void)3013 int __init cpuset_init(void)
3014 {
3015 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
3016
3017 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3018 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3019 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3020
3021 cpumask_setall(top_cpuset.cpus_allowed);
3022 nodes_setall(top_cpuset.mems_allowed);
3023 cpumask_setall(top_cpuset.effective_cpus);
3024 nodes_setall(top_cpuset.effective_mems);
3025
3026 fmeter_init(&top_cpuset.fmeter);
3027 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3028 top_cpuset.relax_domain_level = -1;
3029
3030 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3031
3032 return 0;
3033 }
3034
3035 /*
3036 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3037 * or memory nodes, we need to walk over the cpuset hierarchy,
3038 * removing that CPU or node from all cpusets. If this removes the
3039 * last CPU or node from a cpuset, then move the tasks in the empty
3040 * cpuset to its next-highest non-empty parent.
3041 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3042 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3043 {
3044 struct cpuset *parent;
3045
3046 /*
3047 * Find its next-highest non-empty parent, (top cpuset
3048 * has online cpus, so can't be empty).
3049 */
3050 parent = parent_cs(cs);
3051 while (cpumask_empty(parent->cpus_allowed) ||
3052 nodes_empty(parent->mems_allowed))
3053 parent = parent_cs(parent);
3054
3055 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3056 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3057 pr_cont_cgroup_name(cs->css.cgroup);
3058 pr_cont("\n");
3059 }
3060 }
3061
3062 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3063 hotplug_update_tasks_legacy(struct cpuset *cs,
3064 struct cpumask *new_cpus, nodemask_t *new_mems,
3065 bool cpus_updated, bool mems_updated)
3066 {
3067 bool is_empty;
3068
3069 spin_lock_irq(&callback_lock);
3070 cpumask_copy(cs->cpus_allowed, new_cpus);
3071 cpumask_copy(cs->effective_cpus, new_cpus);
3072 cs->mems_allowed = *new_mems;
3073 cs->effective_mems = *new_mems;
3074 spin_unlock_irq(&callback_lock);
3075
3076 /*
3077 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3078 * as the tasks will be migrated to an ancestor.
3079 */
3080 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3081 update_tasks_cpumask(cs);
3082 if (mems_updated && !nodes_empty(cs->mems_allowed))
3083 update_tasks_nodemask(cs);
3084
3085 is_empty = cpumask_empty(cs->cpus_allowed) ||
3086 nodes_empty(cs->mems_allowed);
3087
3088 percpu_up_write(&cpuset_rwsem);
3089
3090 /*
3091 * Move tasks to the nearest ancestor with execution resources,
3092 * This is full cgroup operation which will also call back into
3093 * cpuset. Should be done outside any lock.
3094 */
3095 if (is_empty)
3096 remove_tasks_in_empty_cpuset(cs);
3097
3098 percpu_down_write(&cpuset_rwsem);
3099 }
3100
3101 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3102 hotplug_update_tasks(struct cpuset *cs,
3103 struct cpumask *new_cpus, nodemask_t *new_mems,
3104 bool cpus_updated, bool mems_updated)
3105 {
3106 if (cpumask_empty(new_cpus))
3107 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3108 if (nodes_empty(*new_mems))
3109 *new_mems = parent_cs(cs)->effective_mems;
3110
3111 spin_lock_irq(&callback_lock);
3112 cpumask_copy(cs->effective_cpus, new_cpus);
3113 cs->effective_mems = *new_mems;
3114 spin_unlock_irq(&callback_lock);
3115
3116 if (cpus_updated)
3117 update_tasks_cpumask(cs);
3118 if (mems_updated)
3119 update_tasks_nodemask(cs);
3120 }
3121
3122 static bool force_rebuild;
3123
cpuset_force_rebuild(void)3124 void cpuset_force_rebuild(void)
3125 {
3126 force_rebuild = true;
3127 }
3128
3129 /**
3130 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3131 * @cs: cpuset in interest
3132 * @tmp: the tmpmasks structure pointer
3133 *
3134 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3135 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3136 * all its tasks are moved to the nearest ancestor with both resources.
3137 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3138 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3139 {
3140 static cpumask_t new_cpus;
3141 static nodemask_t new_mems;
3142 bool cpus_updated;
3143 bool mems_updated;
3144 struct cpuset *parent;
3145 retry:
3146 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3147
3148 percpu_down_write(&cpuset_rwsem);
3149
3150 /*
3151 * We have raced with task attaching. We wait until attaching
3152 * is finished, so we won't attach a task to an empty cpuset.
3153 */
3154 if (cs->attach_in_progress) {
3155 percpu_up_write(&cpuset_rwsem);
3156 goto retry;
3157 }
3158
3159 parent = parent_cs(cs);
3160 compute_effective_cpumask(&new_cpus, cs, parent);
3161 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3162
3163 if (cs->nr_subparts_cpus)
3164 /*
3165 * Make sure that CPUs allocated to child partitions
3166 * do not show up in effective_cpus.
3167 */
3168 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3169
3170 if (!tmp || !cs->partition_root_state)
3171 goto update_tasks;
3172
3173 /*
3174 * In the unlikely event that a partition root has empty
3175 * effective_cpus or its parent becomes erroneous, we have to
3176 * transition it to the erroneous state.
3177 */
3178 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3179 (parent->partition_root_state == PRS_ERROR))) {
3180 if (cs->nr_subparts_cpus) {
3181 spin_lock_irq(&callback_lock);
3182 cs->nr_subparts_cpus = 0;
3183 cpumask_clear(cs->subparts_cpus);
3184 spin_unlock_irq(&callback_lock);
3185 compute_effective_cpumask(&new_cpus, cs, parent);
3186 }
3187
3188 /*
3189 * If the effective_cpus is empty because the child
3190 * partitions take away all the CPUs, we can keep
3191 * the current partition and let the child partitions
3192 * fight for available CPUs.
3193 */
3194 if ((parent->partition_root_state == PRS_ERROR) ||
3195 cpumask_empty(&new_cpus)) {
3196 int old_prs;
3197
3198 update_parent_subparts_cpumask(cs, partcmd_disable,
3199 NULL, tmp);
3200 old_prs = cs->partition_root_state;
3201 if (old_prs != PRS_ERROR) {
3202 spin_lock_irq(&callback_lock);
3203 cs->partition_root_state = PRS_ERROR;
3204 spin_unlock_irq(&callback_lock);
3205 notify_partition_change(cs, old_prs, PRS_ERROR);
3206 }
3207 }
3208 cpuset_force_rebuild();
3209 }
3210
3211 /*
3212 * On the other hand, an erroneous partition root may be transitioned
3213 * back to a regular one or a partition root with no CPU allocated
3214 * from the parent may change to erroneous.
3215 */
3216 if (is_partition_root(parent) &&
3217 ((cs->partition_root_state == PRS_ERROR) ||
3218 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3219 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3220 cpuset_force_rebuild();
3221
3222 update_tasks:
3223 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3224 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3225
3226 if (mems_updated)
3227 check_insane_mems_config(&new_mems);
3228
3229 if (is_in_v2_mode())
3230 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3231 cpus_updated, mems_updated);
3232 else
3233 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3234 cpus_updated, mems_updated);
3235
3236 percpu_up_write(&cpuset_rwsem);
3237 }
3238
3239 /**
3240 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3241 *
3242 * This function is called after either CPU or memory configuration has
3243 * changed and updates cpuset accordingly. The top_cpuset is always
3244 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3245 * order to make cpusets transparent (of no affect) on systems that are
3246 * actively using CPU hotplug but making no active use of cpusets.
3247 *
3248 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3249 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3250 * all descendants.
3251 *
3252 * Note that CPU offlining during suspend is ignored. We don't modify
3253 * cpusets across suspend/resume cycles at all.
3254 */
cpuset_hotplug_workfn(struct work_struct * work)3255 static void cpuset_hotplug_workfn(struct work_struct *work)
3256 {
3257 static cpumask_t new_cpus;
3258 static nodemask_t new_mems;
3259 bool cpus_updated, mems_updated;
3260 bool on_dfl = is_in_v2_mode();
3261 struct tmpmasks tmp, *ptmp = NULL;
3262
3263 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3264 ptmp = &tmp;
3265
3266 percpu_down_write(&cpuset_rwsem);
3267
3268 /* fetch the available cpus/mems and find out which changed how */
3269 cpumask_copy(&new_cpus, cpu_active_mask);
3270 new_mems = node_states[N_MEMORY];
3271
3272 /*
3273 * If subparts_cpus is populated, it is likely that the check below
3274 * will produce a false positive on cpus_updated when the cpu list
3275 * isn't changed. It is extra work, but it is better to be safe.
3276 */
3277 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3278 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3279
3280 /*
3281 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3282 * we assumed that cpus are updated.
3283 */
3284 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3285 cpus_updated = true;
3286
3287 /* synchronize cpus_allowed to cpu_active_mask */
3288 if (cpus_updated) {
3289 spin_lock_irq(&callback_lock);
3290 if (!on_dfl)
3291 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3292 /*
3293 * Make sure that CPUs allocated to child partitions
3294 * do not show up in effective_cpus. If no CPU is left,
3295 * we clear the subparts_cpus & let the child partitions
3296 * fight for the CPUs again.
3297 */
3298 if (top_cpuset.nr_subparts_cpus) {
3299 if (cpumask_subset(&new_cpus,
3300 top_cpuset.subparts_cpus)) {
3301 top_cpuset.nr_subparts_cpus = 0;
3302 cpumask_clear(top_cpuset.subparts_cpus);
3303 } else {
3304 cpumask_andnot(&new_cpus, &new_cpus,
3305 top_cpuset.subparts_cpus);
3306 }
3307 }
3308 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3309 spin_unlock_irq(&callback_lock);
3310 /* we don't mess with cpumasks of tasks in top_cpuset */
3311 }
3312
3313 /* synchronize mems_allowed to N_MEMORY */
3314 if (mems_updated) {
3315 spin_lock_irq(&callback_lock);
3316 if (!on_dfl)
3317 top_cpuset.mems_allowed = new_mems;
3318 top_cpuset.effective_mems = new_mems;
3319 spin_unlock_irq(&callback_lock);
3320 update_tasks_nodemask(&top_cpuset);
3321 }
3322
3323 percpu_up_write(&cpuset_rwsem);
3324
3325 /* if cpus or mems changed, we need to propagate to descendants */
3326 if (cpus_updated || mems_updated) {
3327 struct cpuset *cs;
3328 struct cgroup_subsys_state *pos_css;
3329
3330 rcu_read_lock();
3331 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3332 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3333 continue;
3334 rcu_read_unlock();
3335
3336 cpuset_hotplug_update_tasks(cs, ptmp);
3337
3338 rcu_read_lock();
3339 css_put(&cs->css);
3340 }
3341 rcu_read_unlock();
3342 }
3343
3344 /* rebuild sched domains if cpus_allowed has changed */
3345 if (cpus_updated || force_rebuild) {
3346 force_rebuild = false;
3347 rebuild_sched_domains();
3348 }
3349
3350 free_cpumasks(NULL, ptmp);
3351 }
3352
cpuset_update_active_cpus(void)3353 void cpuset_update_active_cpus(void)
3354 {
3355 /*
3356 * We're inside cpu hotplug critical region which usually nests
3357 * inside cgroup synchronization. Bounce actual hotplug processing
3358 * to a work item to avoid reverse locking order.
3359 */
3360 schedule_work(&cpuset_hotplug_work);
3361 }
3362
cpuset_wait_for_hotplug(void)3363 void cpuset_wait_for_hotplug(void)
3364 {
3365 flush_work(&cpuset_hotplug_work);
3366 }
3367
3368 /*
3369 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3370 * Call this routine anytime after node_states[N_MEMORY] changes.
3371 * See cpuset_update_active_cpus() for CPU hotplug handling.
3372 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3373 static int cpuset_track_online_nodes(struct notifier_block *self,
3374 unsigned long action, void *arg)
3375 {
3376 schedule_work(&cpuset_hotplug_work);
3377 return NOTIFY_OK;
3378 }
3379
3380 static struct notifier_block cpuset_track_online_nodes_nb = {
3381 .notifier_call = cpuset_track_online_nodes,
3382 .priority = 10, /* ??! */
3383 };
3384
3385 /**
3386 * cpuset_init_smp - initialize cpus_allowed
3387 *
3388 * Description: Finish top cpuset after cpu, node maps are initialized
3389 */
cpuset_init_smp(void)3390 void __init cpuset_init_smp(void)
3391 {
3392 /*
3393 * cpus_allowd/mems_allowed set to v2 values in the initial
3394 * cpuset_bind() call will be reset to v1 values in another
3395 * cpuset_bind() call when v1 cpuset is mounted.
3396 */
3397 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3398
3399 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3400 top_cpuset.effective_mems = node_states[N_MEMORY];
3401
3402 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3403
3404 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3405 BUG_ON(!cpuset_migrate_mm_wq);
3406 }
3407
3408 /**
3409 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3410 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3411 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3412 *
3413 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3414 * attached to the specified @tsk. Guaranteed to return some non-empty
3415 * subset of cpu_online_mask, even if this means going outside the
3416 * tasks cpuset.
3417 **/
3418
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3419 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3420 {
3421 unsigned long flags;
3422
3423 spin_lock_irqsave(&callback_lock, flags);
3424 guarantee_online_cpus(tsk, pmask);
3425 spin_unlock_irqrestore(&callback_lock, flags);
3426 }
3427
3428 /**
3429 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3430 * @tsk: pointer to task_struct with which the scheduler is struggling
3431 *
3432 * Description: In the case that the scheduler cannot find an allowed cpu in
3433 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3434 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3435 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3436 * This is the absolute last resort for the scheduler and it is only used if
3437 * _every_ other avenue has been traveled.
3438 *
3439 * Returns true if the affinity of @tsk was changed, false otherwise.
3440 **/
3441
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3442 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3443 {
3444 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3445 const struct cpumask *cs_mask;
3446 bool changed = false;
3447
3448 rcu_read_lock();
3449 cs_mask = task_cs(tsk)->cpus_allowed;
3450 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3451 do_set_cpus_allowed(tsk, cs_mask);
3452 changed = true;
3453 }
3454 rcu_read_unlock();
3455
3456 /*
3457 * We own tsk->cpus_allowed, nobody can change it under us.
3458 *
3459 * But we used cs && cs->cpus_allowed lockless and thus can
3460 * race with cgroup_attach_task() or update_cpumask() and get
3461 * the wrong tsk->cpus_allowed. However, both cases imply the
3462 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3463 * which takes task_rq_lock().
3464 *
3465 * If we are called after it dropped the lock we must see all
3466 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3467 * set any mask even if it is not right from task_cs() pov,
3468 * the pending set_cpus_allowed_ptr() will fix things.
3469 *
3470 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3471 * if required.
3472 */
3473 return changed;
3474 }
3475
cpuset_init_current_mems_allowed(void)3476 void __init cpuset_init_current_mems_allowed(void)
3477 {
3478 nodes_setall(current->mems_allowed);
3479 }
3480
3481 /**
3482 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3483 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3484 *
3485 * Description: Returns the nodemask_t mems_allowed of the cpuset
3486 * attached to the specified @tsk. Guaranteed to return some non-empty
3487 * subset of node_states[N_MEMORY], even if this means going outside the
3488 * tasks cpuset.
3489 **/
3490
cpuset_mems_allowed(struct task_struct * tsk)3491 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3492 {
3493 nodemask_t mask;
3494 unsigned long flags;
3495
3496 spin_lock_irqsave(&callback_lock, flags);
3497 rcu_read_lock();
3498 guarantee_online_mems(task_cs(tsk), &mask);
3499 rcu_read_unlock();
3500 spin_unlock_irqrestore(&callback_lock, flags);
3501
3502 return mask;
3503 }
3504
3505 /**
3506 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3507 * @nodemask: the nodemask to be checked
3508 *
3509 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3510 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3511 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3512 {
3513 return nodes_intersects(*nodemask, current->mems_allowed);
3514 }
3515
3516 /*
3517 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3518 * mem_hardwall ancestor to the specified cpuset. Call holding
3519 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3520 * (an unusual configuration), then returns the root cpuset.
3521 */
nearest_hardwall_ancestor(struct cpuset * cs)3522 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3523 {
3524 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3525 cs = parent_cs(cs);
3526 return cs;
3527 }
3528
3529 /*
3530 * __cpuset_node_allowed - Can we allocate on a memory node?
3531 * @node: is this an allowed node?
3532 * @gfp_mask: memory allocation flags
3533 *
3534 * If we're in interrupt, yes, we can always allocate. If @node is set in
3535 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3536 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3537 * yes. If current has access to memory reserves as an oom victim, yes.
3538 * Otherwise, no.
3539 *
3540 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3541 * and do not allow allocations outside the current tasks cpuset
3542 * unless the task has been OOM killed.
3543 * GFP_KERNEL allocations are not so marked, so can escape to the
3544 * nearest enclosing hardwalled ancestor cpuset.
3545 *
3546 * Scanning up parent cpusets requires callback_lock. The
3547 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3548 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3549 * current tasks mems_allowed came up empty on the first pass over
3550 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3551 * cpuset are short of memory, might require taking the callback_lock.
3552 *
3553 * The first call here from mm/page_alloc:get_page_from_freelist()
3554 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3555 * so no allocation on a node outside the cpuset is allowed (unless
3556 * in interrupt, of course).
3557 *
3558 * The second pass through get_page_from_freelist() doesn't even call
3559 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3560 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3561 * in alloc_flags. That logic and the checks below have the combined
3562 * affect that:
3563 * in_interrupt - any node ok (current task context irrelevant)
3564 * GFP_ATOMIC - any node ok
3565 * tsk_is_oom_victim - any node ok
3566 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3567 * GFP_USER - only nodes in current tasks mems allowed ok.
3568 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3569 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3570 {
3571 struct cpuset *cs; /* current cpuset ancestors */
3572 bool allowed; /* is allocation in zone z allowed? */
3573 unsigned long flags;
3574
3575 if (in_interrupt())
3576 return true;
3577 if (node_isset(node, current->mems_allowed))
3578 return true;
3579 /*
3580 * Allow tasks that have access to memory reserves because they have
3581 * been OOM killed to get memory anywhere.
3582 */
3583 if (unlikely(tsk_is_oom_victim(current)))
3584 return true;
3585 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3586 return false;
3587
3588 if (current->flags & PF_EXITING) /* Let dying task have memory */
3589 return true;
3590
3591 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3592 spin_lock_irqsave(&callback_lock, flags);
3593
3594 rcu_read_lock();
3595 cs = nearest_hardwall_ancestor(task_cs(current));
3596 allowed = node_isset(node, cs->mems_allowed);
3597 rcu_read_unlock();
3598
3599 spin_unlock_irqrestore(&callback_lock, flags);
3600 return allowed;
3601 }
3602
3603 /**
3604 * cpuset_mem_spread_node() - On which node to begin search for a file page
3605 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3606 *
3607 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3608 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3609 * and if the memory allocation used cpuset_mem_spread_node()
3610 * to determine on which node to start looking, as it will for
3611 * certain page cache or slab cache pages such as used for file
3612 * system buffers and inode caches, then instead of starting on the
3613 * local node to look for a free page, rather spread the starting
3614 * node around the tasks mems_allowed nodes.
3615 *
3616 * We don't have to worry about the returned node being offline
3617 * because "it can't happen", and even if it did, it would be ok.
3618 *
3619 * The routines calling guarantee_online_mems() are careful to
3620 * only set nodes in task->mems_allowed that are online. So it
3621 * should not be possible for the following code to return an
3622 * offline node. But if it did, that would be ok, as this routine
3623 * is not returning the node where the allocation must be, only
3624 * the node where the search should start. The zonelist passed to
3625 * __alloc_pages() will include all nodes. If the slab allocator
3626 * is passed an offline node, it will fall back to the local node.
3627 * See kmem_cache_alloc_node().
3628 */
3629
cpuset_spread_node(int * rotor)3630 static int cpuset_spread_node(int *rotor)
3631 {
3632 return *rotor = next_node_in(*rotor, current->mems_allowed);
3633 }
3634
cpuset_mem_spread_node(void)3635 int cpuset_mem_spread_node(void)
3636 {
3637 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3638 current->cpuset_mem_spread_rotor =
3639 node_random(¤t->mems_allowed);
3640
3641 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3642 }
3643
cpuset_slab_spread_node(void)3644 int cpuset_slab_spread_node(void)
3645 {
3646 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3647 current->cpuset_slab_spread_rotor =
3648 node_random(¤t->mems_allowed);
3649
3650 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3651 }
3652
3653 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3654
3655 /**
3656 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3657 * @tsk1: pointer to task_struct of some task.
3658 * @tsk2: pointer to task_struct of some other task.
3659 *
3660 * Description: Return true if @tsk1's mems_allowed intersects the
3661 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3662 * one of the task's memory usage might impact the memory available
3663 * to the other.
3664 **/
3665
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3666 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3667 const struct task_struct *tsk2)
3668 {
3669 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3670 }
3671
3672 /**
3673 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3674 *
3675 * Description: Prints current's name, cpuset name, and cached copy of its
3676 * mems_allowed to the kernel log.
3677 */
cpuset_print_current_mems_allowed(void)3678 void cpuset_print_current_mems_allowed(void)
3679 {
3680 struct cgroup *cgrp;
3681
3682 rcu_read_lock();
3683
3684 cgrp = task_cs(current)->css.cgroup;
3685 pr_cont(",cpuset=");
3686 pr_cont_cgroup_name(cgrp);
3687 pr_cont(",mems_allowed=%*pbl",
3688 nodemask_pr_args(¤t->mems_allowed));
3689
3690 rcu_read_unlock();
3691 }
3692
3693 /*
3694 * Collection of memory_pressure is suppressed unless
3695 * this flag is enabled by writing "1" to the special
3696 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3697 */
3698
3699 int cpuset_memory_pressure_enabled __read_mostly;
3700
3701 /*
3702 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3703 *
3704 * Keep a running average of the rate of synchronous (direct)
3705 * page reclaim efforts initiated by tasks in each cpuset.
3706 *
3707 * This represents the rate at which some task in the cpuset
3708 * ran low on memory on all nodes it was allowed to use, and
3709 * had to enter the kernels page reclaim code in an effort to
3710 * create more free memory by tossing clean pages or swapping
3711 * or writing dirty pages.
3712 *
3713 * Display to user space in the per-cpuset read-only file
3714 * "memory_pressure". Value displayed is an integer
3715 * representing the recent rate of entry into the synchronous
3716 * (direct) page reclaim by any task attached to the cpuset.
3717 */
3718
__cpuset_memory_pressure_bump(void)3719 void __cpuset_memory_pressure_bump(void)
3720 {
3721 rcu_read_lock();
3722 fmeter_markevent(&task_cs(current)->fmeter);
3723 rcu_read_unlock();
3724 }
3725
3726 #ifdef CONFIG_PROC_PID_CPUSET
3727 /*
3728 * proc_cpuset_show()
3729 * - Print tasks cpuset path into seq_file.
3730 * - Used for /proc/<pid>/cpuset.
3731 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3732 * doesn't really matter if tsk->cpuset changes after we read it,
3733 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3734 * anyway.
3735 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3736 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3737 struct pid *pid, struct task_struct *tsk)
3738 {
3739 char *buf;
3740 struct cgroup_subsys_state *css;
3741 int retval;
3742
3743 retval = -ENOMEM;
3744 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3745 if (!buf)
3746 goto out;
3747
3748 css = task_get_css(tsk, cpuset_cgrp_id);
3749 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3750 current->nsproxy->cgroup_ns);
3751 css_put(css);
3752 if (retval >= PATH_MAX)
3753 retval = -ENAMETOOLONG;
3754 if (retval < 0)
3755 goto out_free;
3756 seq_puts(m, buf);
3757 seq_putc(m, '\n');
3758 retval = 0;
3759 out_free:
3760 kfree(buf);
3761 out:
3762 return retval;
3763 }
3764 #endif /* CONFIG_PROC_PID_CPUSET */
3765
3766 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3767 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3768 {
3769 seq_printf(m, "Mems_allowed:\t%*pb\n",
3770 nodemask_pr_args(&task->mems_allowed));
3771 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3772 nodemask_pr_args(&task->mems_allowed));
3773 }
3774