1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51 
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blk-mq.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/audit.h>
82 #include <linux/security.h>
83 #include <linux/xattr.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/io_uring.h>
87 
88 #include <uapi/linux/io_uring.h>
89 
90 #include "../fs/internal.h"
91 #include "io-wq.h"
92 
93 #define IORING_MAX_ENTRIES	32768
94 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
95 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
96 
97 /* only define max */
98 #define IORING_MAX_FIXED_FILES	(1U << 20)
99 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
100 				 IORING_REGISTER_LAST + IORING_OP_LAST)
101 
102 #define IO_RSRC_TAG_TABLE_SHIFT	(PAGE_SHIFT - 3)
103 #define IO_RSRC_TAG_TABLE_MAX	(1U << IO_RSRC_TAG_TABLE_SHIFT)
104 #define IO_RSRC_TAG_TABLE_MASK	(IO_RSRC_TAG_TABLE_MAX - 1)
105 
106 #define IORING_MAX_REG_BUFFERS	(1U << 14)
107 
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 
111 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 
114 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
116 				REQ_F_ASYNC_DATA)
117 
118 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
119 				 IO_REQ_CLEAN_FLAGS)
120 
121 #define IO_APOLL_MULTI_POLLED (REQ_F_APOLL_MULTISHOT | REQ_F_POLLED)
122 
123 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
124 
125 struct io_uring {
126 	u32 head ____cacheline_aligned_in_smp;
127 	u32 tail ____cacheline_aligned_in_smp;
128 };
129 
130 /*
131  * This data is shared with the application through the mmap at offsets
132  * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
133  *
134  * The offsets to the member fields are published through struct
135  * io_sqring_offsets when calling io_uring_setup.
136  */
137 struct io_rings {
138 	/*
139 	 * Head and tail offsets into the ring; the offsets need to be
140 	 * masked to get valid indices.
141 	 *
142 	 * The kernel controls head of the sq ring and the tail of the cq ring,
143 	 * and the application controls tail of the sq ring and the head of the
144 	 * cq ring.
145 	 */
146 	struct io_uring		sq, cq;
147 	/*
148 	 * Bitmasks to apply to head and tail offsets (constant, equals
149 	 * ring_entries - 1)
150 	 */
151 	u32			sq_ring_mask, cq_ring_mask;
152 	/* Ring sizes (constant, power of 2) */
153 	u32			sq_ring_entries, cq_ring_entries;
154 	/*
155 	 * Number of invalid entries dropped by the kernel due to
156 	 * invalid index stored in array
157 	 *
158 	 * Written by the kernel, shouldn't be modified by the
159 	 * application (i.e. get number of "new events" by comparing to
160 	 * cached value).
161 	 *
162 	 * After a new SQ head value was read by the application this
163 	 * counter includes all submissions that were dropped reaching
164 	 * the new SQ head (and possibly more).
165 	 */
166 	u32			sq_dropped;
167 	/*
168 	 * Runtime SQ flags
169 	 *
170 	 * Written by the kernel, shouldn't be modified by the
171 	 * application.
172 	 *
173 	 * The application needs a full memory barrier before checking
174 	 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
175 	 */
176 	atomic_t		sq_flags;
177 	/*
178 	 * Runtime CQ flags
179 	 *
180 	 * Written by the application, shouldn't be modified by the
181 	 * kernel.
182 	 */
183 	u32			cq_flags;
184 	/*
185 	 * Number of completion events lost because the queue was full;
186 	 * this should be avoided by the application by making sure
187 	 * there are not more requests pending than there is space in
188 	 * the completion queue.
189 	 *
190 	 * Written by the kernel, shouldn't be modified by the
191 	 * application (i.e. get number of "new events" by comparing to
192 	 * cached value).
193 	 *
194 	 * As completion events come in out of order this counter is not
195 	 * ordered with any other data.
196 	 */
197 	u32			cq_overflow;
198 	/*
199 	 * Ring buffer of completion events.
200 	 *
201 	 * The kernel writes completion events fresh every time they are
202 	 * produced, so the application is allowed to modify pending
203 	 * entries.
204 	 */
205 	struct io_uring_cqe	cqes[] ____cacheline_aligned_in_smp;
206 };
207 
208 struct io_mapped_ubuf {
209 	u64		ubuf;
210 	u64		ubuf_end;
211 	unsigned int	nr_bvecs;
212 	unsigned long	acct_pages;
213 	struct bio_vec	bvec[];
214 };
215 
216 struct io_ring_ctx;
217 
218 struct io_overflow_cqe {
219 	struct list_head list;
220 	struct io_uring_cqe cqe;
221 };
222 
223 /*
224  * FFS_SCM is only available on 64-bit archs, for 32-bit we just define it as 0
225  * and define IO_URING_SCM_ALL. For this case, we use SCM for all files as we
226  * can't safely always dereference the file when the task has exited and ring
227  * cleanup is done. If a file is tracked and part of SCM, then unix gc on
228  * process exit may reap it before __io_sqe_files_unregister() is run.
229  */
230 #define FFS_NOWAIT		0x1UL
231 #define FFS_ISREG		0x2UL
232 #if defined(CONFIG_64BIT)
233 #define FFS_SCM			0x4UL
234 #else
235 #define IO_URING_SCM_ALL
236 #define FFS_SCM			0x0UL
237 #endif
238 #define FFS_MASK		~(FFS_NOWAIT|FFS_ISREG|FFS_SCM)
239 
240 struct io_fixed_file {
241 	/* file * with additional FFS_* flags */
242 	unsigned long file_ptr;
243 };
244 
245 struct io_rsrc_put {
246 	struct list_head list;
247 	u64 tag;
248 	union {
249 		void *rsrc;
250 		struct file *file;
251 		struct io_mapped_ubuf *buf;
252 	};
253 };
254 
255 struct io_file_table {
256 	struct io_fixed_file *files;
257 	unsigned long *bitmap;
258 	unsigned int alloc_hint;
259 };
260 
261 struct io_rsrc_node {
262 	struct percpu_ref		refs;
263 	struct list_head		node;
264 	struct list_head		rsrc_list;
265 	struct io_rsrc_data		*rsrc_data;
266 	struct llist_node		llist;
267 	bool				done;
268 };
269 
270 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
271 
272 struct io_rsrc_data {
273 	struct io_ring_ctx		*ctx;
274 
275 	u64				**tags;
276 	unsigned int			nr;
277 	rsrc_put_fn			*do_put;
278 	atomic_t			refs;
279 	struct completion		done;
280 	bool				quiesce;
281 };
282 
283 #define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf))
284 struct io_buffer_list {
285 	/*
286 	 * If ->buf_nr_pages is set, then buf_pages/buf_ring are used. If not,
287 	 * then these are classic provided buffers and ->buf_list is used.
288 	 */
289 	union {
290 		struct list_head buf_list;
291 		struct {
292 			struct page **buf_pages;
293 			struct io_uring_buf_ring *buf_ring;
294 		};
295 	};
296 	__u16 bgid;
297 
298 	/* below is for ring provided buffers */
299 	__u16 buf_nr_pages;
300 	__u16 nr_entries;
301 	__u16 head;
302 	__u16 mask;
303 };
304 
305 struct io_buffer {
306 	struct list_head list;
307 	__u64 addr;
308 	__u32 len;
309 	__u16 bid;
310 	__u16 bgid;
311 };
312 
313 struct io_restriction {
314 	DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
315 	DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
316 	u8 sqe_flags_allowed;
317 	u8 sqe_flags_required;
318 	bool registered;
319 };
320 
321 enum {
322 	IO_SQ_THREAD_SHOULD_STOP = 0,
323 	IO_SQ_THREAD_SHOULD_PARK,
324 };
325 
326 struct io_sq_data {
327 	refcount_t		refs;
328 	atomic_t		park_pending;
329 	struct mutex		lock;
330 
331 	/* ctx's that are using this sqd */
332 	struct list_head	ctx_list;
333 
334 	struct task_struct	*thread;
335 	struct wait_queue_head	wait;
336 
337 	unsigned		sq_thread_idle;
338 	int			sq_cpu;
339 	pid_t			task_pid;
340 	pid_t			task_tgid;
341 
342 	unsigned long		state;
343 	struct completion	exited;
344 };
345 
346 #define IO_COMPL_BATCH			32
347 #define IO_REQ_CACHE_SIZE		32
348 #define IO_REQ_ALLOC_BATCH		8
349 
350 struct io_submit_link {
351 	struct io_kiocb		*head;
352 	struct io_kiocb		*last;
353 };
354 
355 struct io_submit_state {
356 	/* inline/task_work completion list, under ->uring_lock */
357 	struct io_wq_work_node	free_list;
358 	/* batch completion logic */
359 	struct io_wq_work_list	compl_reqs;
360 	struct io_submit_link	link;
361 
362 	bool			plug_started;
363 	bool			need_plug;
364 	bool			flush_cqes;
365 	unsigned short		submit_nr;
366 	struct blk_plug		plug;
367 };
368 
369 struct io_ev_fd {
370 	struct eventfd_ctx	*cq_ev_fd;
371 	unsigned int		eventfd_async: 1;
372 	struct rcu_head		rcu;
373 };
374 
375 #define BGID_ARRAY	64
376 
377 struct io_ring_ctx {
378 	/* const or read-mostly hot data */
379 	struct {
380 		struct percpu_ref	refs;
381 
382 		struct io_rings		*rings;
383 		unsigned int		flags;
384 		enum task_work_notify_mode	notify_method;
385 		unsigned int		compat: 1;
386 		unsigned int		drain_next: 1;
387 		unsigned int		restricted: 1;
388 		unsigned int		off_timeout_used: 1;
389 		unsigned int		drain_active: 1;
390 		unsigned int		drain_disabled: 1;
391 		unsigned int		has_evfd: 1;
392 		unsigned int		syscall_iopoll: 1;
393 	} ____cacheline_aligned_in_smp;
394 
395 	/* submission data */
396 	struct {
397 		struct mutex		uring_lock;
398 
399 		/*
400 		 * Ring buffer of indices into array of io_uring_sqe, which is
401 		 * mmapped by the application using the IORING_OFF_SQES offset.
402 		 *
403 		 * This indirection could e.g. be used to assign fixed
404 		 * io_uring_sqe entries to operations and only submit them to
405 		 * the queue when needed.
406 		 *
407 		 * The kernel modifies neither the indices array nor the entries
408 		 * array.
409 		 */
410 		u32			*sq_array;
411 		struct io_uring_sqe	*sq_sqes;
412 		unsigned		cached_sq_head;
413 		unsigned		sq_entries;
414 		struct list_head	defer_list;
415 
416 		/*
417 		 * Fixed resources fast path, should be accessed only under
418 		 * uring_lock, and updated through io_uring_register(2)
419 		 */
420 		struct io_rsrc_node	*rsrc_node;
421 		int			rsrc_cached_refs;
422 		atomic_t		cancel_seq;
423 		struct io_file_table	file_table;
424 		unsigned		nr_user_files;
425 		unsigned		nr_user_bufs;
426 		struct io_mapped_ubuf	**user_bufs;
427 
428 		struct io_submit_state	submit_state;
429 
430 		struct io_buffer_list	*io_bl;
431 		struct xarray		io_bl_xa;
432 		struct list_head	io_buffers_cache;
433 
434 		struct list_head	timeout_list;
435 		struct list_head	ltimeout_list;
436 		struct list_head	cq_overflow_list;
437 		struct list_head	apoll_cache;
438 		struct xarray		personalities;
439 		u32			pers_next;
440 		unsigned		sq_thread_idle;
441 	} ____cacheline_aligned_in_smp;
442 
443 	/* IRQ completion list, under ->completion_lock */
444 	struct io_wq_work_list	locked_free_list;
445 	unsigned int		locked_free_nr;
446 
447 	const struct cred	*sq_creds;	/* cred used for __io_sq_thread() */
448 	struct io_sq_data	*sq_data;	/* if using sq thread polling */
449 
450 	struct wait_queue_head	sqo_sq_wait;
451 	struct list_head	sqd_list;
452 
453 	unsigned long		check_cq;
454 
455 	struct {
456 		/*
457 		 * We cache a range of free CQEs we can use, once exhausted it
458 		 * should go through a slower range setup, see __io_get_cqe()
459 		 */
460 		struct io_uring_cqe	*cqe_cached;
461 		struct io_uring_cqe	*cqe_sentinel;
462 
463 		unsigned		cached_cq_tail;
464 		unsigned		cq_entries;
465 		struct io_ev_fd	__rcu	*io_ev_fd;
466 		struct wait_queue_head	cq_wait;
467 		unsigned		cq_extra;
468 		atomic_t		cq_timeouts;
469 		unsigned		cq_last_tm_flush;
470 	} ____cacheline_aligned_in_smp;
471 
472 	struct {
473 		spinlock_t		completion_lock;
474 
475 		spinlock_t		timeout_lock;
476 
477 		/*
478 		 * ->iopoll_list is protected by the ctx->uring_lock for
479 		 * io_uring instances that don't use IORING_SETUP_SQPOLL.
480 		 * For SQPOLL, only the single threaded io_sq_thread() will
481 		 * manipulate the list, hence no extra locking is needed there.
482 		 */
483 		struct io_wq_work_list	iopoll_list;
484 		struct hlist_head	*cancel_hash;
485 		unsigned		cancel_hash_bits;
486 		bool			poll_multi_queue;
487 
488 		struct list_head	io_buffers_comp;
489 	} ____cacheline_aligned_in_smp;
490 
491 	struct io_restriction		restrictions;
492 
493 	/* slow path rsrc auxilary data, used by update/register */
494 	struct {
495 		struct io_rsrc_node		*rsrc_backup_node;
496 		struct io_mapped_ubuf		*dummy_ubuf;
497 		struct io_rsrc_data		*file_data;
498 		struct io_rsrc_data		*buf_data;
499 
500 		struct delayed_work		rsrc_put_work;
501 		struct llist_head		rsrc_put_llist;
502 		struct list_head		rsrc_ref_list;
503 		spinlock_t			rsrc_ref_lock;
504 
505 		struct list_head	io_buffers_pages;
506 	};
507 
508 	/* Keep this last, we don't need it for the fast path */
509 	struct {
510 		#if defined(CONFIG_UNIX)
511 			struct socket		*ring_sock;
512 		#endif
513 		/* hashed buffered write serialization */
514 		struct io_wq_hash		*hash_map;
515 
516 		/* Only used for accounting purposes */
517 		struct user_struct		*user;
518 		struct mm_struct		*mm_account;
519 
520 		/* ctx exit and cancelation */
521 		struct llist_head		fallback_llist;
522 		struct delayed_work		fallback_work;
523 		struct work_struct		exit_work;
524 		struct list_head		tctx_list;
525 		struct completion		ref_comp;
526 		u32				iowq_limits[2];
527 		bool				iowq_limits_set;
528 	};
529 };
530 
531 /*
532  * Arbitrary limit, can be raised if need be
533  */
534 #define IO_RINGFD_REG_MAX 16
535 
536 struct io_uring_task {
537 	/* submission side */
538 	int			cached_refs;
539 	struct xarray		xa;
540 	struct wait_queue_head	wait;
541 	const struct io_ring_ctx *last;
542 	struct io_wq		*io_wq;
543 	struct percpu_counter	inflight;
544 	atomic_t		inflight_tracked;
545 	atomic_t		in_idle;
546 
547 	spinlock_t		task_lock;
548 	struct io_wq_work_list	task_list;
549 	struct io_wq_work_list	prio_task_list;
550 	struct callback_head	task_work;
551 	struct file		**registered_rings;
552 	bool			task_running;
553 };
554 
555 /*
556  * First field must be the file pointer in all the
557  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
558  */
559 struct io_poll_iocb {
560 	struct file			*file;
561 	struct wait_queue_head		*head;
562 	__poll_t			events;
563 	struct wait_queue_entry		wait;
564 };
565 
566 struct io_poll_update {
567 	struct file			*file;
568 	u64				old_user_data;
569 	u64				new_user_data;
570 	__poll_t			events;
571 	bool				update_events;
572 	bool				update_user_data;
573 };
574 
575 struct io_close {
576 	struct file			*file;
577 	int				fd;
578 	u32				file_slot;
579 };
580 
581 struct io_timeout_data {
582 	struct io_kiocb			*req;
583 	struct hrtimer			timer;
584 	struct timespec64		ts;
585 	enum hrtimer_mode		mode;
586 	u32				flags;
587 };
588 
589 struct io_accept {
590 	struct file			*file;
591 	struct sockaddr __user		*addr;
592 	int __user			*addr_len;
593 	int				flags;
594 	u32				file_slot;
595 	unsigned long			nofile;
596 };
597 
598 struct io_socket {
599 	struct file			*file;
600 	int				domain;
601 	int				type;
602 	int				protocol;
603 	int				flags;
604 	u32				file_slot;
605 	unsigned long			nofile;
606 };
607 
608 struct io_sync {
609 	struct file			*file;
610 	loff_t				len;
611 	loff_t				off;
612 	int				flags;
613 	int				mode;
614 };
615 
616 struct io_cancel {
617 	struct file			*file;
618 	u64				addr;
619 	u32				flags;
620 	s32				fd;
621 };
622 
623 struct io_timeout {
624 	struct file			*file;
625 	u32				off;
626 	u32				target_seq;
627 	struct list_head		list;
628 	/* head of the link, used by linked timeouts only */
629 	struct io_kiocb			*head;
630 	/* for linked completions */
631 	struct io_kiocb			*prev;
632 };
633 
634 struct io_timeout_rem {
635 	struct file			*file;
636 	u64				addr;
637 
638 	/* timeout update */
639 	struct timespec64		ts;
640 	u32				flags;
641 	bool				ltimeout;
642 };
643 
644 struct io_rw {
645 	/* NOTE: kiocb has the file as the first member, so don't do it here */
646 	struct kiocb			kiocb;
647 	u64				addr;
648 	u32				len;
649 	rwf_t				flags;
650 };
651 
652 struct io_connect {
653 	struct file			*file;
654 	struct sockaddr __user		*addr;
655 	int				addr_len;
656 };
657 
658 struct io_sr_msg {
659 	struct file			*file;
660 	union {
661 		struct compat_msghdr __user	*umsg_compat;
662 		struct user_msghdr __user	*umsg;
663 		void __user			*buf;
664 	};
665 	int				msg_flags;
666 	size_t				len;
667 	size_t				done_io;
668 	unsigned int			flags;
669 };
670 
671 struct io_open {
672 	struct file			*file;
673 	int				dfd;
674 	u32				file_slot;
675 	struct filename			*filename;
676 	struct open_how			how;
677 	unsigned long			nofile;
678 };
679 
680 struct io_rsrc_update {
681 	struct file			*file;
682 	u64				arg;
683 	u32				nr_args;
684 	u32				offset;
685 };
686 
687 struct io_fadvise {
688 	struct file			*file;
689 	u64				offset;
690 	u32				len;
691 	u32				advice;
692 };
693 
694 struct io_madvise {
695 	struct file			*file;
696 	u64				addr;
697 	u32				len;
698 	u32				advice;
699 };
700 
701 struct io_epoll {
702 	struct file			*file;
703 	int				epfd;
704 	int				op;
705 	int				fd;
706 	struct epoll_event		event;
707 };
708 
709 struct io_splice {
710 	struct file			*file_out;
711 	loff_t				off_out;
712 	loff_t				off_in;
713 	u64				len;
714 	int				splice_fd_in;
715 	unsigned int			flags;
716 };
717 
718 struct io_provide_buf {
719 	struct file			*file;
720 	__u64				addr;
721 	__u32				len;
722 	__u32				bgid;
723 	__u16				nbufs;
724 	__u16				bid;
725 };
726 
727 struct io_statx {
728 	struct file			*file;
729 	int				dfd;
730 	unsigned int			mask;
731 	unsigned int			flags;
732 	struct filename			*filename;
733 	struct statx __user		*buffer;
734 };
735 
736 struct io_shutdown {
737 	struct file			*file;
738 	int				how;
739 };
740 
741 struct io_rename {
742 	struct file			*file;
743 	int				old_dfd;
744 	int				new_dfd;
745 	struct filename			*oldpath;
746 	struct filename			*newpath;
747 	int				flags;
748 };
749 
750 struct io_unlink {
751 	struct file			*file;
752 	int				dfd;
753 	int				flags;
754 	struct filename			*filename;
755 };
756 
757 struct io_mkdir {
758 	struct file			*file;
759 	int				dfd;
760 	umode_t				mode;
761 	struct filename			*filename;
762 };
763 
764 struct io_symlink {
765 	struct file			*file;
766 	int				new_dfd;
767 	struct filename			*oldpath;
768 	struct filename			*newpath;
769 };
770 
771 struct io_hardlink {
772 	struct file			*file;
773 	int				old_dfd;
774 	int				new_dfd;
775 	struct filename			*oldpath;
776 	struct filename			*newpath;
777 	int				flags;
778 };
779 
780 struct io_msg {
781 	struct file			*file;
782 	u64 user_data;
783 	u32 len;
784 };
785 
786 struct io_async_connect {
787 	struct sockaddr_storage		address;
788 };
789 
790 struct io_async_msghdr {
791 	struct iovec			fast_iov[UIO_FASTIOV];
792 	/* points to an allocated iov, if NULL we use fast_iov instead */
793 	struct iovec			*free_iov;
794 	struct sockaddr __user		*uaddr;
795 	struct msghdr			msg;
796 	struct sockaddr_storage		addr;
797 };
798 
799 struct io_rw_state {
800 	struct iov_iter			iter;
801 	struct iov_iter_state		iter_state;
802 	struct iovec			fast_iov[UIO_FASTIOV];
803 };
804 
805 struct io_async_rw {
806 	struct io_rw_state		s;
807 	const struct iovec		*free_iovec;
808 	size_t				bytes_done;
809 	struct wait_page_queue		wpq;
810 };
811 
812 struct io_xattr {
813 	struct file			*file;
814 	struct xattr_ctx		ctx;
815 	struct filename			*filename;
816 };
817 
818 enum {
819 	REQ_F_FIXED_FILE_BIT	= IOSQE_FIXED_FILE_BIT,
820 	REQ_F_IO_DRAIN_BIT	= IOSQE_IO_DRAIN_BIT,
821 	REQ_F_LINK_BIT		= IOSQE_IO_LINK_BIT,
822 	REQ_F_HARDLINK_BIT	= IOSQE_IO_HARDLINK_BIT,
823 	REQ_F_FORCE_ASYNC_BIT	= IOSQE_ASYNC_BIT,
824 	REQ_F_BUFFER_SELECT_BIT	= IOSQE_BUFFER_SELECT_BIT,
825 	REQ_F_CQE_SKIP_BIT	= IOSQE_CQE_SKIP_SUCCESS_BIT,
826 
827 	/* first byte is taken by user flags, shift it to not overlap */
828 	REQ_F_FAIL_BIT		= 8,
829 	REQ_F_INFLIGHT_BIT,
830 	REQ_F_CUR_POS_BIT,
831 	REQ_F_NOWAIT_BIT,
832 	REQ_F_LINK_TIMEOUT_BIT,
833 	REQ_F_NEED_CLEANUP_BIT,
834 	REQ_F_POLLED_BIT,
835 	REQ_F_BUFFER_SELECTED_BIT,
836 	REQ_F_BUFFER_RING_BIT,
837 	REQ_F_COMPLETE_INLINE_BIT,
838 	REQ_F_REISSUE_BIT,
839 	REQ_F_CREDS_BIT,
840 	REQ_F_REFCOUNT_BIT,
841 	REQ_F_ARM_LTIMEOUT_BIT,
842 	REQ_F_ASYNC_DATA_BIT,
843 	REQ_F_SKIP_LINK_CQES_BIT,
844 	REQ_F_SINGLE_POLL_BIT,
845 	REQ_F_DOUBLE_POLL_BIT,
846 	REQ_F_PARTIAL_IO_BIT,
847 	REQ_F_CQE32_INIT_BIT,
848 	REQ_F_APOLL_MULTISHOT_BIT,
849 	/* keep async read/write and isreg together and in order */
850 	REQ_F_SUPPORT_NOWAIT_BIT,
851 	REQ_F_ISREG_BIT,
852 
853 	/* not a real bit, just to check we're not overflowing the space */
854 	__REQ_F_LAST_BIT,
855 };
856 
857 enum {
858 	/* ctx owns file */
859 	REQ_F_FIXED_FILE	= BIT(REQ_F_FIXED_FILE_BIT),
860 	/* drain existing IO first */
861 	REQ_F_IO_DRAIN		= BIT(REQ_F_IO_DRAIN_BIT),
862 	/* linked sqes */
863 	REQ_F_LINK		= BIT(REQ_F_LINK_BIT),
864 	/* doesn't sever on completion < 0 */
865 	REQ_F_HARDLINK		= BIT(REQ_F_HARDLINK_BIT),
866 	/* IOSQE_ASYNC */
867 	REQ_F_FORCE_ASYNC	= BIT(REQ_F_FORCE_ASYNC_BIT),
868 	/* IOSQE_BUFFER_SELECT */
869 	REQ_F_BUFFER_SELECT	= BIT(REQ_F_BUFFER_SELECT_BIT),
870 	/* IOSQE_CQE_SKIP_SUCCESS */
871 	REQ_F_CQE_SKIP		= BIT(REQ_F_CQE_SKIP_BIT),
872 
873 	/* fail rest of links */
874 	REQ_F_FAIL		= BIT(REQ_F_FAIL_BIT),
875 	/* on inflight list, should be cancelled and waited on exit reliably */
876 	REQ_F_INFLIGHT		= BIT(REQ_F_INFLIGHT_BIT),
877 	/* read/write uses file position */
878 	REQ_F_CUR_POS		= BIT(REQ_F_CUR_POS_BIT),
879 	/* must not punt to workers */
880 	REQ_F_NOWAIT		= BIT(REQ_F_NOWAIT_BIT),
881 	/* has or had linked timeout */
882 	REQ_F_LINK_TIMEOUT	= BIT(REQ_F_LINK_TIMEOUT_BIT),
883 	/* needs cleanup */
884 	REQ_F_NEED_CLEANUP	= BIT(REQ_F_NEED_CLEANUP_BIT),
885 	/* already went through poll handler */
886 	REQ_F_POLLED		= BIT(REQ_F_POLLED_BIT),
887 	/* buffer already selected */
888 	REQ_F_BUFFER_SELECTED	= BIT(REQ_F_BUFFER_SELECTED_BIT),
889 	/* buffer selected from ring, needs commit */
890 	REQ_F_BUFFER_RING	= BIT(REQ_F_BUFFER_RING_BIT),
891 	/* completion is deferred through io_comp_state */
892 	REQ_F_COMPLETE_INLINE	= BIT(REQ_F_COMPLETE_INLINE_BIT),
893 	/* caller should reissue async */
894 	REQ_F_REISSUE		= BIT(REQ_F_REISSUE_BIT),
895 	/* supports async reads/writes */
896 	REQ_F_SUPPORT_NOWAIT	= BIT(REQ_F_SUPPORT_NOWAIT_BIT),
897 	/* regular file */
898 	REQ_F_ISREG		= BIT(REQ_F_ISREG_BIT),
899 	/* has creds assigned */
900 	REQ_F_CREDS		= BIT(REQ_F_CREDS_BIT),
901 	/* skip refcounting if not set */
902 	REQ_F_REFCOUNT		= BIT(REQ_F_REFCOUNT_BIT),
903 	/* there is a linked timeout that has to be armed */
904 	REQ_F_ARM_LTIMEOUT	= BIT(REQ_F_ARM_LTIMEOUT_BIT),
905 	/* ->async_data allocated */
906 	REQ_F_ASYNC_DATA	= BIT(REQ_F_ASYNC_DATA_BIT),
907 	/* don't post CQEs while failing linked requests */
908 	REQ_F_SKIP_LINK_CQES	= BIT(REQ_F_SKIP_LINK_CQES_BIT),
909 	/* single poll may be active */
910 	REQ_F_SINGLE_POLL	= BIT(REQ_F_SINGLE_POLL_BIT),
911 	/* double poll may active */
912 	REQ_F_DOUBLE_POLL	= BIT(REQ_F_DOUBLE_POLL_BIT),
913 	/* request has already done partial IO */
914 	REQ_F_PARTIAL_IO	= BIT(REQ_F_PARTIAL_IO_BIT),
915 	/* fast poll multishot mode */
916 	REQ_F_APOLL_MULTISHOT	= BIT(REQ_F_APOLL_MULTISHOT_BIT),
917 	/* ->extra1 and ->extra2 are initialised */
918 	REQ_F_CQE32_INIT	= BIT(REQ_F_CQE32_INIT_BIT),
919 };
920 
921 struct async_poll {
922 	struct io_poll_iocb	poll;
923 	struct io_poll_iocb	*double_poll;
924 };
925 
926 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
927 
928 struct io_task_work {
929 	union {
930 		struct io_wq_work_node	node;
931 		struct llist_node	fallback_node;
932 	};
933 	io_req_tw_func_t		func;
934 };
935 
936 enum {
937 	IORING_RSRC_FILE		= 0,
938 	IORING_RSRC_BUFFER		= 1,
939 };
940 
941 struct io_cqe {
942 	__u64	user_data;
943 	__s32	res;
944 	/* fd initially, then cflags for completion */
945 	union {
946 		__u32	flags;
947 		int	fd;
948 	};
949 };
950 
951 enum {
952 	IO_CHECK_CQ_OVERFLOW_BIT,
953 	IO_CHECK_CQ_DROPPED_BIT,
954 };
955 
956 /*
957  * NOTE! Each of the iocb union members has the file pointer
958  * as the first entry in their struct definition. So you can
959  * access the file pointer through any of the sub-structs,
960  * or directly as just 'file' in this struct.
961  */
962 struct io_kiocb {
963 	union {
964 		struct file		*file;
965 		struct io_rw		rw;
966 		struct io_poll_iocb	poll;
967 		struct io_poll_update	poll_update;
968 		struct io_accept	accept;
969 		struct io_sync		sync;
970 		struct io_cancel	cancel;
971 		struct io_timeout	timeout;
972 		struct io_timeout_rem	timeout_rem;
973 		struct io_connect	connect;
974 		struct io_sr_msg	sr_msg;
975 		struct io_open		open;
976 		struct io_close		close;
977 		struct io_rsrc_update	rsrc_update;
978 		struct io_fadvise	fadvise;
979 		struct io_madvise	madvise;
980 		struct io_epoll		epoll;
981 		struct io_splice	splice;
982 		struct io_provide_buf	pbuf;
983 		struct io_statx		statx;
984 		struct io_shutdown	shutdown;
985 		struct io_rename	rename;
986 		struct io_unlink	unlink;
987 		struct io_mkdir		mkdir;
988 		struct io_symlink	symlink;
989 		struct io_hardlink	hardlink;
990 		struct io_msg		msg;
991 		struct io_xattr		xattr;
992 		struct io_socket	sock;
993 		struct io_uring_cmd	uring_cmd;
994 	};
995 
996 	u8				opcode;
997 	/* polled IO has completed */
998 	u8				iopoll_completed;
999 	/*
1000 	 * Can be either a fixed buffer index, or used with provided buffers.
1001 	 * For the latter, before issue it points to the buffer group ID,
1002 	 * and after selection it points to the buffer ID itself.
1003 	 */
1004 	u16				buf_index;
1005 	unsigned int			flags;
1006 
1007 	struct io_cqe			cqe;
1008 
1009 	struct io_ring_ctx		*ctx;
1010 	struct task_struct		*task;
1011 
1012 	struct io_rsrc_node		*rsrc_node;
1013 
1014 	union {
1015 		/* store used ubuf, so we can prevent reloading */
1016 		struct io_mapped_ubuf	*imu;
1017 
1018 		/* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
1019 		struct io_buffer	*kbuf;
1020 
1021 		/*
1022 		 * stores buffer ID for ring provided buffers, valid IFF
1023 		 * REQ_F_BUFFER_RING is set.
1024 		 */
1025 		struct io_buffer_list	*buf_list;
1026 	};
1027 
1028 	union {
1029 		/* used by request caches, completion batching and iopoll */
1030 		struct io_wq_work_node	comp_list;
1031 		/* cache ->apoll->events */
1032 		__poll_t apoll_events;
1033 	};
1034 	atomic_t			refs;
1035 	atomic_t			poll_refs;
1036 	struct io_task_work		io_task_work;
1037 	/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
1038 	union {
1039 		struct hlist_node	hash_node;
1040 		struct {
1041 			u64		extra1;
1042 			u64		extra2;
1043 		};
1044 	};
1045 	/* internal polling, see IORING_FEAT_FAST_POLL */
1046 	struct async_poll		*apoll;
1047 	/* opcode allocated if it needs to store data for async defer */
1048 	void				*async_data;
1049 	/* linked requests, IFF REQ_F_HARDLINK or REQ_F_LINK are set */
1050 	struct io_kiocb			*link;
1051 	/* custom credentials, valid IFF REQ_F_CREDS is set */
1052 	const struct cred		*creds;
1053 	struct io_wq_work		work;
1054 };
1055 
1056 struct io_tctx_node {
1057 	struct list_head	ctx_node;
1058 	struct task_struct	*task;
1059 	struct io_ring_ctx	*ctx;
1060 };
1061 
1062 struct io_defer_entry {
1063 	struct list_head	list;
1064 	struct io_kiocb		*req;
1065 	u32			seq;
1066 };
1067 
1068 struct io_cancel_data {
1069 	struct io_ring_ctx *ctx;
1070 	union {
1071 		u64 data;
1072 		struct file *file;
1073 	};
1074 	u32 flags;
1075 	int seq;
1076 };
1077 
1078 /*
1079  * The URING_CMD payload starts at 'cmd' in the first sqe, and continues into
1080  * the following sqe if SQE128 is used.
1081  */
1082 #define uring_cmd_pdu_size(is_sqe128)				\
1083 	((1 + !!(is_sqe128)) * sizeof(struct io_uring_sqe) -	\
1084 		offsetof(struct io_uring_sqe, cmd))
1085 
1086 struct io_op_def {
1087 	/* needs req->file assigned */
1088 	unsigned		needs_file : 1;
1089 	/* should block plug */
1090 	unsigned		plug : 1;
1091 	/* hash wq insertion if file is a regular file */
1092 	unsigned		hash_reg_file : 1;
1093 	/* unbound wq insertion if file is a non-regular file */
1094 	unsigned		unbound_nonreg_file : 1;
1095 	/* set if opcode supports polled "wait" */
1096 	unsigned		pollin : 1;
1097 	unsigned		pollout : 1;
1098 	unsigned		poll_exclusive : 1;
1099 	/* op supports buffer selection */
1100 	unsigned		buffer_select : 1;
1101 	/* do prep async if is going to be punted */
1102 	unsigned		needs_async_setup : 1;
1103 	/* opcode is not supported by this kernel */
1104 	unsigned		not_supported : 1;
1105 	/* skip auditing */
1106 	unsigned		audit_skip : 1;
1107 	/* supports ioprio */
1108 	unsigned		ioprio : 1;
1109 	/* supports iopoll */
1110 	unsigned		iopoll : 1;
1111 	/* size of async data needed, if any */
1112 	unsigned short		async_size;
1113 
1114 	int (*prep)(struct io_kiocb *, const struct io_uring_sqe *);
1115 	int (*issue)(struct io_kiocb *, unsigned int);
1116 };
1117 
1118 static const struct io_op_def io_op_defs[];
1119 
1120 /* requests with any of those set should undergo io_disarm_next() */
1121 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1122 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
1123 
1124 static bool io_disarm_next(struct io_kiocb *req);
1125 static void io_uring_del_tctx_node(unsigned long index);
1126 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1127 					 struct task_struct *task,
1128 					 bool cancel_all);
1129 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1130 
1131 static void __io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags);
1132 static void io_dismantle_req(struct io_kiocb *req);
1133 static void io_queue_linked_timeout(struct io_kiocb *req);
1134 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1135 				     struct io_uring_rsrc_update2 *up,
1136 				     unsigned nr_args);
1137 static void io_clean_op(struct io_kiocb *req);
1138 static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1139 					     unsigned issue_flags);
1140 static struct file *io_file_get_normal(struct io_kiocb *req, int fd);
1141 static void io_queue_sqe(struct io_kiocb *req);
1142 static void io_rsrc_put_work(struct work_struct *work);
1143 
1144 static void io_req_task_queue(struct io_kiocb *req);
1145 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
1146 static int io_req_prep_async(struct io_kiocb *req);
1147 
1148 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1149 				 unsigned int issue_flags, u32 slot_index);
1150 static int __io_close_fixed(struct io_kiocb *req, unsigned int issue_flags,
1151 			    unsigned int offset);
1152 static inline int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1153 
1154 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1155 static void io_eventfd_signal(struct io_ring_ctx *ctx);
1156 static void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags);
1157 
1158 static struct kmem_cache *req_cachep;
1159 
1160 static const struct file_operations io_uring_fops;
1161 
io_uring_get_opcode(u8 opcode)1162 const char *io_uring_get_opcode(u8 opcode)
1163 {
1164 	switch ((enum io_uring_op)opcode) {
1165 	case IORING_OP_NOP:
1166 		return "NOP";
1167 	case IORING_OP_READV:
1168 		return "READV";
1169 	case IORING_OP_WRITEV:
1170 		return "WRITEV";
1171 	case IORING_OP_FSYNC:
1172 		return "FSYNC";
1173 	case IORING_OP_READ_FIXED:
1174 		return "READ_FIXED";
1175 	case IORING_OP_WRITE_FIXED:
1176 		return "WRITE_FIXED";
1177 	case IORING_OP_POLL_ADD:
1178 		return "POLL_ADD";
1179 	case IORING_OP_POLL_REMOVE:
1180 		return "POLL_REMOVE";
1181 	case IORING_OP_SYNC_FILE_RANGE:
1182 		return "SYNC_FILE_RANGE";
1183 	case IORING_OP_SENDMSG:
1184 		return "SENDMSG";
1185 	case IORING_OP_RECVMSG:
1186 		return "RECVMSG";
1187 	case IORING_OP_TIMEOUT:
1188 		return "TIMEOUT";
1189 	case IORING_OP_TIMEOUT_REMOVE:
1190 		return "TIMEOUT_REMOVE";
1191 	case IORING_OP_ACCEPT:
1192 		return "ACCEPT";
1193 	case IORING_OP_ASYNC_CANCEL:
1194 		return "ASYNC_CANCEL";
1195 	case IORING_OP_LINK_TIMEOUT:
1196 		return "LINK_TIMEOUT";
1197 	case IORING_OP_CONNECT:
1198 		return "CONNECT";
1199 	case IORING_OP_FALLOCATE:
1200 		return "FALLOCATE";
1201 	case IORING_OP_OPENAT:
1202 		return "OPENAT";
1203 	case IORING_OP_CLOSE:
1204 		return "CLOSE";
1205 	case IORING_OP_FILES_UPDATE:
1206 		return "FILES_UPDATE";
1207 	case IORING_OP_STATX:
1208 		return "STATX";
1209 	case IORING_OP_READ:
1210 		return "READ";
1211 	case IORING_OP_WRITE:
1212 		return "WRITE";
1213 	case IORING_OP_FADVISE:
1214 		return "FADVISE";
1215 	case IORING_OP_MADVISE:
1216 		return "MADVISE";
1217 	case IORING_OP_SEND:
1218 		return "SEND";
1219 	case IORING_OP_RECV:
1220 		return "RECV";
1221 	case IORING_OP_OPENAT2:
1222 		return "OPENAT2";
1223 	case IORING_OP_EPOLL_CTL:
1224 		return "EPOLL_CTL";
1225 	case IORING_OP_SPLICE:
1226 		return "SPLICE";
1227 	case IORING_OP_PROVIDE_BUFFERS:
1228 		return "PROVIDE_BUFFERS";
1229 	case IORING_OP_REMOVE_BUFFERS:
1230 		return "REMOVE_BUFFERS";
1231 	case IORING_OP_TEE:
1232 		return "TEE";
1233 	case IORING_OP_SHUTDOWN:
1234 		return "SHUTDOWN";
1235 	case IORING_OP_RENAMEAT:
1236 		return "RENAMEAT";
1237 	case IORING_OP_UNLINKAT:
1238 		return "UNLINKAT";
1239 	case IORING_OP_MKDIRAT:
1240 		return "MKDIRAT";
1241 	case IORING_OP_SYMLINKAT:
1242 		return "SYMLINKAT";
1243 	case IORING_OP_LINKAT:
1244 		return "LINKAT";
1245 	case IORING_OP_MSG_RING:
1246 		return "MSG_RING";
1247 	case IORING_OP_FSETXATTR:
1248 		return "FSETXATTR";
1249 	case IORING_OP_SETXATTR:
1250 		return "SETXATTR";
1251 	case IORING_OP_FGETXATTR:
1252 		return "FGETXATTR";
1253 	case IORING_OP_GETXATTR:
1254 		return "GETXATTR";
1255 	case IORING_OP_SOCKET:
1256 		return "SOCKET";
1257 	case IORING_OP_URING_CMD:
1258 		return "URING_CMD";
1259 	case IORING_OP_LAST:
1260 		return "INVALID";
1261 	}
1262 	return "INVALID";
1263 }
1264 
io_uring_get_socket(struct file * file)1265 struct sock *io_uring_get_socket(struct file *file)
1266 {
1267 #if defined(CONFIG_UNIX)
1268 	if (file->f_op == &io_uring_fops) {
1269 		struct io_ring_ctx *ctx = file->private_data;
1270 
1271 		return ctx->ring_sock->sk;
1272 	}
1273 #endif
1274 	return NULL;
1275 }
1276 EXPORT_SYMBOL(io_uring_get_socket);
1277 
1278 #if defined(CONFIG_UNIX)
io_file_need_scm(struct file * filp)1279 static inline bool io_file_need_scm(struct file *filp)
1280 {
1281 #if defined(IO_URING_SCM_ALL)
1282 	return true;
1283 #else
1284 	return !!unix_get_socket(filp);
1285 #endif
1286 }
1287 #else
io_file_need_scm(struct file * filp)1288 static inline bool io_file_need_scm(struct file *filp)
1289 {
1290 	return false;
1291 }
1292 #endif
1293 
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)1294 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, unsigned issue_flags)
1295 {
1296 	lockdep_assert_held(&ctx->uring_lock);
1297 	if (issue_flags & IO_URING_F_UNLOCKED)
1298 		mutex_unlock(&ctx->uring_lock);
1299 }
1300 
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)1301 static void io_ring_submit_lock(struct io_ring_ctx *ctx, unsigned issue_flags)
1302 {
1303 	/*
1304 	 * "Normal" inline submissions always hold the uring_lock, since we
1305 	 * grab it from the system call. Same is true for the SQPOLL offload.
1306 	 * The only exception is when we've detached the request and issue it
1307 	 * from an async worker thread, grab the lock for that case.
1308 	 */
1309 	if (issue_flags & IO_URING_F_UNLOCKED)
1310 		mutex_lock(&ctx->uring_lock);
1311 	lockdep_assert_held(&ctx->uring_lock);
1312 }
1313 
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)1314 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1315 {
1316 	if (!*locked) {
1317 		mutex_lock(&ctx->uring_lock);
1318 		*locked = true;
1319 	}
1320 }
1321 
1322 #define io_for_each_link(pos, head) \
1323 	for (pos = (head); pos; pos = pos->link)
1324 
1325 /*
1326  * Shamelessly stolen from the mm implementation of page reference checking,
1327  * see commit f958d7b528b1 for details.
1328  */
1329 #define req_ref_zero_or_close_to_overflow(req)	\
1330 	((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1331 
req_ref_inc_not_zero(struct io_kiocb * req)1332 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1333 {
1334 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1335 	return atomic_inc_not_zero(&req->refs);
1336 }
1337 
req_ref_put_and_test(struct io_kiocb * req)1338 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1339 {
1340 	if (likely(!(req->flags & REQ_F_REFCOUNT)))
1341 		return true;
1342 
1343 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1344 	return atomic_dec_and_test(&req->refs);
1345 }
1346 
req_ref_get(struct io_kiocb * req)1347 static inline void req_ref_get(struct io_kiocb *req)
1348 {
1349 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1350 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1351 	atomic_inc(&req->refs);
1352 }
1353 
io_submit_flush_completions(struct io_ring_ctx * ctx)1354 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
1355 {
1356 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
1357 		__io_submit_flush_completions(ctx);
1358 }
1359 
__io_req_set_refcount(struct io_kiocb * req,int nr)1360 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1361 {
1362 	if (!(req->flags & REQ_F_REFCOUNT)) {
1363 		req->flags |= REQ_F_REFCOUNT;
1364 		atomic_set(&req->refs, nr);
1365 	}
1366 }
1367 
io_req_set_refcount(struct io_kiocb * req)1368 static inline void io_req_set_refcount(struct io_kiocb *req)
1369 {
1370 	__io_req_set_refcount(req, 1);
1371 }
1372 
1373 #define IO_RSRC_REF_BATCH	100
1374 
io_rsrc_put_node(struct io_rsrc_node * node,int nr)1375 static void io_rsrc_put_node(struct io_rsrc_node *node, int nr)
1376 {
1377 	percpu_ref_put_many(&node->refs, nr);
1378 }
1379 
io_req_put_rsrc_locked(struct io_kiocb * req,struct io_ring_ctx * ctx)1380 static inline void io_req_put_rsrc_locked(struct io_kiocb *req,
1381 					  struct io_ring_ctx *ctx)
1382 	__must_hold(&ctx->uring_lock)
1383 {
1384 	struct io_rsrc_node *node = req->rsrc_node;
1385 
1386 	if (node) {
1387 		if (node == ctx->rsrc_node)
1388 			ctx->rsrc_cached_refs++;
1389 		else
1390 			io_rsrc_put_node(node, 1);
1391 	}
1392 }
1393 
io_req_put_rsrc(struct io_kiocb * req)1394 static inline void io_req_put_rsrc(struct io_kiocb *req)
1395 {
1396 	if (req->rsrc_node)
1397 		io_rsrc_put_node(req->rsrc_node, 1);
1398 }
1399 
io_rsrc_refs_drop(struct io_ring_ctx * ctx)1400 static __cold void io_rsrc_refs_drop(struct io_ring_ctx *ctx)
1401 	__must_hold(&ctx->uring_lock)
1402 {
1403 	if (ctx->rsrc_cached_refs) {
1404 		io_rsrc_put_node(ctx->rsrc_node, ctx->rsrc_cached_refs);
1405 		ctx->rsrc_cached_refs = 0;
1406 	}
1407 }
1408 
io_rsrc_refs_refill(struct io_ring_ctx * ctx)1409 static void io_rsrc_refs_refill(struct io_ring_ctx *ctx)
1410 	__must_hold(&ctx->uring_lock)
1411 {
1412 	ctx->rsrc_cached_refs += IO_RSRC_REF_BATCH;
1413 	percpu_ref_get_many(&ctx->rsrc_node->refs, IO_RSRC_REF_BATCH);
1414 }
1415 
io_req_set_rsrc_node(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned int issue_flags)1416 static inline void io_req_set_rsrc_node(struct io_kiocb *req,
1417 					struct io_ring_ctx *ctx,
1418 					unsigned int issue_flags)
1419 {
1420 	if (!req->rsrc_node) {
1421 		req->rsrc_node = ctx->rsrc_node;
1422 
1423 		if (!(issue_flags & IO_URING_F_UNLOCKED)) {
1424 			lockdep_assert_held(&ctx->uring_lock);
1425 			ctx->rsrc_cached_refs--;
1426 			if (unlikely(ctx->rsrc_cached_refs < 0))
1427 				io_rsrc_refs_refill(ctx);
1428 		} else {
1429 			percpu_ref_get(&req->rsrc_node->refs);
1430 		}
1431 	}
1432 }
1433 
__io_put_kbuf(struct io_kiocb * req,struct list_head * list)1434 static unsigned int __io_put_kbuf(struct io_kiocb *req, struct list_head *list)
1435 {
1436 	if (req->flags & REQ_F_BUFFER_RING) {
1437 		if (req->buf_list)
1438 			req->buf_list->head++;
1439 		req->flags &= ~REQ_F_BUFFER_RING;
1440 	} else {
1441 		list_add(&req->kbuf->list, list);
1442 		req->flags &= ~REQ_F_BUFFER_SELECTED;
1443 	}
1444 
1445 	return IORING_CQE_F_BUFFER | (req->buf_index << IORING_CQE_BUFFER_SHIFT);
1446 }
1447 
io_put_kbuf_comp(struct io_kiocb * req)1448 static inline unsigned int io_put_kbuf_comp(struct io_kiocb *req)
1449 {
1450 	lockdep_assert_held(&req->ctx->completion_lock);
1451 
1452 	if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
1453 		return 0;
1454 	return __io_put_kbuf(req, &req->ctx->io_buffers_comp);
1455 }
1456 
io_put_kbuf(struct io_kiocb * req,unsigned issue_flags)1457 static inline unsigned int io_put_kbuf(struct io_kiocb *req,
1458 				       unsigned issue_flags)
1459 {
1460 	unsigned int cflags;
1461 
1462 	if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
1463 		return 0;
1464 
1465 	/*
1466 	 * We can add this buffer back to two lists:
1467 	 *
1468 	 * 1) The io_buffers_cache list. This one is protected by the
1469 	 *    ctx->uring_lock. If we already hold this lock, add back to this
1470 	 *    list as we can grab it from issue as well.
1471 	 * 2) The io_buffers_comp list. This one is protected by the
1472 	 *    ctx->completion_lock.
1473 	 *
1474 	 * We migrate buffers from the comp_list to the issue cache list
1475 	 * when we need one.
1476 	 */
1477 	if (req->flags & REQ_F_BUFFER_RING) {
1478 		/* no buffers to recycle for this case */
1479 		cflags = __io_put_kbuf(req, NULL);
1480 	} else if (issue_flags & IO_URING_F_UNLOCKED) {
1481 		struct io_ring_ctx *ctx = req->ctx;
1482 
1483 		spin_lock(&ctx->completion_lock);
1484 		cflags = __io_put_kbuf(req, &ctx->io_buffers_comp);
1485 		spin_unlock(&ctx->completion_lock);
1486 	} else {
1487 		lockdep_assert_held(&req->ctx->uring_lock);
1488 
1489 		cflags = __io_put_kbuf(req, &req->ctx->io_buffers_cache);
1490 	}
1491 
1492 	return cflags;
1493 }
1494 
io_buffer_get_list(struct io_ring_ctx * ctx,unsigned int bgid)1495 static struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
1496 						 unsigned int bgid)
1497 {
1498 	if (ctx->io_bl && bgid < BGID_ARRAY)
1499 		return &ctx->io_bl[bgid];
1500 
1501 	return xa_load(&ctx->io_bl_xa, bgid);
1502 }
1503 
io_kbuf_recycle(struct io_kiocb * req,unsigned issue_flags)1504 static void io_kbuf_recycle(struct io_kiocb *req, unsigned issue_flags)
1505 {
1506 	struct io_ring_ctx *ctx = req->ctx;
1507 	struct io_buffer_list *bl;
1508 	struct io_buffer *buf;
1509 
1510 	if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
1511 		return;
1512 	/*
1513 	 * For legacy provided buffer mode, don't recycle if we already did
1514 	 * IO to this buffer. For ring-mapped provided buffer mode, we should
1515 	 * increment ring->head to explicitly monopolize the buffer to avoid
1516 	 * multiple use.
1517 	 */
1518 	if ((req->flags & REQ_F_BUFFER_SELECTED) &&
1519 	    (req->flags & REQ_F_PARTIAL_IO))
1520 		return;
1521 
1522 	/*
1523 	 * READV uses fields in `struct io_rw` (len/addr) to stash the selected
1524 	 * buffer data. However if that buffer is recycled the original request
1525 	 * data stored in addr is lost. Therefore forbid recycling for now.
1526 	 */
1527 	if (req->opcode == IORING_OP_READV)
1528 		return;
1529 
1530 	/*
1531 	 * We don't need to recycle for REQ_F_BUFFER_RING, we can just clear
1532 	 * the flag and hence ensure that bl->head doesn't get incremented.
1533 	 * If the tail has already been incremented, hang on to it.
1534 	 */
1535 	if (req->flags & REQ_F_BUFFER_RING) {
1536 		if (req->buf_list) {
1537 			if (req->flags & REQ_F_PARTIAL_IO) {
1538 				req->buf_list->head++;
1539 				req->buf_list = NULL;
1540 			} else {
1541 				req->buf_index = req->buf_list->bgid;
1542 				req->flags &= ~REQ_F_BUFFER_RING;
1543 			}
1544 		}
1545 		return;
1546 	}
1547 
1548 	io_ring_submit_lock(ctx, issue_flags);
1549 
1550 	buf = req->kbuf;
1551 	bl = io_buffer_get_list(ctx, buf->bgid);
1552 	list_add(&buf->list, &bl->buf_list);
1553 	req->flags &= ~REQ_F_BUFFER_SELECTED;
1554 	req->buf_index = buf->bgid;
1555 
1556 	io_ring_submit_unlock(ctx, issue_flags);
1557 }
1558 
io_match_task(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1559 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1560 			  bool cancel_all)
1561 	__must_hold(&req->ctx->timeout_lock)
1562 {
1563 	struct io_kiocb *req;
1564 
1565 	if (task && head->task != task)
1566 		return false;
1567 	if (cancel_all)
1568 		return true;
1569 
1570 	io_for_each_link(req, head) {
1571 		if (req->flags & REQ_F_INFLIGHT)
1572 			return true;
1573 	}
1574 	return false;
1575 }
1576 
io_match_linked(struct io_kiocb * head)1577 static bool io_match_linked(struct io_kiocb *head)
1578 {
1579 	struct io_kiocb *req;
1580 
1581 	io_for_each_link(req, head) {
1582 		if (req->flags & REQ_F_INFLIGHT)
1583 			return true;
1584 	}
1585 	return false;
1586 }
1587 
1588 /*
1589  * As io_match_task() but protected against racing with linked timeouts.
1590  * User must not hold timeout_lock.
1591  */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1592 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1593 			       bool cancel_all)
1594 {
1595 	bool matched;
1596 
1597 	if (task && head->task != task)
1598 		return false;
1599 	if (cancel_all)
1600 		return true;
1601 
1602 	if (head->flags & REQ_F_LINK_TIMEOUT) {
1603 		struct io_ring_ctx *ctx = head->ctx;
1604 
1605 		/* protect against races with linked timeouts */
1606 		spin_lock_irq(&ctx->timeout_lock);
1607 		matched = io_match_linked(head);
1608 		spin_unlock_irq(&ctx->timeout_lock);
1609 	} else {
1610 		matched = io_match_linked(head);
1611 	}
1612 	return matched;
1613 }
1614 
req_has_async_data(struct io_kiocb * req)1615 static inline bool req_has_async_data(struct io_kiocb *req)
1616 {
1617 	return req->flags & REQ_F_ASYNC_DATA;
1618 }
1619 
req_set_fail(struct io_kiocb * req)1620 static inline void req_set_fail(struct io_kiocb *req)
1621 {
1622 	req->flags |= REQ_F_FAIL;
1623 	if (req->flags & REQ_F_CQE_SKIP) {
1624 		req->flags &= ~REQ_F_CQE_SKIP;
1625 		req->flags |= REQ_F_SKIP_LINK_CQES;
1626 	}
1627 }
1628 
req_fail_link_node(struct io_kiocb * req,int res)1629 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1630 {
1631 	req_set_fail(req);
1632 	req->cqe.res = res;
1633 }
1634 
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)1635 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
1636 {
1637 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
1638 }
1639 
io_ring_ctx_ref_free(struct percpu_ref * ref)1640 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
1641 {
1642 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1643 
1644 	complete(&ctx->ref_comp);
1645 }
1646 
io_is_timeout_noseq(struct io_kiocb * req)1647 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1648 {
1649 	return !req->timeout.off;
1650 }
1651 
io_fallback_req_func(struct work_struct * work)1652 static __cold void io_fallback_req_func(struct work_struct *work)
1653 {
1654 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1655 						fallback_work.work);
1656 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1657 	struct io_kiocb *req, *tmp;
1658 	bool locked = false;
1659 
1660 	percpu_ref_get(&ctx->refs);
1661 	llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1662 		req->io_task_work.func(req, &locked);
1663 
1664 	if (locked) {
1665 		io_submit_flush_completions(ctx);
1666 		mutex_unlock(&ctx->uring_lock);
1667 	}
1668 	percpu_ref_put(&ctx->refs);
1669 }
1670 
io_ring_ctx_alloc(struct io_uring_params * p)1671 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1672 {
1673 	struct io_ring_ctx *ctx;
1674 	int hash_bits;
1675 
1676 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1677 	if (!ctx)
1678 		return NULL;
1679 
1680 	xa_init(&ctx->io_bl_xa);
1681 
1682 	/*
1683 	 * Use 5 bits less than the max cq entries, that should give us around
1684 	 * 32 entries per hash list if totally full and uniformly spread.
1685 	 */
1686 	hash_bits = ilog2(p->cq_entries);
1687 	hash_bits -= 5;
1688 	if (hash_bits <= 0)
1689 		hash_bits = 1;
1690 	ctx->cancel_hash_bits = hash_bits;
1691 	ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1692 					GFP_KERNEL);
1693 	if (!ctx->cancel_hash)
1694 		goto err;
1695 	__hash_init(ctx->cancel_hash, 1U << hash_bits);
1696 
1697 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1698 	if (!ctx->dummy_ubuf)
1699 		goto err;
1700 	/* set invalid range, so io_import_fixed() fails meeting it */
1701 	ctx->dummy_ubuf->ubuf = -1UL;
1702 
1703 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1704 			    0, GFP_KERNEL))
1705 		goto err;
1706 
1707 	ctx->flags = p->flags;
1708 	init_waitqueue_head(&ctx->sqo_sq_wait);
1709 	INIT_LIST_HEAD(&ctx->sqd_list);
1710 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
1711 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
1712 	INIT_LIST_HEAD(&ctx->apoll_cache);
1713 	init_completion(&ctx->ref_comp);
1714 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1715 	mutex_init(&ctx->uring_lock);
1716 	init_waitqueue_head(&ctx->cq_wait);
1717 	spin_lock_init(&ctx->completion_lock);
1718 	spin_lock_init(&ctx->timeout_lock);
1719 	INIT_WQ_LIST(&ctx->iopoll_list);
1720 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
1721 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
1722 	INIT_LIST_HEAD(&ctx->defer_list);
1723 	INIT_LIST_HEAD(&ctx->timeout_list);
1724 	INIT_LIST_HEAD(&ctx->ltimeout_list);
1725 	spin_lock_init(&ctx->rsrc_ref_lock);
1726 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1727 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1728 	init_llist_head(&ctx->rsrc_put_llist);
1729 	INIT_LIST_HEAD(&ctx->tctx_list);
1730 	ctx->submit_state.free_list.next = NULL;
1731 	INIT_WQ_LIST(&ctx->locked_free_list);
1732 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1733 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
1734 	return ctx;
1735 err:
1736 	kfree(ctx->dummy_ubuf);
1737 	kfree(ctx->cancel_hash);
1738 	kfree(ctx->io_bl);
1739 	xa_destroy(&ctx->io_bl_xa);
1740 	kfree(ctx);
1741 	return NULL;
1742 }
1743 
io_account_cq_overflow(struct io_ring_ctx * ctx)1744 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1745 {
1746 	struct io_rings *r = ctx->rings;
1747 
1748 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1749 	ctx->cq_extra--;
1750 }
1751 
req_need_defer(struct io_kiocb * req,u32 seq)1752 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1753 {
1754 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1755 		struct io_ring_ctx *ctx = req->ctx;
1756 
1757 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1758 	}
1759 
1760 	return false;
1761 }
1762 
io_req_ffs_set(struct io_kiocb * req)1763 static inline bool io_req_ffs_set(struct io_kiocb *req)
1764 {
1765 	return req->flags & REQ_F_FIXED_FILE;
1766 }
1767 
io_req_track_inflight(struct io_kiocb * req)1768 static inline void io_req_track_inflight(struct io_kiocb *req)
1769 {
1770 	if (!(req->flags & REQ_F_INFLIGHT)) {
1771 		req->flags |= REQ_F_INFLIGHT;
1772 		atomic_inc(&req->task->io_uring->inflight_tracked);
1773 	}
1774 }
1775 
__io_prep_linked_timeout(struct io_kiocb * req)1776 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1777 {
1778 	if (WARN_ON_ONCE(!req->link))
1779 		return NULL;
1780 
1781 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
1782 	req->flags |= REQ_F_LINK_TIMEOUT;
1783 
1784 	/* linked timeouts should have two refs once prep'ed */
1785 	io_req_set_refcount(req);
1786 	__io_req_set_refcount(req->link, 2);
1787 	return req->link;
1788 }
1789 
io_prep_linked_timeout(struct io_kiocb * req)1790 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1791 {
1792 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1793 		return NULL;
1794 	return __io_prep_linked_timeout(req);
1795 }
1796 
__io_arm_ltimeout(struct io_kiocb * req)1797 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
1798 {
1799 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
1800 }
1801 
io_arm_ltimeout(struct io_kiocb * req)1802 static inline void io_arm_ltimeout(struct io_kiocb *req)
1803 {
1804 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
1805 		__io_arm_ltimeout(req);
1806 }
1807 
io_prep_async_work(struct io_kiocb * req)1808 static void io_prep_async_work(struct io_kiocb *req)
1809 {
1810 	const struct io_op_def *def = &io_op_defs[req->opcode];
1811 	struct io_ring_ctx *ctx = req->ctx;
1812 
1813 	if (!(req->flags & REQ_F_CREDS)) {
1814 		req->flags |= REQ_F_CREDS;
1815 		req->creds = get_current_cred();
1816 	}
1817 
1818 	req->work.list.next = NULL;
1819 	req->work.flags = 0;
1820 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
1821 	if (req->flags & REQ_F_FORCE_ASYNC)
1822 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
1823 
1824 	if (req->flags & REQ_F_ISREG) {
1825 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1826 			io_wq_hash_work(&req->work, file_inode(req->file));
1827 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1828 		if (def->unbound_nonreg_file)
1829 			req->work.flags |= IO_WQ_WORK_UNBOUND;
1830 	}
1831 }
1832 
io_prep_async_link(struct io_kiocb * req)1833 static void io_prep_async_link(struct io_kiocb *req)
1834 {
1835 	struct io_kiocb *cur;
1836 
1837 	if (req->flags & REQ_F_LINK_TIMEOUT) {
1838 		struct io_ring_ctx *ctx = req->ctx;
1839 
1840 		spin_lock_irq(&ctx->timeout_lock);
1841 		io_for_each_link(cur, req)
1842 			io_prep_async_work(cur);
1843 		spin_unlock_irq(&ctx->timeout_lock);
1844 	} else {
1845 		io_for_each_link(cur, req)
1846 			io_prep_async_work(cur);
1847 	}
1848 }
1849 
io_req_add_compl_list(struct io_kiocb * req)1850 static inline void io_req_add_compl_list(struct io_kiocb *req)
1851 {
1852 	struct io_submit_state *state = &req->ctx->submit_state;
1853 
1854 	if (!(req->flags & REQ_F_CQE_SKIP))
1855 		state->flush_cqes = true;
1856 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
1857 }
1858 
io_queue_iowq(struct io_kiocb * req,bool * dont_use)1859 static void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
1860 {
1861 	struct io_kiocb *link = io_prep_linked_timeout(req);
1862 	struct io_uring_task *tctx = req->task->io_uring;
1863 
1864 	BUG_ON(!tctx);
1865 	BUG_ON(!tctx->io_wq);
1866 
1867 	/* init ->work of the whole link before punting */
1868 	io_prep_async_link(req);
1869 
1870 	/*
1871 	 * Not expected to happen, but if we do have a bug where this _can_
1872 	 * happen, catch it here and ensure the request is marked as
1873 	 * canceled. That will make io-wq go through the usual work cancel
1874 	 * procedure rather than attempt to run this request (or create a new
1875 	 * worker for it).
1876 	 */
1877 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1878 		req->work.flags |= IO_WQ_WORK_CANCEL;
1879 
1880 	trace_io_uring_queue_async_work(req->ctx, req, req->cqe.user_data,
1881 					req->opcode, req->flags, &req->work,
1882 					io_wq_is_hashed(&req->work));
1883 	io_wq_enqueue(tctx->io_wq, &req->work);
1884 	if (link)
1885 		io_queue_linked_timeout(link);
1886 }
1887 
io_kill_timeout(struct io_kiocb * req,int status)1888 static void io_kill_timeout(struct io_kiocb *req, int status)
1889 	__must_hold(&req->ctx->completion_lock)
1890 	__must_hold(&req->ctx->timeout_lock)
1891 {
1892 	struct io_timeout_data *io = req->async_data;
1893 
1894 	if (hrtimer_try_to_cancel(&io->timer) != -1) {
1895 		if (status)
1896 			req_set_fail(req);
1897 		atomic_set(&req->ctx->cq_timeouts,
1898 			atomic_read(&req->ctx->cq_timeouts) + 1);
1899 		list_del_init(&req->timeout.list);
1900 		io_req_tw_post_queue(req, status, 0);
1901 	}
1902 }
1903 
io_queue_deferred(struct io_ring_ctx * ctx)1904 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
1905 {
1906 	while (!list_empty(&ctx->defer_list)) {
1907 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1908 						struct io_defer_entry, list);
1909 
1910 		if (req_need_defer(de->req, de->seq))
1911 			break;
1912 		list_del_init(&de->list);
1913 		io_req_task_queue(de->req);
1914 		kfree(de);
1915 	}
1916 }
1917 
io_flush_timeouts(struct io_ring_ctx * ctx)1918 static __cold void io_flush_timeouts(struct io_ring_ctx *ctx)
1919 	__must_hold(&ctx->completion_lock)
1920 {
1921 	u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1922 	struct io_kiocb *req, *tmp;
1923 
1924 	spin_lock_irq(&ctx->timeout_lock);
1925 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1926 		u32 events_needed, events_got;
1927 
1928 		if (io_is_timeout_noseq(req))
1929 			break;
1930 
1931 		/*
1932 		 * Since seq can easily wrap around over time, subtract
1933 		 * the last seq at which timeouts were flushed before comparing.
1934 		 * Assuming not more than 2^31-1 events have happened since,
1935 		 * these subtractions won't have wrapped, so we can check if
1936 		 * target is in [last_seq, current_seq] by comparing the two.
1937 		 */
1938 		events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1939 		events_got = seq - ctx->cq_last_tm_flush;
1940 		if (events_got < events_needed)
1941 			break;
1942 
1943 		io_kill_timeout(req, 0);
1944 	}
1945 	ctx->cq_last_tm_flush = seq;
1946 	spin_unlock_irq(&ctx->timeout_lock);
1947 }
1948 
io_commit_cqring(struct io_ring_ctx * ctx)1949 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1950 {
1951 	/* order cqe stores with ring update */
1952 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1953 }
1954 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)1955 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1956 {
1957 	if (ctx->off_timeout_used || ctx->drain_active) {
1958 		spin_lock(&ctx->completion_lock);
1959 		if (ctx->off_timeout_used)
1960 			io_flush_timeouts(ctx);
1961 		if (ctx->drain_active)
1962 			io_queue_deferred(ctx);
1963 		io_commit_cqring(ctx);
1964 		spin_unlock(&ctx->completion_lock);
1965 	}
1966 	if (ctx->has_evfd)
1967 		io_eventfd_signal(ctx);
1968 }
1969 
io_sqring_full(struct io_ring_ctx * ctx)1970 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1971 {
1972 	struct io_rings *r = ctx->rings;
1973 
1974 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1975 }
1976 
__io_cqring_events(struct io_ring_ctx * ctx)1977 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1978 {
1979 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1980 }
1981 
1982 /*
1983  * writes to the cq entry need to come after reading head; the
1984  * control dependency is enough as we're using WRITE_ONCE to
1985  * fill the cq entry
1986  */
__io_get_cqe(struct io_ring_ctx * ctx)1987 static noinline struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx)
1988 {
1989 	struct io_rings *rings = ctx->rings;
1990 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
1991 	unsigned int shift = 0;
1992 	unsigned int free, queued, len;
1993 
1994 	if (ctx->flags & IORING_SETUP_CQE32)
1995 		shift = 1;
1996 
1997 	/* userspace may cheat modifying the tail, be safe and do min */
1998 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
1999 	free = ctx->cq_entries - queued;
2000 	/* we need a contiguous range, limit based on the current array offset */
2001 	len = min(free, ctx->cq_entries - off);
2002 	if (!len)
2003 		return NULL;
2004 
2005 	ctx->cached_cq_tail++;
2006 	ctx->cqe_cached = &rings->cqes[off];
2007 	ctx->cqe_sentinel = ctx->cqe_cached + len;
2008 	ctx->cqe_cached++;
2009 	return &rings->cqes[off << shift];
2010 }
2011 
io_get_cqe(struct io_ring_ctx * ctx)2012 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
2013 {
2014 	if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
2015 		struct io_uring_cqe *cqe = ctx->cqe_cached;
2016 
2017 		if (ctx->flags & IORING_SETUP_CQE32) {
2018 			unsigned int off = ctx->cqe_cached - ctx->rings->cqes;
2019 
2020 			cqe += off;
2021 		}
2022 
2023 		ctx->cached_cq_tail++;
2024 		ctx->cqe_cached++;
2025 		return cqe;
2026 	}
2027 
2028 	return __io_get_cqe(ctx);
2029 }
2030 
io_eventfd_signal(struct io_ring_ctx * ctx)2031 static void io_eventfd_signal(struct io_ring_ctx *ctx)
2032 {
2033 	struct io_ev_fd *ev_fd;
2034 
2035 	rcu_read_lock();
2036 	/*
2037 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
2038 	 * and eventfd_signal
2039 	 */
2040 	ev_fd = rcu_dereference(ctx->io_ev_fd);
2041 
2042 	/*
2043 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
2044 	 * completed between the NULL check of ctx->io_ev_fd at the start of
2045 	 * the function and rcu_read_lock.
2046 	 */
2047 	if (unlikely(!ev_fd))
2048 		goto out;
2049 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
2050 		goto out;
2051 
2052 	if (!ev_fd->eventfd_async || io_wq_current_is_worker())
2053 		eventfd_signal(ev_fd->cq_ev_fd, 1);
2054 out:
2055 	rcu_read_unlock();
2056 }
2057 
io_cqring_wake(struct io_ring_ctx * ctx)2058 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
2059 {
2060 	/*
2061 	 * wake_up_all() may seem excessive, but io_wake_function() and
2062 	 * io_should_wake() handle the termination of the loop and only
2063 	 * wake as many waiters as we need to.
2064 	 */
2065 	if (wq_has_sleeper(&ctx->cq_wait))
2066 		wake_up_all(&ctx->cq_wait);
2067 }
2068 
2069 /*
2070  * This should only get called when at least one event has been posted.
2071  * Some applications rely on the eventfd notification count only changing
2072  * IFF a new CQE has been added to the CQ ring. There's no depedency on
2073  * 1:1 relationship between how many times this function is called (and
2074  * hence the eventfd count) and number of CQEs posted to the CQ ring.
2075  */
io_cqring_ev_posted(struct io_ring_ctx * ctx)2076 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
2077 {
2078 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
2079 		     ctx->has_evfd))
2080 		__io_commit_cqring_flush(ctx);
2081 
2082 	io_cqring_wake(ctx);
2083 }
2084 
io_cqring_ev_posted_iopoll(struct io_ring_ctx * ctx)2085 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
2086 {
2087 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
2088 		     ctx->has_evfd))
2089 		__io_commit_cqring_flush(ctx);
2090 
2091 	if (ctx->flags & IORING_SETUP_SQPOLL)
2092 		io_cqring_wake(ctx);
2093 }
2094 
2095 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)2096 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
2097 {
2098 	bool all_flushed, posted;
2099 	size_t cqe_size = sizeof(struct io_uring_cqe);
2100 
2101 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
2102 		return false;
2103 
2104 	if (ctx->flags & IORING_SETUP_CQE32)
2105 		cqe_size <<= 1;
2106 
2107 	posted = false;
2108 	spin_lock(&ctx->completion_lock);
2109 	while (!list_empty(&ctx->cq_overflow_list)) {
2110 		struct io_uring_cqe *cqe = io_get_cqe(ctx);
2111 		struct io_overflow_cqe *ocqe;
2112 
2113 		if (!cqe && !force)
2114 			break;
2115 		ocqe = list_first_entry(&ctx->cq_overflow_list,
2116 					struct io_overflow_cqe, list);
2117 		if (cqe)
2118 			memcpy(cqe, &ocqe->cqe, cqe_size);
2119 		else
2120 			io_account_cq_overflow(ctx);
2121 
2122 		posted = true;
2123 		list_del(&ocqe->list);
2124 		kfree(ocqe);
2125 	}
2126 
2127 	all_flushed = list_empty(&ctx->cq_overflow_list);
2128 	if (all_flushed) {
2129 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
2130 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
2131 	}
2132 
2133 	io_commit_cqring(ctx);
2134 	spin_unlock(&ctx->completion_lock);
2135 	if (posted)
2136 		io_cqring_ev_posted(ctx);
2137 	return all_flushed;
2138 }
2139 
io_cqring_overflow_flush(struct io_ring_ctx * ctx)2140 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
2141 {
2142 	bool ret = true;
2143 
2144 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2145 		/* iopoll syncs against uring_lock, not completion_lock */
2146 		if (ctx->flags & IORING_SETUP_IOPOLL)
2147 			mutex_lock(&ctx->uring_lock);
2148 		ret = __io_cqring_overflow_flush(ctx, false);
2149 		if (ctx->flags & IORING_SETUP_IOPOLL)
2150 			mutex_unlock(&ctx->uring_lock);
2151 	}
2152 
2153 	return ret;
2154 }
2155 
__io_put_task(struct task_struct * task,int nr)2156 static void __io_put_task(struct task_struct *task, int nr)
2157 {
2158 	struct io_uring_task *tctx = task->io_uring;
2159 
2160 	percpu_counter_sub(&tctx->inflight, nr);
2161 	if (unlikely(atomic_read(&tctx->in_idle)))
2162 		wake_up(&tctx->wait);
2163 	put_task_struct_many(task, nr);
2164 }
2165 
2166 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)2167 static inline void io_put_task(struct task_struct *task, int nr)
2168 {
2169 	if (likely(task == current))
2170 		task->io_uring->cached_refs += nr;
2171 	else
2172 		__io_put_task(task, nr);
2173 }
2174 
io_task_refs_refill(struct io_uring_task * tctx)2175 static void io_task_refs_refill(struct io_uring_task *tctx)
2176 {
2177 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
2178 
2179 	percpu_counter_add(&tctx->inflight, refill);
2180 	refcount_add(refill, &current->usage);
2181 	tctx->cached_refs += refill;
2182 }
2183 
io_get_task_refs(int nr)2184 static inline void io_get_task_refs(int nr)
2185 {
2186 	struct io_uring_task *tctx = current->io_uring;
2187 
2188 	tctx->cached_refs -= nr;
2189 	if (unlikely(tctx->cached_refs < 0))
2190 		io_task_refs_refill(tctx);
2191 }
2192 
io_uring_drop_tctx_refs(struct task_struct * task)2193 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
2194 {
2195 	struct io_uring_task *tctx = task->io_uring;
2196 	unsigned int refs = tctx->cached_refs;
2197 
2198 	if (refs) {
2199 		tctx->cached_refs = 0;
2200 		percpu_counter_sub(&tctx->inflight, refs);
2201 		put_task_struct_many(task, refs);
2202 	}
2203 }
2204 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)2205 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
2206 				     s32 res, u32 cflags, u64 extra1,
2207 				     u64 extra2)
2208 {
2209 	struct io_overflow_cqe *ocqe;
2210 	size_t ocq_size = sizeof(struct io_overflow_cqe);
2211 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
2212 
2213 	if (is_cqe32)
2214 		ocq_size += sizeof(struct io_uring_cqe);
2215 
2216 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
2217 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
2218 	if (!ocqe) {
2219 		/*
2220 		 * If we're in ring overflow flush mode, or in task cancel mode,
2221 		 * or cannot allocate an overflow entry, then we need to drop it
2222 		 * on the floor.
2223 		 */
2224 		io_account_cq_overflow(ctx);
2225 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
2226 		return false;
2227 	}
2228 	if (list_empty(&ctx->cq_overflow_list)) {
2229 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
2230 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
2231 
2232 	}
2233 	ocqe->cqe.user_data = user_data;
2234 	ocqe->cqe.res = res;
2235 	ocqe->cqe.flags = cflags;
2236 	if (is_cqe32) {
2237 		ocqe->cqe.big_cqe[0] = extra1;
2238 		ocqe->cqe.big_cqe[1] = extra2;
2239 	}
2240 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
2241 	return true;
2242 }
2243 
__io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)2244 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
2245 				     struct io_kiocb *req)
2246 {
2247 	struct io_uring_cqe *cqe;
2248 
2249 	if (!(ctx->flags & IORING_SETUP_CQE32)) {
2250 		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
2251 					req->cqe.res, req->cqe.flags, 0, 0);
2252 
2253 		/*
2254 		 * If we can't get a cq entry, userspace overflowed the
2255 		 * submission (by quite a lot). Increment the overflow count in
2256 		 * the ring.
2257 		 */
2258 		cqe = io_get_cqe(ctx);
2259 		if (likely(cqe)) {
2260 			memcpy(cqe, &req->cqe, sizeof(*cqe));
2261 			return true;
2262 		}
2263 
2264 		return io_cqring_event_overflow(ctx, req->cqe.user_data,
2265 						req->cqe.res, req->cqe.flags,
2266 						0, 0);
2267 	} else {
2268 		u64 extra1 = 0, extra2 = 0;
2269 
2270 		if (req->flags & REQ_F_CQE32_INIT) {
2271 			extra1 = req->extra1;
2272 			extra2 = req->extra2;
2273 		}
2274 
2275 		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
2276 					req->cqe.res, req->cqe.flags, extra1, extra2);
2277 
2278 		/*
2279 		 * If we can't get a cq entry, userspace overflowed the
2280 		 * submission (by quite a lot). Increment the overflow count in
2281 		 * the ring.
2282 		 */
2283 		cqe = io_get_cqe(ctx);
2284 		if (likely(cqe)) {
2285 			memcpy(cqe, &req->cqe, sizeof(struct io_uring_cqe));
2286 			WRITE_ONCE(cqe->big_cqe[0], extra1);
2287 			WRITE_ONCE(cqe->big_cqe[1], extra2);
2288 			return true;
2289 		}
2290 
2291 		return io_cqring_event_overflow(ctx, req->cqe.user_data,
2292 				req->cqe.res, req->cqe.flags,
2293 				extra1, extra2);
2294 	}
2295 }
2296 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)2297 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
2298 				     s32 res, u32 cflags)
2299 {
2300 	struct io_uring_cqe *cqe;
2301 
2302 	ctx->cq_extra++;
2303 	trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
2304 
2305 	/*
2306 	 * If we can't get a cq entry, userspace overflowed the
2307 	 * submission (by quite a lot). Increment the overflow count in
2308 	 * the ring.
2309 	 */
2310 	cqe = io_get_cqe(ctx);
2311 	if (likely(cqe)) {
2312 		WRITE_ONCE(cqe->user_data, user_data);
2313 		WRITE_ONCE(cqe->res, res);
2314 		WRITE_ONCE(cqe->flags, cflags);
2315 
2316 		if (ctx->flags & IORING_SETUP_CQE32) {
2317 			WRITE_ONCE(cqe->big_cqe[0], 0);
2318 			WRITE_ONCE(cqe->big_cqe[1], 0);
2319 		}
2320 		return true;
2321 	}
2322 	return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
2323 }
2324 
__io_req_complete_put(struct io_kiocb * req)2325 static void __io_req_complete_put(struct io_kiocb *req)
2326 {
2327 	/*
2328 	 * If we're the last reference to this request, add to our locked
2329 	 * free_list cache.
2330 	 */
2331 	if (req_ref_put_and_test(req)) {
2332 		struct io_ring_ctx *ctx = req->ctx;
2333 
2334 		if (req->flags & IO_REQ_LINK_FLAGS) {
2335 			if (req->flags & IO_DISARM_MASK)
2336 				io_disarm_next(req);
2337 			if (req->link) {
2338 				io_req_task_queue(req->link);
2339 				req->link = NULL;
2340 			}
2341 		}
2342 		io_req_put_rsrc(req);
2343 		/*
2344 		 * Selected buffer deallocation in io_clean_op() assumes that
2345 		 * we don't hold ->completion_lock. Clean them here to avoid
2346 		 * deadlocks.
2347 		 */
2348 		io_put_kbuf_comp(req);
2349 		io_dismantle_req(req);
2350 		io_put_task(req->task, 1);
2351 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
2352 		ctx->locked_free_nr++;
2353 	}
2354 }
2355 
__io_req_complete_post(struct io_kiocb * req,s32 res,u32 cflags)2356 static void __io_req_complete_post(struct io_kiocb *req, s32 res,
2357 				   u32 cflags)
2358 {
2359 	if (!(req->flags & REQ_F_CQE_SKIP)) {
2360 		req->cqe.res = res;
2361 		req->cqe.flags = cflags;
2362 		__io_fill_cqe_req(req->ctx, req);
2363 	}
2364 	__io_req_complete_put(req);
2365 }
2366 
io_req_complete_post(struct io_kiocb * req,s32 res,u32 cflags)2367 static void io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags)
2368 {
2369 	struct io_ring_ctx *ctx = req->ctx;
2370 
2371 	spin_lock(&ctx->completion_lock);
2372 	__io_req_complete_post(req, res, cflags);
2373 	io_commit_cqring(ctx);
2374 	spin_unlock(&ctx->completion_lock);
2375 	io_cqring_ev_posted(ctx);
2376 }
2377 
io_req_complete_state(struct io_kiocb * req,s32 res,u32 cflags)2378 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
2379 					 u32 cflags)
2380 {
2381 	req->cqe.res = res;
2382 	req->cqe.flags = cflags;
2383 	req->flags |= REQ_F_COMPLETE_INLINE;
2384 }
2385 
__io_req_complete(struct io_kiocb * req,unsigned issue_flags,s32 res,u32 cflags)2386 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
2387 				     s32 res, u32 cflags)
2388 {
2389 	if (issue_flags & IO_URING_F_COMPLETE_DEFER)
2390 		io_req_complete_state(req, res, cflags);
2391 	else
2392 		io_req_complete_post(req, res, cflags);
2393 }
2394 
io_req_complete(struct io_kiocb * req,s32 res)2395 static inline void io_req_complete(struct io_kiocb *req, s32 res)
2396 {
2397 	if (res < 0)
2398 		req_set_fail(req);
2399 	__io_req_complete(req, 0, res, 0);
2400 }
2401 
io_req_complete_failed(struct io_kiocb * req,s32 res)2402 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
2403 {
2404 	req_set_fail(req);
2405 	io_req_complete_post(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
2406 }
2407 
2408 /*
2409  * Don't initialise the fields below on every allocation, but do that in
2410  * advance and keep them valid across allocations.
2411  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)2412 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
2413 {
2414 	req->ctx = ctx;
2415 	req->link = NULL;
2416 	req->async_data = NULL;
2417 	/* not necessary, but safer to zero */
2418 	req->cqe.res = 0;
2419 }
2420 
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)2421 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
2422 					struct io_submit_state *state)
2423 {
2424 	spin_lock(&ctx->completion_lock);
2425 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
2426 	ctx->locked_free_nr = 0;
2427 	spin_unlock(&ctx->completion_lock);
2428 }
2429 
io_req_cache_empty(struct io_ring_ctx * ctx)2430 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
2431 {
2432 	return !ctx->submit_state.free_list.next;
2433 }
2434 
2435 /*
2436  * A request might get retired back into the request caches even before opcode
2437  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
2438  * Because of that, io_alloc_req() should be called only under ->uring_lock
2439  * and with extra caution to not get a request that is still worked on.
2440  */
__io_alloc_req_refill(struct io_ring_ctx * ctx)2441 static __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
2442 	__must_hold(&ctx->uring_lock)
2443 {
2444 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
2445 	void *reqs[IO_REQ_ALLOC_BATCH];
2446 	int ret, i;
2447 
2448 	/*
2449 	 * If we have more than a batch's worth of requests in our IRQ side
2450 	 * locked cache, grab the lock and move them over to our submission
2451 	 * side cache.
2452 	 */
2453 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
2454 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2455 		if (!io_req_cache_empty(ctx))
2456 			return true;
2457 	}
2458 
2459 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
2460 
2461 	/*
2462 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2463 	 * retry single alloc to be on the safe side.
2464 	 */
2465 	if (unlikely(ret <= 0)) {
2466 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2467 		if (!reqs[0])
2468 			return false;
2469 		ret = 1;
2470 	}
2471 
2472 	percpu_ref_get_many(&ctx->refs, ret);
2473 	for (i = 0; i < ret; i++) {
2474 		struct io_kiocb *req = reqs[i];
2475 
2476 		io_preinit_req(req, ctx);
2477 		io_req_add_to_cache(req, ctx);
2478 	}
2479 	return true;
2480 }
2481 
io_alloc_req_refill(struct io_ring_ctx * ctx)2482 static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
2483 {
2484 	if (unlikely(io_req_cache_empty(ctx)))
2485 		return __io_alloc_req_refill(ctx);
2486 	return true;
2487 }
2488 
io_alloc_req(struct io_ring_ctx * ctx)2489 static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
2490 {
2491 	struct io_wq_work_node *node;
2492 
2493 	node = wq_stack_extract(&ctx->submit_state.free_list);
2494 	return container_of(node, struct io_kiocb, comp_list);
2495 }
2496 
io_put_file(struct file * file)2497 static inline void io_put_file(struct file *file)
2498 {
2499 	if (file)
2500 		fput(file);
2501 }
2502 
io_dismantle_req(struct io_kiocb * req)2503 static inline void io_dismantle_req(struct io_kiocb *req)
2504 {
2505 	unsigned int flags = req->flags;
2506 
2507 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
2508 		io_clean_op(req);
2509 	if (!(flags & REQ_F_FIXED_FILE))
2510 		io_put_file(req->file);
2511 }
2512 
io_free_req(struct io_kiocb * req)2513 static __cold void io_free_req(struct io_kiocb *req)
2514 {
2515 	struct io_ring_ctx *ctx = req->ctx;
2516 
2517 	io_req_put_rsrc(req);
2518 	io_dismantle_req(req);
2519 	io_put_task(req->task, 1);
2520 
2521 	spin_lock(&ctx->completion_lock);
2522 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
2523 	ctx->locked_free_nr++;
2524 	spin_unlock(&ctx->completion_lock);
2525 }
2526 
io_remove_next_linked(struct io_kiocb * req)2527 static inline void io_remove_next_linked(struct io_kiocb *req)
2528 {
2529 	struct io_kiocb *nxt = req->link;
2530 
2531 	req->link = nxt->link;
2532 	nxt->link = NULL;
2533 }
2534 
io_disarm_linked_timeout(struct io_kiocb * req)2535 static struct io_kiocb *io_disarm_linked_timeout(struct io_kiocb *req)
2536 	__must_hold(&req->ctx->completion_lock)
2537 	__must_hold(&req->ctx->timeout_lock)
2538 {
2539 	struct io_kiocb *link = req->link;
2540 
2541 	if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2542 		struct io_timeout_data *io = link->async_data;
2543 
2544 		io_remove_next_linked(req);
2545 		link->timeout.head = NULL;
2546 		if (hrtimer_try_to_cancel(&io->timer) != -1) {
2547 			list_del(&link->timeout.list);
2548 			return link;
2549 		}
2550 	}
2551 	return NULL;
2552 }
2553 
io_fail_links(struct io_kiocb * req)2554 static void io_fail_links(struct io_kiocb *req)
2555 	__must_hold(&req->ctx->completion_lock)
2556 {
2557 	struct io_kiocb *nxt, *link = req->link;
2558 	bool ignore_cqes = req->flags & REQ_F_SKIP_LINK_CQES;
2559 
2560 	req->link = NULL;
2561 	while (link) {
2562 		long res = -ECANCELED;
2563 
2564 		if (link->flags & REQ_F_FAIL)
2565 			res = link->cqe.res;
2566 
2567 		nxt = link->link;
2568 		link->link = NULL;
2569 
2570 		trace_io_uring_fail_link(req->ctx, req, req->cqe.user_data,
2571 					req->opcode, link);
2572 
2573 		if (ignore_cqes)
2574 			link->flags |= REQ_F_CQE_SKIP;
2575 		else
2576 			link->flags &= ~REQ_F_CQE_SKIP;
2577 		__io_req_complete_post(link, res, 0);
2578 		link = nxt;
2579 	}
2580 }
2581 
io_disarm_next(struct io_kiocb * req)2582 static bool io_disarm_next(struct io_kiocb *req)
2583 	__must_hold(&req->ctx->completion_lock)
2584 {
2585 	struct io_kiocb *link = NULL;
2586 	bool posted = false;
2587 
2588 	if (req->flags & REQ_F_ARM_LTIMEOUT) {
2589 		link = req->link;
2590 		req->flags &= ~REQ_F_ARM_LTIMEOUT;
2591 		if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2592 			io_remove_next_linked(req);
2593 			io_req_tw_post_queue(link, -ECANCELED, 0);
2594 			posted = true;
2595 		}
2596 	} else if (req->flags & REQ_F_LINK_TIMEOUT) {
2597 		struct io_ring_ctx *ctx = req->ctx;
2598 
2599 		spin_lock_irq(&ctx->timeout_lock);
2600 		link = io_disarm_linked_timeout(req);
2601 		spin_unlock_irq(&ctx->timeout_lock);
2602 		if (link) {
2603 			posted = true;
2604 			io_req_tw_post_queue(link, -ECANCELED, 0);
2605 		}
2606 	}
2607 	if (unlikely((req->flags & REQ_F_FAIL) &&
2608 		     !(req->flags & REQ_F_HARDLINK))) {
2609 		posted |= (req->link != NULL);
2610 		io_fail_links(req);
2611 	}
2612 	return posted;
2613 }
2614 
__io_req_find_next_prep(struct io_kiocb * req)2615 static void __io_req_find_next_prep(struct io_kiocb *req)
2616 {
2617 	struct io_ring_ctx *ctx = req->ctx;
2618 	bool posted;
2619 
2620 	spin_lock(&ctx->completion_lock);
2621 	posted = io_disarm_next(req);
2622 	io_commit_cqring(ctx);
2623 	spin_unlock(&ctx->completion_lock);
2624 	if (posted)
2625 		io_cqring_ev_posted(ctx);
2626 }
2627 
io_req_find_next(struct io_kiocb * req)2628 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2629 {
2630 	struct io_kiocb *nxt;
2631 
2632 	/*
2633 	 * If LINK is set, we have dependent requests in this chain. If we
2634 	 * didn't fail this request, queue the first one up, moving any other
2635 	 * dependencies to the next request. In case of failure, fail the rest
2636 	 * of the chain.
2637 	 */
2638 	if (unlikely(req->flags & IO_DISARM_MASK))
2639 		__io_req_find_next_prep(req);
2640 	nxt = req->link;
2641 	req->link = NULL;
2642 	return nxt;
2643 }
2644 
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)2645 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2646 {
2647 	if (!ctx)
2648 		return;
2649 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
2650 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
2651 	if (*locked) {
2652 		io_submit_flush_completions(ctx);
2653 		mutex_unlock(&ctx->uring_lock);
2654 		*locked = false;
2655 	}
2656 	percpu_ref_put(&ctx->refs);
2657 }
2658 
ctx_commit_and_unlock(struct io_ring_ctx * ctx)2659 static inline void ctx_commit_and_unlock(struct io_ring_ctx *ctx)
2660 {
2661 	io_commit_cqring(ctx);
2662 	spin_unlock(&ctx->completion_lock);
2663 	io_cqring_ev_posted(ctx);
2664 }
2665 
handle_prev_tw_list(struct io_wq_work_node * node,struct io_ring_ctx ** ctx,bool * uring_locked)2666 static void handle_prev_tw_list(struct io_wq_work_node *node,
2667 				struct io_ring_ctx **ctx, bool *uring_locked)
2668 {
2669 	if (*ctx && !*uring_locked)
2670 		spin_lock(&(*ctx)->completion_lock);
2671 
2672 	do {
2673 		struct io_wq_work_node *next = node->next;
2674 		struct io_kiocb *req = container_of(node, struct io_kiocb,
2675 						    io_task_work.node);
2676 
2677 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
2678 
2679 		if (req->ctx != *ctx) {
2680 			if (unlikely(!*uring_locked && *ctx))
2681 				ctx_commit_and_unlock(*ctx);
2682 
2683 			ctx_flush_and_put(*ctx, uring_locked);
2684 			*ctx = req->ctx;
2685 			/* if not contended, grab and improve batching */
2686 			*uring_locked = mutex_trylock(&(*ctx)->uring_lock);
2687 			percpu_ref_get(&(*ctx)->refs);
2688 			if (unlikely(!*uring_locked))
2689 				spin_lock(&(*ctx)->completion_lock);
2690 		}
2691 		if (likely(*uring_locked))
2692 			req->io_task_work.func(req, uring_locked);
2693 		else
2694 			__io_req_complete_post(req, req->cqe.res,
2695 						io_put_kbuf_comp(req));
2696 		node = next;
2697 	} while (node);
2698 
2699 	if (unlikely(!*uring_locked))
2700 		ctx_commit_and_unlock(*ctx);
2701 }
2702 
handle_tw_list(struct io_wq_work_node * node,struct io_ring_ctx ** ctx,bool * locked)2703 static void handle_tw_list(struct io_wq_work_node *node,
2704 			   struct io_ring_ctx **ctx, bool *locked)
2705 {
2706 	do {
2707 		struct io_wq_work_node *next = node->next;
2708 		struct io_kiocb *req = container_of(node, struct io_kiocb,
2709 						    io_task_work.node);
2710 
2711 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
2712 
2713 		if (req->ctx != *ctx) {
2714 			ctx_flush_and_put(*ctx, locked);
2715 			*ctx = req->ctx;
2716 			/* if not contended, grab and improve batching */
2717 			*locked = mutex_trylock(&(*ctx)->uring_lock);
2718 			percpu_ref_get(&(*ctx)->refs);
2719 		}
2720 		req->io_task_work.func(req, locked);
2721 		node = next;
2722 	} while (node);
2723 }
2724 
tctx_task_work(struct callback_head * cb)2725 static void tctx_task_work(struct callback_head *cb)
2726 {
2727 	bool uring_locked = false;
2728 	struct io_ring_ctx *ctx = NULL;
2729 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2730 						  task_work);
2731 
2732 	while (1) {
2733 		struct io_wq_work_node *node1, *node2;
2734 
2735 		spin_lock_irq(&tctx->task_lock);
2736 		node1 = tctx->prio_task_list.first;
2737 		node2 = tctx->task_list.first;
2738 		INIT_WQ_LIST(&tctx->task_list);
2739 		INIT_WQ_LIST(&tctx->prio_task_list);
2740 		if (!node2 && !node1)
2741 			tctx->task_running = false;
2742 		spin_unlock_irq(&tctx->task_lock);
2743 		if (!node2 && !node1)
2744 			break;
2745 
2746 		if (node1)
2747 			handle_prev_tw_list(node1, &ctx, &uring_locked);
2748 		if (node2)
2749 			handle_tw_list(node2, &ctx, &uring_locked);
2750 		cond_resched();
2751 
2752 		if (data_race(!tctx->task_list.first) &&
2753 		    data_race(!tctx->prio_task_list.first) && uring_locked)
2754 			io_submit_flush_completions(ctx);
2755 	}
2756 
2757 	ctx_flush_and_put(ctx, &uring_locked);
2758 
2759 	/* relaxed read is enough as only the task itself sets ->in_idle */
2760 	if (unlikely(atomic_read(&tctx->in_idle)))
2761 		io_uring_drop_tctx_refs(current);
2762 }
2763 
__io_req_task_work_add(struct io_kiocb * req,struct io_uring_task * tctx,struct io_wq_work_list * list)2764 static void __io_req_task_work_add(struct io_kiocb *req,
2765 				   struct io_uring_task *tctx,
2766 				   struct io_wq_work_list *list)
2767 {
2768 	struct io_ring_ctx *ctx = req->ctx;
2769 	struct io_wq_work_node *node;
2770 	unsigned long flags;
2771 	bool running;
2772 
2773 	spin_lock_irqsave(&tctx->task_lock, flags);
2774 	wq_list_add_tail(&req->io_task_work.node, list);
2775 	running = tctx->task_running;
2776 	if (!running)
2777 		tctx->task_running = true;
2778 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2779 
2780 	/* task_work already pending, we're done */
2781 	if (running)
2782 		return;
2783 
2784 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
2785 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
2786 
2787 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
2788 		return;
2789 
2790 	spin_lock_irqsave(&tctx->task_lock, flags);
2791 	tctx->task_running = false;
2792 	node = wq_list_merge(&tctx->prio_task_list, &tctx->task_list);
2793 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2794 
2795 	while (node) {
2796 		req = container_of(node, struct io_kiocb, io_task_work.node);
2797 		node = node->next;
2798 		if (llist_add(&req->io_task_work.fallback_node,
2799 			      &req->ctx->fallback_llist))
2800 			schedule_delayed_work(&req->ctx->fallback_work, 1);
2801 	}
2802 }
2803 
io_req_task_work_add(struct io_kiocb * req)2804 static void io_req_task_work_add(struct io_kiocb *req)
2805 {
2806 	struct io_uring_task *tctx = req->task->io_uring;
2807 
2808 	__io_req_task_work_add(req, tctx, &tctx->task_list);
2809 }
2810 
io_req_task_prio_work_add(struct io_kiocb * req)2811 static void io_req_task_prio_work_add(struct io_kiocb *req)
2812 {
2813 	struct io_uring_task *tctx = req->task->io_uring;
2814 
2815 	if (req->ctx->flags & IORING_SETUP_SQPOLL)
2816 		__io_req_task_work_add(req, tctx, &tctx->prio_task_list);
2817 	else
2818 		__io_req_task_work_add(req, tctx, &tctx->task_list);
2819 }
2820 
io_req_tw_post(struct io_kiocb * req,bool * locked)2821 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
2822 {
2823 	io_req_complete_post(req, req->cqe.res, req->cqe.flags);
2824 }
2825 
io_req_tw_post_queue(struct io_kiocb * req,s32 res,u32 cflags)2826 static void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
2827 {
2828 	req->cqe.res = res;
2829 	req->cqe.flags = cflags;
2830 	req->io_task_work.func = io_req_tw_post;
2831 	io_req_task_work_add(req);
2832 }
2833 
io_req_task_cancel(struct io_kiocb * req,bool * locked)2834 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2835 {
2836 	/* not needed for normal modes, but SQPOLL depends on it */
2837 	io_tw_lock(req->ctx, locked);
2838 	io_req_complete_failed(req, req->cqe.res);
2839 }
2840 
io_req_task_submit(struct io_kiocb * req,bool * locked)2841 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2842 {
2843 	io_tw_lock(req->ctx, locked);
2844 	/* req->task == current here, checking PF_EXITING is safe */
2845 	if (likely(!(req->task->flags & PF_EXITING)))
2846 		io_queue_sqe(req);
2847 	else
2848 		io_req_complete_failed(req, -EFAULT);
2849 }
2850 
io_req_task_queue_fail(struct io_kiocb * req,int ret)2851 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2852 {
2853 	req->cqe.res = ret;
2854 	req->io_task_work.func = io_req_task_cancel;
2855 	io_req_task_work_add(req);
2856 }
2857 
io_req_task_queue(struct io_kiocb * req)2858 static void io_req_task_queue(struct io_kiocb *req)
2859 {
2860 	req->io_task_work.func = io_req_task_submit;
2861 	io_req_task_work_add(req);
2862 }
2863 
io_req_task_queue_reissue(struct io_kiocb * req)2864 static void io_req_task_queue_reissue(struct io_kiocb *req)
2865 {
2866 	req->io_task_work.func = io_queue_iowq;
2867 	io_req_task_work_add(req);
2868 }
2869 
io_queue_next(struct io_kiocb * req)2870 static void io_queue_next(struct io_kiocb *req)
2871 {
2872 	struct io_kiocb *nxt = io_req_find_next(req);
2873 
2874 	if (nxt)
2875 		io_req_task_queue(nxt);
2876 }
2877 
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)2878 static void io_free_batch_list(struct io_ring_ctx *ctx,
2879 				struct io_wq_work_node *node)
2880 	__must_hold(&ctx->uring_lock)
2881 {
2882 	struct task_struct *task = NULL;
2883 	int task_refs = 0;
2884 
2885 	do {
2886 		struct io_kiocb *req = container_of(node, struct io_kiocb,
2887 						    comp_list);
2888 
2889 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
2890 			if (req->flags & REQ_F_REFCOUNT) {
2891 				node = req->comp_list.next;
2892 				if (!req_ref_put_and_test(req))
2893 					continue;
2894 			}
2895 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
2896 				struct async_poll *apoll = req->apoll;
2897 
2898 				if (apoll->double_poll)
2899 					kfree(apoll->double_poll);
2900 				list_add(&apoll->poll.wait.entry,
2901 						&ctx->apoll_cache);
2902 				req->flags &= ~REQ_F_POLLED;
2903 			}
2904 			if (req->flags & IO_REQ_LINK_FLAGS)
2905 				io_queue_next(req);
2906 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
2907 				io_clean_op(req);
2908 		}
2909 		if (!(req->flags & REQ_F_FIXED_FILE))
2910 			io_put_file(req->file);
2911 
2912 		io_req_put_rsrc_locked(req, ctx);
2913 
2914 		if (req->task != task) {
2915 			if (task)
2916 				io_put_task(task, task_refs);
2917 			task = req->task;
2918 			task_refs = 0;
2919 		}
2920 		task_refs++;
2921 		node = req->comp_list.next;
2922 		io_req_add_to_cache(req, ctx);
2923 	} while (node);
2924 
2925 	if (task)
2926 		io_put_task(task, task_refs);
2927 }
2928 
__io_submit_flush_completions(struct io_ring_ctx * ctx)2929 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
2930 	__must_hold(&ctx->uring_lock)
2931 {
2932 	struct io_wq_work_node *node, *prev;
2933 	struct io_submit_state *state = &ctx->submit_state;
2934 
2935 	if (state->flush_cqes) {
2936 		spin_lock(&ctx->completion_lock);
2937 		wq_list_for_each(node, prev, &state->compl_reqs) {
2938 			struct io_kiocb *req = container_of(node, struct io_kiocb,
2939 						    comp_list);
2940 
2941 			if (!(req->flags & REQ_F_CQE_SKIP))
2942 				__io_fill_cqe_req(ctx, req);
2943 		}
2944 
2945 		io_commit_cqring(ctx);
2946 		spin_unlock(&ctx->completion_lock);
2947 		io_cqring_ev_posted(ctx);
2948 		state->flush_cqes = false;
2949 	}
2950 
2951 	io_free_batch_list(ctx, state->compl_reqs.first);
2952 	INIT_WQ_LIST(&state->compl_reqs);
2953 }
2954 
2955 /*
2956  * Drop reference to request, return next in chain (if there is one) if this
2957  * was the last reference to this request.
2958  */
io_put_req_find_next(struct io_kiocb * req)2959 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2960 {
2961 	struct io_kiocb *nxt = NULL;
2962 
2963 	if (req_ref_put_and_test(req)) {
2964 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
2965 			nxt = io_req_find_next(req);
2966 		io_free_req(req);
2967 	}
2968 	return nxt;
2969 }
2970 
io_put_req(struct io_kiocb * req)2971 static inline void io_put_req(struct io_kiocb *req)
2972 {
2973 	if (req_ref_put_and_test(req)) {
2974 		io_queue_next(req);
2975 		io_free_req(req);
2976 	}
2977 }
2978 
io_cqring_events(struct io_ring_ctx * ctx)2979 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2980 {
2981 	/* See comment at the top of this file */
2982 	smp_rmb();
2983 	return __io_cqring_events(ctx);
2984 }
2985 
io_sqring_entries(struct io_ring_ctx * ctx)2986 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2987 {
2988 	struct io_rings *rings = ctx->rings;
2989 
2990 	/* make sure SQ entry isn't read before tail */
2991 	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2992 }
2993 
io_run_task_work(void)2994 static inline bool io_run_task_work(void)
2995 {
2996 	if (test_thread_flag(TIF_NOTIFY_SIGNAL) || task_work_pending(current)) {
2997 		__set_current_state(TASK_RUNNING);
2998 		clear_notify_signal();
2999 		if (task_work_pending(current))
3000 			task_work_run();
3001 		return true;
3002 	}
3003 
3004 	return false;
3005 }
3006 
io_do_iopoll(struct io_ring_ctx * ctx,bool force_nonspin)3007 static int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
3008 {
3009 	struct io_wq_work_node *pos, *start, *prev;
3010 	unsigned int poll_flags = BLK_POLL_NOSLEEP;
3011 	DEFINE_IO_COMP_BATCH(iob);
3012 	int nr_events = 0;
3013 
3014 	/*
3015 	 * Only spin for completions if we don't have multiple devices hanging
3016 	 * off our complete list.
3017 	 */
3018 	if (ctx->poll_multi_queue || force_nonspin)
3019 		poll_flags |= BLK_POLL_ONESHOT;
3020 
3021 	wq_list_for_each(pos, start, &ctx->iopoll_list) {
3022 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
3023 		struct kiocb *kiocb = &req->rw.kiocb;
3024 		int ret;
3025 
3026 		/*
3027 		 * Move completed and retryable entries to our local lists.
3028 		 * If we find a request that requires polling, break out
3029 		 * and complete those lists first, if we have entries there.
3030 		 */
3031 		if (READ_ONCE(req->iopoll_completed))
3032 			break;
3033 
3034 		ret = kiocb->ki_filp->f_op->iopoll(kiocb, &iob, poll_flags);
3035 		if (unlikely(ret < 0))
3036 			return ret;
3037 		else if (ret)
3038 			poll_flags |= BLK_POLL_ONESHOT;
3039 
3040 		/* iopoll may have completed current req */
3041 		if (!rq_list_empty(iob.req_list) ||
3042 		    READ_ONCE(req->iopoll_completed))
3043 			break;
3044 	}
3045 
3046 	if (!rq_list_empty(iob.req_list))
3047 		iob.complete(&iob);
3048 	else if (!pos)
3049 		return 0;
3050 
3051 	prev = start;
3052 	wq_list_for_each_resume(pos, prev) {
3053 		struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
3054 
3055 		/* order with io_complete_rw_iopoll(), e.g. ->result updates */
3056 		if (!smp_load_acquire(&req->iopoll_completed))
3057 			break;
3058 		nr_events++;
3059 		if (unlikely(req->flags & REQ_F_CQE_SKIP))
3060 			continue;
3061 
3062 		req->cqe.flags = io_put_kbuf(req, 0);
3063 		__io_fill_cqe_req(req->ctx, req);
3064 	}
3065 
3066 	if (unlikely(!nr_events))
3067 		return 0;
3068 
3069 	io_commit_cqring(ctx);
3070 	io_cqring_ev_posted_iopoll(ctx);
3071 	pos = start ? start->next : ctx->iopoll_list.first;
3072 	wq_list_cut(&ctx->iopoll_list, prev, start);
3073 	io_free_batch_list(ctx, pos);
3074 	return nr_events;
3075 }
3076 
3077 /*
3078  * We can't just wait for polled events to come to us, we have to actively
3079  * find and complete them.
3080  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)3081 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
3082 {
3083 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
3084 		return;
3085 
3086 	mutex_lock(&ctx->uring_lock);
3087 	while (!wq_list_empty(&ctx->iopoll_list)) {
3088 		/* let it sleep and repeat later if can't complete a request */
3089 		if (io_do_iopoll(ctx, true) == 0)
3090 			break;
3091 		/*
3092 		 * Ensure we allow local-to-the-cpu processing to take place,
3093 		 * in this case we need to ensure that we reap all events.
3094 		 * Also let task_work, etc. to progress by releasing the mutex
3095 		 */
3096 		if (need_resched()) {
3097 			mutex_unlock(&ctx->uring_lock);
3098 			cond_resched();
3099 			mutex_lock(&ctx->uring_lock);
3100 		}
3101 	}
3102 	mutex_unlock(&ctx->uring_lock);
3103 }
3104 
io_iopoll_check(struct io_ring_ctx * ctx,long min)3105 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
3106 {
3107 	unsigned int nr_events = 0;
3108 	int ret = 0;
3109 	unsigned long check_cq;
3110 
3111 	/*
3112 	 * Don't enter poll loop if we already have events pending.
3113 	 * If we do, we can potentially be spinning for commands that
3114 	 * already triggered a CQE (eg in error).
3115 	 */
3116 	check_cq = READ_ONCE(ctx->check_cq);
3117 	if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
3118 		__io_cqring_overflow_flush(ctx, false);
3119 	if (io_cqring_events(ctx))
3120 		return 0;
3121 
3122 	/*
3123 	 * Similarly do not spin if we have not informed the user of any
3124 	 * dropped CQE.
3125 	 */
3126 	if (unlikely(check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)))
3127 		return -EBADR;
3128 
3129 	do {
3130 		/*
3131 		 * If a submit got punted to a workqueue, we can have the
3132 		 * application entering polling for a command before it gets
3133 		 * issued. That app will hold the uring_lock for the duration
3134 		 * of the poll right here, so we need to take a breather every
3135 		 * now and then to ensure that the issue has a chance to add
3136 		 * the poll to the issued list. Otherwise we can spin here
3137 		 * forever, while the workqueue is stuck trying to acquire the
3138 		 * very same mutex.
3139 		 */
3140 		if (wq_list_empty(&ctx->iopoll_list)) {
3141 			u32 tail = ctx->cached_cq_tail;
3142 
3143 			mutex_unlock(&ctx->uring_lock);
3144 			io_run_task_work();
3145 			mutex_lock(&ctx->uring_lock);
3146 
3147 			/* some requests don't go through iopoll_list */
3148 			if (tail != ctx->cached_cq_tail ||
3149 			    wq_list_empty(&ctx->iopoll_list))
3150 				break;
3151 		}
3152 		ret = io_do_iopoll(ctx, !min);
3153 		if (ret < 0)
3154 			break;
3155 		nr_events += ret;
3156 		ret = 0;
3157 	} while (nr_events < min && !need_resched());
3158 
3159 	return ret;
3160 }
3161 
kiocb_end_write(struct io_kiocb * req)3162 static void kiocb_end_write(struct io_kiocb *req)
3163 {
3164 	/*
3165 	 * Tell lockdep we inherited freeze protection from submission
3166 	 * thread.
3167 	 */
3168 	if (req->flags & REQ_F_ISREG) {
3169 		struct super_block *sb = file_inode(req->file)->i_sb;
3170 
3171 		__sb_writers_acquired(sb, SB_FREEZE_WRITE);
3172 		sb_end_write(sb);
3173 	}
3174 }
3175 
3176 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)3177 static bool io_resubmit_prep(struct io_kiocb *req)
3178 {
3179 	struct io_async_rw *rw = req->async_data;
3180 
3181 	if (!req_has_async_data(req))
3182 		return !io_req_prep_async(req);
3183 	iov_iter_restore(&rw->s.iter, &rw->s.iter_state);
3184 	return true;
3185 }
3186 
io_rw_should_reissue(struct io_kiocb * req)3187 static bool io_rw_should_reissue(struct io_kiocb *req)
3188 {
3189 	umode_t mode = file_inode(req->file)->i_mode;
3190 	struct io_ring_ctx *ctx = req->ctx;
3191 
3192 	if (!S_ISBLK(mode) && !S_ISREG(mode))
3193 		return false;
3194 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
3195 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
3196 		return false;
3197 	/*
3198 	 * If ref is dying, we might be running poll reap from the exit work.
3199 	 * Don't attempt to reissue from that path, just let it fail with
3200 	 * -EAGAIN.
3201 	 */
3202 	if (percpu_ref_is_dying(&ctx->refs))
3203 		return false;
3204 	/*
3205 	 * Play it safe and assume not safe to re-import and reissue if we're
3206 	 * not in the original thread group (or in task context).
3207 	 */
3208 	if (!same_thread_group(req->task, current) || !in_task())
3209 		return false;
3210 	return true;
3211 }
3212 #else
io_resubmit_prep(struct io_kiocb * req)3213 static bool io_resubmit_prep(struct io_kiocb *req)
3214 {
3215 	return false;
3216 }
io_rw_should_reissue(struct io_kiocb * req)3217 static bool io_rw_should_reissue(struct io_kiocb *req)
3218 {
3219 	return false;
3220 }
3221 #endif
3222 
__io_complete_rw_common(struct io_kiocb * req,long res)3223 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
3224 {
3225 	if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
3226 		kiocb_end_write(req);
3227 		fsnotify_modify(req->file);
3228 	} else {
3229 		fsnotify_access(req->file);
3230 	}
3231 	if (unlikely(res != req->cqe.res)) {
3232 		if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
3233 		    io_rw_should_reissue(req)) {
3234 			req->flags |= REQ_F_REISSUE | REQ_F_PARTIAL_IO;
3235 			return true;
3236 		}
3237 		req_set_fail(req);
3238 		req->cqe.res = res;
3239 	}
3240 	return false;
3241 }
3242 
io_req_task_complete(struct io_kiocb * req,bool * locked)3243 static inline void io_req_task_complete(struct io_kiocb *req, bool *locked)
3244 {
3245 	int res = req->cqe.res;
3246 
3247 	if (*locked) {
3248 		io_req_complete_state(req, res, io_put_kbuf(req, 0));
3249 		io_req_add_compl_list(req);
3250 	} else {
3251 		io_req_complete_post(req, res,
3252 					io_put_kbuf(req, IO_URING_F_UNLOCKED));
3253 	}
3254 }
3255 
__io_complete_rw(struct io_kiocb * req,long res,unsigned int issue_flags)3256 static void __io_complete_rw(struct io_kiocb *req, long res,
3257 			     unsigned int issue_flags)
3258 {
3259 	if (__io_complete_rw_common(req, res))
3260 		return;
3261 	__io_req_complete(req, issue_flags, req->cqe.res,
3262 				io_put_kbuf(req, issue_flags));
3263 }
3264 
io_complete_rw(struct kiocb * kiocb,long res)3265 static void io_complete_rw(struct kiocb *kiocb, long res)
3266 {
3267 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3268 
3269 	if (__io_complete_rw_common(req, res))
3270 		return;
3271 	req->cqe.res = res;
3272 	req->io_task_work.func = io_req_task_complete;
3273 	io_req_task_prio_work_add(req);
3274 }
3275 
io_complete_rw_iopoll(struct kiocb * kiocb,long res)3276 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
3277 {
3278 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3279 
3280 	if (kiocb->ki_flags & IOCB_WRITE)
3281 		kiocb_end_write(req);
3282 	if (unlikely(res != req->cqe.res)) {
3283 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
3284 			req->flags |= REQ_F_REISSUE | REQ_F_PARTIAL_IO;
3285 			return;
3286 		}
3287 		req->cqe.res = res;
3288 	}
3289 
3290 	/* order with io_iopoll_complete() checking ->iopoll_completed */
3291 	smp_store_release(&req->iopoll_completed, 1);
3292 }
3293 
3294 /*
3295  * After the iocb has been issued, it's safe to be found on the poll list.
3296  * Adding the kiocb to the list AFTER submission ensures that we don't
3297  * find it from a io_do_iopoll() thread before the issuer is done
3298  * accessing the kiocb cookie.
3299  */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)3300 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
3301 {
3302 	struct io_ring_ctx *ctx = req->ctx;
3303 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
3304 
3305 	/* workqueue context doesn't hold uring_lock, grab it now */
3306 	if (unlikely(needs_lock))
3307 		mutex_lock(&ctx->uring_lock);
3308 
3309 	/*
3310 	 * Track whether we have multiple files in our lists. This will impact
3311 	 * how we do polling eventually, not spinning if we're on potentially
3312 	 * different devices.
3313 	 */
3314 	if (wq_list_empty(&ctx->iopoll_list)) {
3315 		ctx->poll_multi_queue = false;
3316 	} else if (!ctx->poll_multi_queue) {
3317 		struct io_kiocb *list_req;
3318 
3319 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
3320 					comp_list);
3321 		if (list_req->file != req->file)
3322 			ctx->poll_multi_queue = true;
3323 	}
3324 
3325 	/*
3326 	 * For fast devices, IO may have already completed. If it has, add
3327 	 * it to the front so we find it first.
3328 	 */
3329 	if (READ_ONCE(req->iopoll_completed))
3330 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
3331 	else
3332 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
3333 
3334 	if (unlikely(needs_lock)) {
3335 		/*
3336 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
3337 		 * in sq thread task context or in io worker task context. If
3338 		 * current task context is sq thread, we don't need to check
3339 		 * whether should wake up sq thread.
3340 		 */
3341 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
3342 		    wq_has_sleeper(&ctx->sq_data->wait))
3343 			wake_up(&ctx->sq_data->wait);
3344 
3345 		mutex_unlock(&ctx->uring_lock);
3346 	}
3347 }
3348 
io_bdev_nowait(struct block_device * bdev)3349 static bool io_bdev_nowait(struct block_device *bdev)
3350 {
3351 	return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
3352 }
3353 
3354 /*
3355  * If we tracked the file through the SCM inflight mechanism, we could support
3356  * any file. For now, just ensure that anything potentially problematic is done
3357  * inline.
3358  */
__io_file_supports_nowait(struct file * file,umode_t mode)3359 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
3360 {
3361 	if (S_ISBLK(mode)) {
3362 		if (IS_ENABLED(CONFIG_BLOCK) &&
3363 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
3364 			return true;
3365 		return false;
3366 	}
3367 	if (S_ISSOCK(mode))
3368 		return true;
3369 	if (S_ISREG(mode)) {
3370 		if (IS_ENABLED(CONFIG_BLOCK) &&
3371 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
3372 		    file->f_op != &io_uring_fops)
3373 			return true;
3374 		return false;
3375 	}
3376 
3377 	/* any ->read/write should understand O_NONBLOCK */
3378 	if (file->f_flags & O_NONBLOCK)
3379 		return true;
3380 	return file->f_mode & FMODE_NOWAIT;
3381 }
3382 
3383 /*
3384  * If we tracked the file through the SCM inflight mechanism, we could support
3385  * any file. For now, just ensure that anything potentially problematic is done
3386  * inline.
3387  */
io_file_get_flags(struct file * file)3388 static unsigned int io_file_get_flags(struct file *file)
3389 {
3390 	umode_t mode = file_inode(file)->i_mode;
3391 	unsigned int res = 0;
3392 
3393 	if (S_ISREG(mode))
3394 		res |= FFS_ISREG;
3395 	if (__io_file_supports_nowait(file, mode))
3396 		res |= FFS_NOWAIT;
3397 	if (io_file_need_scm(file))
3398 		res |= FFS_SCM;
3399 	return res;
3400 }
3401 
io_file_supports_nowait(struct io_kiocb * req)3402 static inline bool io_file_supports_nowait(struct io_kiocb *req)
3403 {
3404 	return req->flags & REQ_F_SUPPORT_NOWAIT;
3405 }
3406 
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe)3407 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3408 {
3409 	struct kiocb *kiocb = &req->rw.kiocb;
3410 	unsigned ioprio;
3411 	int ret;
3412 
3413 	kiocb->ki_pos = READ_ONCE(sqe->off);
3414 	/* used for fixed read/write too - just read unconditionally */
3415 	req->buf_index = READ_ONCE(sqe->buf_index);
3416 
3417 	if (req->opcode == IORING_OP_READ_FIXED ||
3418 	    req->opcode == IORING_OP_WRITE_FIXED) {
3419 		struct io_ring_ctx *ctx = req->ctx;
3420 		u16 index;
3421 
3422 		if (unlikely(req->buf_index >= ctx->nr_user_bufs))
3423 			return -EFAULT;
3424 		index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
3425 		req->imu = ctx->user_bufs[index];
3426 		io_req_set_rsrc_node(req, ctx, 0);
3427 	}
3428 
3429 	ioprio = READ_ONCE(sqe->ioprio);
3430 	if (ioprio) {
3431 		ret = ioprio_check_cap(ioprio);
3432 		if (ret)
3433 			return ret;
3434 
3435 		kiocb->ki_ioprio = ioprio;
3436 	} else {
3437 		kiocb->ki_ioprio = get_current_ioprio();
3438 	}
3439 
3440 	req->rw.addr = READ_ONCE(sqe->addr);
3441 	req->rw.len = READ_ONCE(sqe->len);
3442 	req->rw.flags = READ_ONCE(sqe->rw_flags);
3443 	return 0;
3444 }
3445 
io_rw_done(struct kiocb * kiocb,ssize_t ret)3446 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3447 {
3448 	switch (ret) {
3449 	case -EIOCBQUEUED:
3450 		break;
3451 	case -ERESTARTSYS:
3452 	case -ERESTARTNOINTR:
3453 	case -ERESTARTNOHAND:
3454 	case -ERESTART_RESTARTBLOCK:
3455 		/*
3456 		 * We can't just restart the syscall, since previously
3457 		 * submitted sqes may already be in progress. Just fail this
3458 		 * IO with EINTR.
3459 		 */
3460 		ret = -EINTR;
3461 		fallthrough;
3462 	default:
3463 		kiocb->ki_complete(kiocb, ret);
3464 	}
3465 }
3466 
io_kiocb_update_pos(struct io_kiocb * req)3467 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3468 {
3469 	struct kiocb *kiocb = &req->rw.kiocb;
3470 
3471 	if (kiocb->ki_pos != -1)
3472 		return &kiocb->ki_pos;
3473 
3474 	if (!(req->file->f_mode & FMODE_STREAM)) {
3475 		req->flags |= REQ_F_CUR_POS;
3476 		kiocb->ki_pos = req->file->f_pos;
3477 		return &kiocb->ki_pos;
3478 	}
3479 
3480 	kiocb->ki_pos = 0;
3481 	return NULL;
3482 }
3483 
kiocb_done(struct io_kiocb * req,ssize_t ret,unsigned int issue_flags)3484 static void kiocb_done(struct io_kiocb *req, ssize_t ret,
3485 		       unsigned int issue_flags)
3486 {
3487 	struct io_async_rw *io = req->async_data;
3488 
3489 	/* add previously done IO, if any */
3490 	if (req_has_async_data(req) && io->bytes_done > 0) {
3491 		if (ret < 0)
3492 			ret = io->bytes_done;
3493 		else
3494 			ret += io->bytes_done;
3495 	}
3496 
3497 	if (req->flags & REQ_F_CUR_POS)
3498 		req->file->f_pos = req->rw.kiocb.ki_pos;
3499 	if (ret >= 0 && (req->rw.kiocb.ki_complete == io_complete_rw))
3500 		__io_complete_rw(req, ret, issue_flags);
3501 	else
3502 		io_rw_done(&req->rw.kiocb, ret);
3503 
3504 	if (req->flags & REQ_F_REISSUE) {
3505 		req->flags &= ~REQ_F_REISSUE;
3506 		if (io_resubmit_prep(req))
3507 			io_req_task_queue_reissue(req);
3508 		else
3509 			io_req_task_queue_fail(req, ret);
3510 	}
3511 }
3512 
__io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,struct io_mapped_ubuf * imu)3513 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3514 			     struct io_mapped_ubuf *imu)
3515 {
3516 	size_t len = req->rw.len;
3517 	u64 buf_end, buf_addr = req->rw.addr;
3518 	size_t offset;
3519 
3520 	if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3521 		return -EFAULT;
3522 	/* not inside the mapped region */
3523 	if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3524 		return -EFAULT;
3525 
3526 	/*
3527 	 * May not be a start of buffer, set size appropriately
3528 	 * and advance us to the beginning.
3529 	 */
3530 	offset = buf_addr - imu->ubuf;
3531 	iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3532 
3533 	if (offset) {
3534 		/*
3535 		 * Don't use iov_iter_advance() here, as it's really slow for
3536 		 * using the latter parts of a big fixed buffer - it iterates
3537 		 * over each segment manually. We can cheat a bit here, because
3538 		 * we know that:
3539 		 *
3540 		 * 1) it's a BVEC iter, we set it up
3541 		 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3542 		 *    first and last bvec
3543 		 *
3544 		 * So just find our index, and adjust the iterator afterwards.
3545 		 * If the offset is within the first bvec (or the whole first
3546 		 * bvec, just use iov_iter_advance(). This makes it easier
3547 		 * since we can just skip the first segment, which may not
3548 		 * be PAGE_SIZE aligned.
3549 		 */
3550 		const struct bio_vec *bvec = imu->bvec;
3551 
3552 		if (offset <= bvec->bv_len) {
3553 			iov_iter_advance(iter, offset);
3554 		} else {
3555 			unsigned long seg_skip;
3556 
3557 			/* skip first vec */
3558 			offset -= bvec->bv_len;
3559 			seg_skip = 1 + (offset >> PAGE_SHIFT);
3560 
3561 			iter->bvec = bvec + seg_skip;
3562 			iter->nr_segs -= seg_skip;
3563 			iter->count -= bvec->bv_len + offset;
3564 			iter->iov_offset = offset & ~PAGE_MASK;
3565 		}
3566 	}
3567 
3568 	return 0;
3569 }
3570 
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,unsigned int issue_flags)3571 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3572 			   unsigned int issue_flags)
3573 {
3574 	if (WARN_ON_ONCE(!req->imu))
3575 		return -EFAULT;
3576 	return __io_import_fixed(req, rw, iter, req->imu);
3577 }
3578 
io_buffer_add_list(struct io_ring_ctx * ctx,struct io_buffer_list * bl,unsigned int bgid)3579 static int io_buffer_add_list(struct io_ring_ctx *ctx,
3580 			      struct io_buffer_list *bl, unsigned int bgid)
3581 {
3582 	bl->bgid = bgid;
3583 	if (bgid < BGID_ARRAY)
3584 		return 0;
3585 
3586 	return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL));
3587 }
3588 
io_provided_buffer_select(struct io_kiocb * req,size_t * len,struct io_buffer_list * bl)3589 static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len,
3590 					      struct io_buffer_list *bl)
3591 {
3592 	if (!list_empty(&bl->buf_list)) {
3593 		struct io_buffer *kbuf;
3594 
3595 		kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
3596 		list_del(&kbuf->list);
3597 		if (*len > kbuf->len)
3598 			*len = kbuf->len;
3599 		req->flags |= REQ_F_BUFFER_SELECTED;
3600 		req->kbuf = kbuf;
3601 		req->buf_index = kbuf->bid;
3602 		return u64_to_user_ptr(kbuf->addr);
3603 	}
3604 	return NULL;
3605 }
3606 
io_ring_buffer_select(struct io_kiocb * req,size_t * len,struct io_buffer_list * bl,unsigned int issue_flags)3607 static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len,
3608 					  struct io_buffer_list *bl,
3609 					  unsigned int issue_flags)
3610 {
3611 	struct io_uring_buf_ring *br = bl->buf_ring;
3612 	struct io_uring_buf *buf;
3613 	__u16 head = bl->head;
3614 
3615 	if (unlikely(smp_load_acquire(&br->tail) == head))
3616 		return NULL;
3617 
3618 	head &= bl->mask;
3619 	if (head < IO_BUFFER_LIST_BUF_PER_PAGE) {
3620 		buf = &br->bufs[head];
3621 	} else {
3622 		int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1);
3623 		int index = head / IO_BUFFER_LIST_BUF_PER_PAGE;
3624 		buf = page_address(bl->buf_pages[index]);
3625 		buf += off;
3626 	}
3627 	if (*len > buf->len)
3628 		*len = buf->len;
3629 	req->flags |= REQ_F_BUFFER_RING;
3630 	req->buf_list = bl;
3631 	req->buf_index = buf->bid;
3632 
3633 	if (issue_flags & IO_URING_F_UNLOCKED || !file_can_poll(req->file)) {
3634 		/*
3635 		 * If we came in unlocked, we have no choice but to consume the
3636 		 * buffer here. This does mean it'll be pinned until the IO
3637 		 * completes. But coming in unlocked means we're in io-wq
3638 		 * context, hence there should be no further retry. For the
3639 		 * locked case, the caller must ensure to call the commit when
3640 		 * the transfer completes (or if we get -EAGAIN and must poll
3641 		 * or retry).
3642 		 */
3643 		req->buf_list = NULL;
3644 		bl->head++;
3645 	}
3646 	return u64_to_user_ptr(buf->addr);
3647 }
3648 
io_buffer_select(struct io_kiocb * req,size_t * len,unsigned int issue_flags)3649 static void __user *io_buffer_select(struct io_kiocb *req, size_t *len,
3650 				     unsigned int issue_flags)
3651 {
3652 	struct io_ring_ctx *ctx = req->ctx;
3653 	struct io_buffer_list *bl;
3654 	void __user *ret = NULL;
3655 
3656 	io_ring_submit_lock(req->ctx, issue_flags);
3657 
3658 	bl = io_buffer_get_list(ctx, req->buf_index);
3659 	if (likely(bl)) {
3660 		if (bl->buf_nr_pages)
3661 			ret = io_ring_buffer_select(req, len, bl, issue_flags);
3662 		else
3663 			ret = io_provided_buffer_select(req, len, bl);
3664 	}
3665 	io_ring_submit_unlock(req->ctx, issue_flags);
3666 	return ret;
3667 }
3668 
3669 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,unsigned int issue_flags)3670 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3671 				unsigned int issue_flags)
3672 {
3673 	struct compat_iovec __user *uiov;
3674 	compat_ssize_t clen;
3675 	void __user *buf;
3676 	size_t len;
3677 
3678 	uiov = u64_to_user_ptr(req->rw.addr);
3679 	if (!access_ok(uiov, sizeof(*uiov)))
3680 		return -EFAULT;
3681 	if (__get_user(clen, &uiov->iov_len))
3682 		return -EFAULT;
3683 	if (clen < 0)
3684 		return -EINVAL;
3685 
3686 	len = clen;
3687 	buf = io_buffer_select(req, &len, issue_flags);
3688 	if (!buf)
3689 		return -ENOBUFS;
3690 	req->rw.addr = (unsigned long) buf;
3691 	iov[0].iov_base = buf;
3692 	req->rw.len = iov[0].iov_len = (compat_size_t) len;
3693 	return 0;
3694 }
3695 #endif
3696 
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,unsigned int issue_flags)3697 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3698 				      unsigned int issue_flags)
3699 {
3700 	struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3701 	void __user *buf;
3702 	ssize_t len;
3703 
3704 	if (copy_from_user(iov, uiov, sizeof(*uiov)))
3705 		return -EFAULT;
3706 
3707 	len = iov[0].iov_len;
3708 	if (len < 0)
3709 		return -EINVAL;
3710 	buf = io_buffer_select(req, &len, issue_flags);
3711 	if (!buf)
3712 		return -ENOBUFS;
3713 	req->rw.addr = (unsigned long) buf;
3714 	iov[0].iov_base = buf;
3715 	req->rw.len = iov[0].iov_len = len;
3716 	return 0;
3717 }
3718 
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,unsigned int issue_flags)3719 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3720 				    unsigned int issue_flags)
3721 {
3722 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
3723 		iov[0].iov_base = u64_to_user_ptr(req->rw.addr);
3724 		iov[0].iov_len = req->rw.len;
3725 		return 0;
3726 	}
3727 	if (req->rw.len != 1)
3728 		return -EINVAL;
3729 
3730 #ifdef CONFIG_COMPAT
3731 	if (req->ctx->compat)
3732 		return io_compat_import(req, iov, issue_flags);
3733 #endif
3734 
3735 	return __io_iov_buffer_select(req, iov, issue_flags);
3736 }
3737 
io_do_buffer_select(struct io_kiocb * req)3738 static inline bool io_do_buffer_select(struct io_kiocb *req)
3739 {
3740 	if (!(req->flags & REQ_F_BUFFER_SELECT))
3741 		return false;
3742 	return !(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING));
3743 }
3744 
__io_import_iovec(int rw,struct io_kiocb * req,struct io_rw_state * s,unsigned int issue_flags)3745 static struct iovec *__io_import_iovec(int rw, struct io_kiocb *req,
3746 				       struct io_rw_state *s,
3747 				       unsigned int issue_flags)
3748 {
3749 	struct iov_iter *iter = &s->iter;
3750 	u8 opcode = req->opcode;
3751 	struct iovec *iovec;
3752 	void __user *buf;
3753 	size_t sqe_len;
3754 	ssize_t ret;
3755 
3756 	if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3757 		ret = io_import_fixed(req, rw, iter, issue_flags);
3758 		if (ret)
3759 			return ERR_PTR(ret);
3760 		return NULL;
3761 	}
3762 
3763 	buf = u64_to_user_ptr(req->rw.addr);
3764 	sqe_len = req->rw.len;
3765 
3766 	if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3767 		if (io_do_buffer_select(req)) {
3768 			buf = io_buffer_select(req, &sqe_len, issue_flags);
3769 			if (!buf)
3770 				return ERR_PTR(-ENOBUFS);
3771 			req->rw.addr = (unsigned long) buf;
3772 			req->rw.len = sqe_len;
3773 		}
3774 
3775 		ret = import_single_range(rw, buf, sqe_len, s->fast_iov, iter);
3776 		if (ret)
3777 			return ERR_PTR(ret);
3778 		return NULL;
3779 	}
3780 
3781 	iovec = s->fast_iov;
3782 	if (req->flags & REQ_F_BUFFER_SELECT) {
3783 		ret = io_iov_buffer_select(req, iovec, issue_flags);
3784 		if (ret)
3785 			return ERR_PTR(ret);
3786 		iov_iter_init(iter, rw, iovec, 1, iovec->iov_len);
3787 		return NULL;
3788 	}
3789 
3790 	ret = __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, &iovec, iter,
3791 			      req->ctx->compat);
3792 	if (unlikely(ret < 0))
3793 		return ERR_PTR(ret);
3794 	return iovec;
3795 }
3796 
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct io_rw_state * s,unsigned int issue_flags)3797 static inline int io_import_iovec(int rw, struct io_kiocb *req,
3798 				  struct iovec **iovec, struct io_rw_state *s,
3799 				  unsigned int issue_flags)
3800 {
3801 	*iovec = __io_import_iovec(rw, req, s, issue_flags);
3802 	if (unlikely(IS_ERR(*iovec)))
3803 		return PTR_ERR(*iovec);
3804 
3805 	iov_iter_save_state(&s->iter, &s->iter_state);
3806 	return 0;
3807 }
3808 
io_kiocb_ppos(struct kiocb * kiocb)3809 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3810 {
3811 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3812 }
3813 
3814 /*
3815  * For files that don't have ->read_iter() and ->write_iter(), handle them
3816  * by looping over ->read() or ->write() manually.
3817  */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3818 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3819 {
3820 	struct kiocb *kiocb = &req->rw.kiocb;
3821 	struct file *file = req->file;
3822 	ssize_t ret = 0;
3823 	loff_t *ppos;
3824 
3825 	/*
3826 	 * Don't support polled IO through this interface, and we can't
3827 	 * support non-blocking either. For the latter, this just causes
3828 	 * the kiocb to be handled from an async context.
3829 	 */
3830 	if (kiocb->ki_flags & IOCB_HIPRI)
3831 		return -EOPNOTSUPP;
3832 	if ((kiocb->ki_flags & IOCB_NOWAIT) &&
3833 	    !(kiocb->ki_filp->f_flags & O_NONBLOCK))
3834 		return -EAGAIN;
3835 
3836 	ppos = io_kiocb_ppos(kiocb);
3837 
3838 	while (iov_iter_count(iter)) {
3839 		struct iovec iovec;
3840 		ssize_t nr;
3841 
3842 		if (!iov_iter_is_bvec(iter)) {
3843 			iovec = iov_iter_iovec(iter);
3844 		} else {
3845 			iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3846 			iovec.iov_len = req->rw.len;
3847 		}
3848 
3849 		if (rw == READ) {
3850 			nr = file->f_op->read(file, iovec.iov_base,
3851 					      iovec.iov_len, ppos);
3852 		} else {
3853 			nr = file->f_op->write(file, iovec.iov_base,
3854 					       iovec.iov_len, ppos);
3855 		}
3856 
3857 		if (nr < 0) {
3858 			if (!ret)
3859 				ret = nr;
3860 			break;
3861 		}
3862 		ret += nr;
3863 		if (!iov_iter_is_bvec(iter)) {
3864 			iov_iter_advance(iter, nr);
3865 		} else {
3866 			req->rw.addr += nr;
3867 			req->rw.len -= nr;
3868 			if (!req->rw.len)
3869 				break;
3870 		}
3871 		if (nr != iovec.iov_len)
3872 			break;
3873 	}
3874 
3875 	return ret;
3876 }
3877 
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3878 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3879 			  const struct iovec *fast_iov, struct iov_iter *iter)
3880 {
3881 	struct io_async_rw *rw = req->async_data;
3882 
3883 	memcpy(&rw->s.iter, iter, sizeof(*iter));
3884 	rw->free_iovec = iovec;
3885 	rw->bytes_done = 0;
3886 	/* can only be fixed buffers, no need to do anything */
3887 	if (iov_iter_is_bvec(iter))
3888 		return;
3889 	if (!iovec) {
3890 		unsigned iov_off = 0;
3891 
3892 		rw->s.iter.iov = rw->s.fast_iov;
3893 		if (iter->iov != fast_iov) {
3894 			iov_off = iter->iov - fast_iov;
3895 			rw->s.iter.iov += iov_off;
3896 		}
3897 		if (rw->s.fast_iov != fast_iov)
3898 			memcpy(rw->s.fast_iov + iov_off, fast_iov + iov_off,
3899 			       sizeof(struct iovec) * iter->nr_segs);
3900 	} else {
3901 		req->flags |= REQ_F_NEED_CLEANUP;
3902 	}
3903 }
3904 
io_alloc_async_data(struct io_kiocb * req)3905 static inline bool io_alloc_async_data(struct io_kiocb *req)
3906 {
3907 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3908 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3909 	if (req->async_data) {
3910 		req->flags |= REQ_F_ASYNC_DATA;
3911 		return false;
3912 	}
3913 	return true;
3914 }
3915 
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,struct io_rw_state * s,bool force)3916 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3917 			     struct io_rw_state *s, bool force)
3918 {
3919 	if (!force && !io_op_defs[req->opcode].needs_async_setup)
3920 		return 0;
3921 	if (!req_has_async_data(req)) {
3922 		struct io_async_rw *iorw;
3923 
3924 		if (io_alloc_async_data(req)) {
3925 			kfree(iovec);
3926 			return -ENOMEM;
3927 		}
3928 
3929 		io_req_map_rw(req, iovec, s->fast_iov, &s->iter);
3930 		iorw = req->async_data;
3931 		/* we've copied and mapped the iter, ensure state is saved */
3932 		iov_iter_save_state(&iorw->s.iter, &iorw->s.iter_state);
3933 	}
3934 	return 0;
3935 }
3936 
io_rw_prep_async(struct io_kiocb * req,int rw)3937 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3938 {
3939 	struct io_async_rw *iorw = req->async_data;
3940 	struct iovec *iov;
3941 	int ret;
3942 
3943 	/* submission path, ->uring_lock should already be taken */
3944 	ret = io_import_iovec(rw, req, &iov, &iorw->s, 0);
3945 	if (unlikely(ret < 0))
3946 		return ret;
3947 
3948 	iorw->bytes_done = 0;
3949 	iorw->free_iovec = iov;
3950 	if (iov)
3951 		req->flags |= REQ_F_NEED_CLEANUP;
3952 	return 0;
3953 }
3954 
io_readv_prep_async(struct io_kiocb * req)3955 static int io_readv_prep_async(struct io_kiocb *req)
3956 {
3957 	return io_rw_prep_async(req, READ);
3958 }
3959 
io_writev_prep_async(struct io_kiocb * req)3960 static int io_writev_prep_async(struct io_kiocb *req)
3961 {
3962 	return io_rw_prep_async(req, WRITE);
3963 }
3964 
3965 /*
3966  * This is our waitqueue callback handler, registered through __folio_lock_async()
3967  * when we initially tried to do the IO with the iocb armed our waitqueue.
3968  * This gets called when the page is unlocked, and we generally expect that to
3969  * happen when the page IO is completed and the page is now uptodate. This will
3970  * queue a task_work based retry of the operation, attempting to copy the data
3971  * again. If the latter fails because the page was NOT uptodate, then we will
3972  * do a thread based blocking retry of the operation. That's the unexpected
3973  * slow path.
3974  */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3975 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3976 			     int sync, void *arg)
3977 {
3978 	struct wait_page_queue *wpq;
3979 	struct io_kiocb *req = wait->private;
3980 	struct wait_page_key *key = arg;
3981 
3982 	wpq = container_of(wait, struct wait_page_queue, wait);
3983 
3984 	if (!wake_page_match(wpq, key))
3985 		return 0;
3986 
3987 	req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3988 	list_del_init(&wait->entry);
3989 	io_req_task_queue(req);
3990 	return 1;
3991 }
3992 
3993 /*
3994  * This controls whether a given IO request should be armed for async page
3995  * based retry. If we return false here, the request is handed to the async
3996  * worker threads for retry. If we're doing buffered reads on a regular file,
3997  * we prepare a private wait_page_queue entry and retry the operation. This
3998  * will either succeed because the page is now uptodate and unlocked, or it
3999  * will register a callback when the page is unlocked at IO completion. Through
4000  * that callback, io_uring uses task_work to setup a retry of the operation.
4001  * That retry will attempt the buffered read again. The retry will generally
4002  * succeed, or in rare cases where it fails, we then fall back to using the
4003  * async worker threads for a blocking retry.
4004  */
io_rw_should_retry(struct io_kiocb * req)4005 static bool io_rw_should_retry(struct io_kiocb *req)
4006 {
4007 	struct io_async_rw *rw = req->async_data;
4008 	struct wait_page_queue *wait = &rw->wpq;
4009 	struct kiocb *kiocb = &req->rw.kiocb;
4010 
4011 	/* never retry for NOWAIT, we just complete with -EAGAIN */
4012 	if (req->flags & REQ_F_NOWAIT)
4013 		return false;
4014 
4015 	/* Only for buffered IO */
4016 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
4017 		return false;
4018 
4019 	/*
4020 	 * just use poll if we can, and don't attempt if the fs doesn't
4021 	 * support callback based unlocks
4022 	 */
4023 	if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
4024 		return false;
4025 
4026 	wait->wait.func = io_async_buf_func;
4027 	wait->wait.private = req;
4028 	wait->wait.flags = 0;
4029 	INIT_LIST_HEAD(&wait->wait.entry);
4030 	kiocb->ki_flags |= IOCB_WAITQ;
4031 	kiocb->ki_flags &= ~IOCB_NOWAIT;
4032 	kiocb->ki_waitq = wait;
4033 	return true;
4034 }
4035 
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)4036 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
4037 {
4038 	if (likely(req->file->f_op->read_iter))
4039 		return call_read_iter(req->file, &req->rw.kiocb, iter);
4040 	else if (req->file->f_op->read)
4041 		return loop_rw_iter(READ, req, iter);
4042 	else
4043 		return -EINVAL;
4044 }
4045 
need_read_all(struct io_kiocb * req)4046 static bool need_read_all(struct io_kiocb *req)
4047 {
4048 	return req->flags & REQ_F_ISREG ||
4049 		S_ISBLK(file_inode(req->file)->i_mode);
4050 }
4051 
io_rw_init_file(struct io_kiocb * req,fmode_t mode)4052 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode)
4053 {
4054 	struct kiocb *kiocb = &req->rw.kiocb;
4055 	struct io_ring_ctx *ctx = req->ctx;
4056 	struct file *file = req->file;
4057 	int ret;
4058 
4059 	if (unlikely(!file || !(file->f_mode & mode)))
4060 		return -EBADF;
4061 
4062 	if (!io_req_ffs_set(req))
4063 		req->flags |= io_file_get_flags(file) << REQ_F_SUPPORT_NOWAIT_BIT;
4064 
4065 	kiocb->ki_flags = iocb_flags(file);
4066 	ret = kiocb_set_rw_flags(kiocb, req->rw.flags);
4067 	if (unlikely(ret))
4068 		return ret;
4069 
4070 	/*
4071 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
4072 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
4073 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
4074 	 */
4075 	if ((kiocb->ki_flags & IOCB_NOWAIT) ||
4076 	    ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req)))
4077 		req->flags |= REQ_F_NOWAIT;
4078 
4079 	if (ctx->flags & IORING_SETUP_IOPOLL) {
4080 		if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
4081 			return -EOPNOTSUPP;
4082 
4083 		kiocb->private = NULL;
4084 		kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
4085 		kiocb->ki_complete = io_complete_rw_iopoll;
4086 		req->iopoll_completed = 0;
4087 	} else {
4088 		if (kiocb->ki_flags & IOCB_HIPRI)
4089 			return -EINVAL;
4090 		kiocb->ki_complete = io_complete_rw;
4091 	}
4092 
4093 	return 0;
4094 }
4095 
io_read(struct io_kiocb * req,unsigned int issue_flags)4096 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
4097 {
4098 	struct io_rw_state __s, *s = &__s;
4099 	struct iovec *iovec;
4100 	struct kiocb *kiocb = &req->rw.kiocb;
4101 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4102 	struct io_async_rw *rw;
4103 	ssize_t ret, ret2;
4104 	loff_t *ppos;
4105 
4106 	if (!req_has_async_data(req)) {
4107 		ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
4108 		if (unlikely(ret < 0))
4109 			return ret;
4110 	} else {
4111 		rw = req->async_data;
4112 		s = &rw->s;
4113 
4114 		/*
4115 		 * Safe and required to re-import if we're using provided
4116 		 * buffers, as we dropped the selected one before retry.
4117 		 */
4118 		if (io_do_buffer_select(req)) {
4119 			ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
4120 			if (unlikely(ret < 0))
4121 				return ret;
4122 		}
4123 
4124 		/*
4125 		 * We come here from an earlier attempt, restore our state to
4126 		 * match in case it doesn't. It's cheap enough that we don't
4127 		 * need to make this conditional.
4128 		 */
4129 		iov_iter_restore(&s->iter, &s->iter_state);
4130 		iovec = NULL;
4131 	}
4132 	ret = io_rw_init_file(req, FMODE_READ);
4133 	if (unlikely(ret)) {
4134 		kfree(iovec);
4135 		return ret;
4136 	}
4137 	req->cqe.res = iov_iter_count(&s->iter);
4138 
4139 	if (force_nonblock) {
4140 		/* If the file doesn't support async, just async punt */
4141 		if (unlikely(!io_file_supports_nowait(req))) {
4142 			ret = io_setup_async_rw(req, iovec, s, true);
4143 			return ret ?: -EAGAIN;
4144 		}
4145 		kiocb->ki_flags |= IOCB_NOWAIT;
4146 	} else {
4147 		/* Ensure we clear previously set non-block flag */
4148 		kiocb->ki_flags &= ~IOCB_NOWAIT;
4149 	}
4150 
4151 	ppos = io_kiocb_update_pos(req);
4152 
4153 	ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
4154 	if (unlikely(ret)) {
4155 		kfree(iovec);
4156 		return ret;
4157 	}
4158 
4159 	ret = io_iter_do_read(req, &s->iter);
4160 
4161 	if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
4162 		req->flags &= ~REQ_F_REISSUE;
4163 		/* if we can poll, just do that */
4164 		if (req->opcode == IORING_OP_READ && file_can_poll(req->file))
4165 			return -EAGAIN;
4166 		/* IOPOLL retry should happen for io-wq threads */
4167 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
4168 			goto done;
4169 		/* no retry on NONBLOCK nor RWF_NOWAIT */
4170 		if (req->flags & REQ_F_NOWAIT)
4171 			goto done;
4172 		ret = 0;
4173 	} else if (ret == -EIOCBQUEUED) {
4174 		goto out_free;
4175 	} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
4176 		   (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
4177 		/* read all, failed, already did sync or don't want to retry */
4178 		goto done;
4179 	}
4180 
4181 	/*
4182 	 * Don't depend on the iter state matching what was consumed, or being
4183 	 * untouched in case of error. Restore it and we'll advance it
4184 	 * manually if we need to.
4185 	 */
4186 	iov_iter_restore(&s->iter, &s->iter_state);
4187 
4188 	ret2 = io_setup_async_rw(req, iovec, s, true);
4189 	if (ret2)
4190 		return ret2;
4191 
4192 	iovec = NULL;
4193 	rw = req->async_data;
4194 	s = &rw->s;
4195 	/*
4196 	 * Now use our persistent iterator and state, if we aren't already.
4197 	 * We've restored and mapped the iter to match.
4198 	 */
4199 
4200 	do {
4201 		/*
4202 		 * We end up here because of a partial read, either from
4203 		 * above or inside this loop. Advance the iter by the bytes
4204 		 * that were consumed.
4205 		 */
4206 		iov_iter_advance(&s->iter, ret);
4207 		if (!iov_iter_count(&s->iter))
4208 			break;
4209 		rw->bytes_done += ret;
4210 		iov_iter_save_state(&s->iter, &s->iter_state);
4211 
4212 		/* if we can retry, do so with the callbacks armed */
4213 		if (!io_rw_should_retry(req)) {
4214 			kiocb->ki_flags &= ~IOCB_WAITQ;
4215 			return -EAGAIN;
4216 		}
4217 
4218 		/*
4219 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
4220 		 * we get -EIOCBQUEUED, then we'll get a notification when the
4221 		 * desired page gets unlocked. We can also get a partial read
4222 		 * here, and if we do, then just retry at the new offset.
4223 		 */
4224 		ret = io_iter_do_read(req, &s->iter);
4225 		if (ret == -EIOCBQUEUED)
4226 			return 0;
4227 		/* we got some bytes, but not all. retry. */
4228 		kiocb->ki_flags &= ~IOCB_WAITQ;
4229 		iov_iter_restore(&s->iter, &s->iter_state);
4230 	} while (ret > 0);
4231 done:
4232 	kiocb_done(req, ret, issue_flags);
4233 out_free:
4234 	/* it's faster to check here then delegate to kfree */
4235 	if (iovec)
4236 		kfree(iovec);
4237 	return 0;
4238 }
4239 
io_write(struct io_kiocb * req,unsigned int issue_flags)4240 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
4241 {
4242 	struct io_rw_state __s, *s = &__s;
4243 	struct iovec *iovec;
4244 	struct kiocb *kiocb = &req->rw.kiocb;
4245 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4246 	ssize_t ret, ret2;
4247 	loff_t *ppos;
4248 
4249 	if (!req_has_async_data(req)) {
4250 		ret = io_import_iovec(WRITE, req, &iovec, s, issue_flags);
4251 		if (unlikely(ret < 0))
4252 			return ret;
4253 	} else {
4254 		struct io_async_rw *rw = req->async_data;
4255 
4256 		s = &rw->s;
4257 		iov_iter_restore(&s->iter, &s->iter_state);
4258 		iovec = NULL;
4259 	}
4260 	ret = io_rw_init_file(req, FMODE_WRITE);
4261 	if (unlikely(ret)) {
4262 		kfree(iovec);
4263 		return ret;
4264 	}
4265 	req->cqe.res = iov_iter_count(&s->iter);
4266 
4267 	if (force_nonblock) {
4268 		/* If the file doesn't support async, just async punt */
4269 		if (unlikely(!io_file_supports_nowait(req)))
4270 			goto copy_iov;
4271 
4272 		/* file path doesn't support NOWAIT for non-direct_IO */
4273 		if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
4274 		    (req->flags & REQ_F_ISREG))
4275 			goto copy_iov;
4276 
4277 		kiocb->ki_flags |= IOCB_NOWAIT;
4278 	} else {
4279 		/* Ensure we clear previously set non-block flag */
4280 		kiocb->ki_flags &= ~IOCB_NOWAIT;
4281 	}
4282 
4283 	ppos = io_kiocb_update_pos(req);
4284 
4285 	ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
4286 	if (unlikely(ret))
4287 		goto out_free;
4288 
4289 	/*
4290 	 * Open-code file_start_write here to grab freeze protection,
4291 	 * which will be released by another thread in
4292 	 * io_complete_rw().  Fool lockdep by telling it the lock got
4293 	 * released so that it doesn't complain about the held lock when
4294 	 * we return to userspace.
4295 	 */
4296 	if (req->flags & REQ_F_ISREG) {
4297 		sb_start_write(file_inode(req->file)->i_sb);
4298 		__sb_writers_release(file_inode(req->file)->i_sb,
4299 					SB_FREEZE_WRITE);
4300 	}
4301 	kiocb->ki_flags |= IOCB_WRITE;
4302 
4303 	if (likely(req->file->f_op->write_iter))
4304 		ret2 = call_write_iter(req->file, kiocb, &s->iter);
4305 	else if (req->file->f_op->write)
4306 		ret2 = loop_rw_iter(WRITE, req, &s->iter);
4307 	else
4308 		ret2 = -EINVAL;
4309 
4310 	if (req->flags & REQ_F_REISSUE) {
4311 		req->flags &= ~REQ_F_REISSUE;
4312 		ret2 = -EAGAIN;
4313 	}
4314 
4315 	/*
4316 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
4317 	 * retry them without IOCB_NOWAIT.
4318 	 */
4319 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
4320 		ret2 = -EAGAIN;
4321 	/* no retry on NONBLOCK nor RWF_NOWAIT */
4322 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
4323 		goto done;
4324 	if (!force_nonblock || ret2 != -EAGAIN) {
4325 		/* IOPOLL retry should happen for io-wq threads */
4326 		if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
4327 			goto copy_iov;
4328 done:
4329 		kiocb_done(req, ret2, issue_flags);
4330 	} else {
4331 copy_iov:
4332 		iov_iter_restore(&s->iter, &s->iter_state);
4333 		ret = io_setup_async_rw(req, iovec, s, false);
4334 		if (!ret) {
4335 			if (kiocb->ki_flags & IOCB_WRITE)
4336 				kiocb_end_write(req);
4337 			return -EAGAIN;
4338 		}
4339 		return ret;
4340 	}
4341 out_free:
4342 	/* it's reportedly faster than delegating the null check to kfree() */
4343 	if (iovec)
4344 		kfree(iovec);
4345 	return ret;
4346 }
4347 
io_renameat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4348 static int io_renameat_prep(struct io_kiocb *req,
4349 			    const struct io_uring_sqe *sqe)
4350 {
4351 	struct io_rename *ren = &req->rename;
4352 	const char __user *oldf, *newf;
4353 
4354 	if (sqe->buf_index || sqe->splice_fd_in)
4355 		return -EINVAL;
4356 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4357 		return -EBADF;
4358 
4359 	ren->old_dfd = READ_ONCE(sqe->fd);
4360 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
4361 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4362 	ren->new_dfd = READ_ONCE(sqe->len);
4363 	ren->flags = READ_ONCE(sqe->rename_flags);
4364 
4365 	ren->oldpath = getname(oldf);
4366 	if (IS_ERR(ren->oldpath))
4367 		return PTR_ERR(ren->oldpath);
4368 
4369 	ren->newpath = getname(newf);
4370 	if (IS_ERR(ren->newpath)) {
4371 		putname(ren->oldpath);
4372 		return PTR_ERR(ren->newpath);
4373 	}
4374 
4375 	req->flags |= REQ_F_NEED_CLEANUP;
4376 	return 0;
4377 }
4378 
io_renameat(struct io_kiocb * req,unsigned int issue_flags)4379 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
4380 {
4381 	struct io_rename *ren = &req->rename;
4382 	int ret;
4383 
4384 	if (issue_flags & IO_URING_F_NONBLOCK)
4385 		return -EAGAIN;
4386 
4387 	ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
4388 				ren->newpath, ren->flags);
4389 
4390 	req->flags &= ~REQ_F_NEED_CLEANUP;
4391 	io_req_complete(req, ret);
4392 	return 0;
4393 }
4394 
__io_xattr_finish(struct io_kiocb * req)4395 static inline void __io_xattr_finish(struct io_kiocb *req)
4396 {
4397 	struct io_xattr *ix = &req->xattr;
4398 
4399 	if (ix->filename)
4400 		putname(ix->filename);
4401 
4402 	kfree(ix->ctx.kname);
4403 	kvfree(ix->ctx.kvalue);
4404 }
4405 
io_xattr_finish(struct io_kiocb * req,int ret)4406 static void io_xattr_finish(struct io_kiocb *req, int ret)
4407 {
4408 	req->flags &= ~REQ_F_NEED_CLEANUP;
4409 
4410 	__io_xattr_finish(req);
4411 	io_req_complete(req, ret);
4412 }
4413 
__io_getxattr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4414 static int __io_getxattr_prep(struct io_kiocb *req,
4415 			      const struct io_uring_sqe *sqe)
4416 {
4417 	struct io_xattr *ix = &req->xattr;
4418 	const char __user *name;
4419 	int ret;
4420 
4421 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4422 		return -EBADF;
4423 
4424 	ix->filename = NULL;
4425 	ix->ctx.kvalue = NULL;
4426 	name = u64_to_user_ptr(READ_ONCE(sqe->addr));
4427 	ix->ctx.cvalue = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4428 	ix->ctx.size = READ_ONCE(sqe->len);
4429 	ix->ctx.flags = READ_ONCE(sqe->xattr_flags);
4430 
4431 	if (ix->ctx.flags)
4432 		return -EINVAL;
4433 
4434 	ix->ctx.kname = kmalloc(sizeof(*ix->ctx.kname), GFP_KERNEL);
4435 	if (!ix->ctx.kname)
4436 		return -ENOMEM;
4437 
4438 	ret = strncpy_from_user(ix->ctx.kname->name, name,
4439 				sizeof(ix->ctx.kname->name));
4440 	if (!ret || ret == sizeof(ix->ctx.kname->name))
4441 		ret = -ERANGE;
4442 	if (ret < 0) {
4443 		kfree(ix->ctx.kname);
4444 		return ret;
4445 	}
4446 
4447 	req->flags |= REQ_F_NEED_CLEANUP;
4448 	return 0;
4449 }
4450 
io_fgetxattr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4451 static int io_fgetxattr_prep(struct io_kiocb *req,
4452 			     const struct io_uring_sqe *sqe)
4453 {
4454 	return __io_getxattr_prep(req, sqe);
4455 }
4456 
io_getxattr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4457 static int io_getxattr_prep(struct io_kiocb *req,
4458 			    const struct io_uring_sqe *sqe)
4459 {
4460 	struct io_xattr *ix = &req->xattr;
4461 	const char __user *path;
4462 	int ret;
4463 
4464 	ret = __io_getxattr_prep(req, sqe);
4465 	if (ret)
4466 		return ret;
4467 
4468 	path = u64_to_user_ptr(READ_ONCE(sqe->addr3));
4469 
4470 	ix->filename = getname_flags(path, LOOKUP_FOLLOW, NULL);
4471 	if (IS_ERR(ix->filename)) {
4472 		ret = PTR_ERR(ix->filename);
4473 		ix->filename = NULL;
4474 	}
4475 
4476 	return ret;
4477 }
4478 
io_fgetxattr(struct io_kiocb * req,unsigned int issue_flags)4479 static int io_fgetxattr(struct io_kiocb *req, unsigned int issue_flags)
4480 {
4481 	struct io_xattr *ix = &req->xattr;
4482 	int ret;
4483 
4484 	if (issue_flags & IO_URING_F_NONBLOCK)
4485 		return -EAGAIN;
4486 
4487 	ret = do_getxattr(mnt_user_ns(req->file->f_path.mnt),
4488 			req->file->f_path.dentry,
4489 			&ix->ctx);
4490 
4491 	io_xattr_finish(req, ret);
4492 	return 0;
4493 }
4494 
io_getxattr(struct io_kiocb * req,unsigned int issue_flags)4495 static int io_getxattr(struct io_kiocb *req, unsigned int issue_flags)
4496 {
4497 	struct io_xattr *ix = &req->xattr;
4498 	unsigned int lookup_flags = LOOKUP_FOLLOW;
4499 	struct path path;
4500 	int ret;
4501 
4502 	if (issue_flags & IO_URING_F_NONBLOCK)
4503 		return -EAGAIN;
4504 
4505 retry:
4506 	ret = filename_lookup(AT_FDCWD, ix->filename, lookup_flags, &path, NULL);
4507 	if (!ret) {
4508 		ret = do_getxattr(mnt_user_ns(path.mnt),
4509 				path.dentry,
4510 				&ix->ctx);
4511 
4512 		path_put(&path);
4513 		if (retry_estale(ret, lookup_flags)) {
4514 			lookup_flags |= LOOKUP_REVAL;
4515 			goto retry;
4516 		}
4517 	}
4518 
4519 	io_xattr_finish(req, ret);
4520 	return 0;
4521 }
4522 
__io_setxattr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4523 static int __io_setxattr_prep(struct io_kiocb *req,
4524 			const struct io_uring_sqe *sqe)
4525 {
4526 	struct io_xattr *ix = &req->xattr;
4527 	const char __user *name;
4528 	int ret;
4529 
4530 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4531 		return -EBADF;
4532 
4533 	ix->filename = NULL;
4534 	name = u64_to_user_ptr(READ_ONCE(sqe->addr));
4535 	ix->ctx.cvalue = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4536 	ix->ctx.kvalue = NULL;
4537 	ix->ctx.size = READ_ONCE(sqe->len);
4538 	ix->ctx.flags = READ_ONCE(sqe->xattr_flags);
4539 
4540 	ix->ctx.kname = kmalloc(sizeof(*ix->ctx.kname), GFP_KERNEL);
4541 	if (!ix->ctx.kname)
4542 		return -ENOMEM;
4543 
4544 	ret = setxattr_copy(name, &ix->ctx);
4545 	if (ret) {
4546 		kfree(ix->ctx.kname);
4547 		return ret;
4548 	}
4549 
4550 	req->flags |= REQ_F_NEED_CLEANUP;
4551 	return 0;
4552 }
4553 
io_setxattr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4554 static int io_setxattr_prep(struct io_kiocb *req,
4555 			const struct io_uring_sqe *sqe)
4556 {
4557 	struct io_xattr *ix = &req->xattr;
4558 	const char __user *path;
4559 	int ret;
4560 
4561 	ret = __io_setxattr_prep(req, sqe);
4562 	if (ret)
4563 		return ret;
4564 
4565 	path = u64_to_user_ptr(READ_ONCE(sqe->addr3));
4566 
4567 	ix->filename = getname_flags(path, LOOKUP_FOLLOW, NULL);
4568 	if (IS_ERR(ix->filename)) {
4569 		ret = PTR_ERR(ix->filename);
4570 		ix->filename = NULL;
4571 	}
4572 
4573 	return ret;
4574 }
4575 
io_fsetxattr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4576 static int io_fsetxattr_prep(struct io_kiocb *req,
4577 			const struct io_uring_sqe *sqe)
4578 {
4579 	return __io_setxattr_prep(req, sqe);
4580 }
4581 
__io_setxattr(struct io_kiocb * req,unsigned int issue_flags,struct path * path)4582 static int __io_setxattr(struct io_kiocb *req, unsigned int issue_flags,
4583 			struct path *path)
4584 {
4585 	struct io_xattr *ix = &req->xattr;
4586 	int ret;
4587 
4588 	ret = mnt_want_write(path->mnt);
4589 	if (!ret) {
4590 		ret = do_setxattr(mnt_user_ns(path->mnt), path->dentry, &ix->ctx);
4591 		mnt_drop_write(path->mnt);
4592 	}
4593 
4594 	return ret;
4595 }
4596 
io_fsetxattr(struct io_kiocb * req,unsigned int issue_flags)4597 static int io_fsetxattr(struct io_kiocb *req, unsigned int issue_flags)
4598 {
4599 	int ret;
4600 
4601 	if (issue_flags & IO_URING_F_NONBLOCK)
4602 		return -EAGAIN;
4603 
4604 	ret = __io_setxattr(req, issue_flags, &req->file->f_path);
4605 	io_xattr_finish(req, ret);
4606 
4607 	return 0;
4608 }
4609 
io_setxattr(struct io_kiocb * req,unsigned int issue_flags)4610 static int io_setxattr(struct io_kiocb *req, unsigned int issue_flags)
4611 {
4612 	struct io_xattr *ix = &req->xattr;
4613 	unsigned int lookup_flags = LOOKUP_FOLLOW;
4614 	struct path path;
4615 	int ret;
4616 
4617 	if (issue_flags & IO_URING_F_NONBLOCK)
4618 		return -EAGAIN;
4619 
4620 retry:
4621 	ret = filename_lookup(AT_FDCWD, ix->filename, lookup_flags, &path, NULL);
4622 	if (!ret) {
4623 		ret = __io_setxattr(req, issue_flags, &path);
4624 		path_put(&path);
4625 		if (retry_estale(ret, lookup_flags)) {
4626 			lookup_flags |= LOOKUP_REVAL;
4627 			goto retry;
4628 		}
4629 	}
4630 
4631 	io_xattr_finish(req, ret);
4632 	return 0;
4633 }
4634 
io_unlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4635 static int io_unlinkat_prep(struct io_kiocb *req,
4636 			    const struct io_uring_sqe *sqe)
4637 {
4638 	struct io_unlink *un = &req->unlink;
4639 	const char __user *fname;
4640 
4641 	if (sqe->off || sqe->len || sqe->buf_index || sqe->splice_fd_in)
4642 		return -EINVAL;
4643 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4644 		return -EBADF;
4645 
4646 	un->dfd = READ_ONCE(sqe->fd);
4647 
4648 	un->flags = READ_ONCE(sqe->unlink_flags);
4649 	if (un->flags & ~AT_REMOVEDIR)
4650 		return -EINVAL;
4651 
4652 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4653 	un->filename = getname(fname);
4654 	if (IS_ERR(un->filename))
4655 		return PTR_ERR(un->filename);
4656 
4657 	req->flags |= REQ_F_NEED_CLEANUP;
4658 	return 0;
4659 }
4660 
io_unlinkat(struct io_kiocb * req,unsigned int issue_flags)4661 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
4662 {
4663 	struct io_unlink *un = &req->unlink;
4664 	int ret;
4665 
4666 	if (issue_flags & IO_URING_F_NONBLOCK)
4667 		return -EAGAIN;
4668 
4669 	if (un->flags & AT_REMOVEDIR)
4670 		ret = do_rmdir(un->dfd, un->filename);
4671 	else
4672 		ret = do_unlinkat(un->dfd, un->filename);
4673 
4674 	req->flags &= ~REQ_F_NEED_CLEANUP;
4675 	io_req_complete(req, ret);
4676 	return 0;
4677 }
4678 
io_mkdirat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4679 static int io_mkdirat_prep(struct io_kiocb *req,
4680 			    const struct io_uring_sqe *sqe)
4681 {
4682 	struct io_mkdir *mkd = &req->mkdir;
4683 	const char __user *fname;
4684 
4685 	if (sqe->off || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4686 		return -EINVAL;
4687 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4688 		return -EBADF;
4689 
4690 	mkd->dfd = READ_ONCE(sqe->fd);
4691 	mkd->mode = READ_ONCE(sqe->len);
4692 
4693 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4694 	mkd->filename = getname(fname);
4695 	if (IS_ERR(mkd->filename))
4696 		return PTR_ERR(mkd->filename);
4697 
4698 	req->flags |= REQ_F_NEED_CLEANUP;
4699 	return 0;
4700 }
4701 
io_mkdirat(struct io_kiocb * req,unsigned int issue_flags)4702 static int io_mkdirat(struct io_kiocb *req, unsigned int issue_flags)
4703 {
4704 	struct io_mkdir *mkd = &req->mkdir;
4705 	int ret;
4706 
4707 	if (issue_flags & IO_URING_F_NONBLOCK)
4708 		return -EAGAIN;
4709 
4710 	ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
4711 
4712 	req->flags &= ~REQ_F_NEED_CLEANUP;
4713 	io_req_complete(req, ret);
4714 	return 0;
4715 }
4716 
io_symlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4717 static int io_symlinkat_prep(struct io_kiocb *req,
4718 			    const struct io_uring_sqe *sqe)
4719 {
4720 	struct io_symlink *sl = &req->symlink;
4721 	const char __user *oldpath, *newpath;
4722 
4723 	if (sqe->len || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4724 		return -EINVAL;
4725 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4726 		return -EBADF;
4727 
4728 	sl->new_dfd = READ_ONCE(sqe->fd);
4729 	oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
4730 	newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4731 
4732 	sl->oldpath = getname(oldpath);
4733 	if (IS_ERR(sl->oldpath))
4734 		return PTR_ERR(sl->oldpath);
4735 
4736 	sl->newpath = getname(newpath);
4737 	if (IS_ERR(sl->newpath)) {
4738 		putname(sl->oldpath);
4739 		return PTR_ERR(sl->newpath);
4740 	}
4741 
4742 	req->flags |= REQ_F_NEED_CLEANUP;
4743 	return 0;
4744 }
4745 
io_symlinkat(struct io_kiocb * req,unsigned int issue_flags)4746 static int io_symlinkat(struct io_kiocb *req, unsigned int issue_flags)
4747 {
4748 	struct io_symlink *sl = &req->symlink;
4749 	int ret;
4750 
4751 	if (issue_flags & IO_URING_F_NONBLOCK)
4752 		return -EAGAIN;
4753 
4754 	ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
4755 
4756 	req->flags &= ~REQ_F_NEED_CLEANUP;
4757 	io_req_complete(req, ret);
4758 	return 0;
4759 }
4760 
io_linkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4761 static int io_linkat_prep(struct io_kiocb *req,
4762 			    const struct io_uring_sqe *sqe)
4763 {
4764 	struct io_hardlink *lnk = &req->hardlink;
4765 	const char __user *oldf, *newf;
4766 
4767 	if (sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4768 		return -EINVAL;
4769 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4770 		return -EBADF;
4771 
4772 	lnk->old_dfd = READ_ONCE(sqe->fd);
4773 	lnk->new_dfd = READ_ONCE(sqe->len);
4774 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
4775 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4776 	lnk->flags = READ_ONCE(sqe->hardlink_flags);
4777 
4778 	lnk->oldpath = getname(oldf);
4779 	if (IS_ERR(lnk->oldpath))
4780 		return PTR_ERR(lnk->oldpath);
4781 
4782 	lnk->newpath = getname(newf);
4783 	if (IS_ERR(lnk->newpath)) {
4784 		putname(lnk->oldpath);
4785 		return PTR_ERR(lnk->newpath);
4786 	}
4787 
4788 	req->flags |= REQ_F_NEED_CLEANUP;
4789 	return 0;
4790 }
4791 
io_linkat(struct io_kiocb * req,unsigned int issue_flags)4792 static int io_linkat(struct io_kiocb *req, unsigned int issue_flags)
4793 {
4794 	struct io_hardlink *lnk = &req->hardlink;
4795 	int ret;
4796 
4797 	if (issue_flags & IO_URING_F_NONBLOCK)
4798 		return -EAGAIN;
4799 
4800 	ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
4801 				lnk->newpath, lnk->flags);
4802 
4803 	req->flags &= ~REQ_F_NEED_CLEANUP;
4804 	io_req_complete(req, ret);
4805 	return 0;
4806 }
4807 
io_uring_cmd_work(struct io_kiocb * req,bool * locked)4808 static void io_uring_cmd_work(struct io_kiocb *req, bool *locked)
4809 {
4810 	req->uring_cmd.task_work_cb(&req->uring_cmd);
4811 }
4812 
io_uring_cmd_complete_in_task(struct io_uring_cmd * ioucmd,void (* task_work_cb)(struct io_uring_cmd *))4813 void io_uring_cmd_complete_in_task(struct io_uring_cmd *ioucmd,
4814 			void (*task_work_cb)(struct io_uring_cmd *))
4815 {
4816 	struct io_kiocb *req = container_of(ioucmd, struct io_kiocb, uring_cmd);
4817 
4818 	req->uring_cmd.task_work_cb = task_work_cb;
4819 	req->io_task_work.func = io_uring_cmd_work;
4820 	io_req_task_work_add(req);
4821 }
4822 EXPORT_SYMBOL_GPL(io_uring_cmd_complete_in_task);
4823 
io_req_set_cqe32_extra(struct io_kiocb * req,u64 extra1,u64 extra2)4824 static inline void io_req_set_cqe32_extra(struct io_kiocb *req,
4825 					  u64 extra1, u64 extra2)
4826 {
4827 	req->extra1 = extra1;
4828 	req->extra2 = extra2;
4829 	req->flags |= REQ_F_CQE32_INIT;
4830 }
4831 
4832 /*
4833  * Called by consumers of io_uring_cmd, if they originally returned
4834  * -EIOCBQUEUED upon receiving the command.
4835  */
io_uring_cmd_done(struct io_uring_cmd * ioucmd,ssize_t ret,ssize_t res2)4836 void io_uring_cmd_done(struct io_uring_cmd *ioucmd, ssize_t ret, ssize_t res2)
4837 {
4838 	struct io_kiocb *req = container_of(ioucmd, struct io_kiocb, uring_cmd);
4839 
4840 	if (ret < 0)
4841 		req_set_fail(req);
4842 
4843 	if (req->ctx->flags & IORING_SETUP_CQE32)
4844 		io_req_set_cqe32_extra(req, res2, 0);
4845 	io_req_complete(req, ret);
4846 }
4847 EXPORT_SYMBOL_GPL(io_uring_cmd_done);
4848 
io_uring_cmd_prep_async(struct io_kiocb * req)4849 static int io_uring_cmd_prep_async(struct io_kiocb *req)
4850 {
4851 	size_t cmd_size;
4852 
4853 	cmd_size = uring_cmd_pdu_size(req->ctx->flags & IORING_SETUP_SQE128);
4854 
4855 	memcpy(req->async_data, req->uring_cmd.cmd, cmd_size);
4856 	return 0;
4857 }
4858 
io_uring_cmd_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4859 static int io_uring_cmd_prep(struct io_kiocb *req,
4860 			     const struct io_uring_sqe *sqe)
4861 {
4862 	struct io_uring_cmd *ioucmd = &req->uring_cmd;
4863 
4864 	if (sqe->rw_flags || sqe->__pad1)
4865 		return -EINVAL;
4866 	ioucmd->cmd = sqe->cmd;
4867 	ioucmd->cmd_op = READ_ONCE(sqe->cmd_op);
4868 	return 0;
4869 }
4870 
io_uring_cmd(struct io_kiocb * req,unsigned int issue_flags)4871 static int io_uring_cmd(struct io_kiocb *req, unsigned int issue_flags)
4872 {
4873 	struct io_uring_cmd *ioucmd = &req->uring_cmd;
4874 	struct io_ring_ctx *ctx = req->ctx;
4875 	struct file *file = req->file;
4876 	int ret;
4877 
4878 	if (!req->file->f_op->uring_cmd)
4879 		return -EOPNOTSUPP;
4880 
4881 	ret = security_uring_cmd(ioucmd);
4882 	if (ret)
4883 		return ret;
4884 
4885 	if (ctx->flags & IORING_SETUP_SQE128)
4886 		issue_flags |= IO_URING_F_SQE128;
4887 	if (ctx->flags & IORING_SETUP_CQE32)
4888 		issue_flags |= IO_URING_F_CQE32;
4889 	if (ctx->flags & IORING_SETUP_IOPOLL)
4890 		issue_flags |= IO_URING_F_IOPOLL;
4891 
4892 	if (req_has_async_data(req))
4893 		ioucmd->cmd = req->async_data;
4894 
4895 	ret = file->f_op->uring_cmd(ioucmd, issue_flags);
4896 	if (ret == -EAGAIN) {
4897 		if (!req_has_async_data(req)) {
4898 			if (io_alloc_async_data(req))
4899 				return -ENOMEM;
4900 			io_uring_cmd_prep_async(req);
4901 		}
4902 		return -EAGAIN;
4903 	}
4904 
4905 	if (ret != -EIOCBQUEUED)
4906 		io_uring_cmd_done(ioucmd, ret, 0);
4907 	return 0;
4908 }
4909 
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4910 static int __io_splice_prep(struct io_kiocb *req,
4911 			    const struct io_uring_sqe *sqe)
4912 {
4913 	struct io_splice *sp = &req->splice;
4914 	unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4915 
4916 	sp->len = READ_ONCE(sqe->len);
4917 	sp->flags = READ_ONCE(sqe->splice_flags);
4918 	if (unlikely(sp->flags & ~valid_flags))
4919 		return -EINVAL;
4920 	sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4921 	return 0;
4922 }
4923 
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4924 static int io_tee_prep(struct io_kiocb *req,
4925 		       const struct io_uring_sqe *sqe)
4926 {
4927 	if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4928 		return -EINVAL;
4929 	return __io_splice_prep(req, sqe);
4930 }
4931 
io_tee(struct io_kiocb * req,unsigned int issue_flags)4932 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4933 {
4934 	struct io_splice *sp = &req->splice;
4935 	struct file *out = sp->file_out;
4936 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4937 	struct file *in;
4938 	long ret = 0;
4939 
4940 	if (issue_flags & IO_URING_F_NONBLOCK)
4941 		return -EAGAIN;
4942 
4943 	if (sp->flags & SPLICE_F_FD_IN_FIXED)
4944 		in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
4945 	else
4946 		in = io_file_get_normal(req, sp->splice_fd_in);
4947 	if (!in) {
4948 		ret = -EBADF;
4949 		goto done;
4950 	}
4951 
4952 	if (sp->len)
4953 		ret = do_tee(in, out, sp->len, flags);
4954 
4955 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4956 		io_put_file(in);
4957 done:
4958 	if (ret != sp->len)
4959 		req_set_fail(req);
4960 	__io_req_complete(req, 0, ret, 0);
4961 	return 0;
4962 }
4963 
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4964 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4965 {
4966 	struct io_splice *sp = &req->splice;
4967 
4968 	sp->off_in = READ_ONCE(sqe->splice_off_in);
4969 	sp->off_out = READ_ONCE(sqe->off);
4970 	return __io_splice_prep(req, sqe);
4971 }
4972 
io_splice(struct io_kiocb * req,unsigned int issue_flags)4973 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4974 {
4975 	struct io_splice *sp = &req->splice;
4976 	struct file *out = sp->file_out;
4977 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4978 	loff_t *poff_in, *poff_out;
4979 	struct file *in;
4980 	long ret = 0;
4981 
4982 	if (issue_flags & IO_URING_F_NONBLOCK)
4983 		return -EAGAIN;
4984 
4985 	if (sp->flags & SPLICE_F_FD_IN_FIXED)
4986 		in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
4987 	else
4988 		in = io_file_get_normal(req, sp->splice_fd_in);
4989 	if (!in) {
4990 		ret = -EBADF;
4991 		goto done;
4992 	}
4993 
4994 	poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4995 	poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4996 
4997 	if (sp->len)
4998 		ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4999 
5000 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
5001 		io_put_file(in);
5002 done:
5003 	if (ret != sp->len)
5004 		req_set_fail(req);
5005 	__io_req_complete(req, 0, ret, 0);
5006 	return 0;
5007 }
5008 
io_nop_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5009 static int io_nop_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5010 {
5011 	return 0;
5012 }
5013 
5014 /*
5015  * IORING_OP_NOP just posts a completion event, nothing else.
5016  */
io_nop(struct io_kiocb * req,unsigned int issue_flags)5017 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
5018 {
5019 	__io_req_complete(req, issue_flags, 0, 0);
5020 	return 0;
5021 }
5022 
io_msg_ring_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5023 static int io_msg_ring_prep(struct io_kiocb *req,
5024 			    const struct io_uring_sqe *sqe)
5025 {
5026 	if (unlikely(sqe->addr || sqe->rw_flags || sqe->splice_fd_in ||
5027 		     sqe->buf_index || sqe->personality))
5028 		return -EINVAL;
5029 
5030 	req->msg.user_data = READ_ONCE(sqe->off);
5031 	req->msg.len = READ_ONCE(sqe->len);
5032 	return 0;
5033 }
5034 
io_msg_ring(struct io_kiocb * req,unsigned int issue_flags)5035 static int io_msg_ring(struct io_kiocb *req, unsigned int issue_flags)
5036 {
5037 	struct io_ring_ctx *target_ctx;
5038 	struct io_msg *msg = &req->msg;
5039 	bool filled;
5040 	int ret;
5041 
5042 	ret = -EBADFD;
5043 	if (req->file->f_op != &io_uring_fops)
5044 		goto done;
5045 
5046 	ret = -EOVERFLOW;
5047 	target_ctx = req->file->private_data;
5048 
5049 	spin_lock(&target_ctx->completion_lock);
5050 	filled = io_fill_cqe_aux(target_ctx, msg->user_data, msg->len, 0);
5051 	io_commit_cqring(target_ctx);
5052 	spin_unlock(&target_ctx->completion_lock);
5053 
5054 	if (filled) {
5055 		io_cqring_ev_posted(target_ctx);
5056 		ret = 0;
5057 	}
5058 
5059 done:
5060 	if (ret < 0)
5061 		req_set_fail(req);
5062 	__io_req_complete(req, issue_flags, ret, 0);
5063 	/* put file to avoid an attempt to IOPOLL the req */
5064 	io_put_file(req->file);
5065 	req->file = NULL;
5066 	return 0;
5067 }
5068 
io_fsync_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5069 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5070 {
5071 	if (unlikely(sqe->addr || sqe->buf_index || sqe->splice_fd_in))
5072 		return -EINVAL;
5073 
5074 	req->sync.flags = READ_ONCE(sqe->fsync_flags);
5075 	if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
5076 		return -EINVAL;
5077 
5078 	req->sync.off = READ_ONCE(sqe->off);
5079 	req->sync.len = READ_ONCE(sqe->len);
5080 	return 0;
5081 }
5082 
io_fsync(struct io_kiocb * req,unsigned int issue_flags)5083 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
5084 {
5085 	loff_t end = req->sync.off + req->sync.len;
5086 	int ret;
5087 
5088 	/* fsync always requires a blocking context */
5089 	if (issue_flags & IO_URING_F_NONBLOCK)
5090 		return -EAGAIN;
5091 
5092 	ret = vfs_fsync_range(req->file, req->sync.off,
5093 				end > 0 ? end : LLONG_MAX,
5094 				req->sync.flags & IORING_FSYNC_DATASYNC);
5095 	io_req_complete(req, ret);
5096 	return 0;
5097 }
5098 
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5099 static int io_fallocate_prep(struct io_kiocb *req,
5100 			     const struct io_uring_sqe *sqe)
5101 {
5102 	if (sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
5103 		return -EINVAL;
5104 
5105 	req->sync.off = READ_ONCE(sqe->off);
5106 	req->sync.len = READ_ONCE(sqe->addr);
5107 	req->sync.mode = READ_ONCE(sqe->len);
5108 	return 0;
5109 }
5110 
io_fallocate(struct io_kiocb * req,unsigned int issue_flags)5111 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
5112 {
5113 	int ret;
5114 
5115 	/* fallocate always requiring blocking context */
5116 	if (issue_flags & IO_URING_F_NONBLOCK)
5117 		return -EAGAIN;
5118 	ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
5119 				req->sync.len);
5120 	if (ret >= 0)
5121 		fsnotify_modify(req->file);
5122 	io_req_complete(req, ret);
5123 	return 0;
5124 }
5125 
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5126 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5127 {
5128 	const char __user *fname;
5129 	int ret;
5130 
5131 	if (unlikely(sqe->buf_index))
5132 		return -EINVAL;
5133 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
5134 		return -EBADF;
5135 
5136 	/* open.how should be already initialised */
5137 	if (!(req->open.how.flags & O_PATH) && force_o_largefile())
5138 		req->open.how.flags |= O_LARGEFILE;
5139 
5140 	req->open.dfd = READ_ONCE(sqe->fd);
5141 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
5142 	req->open.filename = getname(fname);
5143 	if (IS_ERR(req->open.filename)) {
5144 		ret = PTR_ERR(req->open.filename);
5145 		req->open.filename = NULL;
5146 		return ret;
5147 	}
5148 
5149 	req->open.file_slot = READ_ONCE(sqe->file_index);
5150 	if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
5151 		return -EINVAL;
5152 
5153 	req->open.nofile = rlimit(RLIMIT_NOFILE);
5154 	req->flags |= REQ_F_NEED_CLEANUP;
5155 	return 0;
5156 }
5157 
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5158 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5159 {
5160 	u64 mode = READ_ONCE(sqe->len);
5161 	u64 flags = READ_ONCE(sqe->open_flags);
5162 
5163 	req->open.how = build_open_how(flags, mode);
5164 	return __io_openat_prep(req, sqe);
5165 }
5166 
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5167 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5168 {
5169 	struct open_how __user *how;
5170 	size_t len;
5171 	int ret;
5172 
5173 	how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5174 	len = READ_ONCE(sqe->len);
5175 	if (len < OPEN_HOW_SIZE_VER0)
5176 		return -EINVAL;
5177 
5178 	ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
5179 					len);
5180 	if (ret)
5181 		return ret;
5182 
5183 	return __io_openat_prep(req, sqe);
5184 }
5185 
io_file_bitmap_get(struct io_ring_ctx * ctx)5186 static int io_file_bitmap_get(struct io_ring_ctx *ctx)
5187 {
5188 	struct io_file_table *table = &ctx->file_table;
5189 	unsigned long nr = ctx->nr_user_files;
5190 	int ret;
5191 
5192 	do {
5193 		ret = find_next_zero_bit(table->bitmap, nr, table->alloc_hint);
5194 		if (ret != nr)
5195 			return ret;
5196 
5197 		if (!table->alloc_hint)
5198 			break;
5199 
5200 		nr = table->alloc_hint;
5201 		table->alloc_hint = 0;
5202 	} while (1);
5203 
5204 	return -ENFILE;
5205 }
5206 
5207 /*
5208  * Note when io_fixed_fd_install() returns error value, it will ensure
5209  * fput() is called correspondingly.
5210  */
io_fixed_fd_install(struct io_kiocb * req,unsigned int issue_flags,struct file * file,unsigned int file_slot)5211 static int io_fixed_fd_install(struct io_kiocb *req, unsigned int issue_flags,
5212 			       struct file *file, unsigned int file_slot)
5213 {
5214 	bool alloc_slot = file_slot == IORING_FILE_INDEX_ALLOC;
5215 	struct io_ring_ctx *ctx = req->ctx;
5216 	int ret;
5217 
5218 	io_ring_submit_lock(ctx, issue_flags);
5219 
5220 	if (alloc_slot) {
5221 		ret = io_file_bitmap_get(ctx);
5222 		if (unlikely(ret < 0))
5223 			goto err;
5224 		file_slot = ret;
5225 	} else {
5226 		file_slot--;
5227 	}
5228 
5229 	ret = io_install_fixed_file(req, file, issue_flags, file_slot);
5230 	if (!ret && alloc_slot)
5231 		ret = file_slot;
5232 err:
5233 	io_ring_submit_unlock(ctx, issue_flags);
5234 	if (unlikely(ret < 0))
5235 		fput(file);
5236 	return ret;
5237 }
5238 
io_openat2(struct io_kiocb * req,unsigned int issue_flags)5239 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
5240 {
5241 	struct open_flags op;
5242 	struct file *file;
5243 	bool resolve_nonblock, nonblock_set;
5244 	bool fixed = !!req->open.file_slot;
5245 	int ret;
5246 
5247 	ret = build_open_flags(&req->open.how, &op);
5248 	if (ret)
5249 		goto err;
5250 	nonblock_set = op.open_flag & O_NONBLOCK;
5251 	resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
5252 	if (issue_flags & IO_URING_F_NONBLOCK) {
5253 		/*
5254 		 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
5255 		 * it'll always -EAGAIN
5256 		 */
5257 		if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
5258 			return -EAGAIN;
5259 		op.lookup_flags |= LOOKUP_CACHED;
5260 		op.open_flag |= O_NONBLOCK;
5261 	}
5262 
5263 	if (!fixed) {
5264 		ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
5265 		if (ret < 0)
5266 			goto err;
5267 	}
5268 
5269 	file = do_filp_open(req->open.dfd, req->open.filename, &op);
5270 	if (IS_ERR(file)) {
5271 		/*
5272 		 * We could hang on to this 'fd' on retrying, but seems like
5273 		 * marginal gain for something that is now known to be a slower
5274 		 * path. So just put it, and we'll get a new one when we retry.
5275 		 */
5276 		if (!fixed)
5277 			put_unused_fd(ret);
5278 
5279 		ret = PTR_ERR(file);
5280 		/* only retry if RESOLVE_CACHED wasn't already set by application */
5281 		if (ret == -EAGAIN &&
5282 		    (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
5283 			return -EAGAIN;
5284 		goto err;
5285 	}
5286 
5287 	if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
5288 		file->f_flags &= ~O_NONBLOCK;
5289 	fsnotify_open(file);
5290 
5291 	if (!fixed)
5292 		fd_install(ret, file);
5293 	else
5294 		ret = io_fixed_fd_install(req, issue_flags, file,
5295 						req->open.file_slot);
5296 err:
5297 	putname(req->open.filename);
5298 	req->flags &= ~REQ_F_NEED_CLEANUP;
5299 	if (ret < 0)
5300 		req_set_fail(req);
5301 	__io_req_complete(req, issue_flags, ret, 0);
5302 	return 0;
5303 }
5304 
io_openat(struct io_kiocb * req,unsigned int issue_flags)5305 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
5306 {
5307 	return io_openat2(req, issue_flags);
5308 }
5309 
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5310 static int io_remove_buffers_prep(struct io_kiocb *req,
5311 				  const struct io_uring_sqe *sqe)
5312 {
5313 	struct io_provide_buf *p = &req->pbuf;
5314 	u64 tmp;
5315 
5316 	if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
5317 	    sqe->splice_fd_in)
5318 		return -EINVAL;
5319 
5320 	tmp = READ_ONCE(sqe->fd);
5321 	if (!tmp || tmp > USHRT_MAX)
5322 		return -EINVAL;
5323 
5324 	memset(p, 0, sizeof(*p));
5325 	p->nbufs = tmp;
5326 	p->bgid = READ_ONCE(sqe->buf_group);
5327 	return 0;
5328 }
5329 
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer_list * bl,unsigned nbufs)5330 static int __io_remove_buffers(struct io_ring_ctx *ctx,
5331 			       struct io_buffer_list *bl, unsigned nbufs)
5332 {
5333 	unsigned i = 0;
5334 
5335 	/* shouldn't happen */
5336 	if (!nbufs)
5337 		return 0;
5338 
5339 	if (bl->buf_nr_pages) {
5340 		int j;
5341 
5342 		i = bl->buf_ring->tail - bl->head;
5343 		for (j = 0; j < bl->buf_nr_pages; j++)
5344 			unpin_user_page(bl->buf_pages[j]);
5345 		kvfree(bl->buf_pages);
5346 		bl->buf_pages = NULL;
5347 		bl->buf_nr_pages = 0;
5348 		/* make sure it's seen as empty */
5349 		INIT_LIST_HEAD(&bl->buf_list);
5350 		return i;
5351 	}
5352 
5353 	/* the head kbuf is the list itself */
5354 	while (!list_empty(&bl->buf_list)) {
5355 		struct io_buffer *nxt;
5356 
5357 		nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
5358 		list_del(&nxt->list);
5359 		if (++i == nbufs)
5360 			return i;
5361 		cond_resched();
5362 	}
5363 	i++;
5364 
5365 	return i;
5366 }
5367 
io_remove_buffers(struct io_kiocb * req,unsigned int issue_flags)5368 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
5369 {
5370 	struct io_provide_buf *p = &req->pbuf;
5371 	struct io_ring_ctx *ctx = req->ctx;
5372 	struct io_buffer_list *bl;
5373 	int ret = 0;
5374 
5375 	io_ring_submit_lock(ctx, issue_flags);
5376 
5377 	ret = -ENOENT;
5378 	bl = io_buffer_get_list(ctx, p->bgid);
5379 	if (bl) {
5380 		ret = -EINVAL;
5381 		/* can't use provide/remove buffers command on mapped buffers */
5382 		if (!bl->buf_nr_pages)
5383 			ret = __io_remove_buffers(ctx, bl, p->nbufs);
5384 	}
5385 	if (ret < 0)
5386 		req_set_fail(req);
5387 
5388 	/* complete before unlock, IOPOLL may need the lock */
5389 	__io_req_complete(req, issue_flags, ret, 0);
5390 	io_ring_submit_unlock(ctx, issue_flags);
5391 	return 0;
5392 }
5393 
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5394 static int io_provide_buffers_prep(struct io_kiocb *req,
5395 				   const struct io_uring_sqe *sqe)
5396 {
5397 	unsigned long size, tmp_check;
5398 	struct io_provide_buf *p = &req->pbuf;
5399 	u64 tmp;
5400 
5401 	if (sqe->rw_flags || sqe->splice_fd_in)
5402 		return -EINVAL;
5403 
5404 	tmp = READ_ONCE(sqe->fd);
5405 	if (!tmp || tmp > USHRT_MAX)
5406 		return -E2BIG;
5407 	p->nbufs = tmp;
5408 	p->addr = READ_ONCE(sqe->addr);
5409 	p->len = READ_ONCE(sqe->len);
5410 
5411 	if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
5412 				&size))
5413 		return -EOVERFLOW;
5414 	if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
5415 		return -EOVERFLOW;
5416 
5417 	size = (unsigned long)p->len * p->nbufs;
5418 	if (!access_ok(u64_to_user_ptr(p->addr), size))
5419 		return -EFAULT;
5420 
5421 	p->bgid = READ_ONCE(sqe->buf_group);
5422 	tmp = READ_ONCE(sqe->off);
5423 	if (tmp > USHRT_MAX)
5424 		return -E2BIG;
5425 	p->bid = tmp;
5426 	return 0;
5427 }
5428 
io_refill_buffer_cache(struct io_ring_ctx * ctx)5429 static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
5430 {
5431 	struct io_buffer *buf;
5432 	struct page *page;
5433 	int bufs_in_page;
5434 
5435 	/*
5436 	 * Completions that don't happen inline (eg not under uring_lock) will
5437 	 * add to ->io_buffers_comp. If we don't have any free buffers, check
5438 	 * the completion list and splice those entries first.
5439 	 */
5440 	if (!list_empty_careful(&ctx->io_buffers_comp)) {
5441 		spin_lock(&ctx->completion_lock);
5442 		if (!list_empty(&ctx->io_buffers_comp)) {
5443 			list_splice_init(&ctx->io_buffers_comp,
5444 						&ctx->io_buffers_cache);
5445 			spin_unlock(&ctx->completion_lock);
5446 			return 0;
5447 		}
5448 		spin_unlock(&ctx->completion_lock);
5449 	}
5450 
5451 	/*
5452 	 * No free buffers and no completion entries either. Allocate a new
5453 	 * page worth of buffer entries and add those to our freelist.
5454 	 */
5455 	page = alloc_page(GFP_KERNEL_ACCOUNT);
5456 	if (!page)
5457 		return -ENOMEM;
5458 
5459 	list_add(&page->lru, &ctx->io_buffers_pages);
5460 
5461 	buf = page_address(page);
5462 	bufs_in_page = PAGE_SIZE / sizeof(*buf);
5463 	while (bufs_in_page) {
5464 		list_add_tail(&buf->list, &ctx->io_buffers_cache);
5465 		buf++;
5466 		bufs_in_page--;
5467 	}
5468 
5469 	return 0;
5470 }
5471 
io_add_buffers(struct io_ring_ctx * ctx,struct io_provide_buf * pbuf,struct io_buffer_list * bl)5472 static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
5473 			  struct io_buffer_list *bl)
5474 {
5475 	struct io_buffer *buf;
5476 	u64 addr = pbuf->addr;
5477 	int i, bid = pbuf->bid;
5478 
5479 	for (i = 0; i < pbuf->nbufs; i++) {
5480 		if (list_empty(&ctx->io_buffers_cache) &&
5481 		    io_refill_buffer_cache(ctx))
5482 			break;
5483 		buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
5484 					list);
5485 		list_move_tail(&buf->list, &bl->buf_list);
5486 		buf->addr = addr;
5487 		buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
5488 		buf->bid = bid;
5489 		buf->bgid = pbuf->bgid;
5490 		addr += pbuf->len;
5491 		bid++;
5492 		cond_resched();
5493 	}
5494 
5495 	return i ? 0 : -ENOMEM;
5496 }
5497 
io_init_bl_list(struct io_ring_ctx * ctx)5498 static __cold int io_init_bl_list(struct io_ring_ctx *ctx)
5499 {
5500 	int i;
5501 
5502 	ctx->io_bl = kcalloc(BGID_ARRAY, sizeof(struct io_buffer_list),
5503 				GFP_KERNEL);
5504 	if (!ctx->io_bl)
5505 		return -ENOMEM;
5506 
5507 	for (i = 0; i < BGID_ARRAY; i++) {
5508 		INIT_LIST_HEAD(&ctx->io_bl[i].buf_list);
5509 		ctx->io_bl[i].bgid = i;
5510 	}
5511 
5512 	return 0;
5513 }
5514 
io_provide_buffers(struct io_kiocb * req,unsigned int issue_flags)5515 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
5516 {
5517 	struct io_provide_buf *p = &req->pbuf;
5518 	struct io_ring_ctx *ctx = req->ctx;
5519 	struct io_buffer_list *bl;
5520 	int ret = 0;
5521 
5522 	io_ring_submit_lock(ctx, issue_flags);
5523 
5524 	if (unlikely(p->bgid < BGID_ARRAY && !ctx->io_bl)) {
5525 		ret = io_init_bl_list(ctx);
5526 		if (ret)
5527 			goto err;
5528 	}
5529 
5530 	bl = io_buffer_get_list(ctx, p->bgid);
5531 	if (unlikely(!bl)) {
5532 		bl = kzalloc(sizeof(*bl), GFP_KERNEL_ACCOUNT);
5533 		if (!bl) {
5534 			ret = -ENOMEM;
5535 			goto err;
5536 		}
5537 		INIT_LIST_HEAD(&bl->buf_list);
5538 		ret = io_buffer_add_list(ctx, bl, p->bgid);
5539 		if (ret) {
5540 			kfree(bl);
5541 			goto err;
5542 		}
5543 	}
5544 	/* can't add buffers via this command for a mapped buffer ring */
5545 	if (bl->buf_nr_pages) {
5546 		ret = -EINVAL;
5547 		goto err;
5548 	}
5549 
5550 	ret = io_add_buffers(ctx, p, bl);
5551 err:
5552 	if (ret < 0)
5553 		req_set_fail(req);
5554 	/* complete before unlock, IOPOLL may need the lock */
5555 	__io_req_complete(req, issue_flags, ret, 0);
5556 	io_ring_submit_unlock(ctx, issue_flags);
5557 	return 0;
5558 }
5559 
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5560 static int io_epoll_ctl_prep(struct io_kiocb *req,
5561 			     const struct io_uring_sqe *sqe)
5562 {
5563 #if defined(CONFIG_EPOLL)
5564 	if (sqe->buf_index || sqe->splice_fd_in)
5565 		return -EINVAL;
5566 
5567 	req->epoll.epfd = READ_ONCE(sqe->fd);
5568 	req->epoll.op = READ_ONCE(sqe->len);
5569 	req->epoll.fd = READ_ONCE(sqe->off);
5570 
5571 	if (ep_op_has_event(req->epoll.op)) {
5572 		struct epoll_event __user *ev;
5573 
5574 		ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
5575 		if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
5576 			return -EFAULT;
5577 	}
5578 
5579 	return 0;
5580 #else
5581 	return -EOPNOTSUPP;
5582 #endif
5583 }
5584 
io_epoll_ctl(struct io_kiocb * req,unsigned int issue_flags)5585 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
5586 {
5587 #if defined(CONFIG_EPOLL)
5588 	struct io_epoll *ie = &req->epoll;
5589 	int ret;
5590 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5591 
5592 	ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
5593 	if (force_nonblock && ret == -EAGAIN)
5594 		return -EAGAIN;
5595 
5596 	if (ret < 0)
5597 		req_set_fail(req);
5598 	__io_req_complete(req, issue_flags, ret, 0);
5599 	return 0;
5600 #else
5601 	return -EOPNOTSUPP;
5602 #endif
5603 }
5604 
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5605 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5606 {
5607 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
5608 	if (sqe->buf_index || sqe->off || sqe->splice_fd_in)
5609 		return -EINVAL;
5610 
5611 	req->madvise.addr = READ_ONCE(sqe->addr);
5612 	req->madvise.len = READ_ONCE(sqe->len);
5613 	req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
5614 	return 0;
5615 #else
5616 	return -EOPNOTSUPP;
5617 #endif
5618 }
5619 
io_madvise(struct io_kiocb * req,unsigned int issue_flags)5620 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
5621 {
5622 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
5623 	struct io_madvise *ma = &req->madvise;
5624 	int ret;
5625 
5626 	if (issue_flags & IO_URING_F_NONBLOCK)
5627 		return -EAGAIN;
5628 
5629 	ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
5630 	io_req_complete(req, ret);
5631 	return 0;
5632 #else
5633 	return -EOPNOTSUPP;
5634 #endif
5635 }
5636 
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5637 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5638 {
5639 	if (sqe->buf_index || sqe->addr || sqe->splice_fd_in)
5640 		return -EINVAL;
5641 
5642 	req->fadvise.offset = READ_ONCE(sqe->off);
5643 	req->fadvise.len = READ_ONCE(sqe->len);
5644 	req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
5645 	return 0;
5646 }
5647 
io_fadvise(struct io_kiocb * req,unsigned int issue_flags)5648 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
5649 {
5650 	struct io_fadvise *fa = &req->fadvise;
5651 	int ret;
5652 
5653 	if (issue_flags & IO_URING_F_NONBLOCK) {
5654 		switch (fa->advice) {
5655 		case POSIX_FADV_NORMAL:
5656 		case POSIX_FADV_RANDOM:
5657 		case POSIX_FADV_SEQUENTIAL:
5658 			break;
5659 		default:
5660 			return -EAGAIN;
5661 		}
5662 	}
5663 
5664 	ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
5665 	if (ret < 0)
5666 		req_set_fail(req);
5667 	__io_req_complete(req, issue_flags, ret, 0);
5668 	return 0;
5669 }
5670 
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5671 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5672 {
5673 	const char __user *path;
5674 
5675 	if (sqe->buf_index || sqe->splice_fd_in)
5676 		return -EINVAL;
5677 	if (req->flags & REQ_F_FIXED_FILE)
5678 		return -EBADF;
5679 
5680 	req->statx.dfd = READ_ONCE(sqe->fd);
5681 	req->statx.mask = READ_ONCE(sqe->len);
5682 	path = u64_to_user_ptr(READ_ONCE(sqe->addr));
5683 	req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5684 	req->statx.flags = READ_ONCE(sqe->statx_flags);
5685 
5686 	req->statx.filename = getname_flags(path,
5687 					getname_statx_lookup_flags(req->statx.flags),
5688 					NULL);
5689 
5690 	if (IS_ERR(req->statx.filename)) {
5691 		int ret = PTR_ERR(req->statx.filename);
5692 
5693 		req->statx.filename = NULL;
5694 		return ret;
5695 	}
5696 
5697 	req->flags |= REQ_F_NEED_CLEANUP;
5698 	return 0;
5699 }
5700 
io_statx(struct io_kiocb * req,unsigned int issue_flags)5701 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
5702 {
5703 	struct io_statx *ctx = &req->statx;
5704 	int ret;
5705 
5706 	if (issue_flags & IO_URING_F_NONBLOCK)
5707 		return -EAGAIN;
5708 
5709 	ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
5710 		       ctx->buffer);
5711 	io_req_complete(req, ret);
5712 	return 0;
5713 }
5714 
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5715 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5716 {
5717 	if (sqe->off || sqe->addr || sqe->len || sqe->rw_flags || sqe->buf_index)
5718 		return -EINVAL;
5719 	if (req->flags & REQ_F_FIXED_FILE)
5720 		return -EBADF;
5721 
5722 	req->close.fd = READ_ONCE(sqe->fd);
5723 	req->close.file_slot = READ_ONCE(sqe->file_index);
5724 	if (req->close.file_slot && req->close.fd)
5725 		return -EINVAL;
5726 
5727 	return 0;
5728 }
5729 
io_close(struct io_kiocb * req,unsigned int issue_flags)5730 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
5731 {
5732 	struct files_struct *files = current->files;
5733 	struct io_close *close = &req->close;
5734 	struct fdtable *fdt;
5735 	struct file *file;
5736 	int ret = -EBADF;
5737 
5738 	if (req->close.file_slot) {
5739 		ret = io_close_fixed(req, issue_flags);
5740 		goto err;
5741 	}
5742 
5743 	spin_lock(&files->file_lock);
5744 	fdt = files_fdtable(files);
5745 	if (close->fd >= fdt->max_fds) {
5746 		spin_unlock(&files->file_lock);
5747 		goto err;
5748 	}
5749 	file = rcu_dereference_protected(fdt->fd[close->fd],
5750 			lockdep_is_held(&files->file_lock));
5751 	if (!file || file->f_op == &io_uring_fops) {
5752 		spin_unlock(&files->file_lock);
5753 		goto err;
5754 	}
5755 
5756 	/* if the file has a flush method, be safe and punt to async */
5757 	if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
5758 		spin_unlock(&files->file_lock);
5759 		return -EAGAIN;
5760 	}
5761 
5762 	file = __close_fd_get_file(close->fd);
5763 	spin_unlock(&files->file_lock);
5764 	if (!file)
5765 		goto err;
5766 
5767 	/* No ->flush() or already async, safely close from here */
5768 	ret = filp_close(file, current->files);
5769 err:
5770 	if (ret < 0)
5771 		req_set_fail(req);
5772 	__io_req_complete(req, issue_flags, ret, 0);
5773 	return 0;
5774 }
5775 
io_sfr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5776 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5777 {
5778 	if (unlikely(sqe->addr || sqe->buf_index || sqe->splice_fd_in))
5779 		return -EINVAL;
5780 
5781 	req->sync.off = READ_ONCE(sqe->off);
5782 	req->sync.len = READ_ONCE(sqe->len);
5783 	req->sync.flags = READ_ONCE(sqe->sync_range_flags);
5784 	return 0;
5785 }
5786 
io_sync_file_range(struct io_kiocb * req,unsigned int issue_flags)5787 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
5788 {
5789 	int ret;
5790 
5791 	/* sync_file_range always requires a blocking context */
5792 	if (issue_flags & IO_URING_F_NONBLOCK)
5793 		return -EAGAIN;
5794 
5795 	ret = sync_file_range(req->file, req->sync.off, req->sync.len,
5796 				req->sync.flags);
5797 	io_req_complete(req, ret);
5798 	return 0;
5799 }
5800 
5801 #if defined(CONFIG_NET)
io_shutdown_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5802 static int io_shutdown_prep(struct io_kiocb *req,
5803 			    const struct io_uring_sqe *sqe)
5804 {
5805 	if (unlikely(sqe->off || sqe->addr || sqe->rw_flags ||
5806 		     sqe->buf_index || sqe->splice_fd_in))
5807 		return -EINVAL;
5808 
5809 	req->shutdown.how = READ_ONCE(sqe->len);
5810 	return 0;
5811 }
5812 
io_shutdown(struct io_kiocb * req,unsigned int issue_flags)5813 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
5814 {
5815 	struct socket *sock;
5816 	int ret;
5817 
5818 	if (issue_flags & IO_URING_F_NONBLOCK)
5819 		return -EAGAIN;
5820 
5821 	sock = sock_from_file(req->file);
5822 	if (unlikely(!sock))
5823 		return -ENOTSOCK;
5824 
5825 	ret = __sys_shutdown_sock(sock, req->shutdown.how);
5826 	io_req_complete(req, ret);
5827 	return 0;
5828 }
5829 
io_net_retry(struct socket * sock,int flags)5830 static bool io_net_retry(struct socket *sock, int flags)
5831 {
5832 	if (!(flags & MSG_WAITALL))
5833 		return false;
5834 	return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
5835 }
5836 
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)5837 static int io_setup_async_msg(struct io_kiocb *req,
5838 			      struct io_async_msghdr *kmsg)
5839 {
5840 	struct io_async_msghdr *async_msg = req->async_data;
5841 
5842 	if (async_msg)
5843 		return -EAGAIN;
5844 	if (io_alloc_async_data(req)) {
5845 		kfree(kmsg->free_iov);
5846 		return -ENOMEM;
5847 	}
5848 	async_msg = req->async_data;
5849 	req->flags |= REQ_F_NEED_CLEANUP;
5850 	memcpy(async_msg, kmsg, sizeof(*kmsg));
5851 	async_msg->msg.msg_name = &async_msg->addr;
5852 	/* if were using fast_iov, set it to the new one */
5853 	if (!async_msg->free_iov)
5854 		async_msg->msg.msg_iter.iov = async_msg->fast_iov;
5855 
5856 	return -EAGAIN;
5857 }
5858 
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)5859 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
5860 			       struct io_async_msghdr *iomsg)
5861 {
5862 	iomsg->msg.msg_name = &iomsg->addr;
5863 	iomsg->free_iov = iomsg->fast_iov;
5864 	return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
5865 				   req->sr_msg.msg_flags, &iomsg->free_iov);
5866 }
5867 
io_sendmsg_prep_async(struct io_kiocb * req)5868 static int io_sendmsg_prep_async(struct io_kiocb *req)
5869 {
5870 	int ret;
5871 
5872 	ret = io_sendmsg_copy_hdr(req, req->async_data);
5873 	if (!ret)
5874 		req->flags |= REQ_F_NEED_CLEANUP;
5875 	return ret;
5876 }
5877 
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5878 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5879 {
5880 	struct io_sr_msg *sr = &req->sr_msg;
5881 
5882 	if (unlikely(sqe->file_index || sqe->addr2))
5883 		return -EINVAL;
5884 
5885 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5886 	sr->len = READ_ONCE(sqe->len);
5887 	sr->flags = READ_ONCE(sqe->ioprio);
5888 	if (sr->flags & ~IORING_RECVSEND_POLL_FIRST)
5889 		return -EINVAL;
5890 	sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5891 	if (sr->msg_flags & MSG_DONTWAIT)
5892 		req->flags |= REQ_F_NOWAIT;
5893 
5894 #ifdef CONFIG_COMPAT
5895 	if (req->ctx->compat)
5896 		sr->msg_flags |= MSG_CMSG_COMPAT;
5897 #endif
5898 	sr->done_io = 0;
5899 	return 0;
5900 }
5901 
io_sendmsg(struct io_kiocb * req,unsigned int issue_flags)5902 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
5903 {
5904 	struct io_async_msghdr iomsg, *kmsg;
5905 	struct io_sr_msg *sr = &req->sr_msg;
5906 	struct socket *sock;
5907 	unsigned flags;
5908 	int min_ret = 0;
5909 	int ret;
5910 
5911 	sock = sock_from_file(req->file);
5912 	if (unlikely(!sock))
5913 		return -ENOTSOCK;
5914 
5915 	if (req_has_async_data(req)) {
5916 		kmsg = req->async_data;
5917 	} else {
5918 		ret = io_sendmsg_copy_hdr(req, &iomsg);
5919 		if (ret)
5920 			return ret;
5921 		kmsg = &iomsg;
5922 	}
5923 
5924 	if (!(req->flags & REQ_F_POLLED) &&
5925 	    (sr->flags & IORING_RECVSEND_POLL_FIRST))
5926 		return io_setup_async_msg(req, kmsg);
5927 
5928 	flags = sr->msg_flags;
5929 	if (issue_flags & IO_URING_F_NONBLOCK)
5930 		flags |= MSG_DONTWAIT;
5931 	if (flags & MSG_WAITALL)
5932 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5933 
5934 	ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
5935 
5936 	if (ret < min_ret) {
5937 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
5938 			return io_setup_async_msg(req, kmsg);
5939 		if (ret == -ERESTARTSYS)
5940 			ret = -EINTR;
5941 		if (ret > 0 && io_net_retry(sock, flags)) {
5942 			sr->done_io += ret;
5943 			req->flags |= REQ_F_PARTIAL_IO;
5944 			return io_setup_async_msg(req, kmsg);
5945 		}
5946 		req_set_fail(req);
5947 	}
5948 	/* fast path, check for non-NULL to avoid function call */
5949 	if (kmsg->free_iov)
5950 		kfree(kmsg->free_iov);
5951 	req->flags &= ~REQ_F_NEED_CLEANUP;
5952 	if (ret >= 0)
5953 		ret += sr->done_io;
5954 	else if (sr->done_io)
5955 		ret = sr->done_io;
5956 	__io_req_complete(req, issue_flags, ret, 0);
5957 	return 0;
5958 }
5959 
io_send(struct io_kiocb * req,unsigned int issue_flags)5960 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
5961 {
5962 	struct io_sr_msg *sr = &req->sr_msg;
5963 	struct msghdr msg;
5964 	struct iovec iov;
5965 	struct socket *sock;
5966 	unsigned flags;
5967 	int min_ret = 0;
5968 	int ret;
5969 
5970 	if (!(req->flags & REQ_F_POLLED) &&
5971 	    (sr->flags & IORING_RECVSEND_POLL_FIRST))
5972 		return -EAGAIN;
5973 
5974 	sock = sock_from_file(req->file);
5975 	if (unlikely(!sock))
5976 		return -ENOTSOCK;
5977 
5978 	ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
5979 	if (unlikely(ret))
5980 		return ret;
5981 
5982 	msg.msg_name = NULL;
5983 	msg.msg_control = NULL;
5984 	msg.msg_controllen = 0;
5985 	msg.msg_namelen = 0;
5986 
5987 	flags = sr->msg_flags;
5988 	if (issue_flags & IO_URING_F_NONBLOCK)
5989 		flags |= MSG_DONTWAIT;
5990 	if (flags & MSG_WAITALL)
5991 		min_ret = iov_iter_count(&msg.msg_iter);
5992 
5993 	msg.msg_flags = flags;
5994 	ret = sock_sendmsg(sock, &msg);
5995 	if (ret < min_ret) {
5996 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
5997 			return -EAGAIN;
5998 		if (ret == -ERESTARTSYS)
5999 			ret = -EINTR;
6000 		if (ret > 0 && io_net_retry(sock, flags)) {
6001 			sr->len -= ret;
6002 			sr->buf += ret;
6003 			sr->done_io += ret;
6004 			req->flags |= REQ_F_PARTIAL_IO;
6005 			return -EAGAIN;
6006 		}
6007 		req_set_fail(req);
6008 	}
6009 	if (ret >= 0)
6010 		ret += sr->done_io;
6011 	else if (sr->done_io)
6012 		ret = sr->done_io;
6013 	__io_req_complete(req, issue_flags, ret, 0);
6014 	return 0;
6015 }
6016 
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)6017 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
6018 				 struct io_async_msghdr *iomsg)
6019 {
6020 	struct io_sr_msg *sr = &req->sr_msg;
6021 	struct iovec __user *uiov;
6022 	size_t iov_len;
6023 	int ret;
6024 
6025 	ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
6026 					&iomsg->uaddr, &uiov, &iov_len);
6027 	if (ret)
6028 		return ret;
6029 
6030 	if (req->flags & REQ_F_BUFFER_SELECT) {
6031 		if (iov_len > 1)
6032 			return -EINVAL;
6033 		if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
6034 			return -EFAULT;
6035 		sr->len = iomsg->fast_iov[0].iov_len;
6036 		iomsg->free_iov = NULL;
6037 	} else {
6038 		iomsg->free_iov = iomsg->fast_iov;
6039 		ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
6040 				     &iomsg->free_iov, &iomsg->msg.msg_iter,
6041 				     false);
6042 		if (ret > 0)
6043 			ret = 0;
6044 	}
6045 
6046 	return ret;
6047 }
6048 
6049 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)6050 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
6051 					struct io_async_msghdr *iomsg)
6052 {
6053 	struct io_sr_msg *sr = &req->sr_msg;
6054 	struct compat_iovec __user *uiov;
6055 	compat_uptr_t ptr;
6056 	compat_size_t len;
6057 	int ret;
6058 
6059 	ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
6060 				  &ptr, &len);
6061 	if (ret)
6062 		return ret;
6063 
6064 	uiov = compat_ptr(ptr);
6065 	if (req->flags & REQ_F_BUFFER_SELECT) {
6066 		compat_ssize_t clen;
6067 
6068 		if (len > 1)
6069 			return -EINVAL;
6070 		if (!access_ok(uiov, sizeof(*uiov)))
6071 			return -EFAULT;
6072 		if (__get_user(clen, &uiov->iov_len))
6073 			return -EFAULT;
6074 		if (clen < 0)
6075 			return -EINVAL;
6076 		sr->len = clen;
6077 		iomsg->free_iov = NULL;
6078 	} else {
6079 		iomsg->free_iov = iomsg->fast_iov;
6080 		ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
6081 				   UIO_FASTIOV, &iomsg->free_iov,
6082 				   &iomsg->msg.msg_iter, true);
6083 		if (ret < 0)
6084 			return ret;
6085 	}
6086 
6087 	return 0;
6088 }
6089 #endif
6090 
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)6091 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
6092 			       struct io_async_msghdr *iomsg)
6093 {
6094 	iomsg->msg.msg_name = &iomsg->addr;
6095 
6096 #ifdef CONFIG_COMPAT
6097 	if (req->ctx->compat)
6098 		return __io_compat_recvmsg_copy_hdr(req, iomsg);
6099 #endif
6100 
6101 	return __io_recvmsg_copy_hdr(req, iomsg);
6102 }
6103 
io_recvmsg_prep_async(struct io_kiocb * req)6104 static int io_recvmsg_prep_async(struct io_kiocb *req)
6105 {
6106 	int ret;
6107 
6108 	ret = io_recvmsg_copy_hdr(req, req->async_data);
6109 	if (!ret)
6110 		req->flags |= REQ_F_NEED_CLEANUP;
6111 	return ret;
6112 }
6113 
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6114 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6115 {
6116 	struct io_sr_msg *sr = &req->sr_msg;
6117 
6118 	if (unlikely(sqe->file_index || sqe->addr2))
6119 		return -EINVAL;
6120 
6121 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
6122 	sr->len = READ_ONCE(sqe->len);
6123 	sr->flags = READ_ONCE(sqe->ioprio);
6124 	if (sr->flags & ~IORING_RECVSEND_POLL_FIRST)
6125 		return -EINVAL;
6126 	sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
6127 	if (sr->msg_flags & MSG_DONTWAIT)
6128 		req->flags |= REQ_F_NOWAIT;
6129 
6130 #ifdef CONFIG_COMPAT
6131 	if (req->ctx->compat)
6132 		sr->msg_flags |= MSG_CMSG_COMPAT;
6133 #endif
6134 	sr->done_io = 0;
6135 	return 0;
6136 }
6137 
io_recvmsg(struct io_kiocb * req,unsigned int issue_flags)6138 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
6139 {
6140 	struct io_async_msghdr iomsg, *kmsg;
6141 	struct io_sr_msg *sr = &req->sr_msg;
6142 	struct socket *sock;
6143 	unsigned int cflags;
6144 	unsigned flags;
6145 	int ret, min_ret = 0;
6146 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6147 
6148 	sock = sock_from_file(req->file);
6149 	if (unlikely(!sock))
6150 		return -ENOTSOCK;
6151 
6152 	if (req_has_async_data(req)) {
6153 		kmsg = req->async_data;
6154 	} else {
6155 		ret = io_recvmsg_copy_hdr(req, &iomsg);
6156 		if (ret)
6157 			return ret;
6158 		kmsg = &iomsg;
6159 	}
6160 
6161 	if (!(req->flags & REQ_F_POLLED) &&
6162 	    (sr->flags & IORING_RECVSEND_POLL_FIRST))
6163 		return io_setup_async_msg(req, kmsg);
6164 
6165 	if (io_do_buffer_select(req)) {
6166 		void __user *buf;
6167 
6168 		buf = io_buffer_select(req, &sr->len, issue_flags);
6169 		if (!buf)
6170 			return -ENOBUFS;
6171 		kmsg->fast_iov[0].iov_base = buf;
6172 		kmsg->fast_iov[0].iov_len = sr->len;
6173 		iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov, 1,
6174 				sr->len);
6175 	}
6176 
6177 	flags = sr->msg_flags;
6178 	if (force_nonblock)
6179 		flags |= MSG_DONTWAIT;
6180 	if (flags & MSG_WAITALL)
6181 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
6182 
6183 	kmsg->msg.msg_get_inq = 1;
6184 	ret = __sys_recvmsg_sock(sock, &kmsg->msg, sr->umsg, kmsg->uaddr, flags);
6185 	if (ret < min_ret) {
6186 		if (ret == -EAGAIN && force_nonblock)
6187 			return io_setup_async_msg(req, kmsg);
6188 		if (ret == -ERESTARTSYS)
6189 			ret = -EINTR;
6190 		if (ret > 0 && io_net_retry(sock, flags)) {
6191 			sr->done_io += ret;
6192 			req->flags |= REQ_F_PARTIAL_IO;
6193 			return io_setup_async_msg(req, kmsg);
6194 		}
6195 		req_set_fail(req);
6196 	} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
6197 		req_set_fail(req);
6198 	}
6199 
6200 	/* fast path, check for non-NULL to avoid function call */
6201 	if (kmsg->free_iov)
6202 		kfree(kmsg->free_iov);
6203 	req->flags &= ~REQ_F_NEED_CLEANUP;
6204 	if (ret >= 0)
6205 		ret += sr->done_io;
6206 	else if (sr->done_io)
6207 		ret = sr->done_io;
6208 	cflags = io_put_kbuf(req, issue_flags);
6209 	if (kmsg->msg.msg_inq)
6210 		cflags |= IORING_CQE_F_SOCK_NONEMPTY;
6211 	__io_req_complete(req, issue_flags, ret, cflags);
6212 	return 0;
6213 }
6214 
io_recv(struct io_kiocb * req,unsigned int issue_flags)6215 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
6216 {
6217 	struct io_sr_msg *sr = &req->sr_msg;
6218 	struct msghdr msg;
6219 	struct socket *sock;
6220 	struct iovec iov;
6221 	unsigned int cflags;
6222 	unsigned flags;
6223 	int ret, min_ret = 0;
6224 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6225 
6226 	if (!(req->flags & REQ_F_POLLED) &&
6227 	    (sr->flags & IORING_RECVSEND_POLL_FIRST))
6228 		return -EAGAIN;
6229 
6230 	sock = sock_from_file(req->file);
6231 	if (unlikely(!sock))
6232 		return -ENOTSOCK;
6233 
6234 	if (io_do_buffer_select(req)) {
6235 		void __user *buf;
6236 
6237 		buf = io_buffer_select(req, &sr->len, issue_flags);
6238 		if (!buf)
6239 			return -ENOBUFS;
6240 		sr->buf = buf;
6241 	}
6242 
6243 	ret = import_single_range(READ, sr->buf, sr->len, &iov, &msg.msg_iter);
6244 	if (unlikely(ret))
6245 		goto out_free;
6246 
6247 	msg.msg_name = NULL;
6248 	msg.msg_namelen = 0;
6249 	msg.msg_control = NULL;
6250 	msg.msg_get_inq = 1;
6251 	msg.msg_flags = 0;
6252 	msg.msg_controllen = 0;
6253 	msg.msg_iocb = NULL;
6254 
6255 	flags = sr->msg_flags;
6256 	if (force_nonblock)
6257 		flags |= MSG_DONTWAIT;
6258 	if (flags & MSG_WAITALL)
6259 		min_ret = iov_iter_count(&msg.msg_iter);
6260 
6261 	ret = sock_recvmsg(sock, &msg, flags);
6262 	if (ret < min_ret) {
6263 		if (ret == -EAGAIN && force_nonblock)
6264 			return -EAGAIN;
6265 		if (ret == -ERESTARTSYS)
6266 			ret = -EINTR;
6267 		if (ret > 0 && io_net_retry(sock, flags)) {
6268 			sr->len -= ret;
6269 			sr->buf += ret;
6270 			sr->done_io += ret;
6271 			req->flags |= REQ_F_PARTIAL_IO;
6272 			return -EAGAIN;
6273 		}
6274 		req_set_fail(req);
6275 	} else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
6276 out_free:
6277 		req_set_fail(req);
6278 	}
6279 
6280 	if (ret >= 0)
6281 		ret += sr->done_io;
6282 	else if (sr->done_io)
6283 		ret = sr->done_io;
6284 	cflags = io_put_kbuf(req, issue_flags);
6285 	if (msg.msg_inq)
6286 		cflags |= IORING_CQE_F_SOCK_NONEMPTY;
6287 	__io_req_complete(req, issue_flags, ret, cflags);
6288 	return 0;
6289 }
6290 
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6291 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6292 {
6293 	struct io_accept *accept = &req->accept;
6294 	unsigned flags;
6295 
6296 	if (sqe->len || sqe->buf_index)
6297 		return -EINVAL;
6298 
6299 	accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
6300 	accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
6301 	accept->flags = READ_ONCE(sqe->accept_flags);
6302 	accept->nofile = rlimit(RLIMIT_NOFILE);
6303 	flags = READ_ONCE(sqe->ioprio);
6304 	if (flags & ~IORING_ACCEPT_MULTISHOT)
6305 		return -EINVAL;
6306 
6307 	accept->file_slot = READ_ONCE(sqe->file_index);
6308 	if (accept->file_slot) {
6309 		if (accept->flags & SOCK_CLOEXEC)
6310 			return -EINVAL;
6311 		if (flags & IORING_ACCEPT_MULTISHOT &&
6312 		    accept->file_slot != IORING_FILE_INDEX_ALLOC)
6313 			return -EINVAL;
6314 	}
6315 	if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
6316 		return -EINVAL;
6317 	if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
6318 		accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
6319 	if (flags & IORING_ACCEPT_MULTISHOT)
6320 		req->flags |= REQ_F_APOLL_MULTISHOT;
6321 	return 0;
6322 }
6323 
io_accept(struct io_kiocb * req,unsigned int issue_flags)6324 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
6325 {
6326 	struct io_ring_ctx *ctx = req->ctx;
6327 	struct io_accept *accept = &req->accept;
6328 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6329 	unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
6330 	bool fixed = !!accept->file_slot;
6331 	struct file *file;
6332 	int ret, fd;
6333 
6334 retry:
6335 	if (!fixed) {
6336 		fd = __get_unused_fd_flags(accept->flags, accept->nofile);
6337 		if (unlikely(fd < 0))
6338 			return fd;
6339 	}
6340 	file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
6341 			 accept->flags);
6342 	if (IS_ERR(file)) {
6343 		if (!fixed)
6344 			put_unused_fd(fd);
6345 		ret = PTR_ERR(file);
6346 		if (ret == -EAGAIN && force_nonblock) {
6347 			/*
6348 			 * if it's multishot and polled, we don't need to
6349 			 * return EAGAIN to arm the poll infra since it
6350 			 * has already been done
6351 			 */
6352 			if ((req->flags & IO_APOLL_MULTI_POLLED) ==
6353 			    IO_APOLL_MULTI_POLLED)
6354 				ret = 0;
6355 			return ret;
6356 		}
6357 		if (ret == -ERESTARTSYS)
6358 			ret = -EINTR;
6359 		req_set_fail(req);
6360 	} else if (!fixed) {
6361 		fd_install(fd, file);
6362 		ret = fd;
6363 	} else {
6364 		ret = io_fixed_fd_install(req, issue_flags, file,
6365 						accept->file_slot);
6366 	}
6367 
6368 	if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
6369 		__io_req_complete(req, issue_flags, ret, 0);
6370 		return 0;
6371 	}
6372 	if (ret >= 0) {
6373 		bool filled;
6374 
6375 		spin_lock(&ctx->completion_lock);
6376 		filled = io_fill_cqe_aux(ctx, req->cqe.user_data, ret,
6377 					 IORING_CQE_F_MORE);
6378 		io_commit_cqring(ctx);
6379 		spin_unlock(&ctx->completion_lock);
6380 		if (filled) {
6381 			io_cqring_ev_posted(ctx);
6382 			goto retry;
6383 		}
6384 		ret = -ECANCELED;
6385 	}
6386 
6387 	return ret;
6388 }
6389 
io_socket_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6390 static int io_socket_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6391 {
6392 	struct io_socket *sock = &req->sock;
6393 
6394 	if (sqe->addr || sqe->rw_flags || sqe->buf_index)
6395 		return -EINVAL;
6396 
6397 	sock->domain = READ_ONCE(sqe->fd);
6398 	sock->type = READ_ONCE(sqe->off);
6399 	sock->protocol = READ_ONCE(sqe->len);
6400 	sock->file_slot = READ_ONCE(sqe->file_index);
6401 	sock->nofile = rlimit(RLIMIT_NOFILE);
6402 
6403 	sock->flags = sock->type & ~SOCK_TYPE_MASK;
6404 	if (sock->file_slot && (sock->flags & SOCK_CLOEXEC))
6405 		return -EINVAL;
6406 	if (sock->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
6407 		return -EINVAL;
6408 	return 0;
6409 }
6410 
io_socket(struct io_kiocb * req,unsigned int issue_flags)6411 static int io_socket(struct io_kiocb *req, unsigned int issue_flags)
6412 {
6413 	struct io_socket *sock = &req->sock;
6414 	bool fixed = !!sock->file_slot;
6415 	struct file *file;
6416 	int ret, fd;
6417 
6418 	if (!fixed) {
6419 		fd = __get_unused_fd_flags(sock->flags, sock->nofile);
6420 		if (unlikely(fd < 0))
6421 			return fd;
6422 	}
6423 	file = __sys_socket_file(sock->domain, sock->type, sock->protocol);
6424 	if (IS_ERR(file)) {
6425 		if (!fixed)
6426 			put_unused_fd(fd);
6427 		ret = PTR_ERR(file);
6428 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
6429 			return -EAGAIN;
6430 		if (ret == -ERESTARTSYS)
6431 			ret = -EINTR;
6432 		req_set_fail(req);
6433 	} else if (!fixed) {
6434 		fd_install(fd, file);
6435 		ret = fd;
6436 	} else {
6437 		ret = io_fixed_fd_install(req, issue_flags, file,
6438 					    sock->file_slot);
6439 	}
6440 	__io_req_complete(req, issue_flags, ret, 0);
6441 	return 0;
6442 }
6443 
io_connect_prep_async(struct io_kiocb * req)6444 static int io_connect_prep_async(struct io_kiocb *req)
6445 {
6446 	struct io_async_connect *io = req->async_data;
6447 	struct io_connect *conn = &req->connect;
6448 
6449 	return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
6450 }
6451 
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6452 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6453 {
6454 	struct io_connect *conn = &req->connect;
6455 
6456 	if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
6457 		return -EINVAL;
6458 
6459 	conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
6460 	conn->addr_len =  READ_ONCE(sqe->addr2);
6461 	return 0;
6462 }
6463 
io_connect(struct io_kiocb * req,unsigned int issue_flags)6464 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
6465 {
6466 	struct io_async_connect __io, *io;
6467 	unsigned file_flags;
6468 	int ret;
6469 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6470 
6471 	if (req_has_async_data(req)) {
6472 		io = req->async_data;
6473 	} else {
6474 		ret = move_addr_to_kernel(req->connect.addr,
6475 						req->connect.addr_len,
6476 						&__io.address);
6477 		if (ret)
6478 			goto out;
6479 		io = &__io;
6480 	}
6481 
6482 	file_flags = force_nonblock ? O_NONBLOCK : 0;
6483 
6484 	ret = __sys_connect_file(req->file, &io->address,
6485 					req->connect.addr_len, file_flags);
6486 	if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
6487 		if (req_has_async_data(req))
6488 			return -EAGAIN;
6489 		if (io_alloc_async_data(req)) {
6490 			ret = -ENOMEM;
6491 			goto out;
6492 		}
6493 		memcpy(req->async_data, &__io, sizeof(__io));
6494 		return -EAGAIN;
6495 	}
6496 	if (ret == -ERESTARTSYS)
6497 		ret = -EINTR;
6498 out:
6499 	if (ret < 0)
6500 		req_set_fail(req);
6501 	__io_req_complete(req, issue_flags, ret, 0);
6502 	return 0;
6503 }
6504 #else /* !CONFIG_NET */
6505 #define IO_NETOP_FN(op)							\
6506 static int io_##op(struct io_kiocb *req, unsigned int issue_flags)	\
6507 {									\
6508 	return -EOPNOTSUPP;						\
6509 }
6510 
6511 #define IO_NETOP_PREP(op)						\
6512 IO_NETOP_FN(op)								\
6513 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
6514 {									\
6515 	return -EOPNOTSUPP;						\
6516 }									\
6517 
6518 #define IO_NETOP_PREP_ASYNC(op)						\
6519 IO_NETOP_PREP(op)							\
6520 static int io_##op##_prep_async(struct io_kiocb *req)			\
6521 {									\
6522 	return -EOPNOTSUPP;						\
6523 }
6524 
6525 IO_NETOP_PREP_ASYNC(sendmsg);
6526 IO_NETOP_PREP_ASYNC(recvmsg);
6527 IO_NETOP_PREP_ASYNC(connect);
6528 IO_NETOP_PREP(accept);
6529 IO_NETOP_PREP(socket);
6530 IO_NETOP_PREP(shutdown);
6531 IO_NETOP_FN(send);
6532 IO_NETOP_FN(recv);
6533 #endif /* CONFIG_NET */
6534 
6535 struct io_poll_table {
6536 	struct poll_table_struct pt;
6537 	struct io_kiocb *req;
6538 	int nr_entries;
6539 	int error;
6540 };
6541 
6542 #define IO_POLL_CANCEL_FLAG	BIT(31)
6543 #define IO_POLL_REF_MASK	GENMASK(30, 0)
6544 
6545 /*
6546  * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
6547  * bump it and acquire ownership. It's disallowed to modify requests while not
6548  * owning it, that prevents from races for enqueueing task_work's and b/w
6549  * arming poll and wakeups.
6550  */
io_poll_get_ownership(struct io_kiocb * req)6551 static inline bool io_poll_get_ownership(struct io_kiocb *req)
6552 {
6553 	return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
6554 }
6555 
io_poll_mark_cancelled(struct io_kiocb * req)6556 static void io_poll_mark_cancelled(struct io_kiocb *req)
6557 {
6558 	atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
6559 }
6560 
io_poll_get_double(struct io_kiocb * req)6561 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
6562 {
6563 	/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
6564 	if (req->opcode == IORING_OP_POLL_ADD)
6565 		return req->async_data;
6566 	return req->apoll->double_poll;
6567 }
6568 
io_poll_get_single(struct io_kiocb * req)6569 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
6570 {
6571 	if (req->opcode == IORING_OP_POLL_ADD)
6572 		return &req->poll;
6573 	return &req->apoll->poll;
6574 }
6575 
io_poll_req_insert(struct io_kiocb * req)6576 static void io_poll_req_insert(struct io_kiocb *req)
6577 {
6578 	struct io_ring_ctx *ctx = req->ctx;
6579 	struct hlist_head *list;
6580 
6581 	list = &ctx->cancel_hash[hash_long(req->cqe.user_data, ctx->cancel_hash_bits)];
6582 	hlist_add_head(&req->hash_node, list);
6583 }
6584 
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)6585 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
6586 			      wait_queue_func_t wake_func)
6587 {
6588 	poll->head = NULL;
6589 #define IO_POLL_UNMASK	(EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
6590 	/* mask in events that we always want/need */
6591 	poll->events = events | IO_POLL_UNMASK;
6592 	INIT_LIST_HEAD(&poll->wait.entry);
6593 	init_waitqueue_func_entry(&poll->wait, wake_func);
6594 }
6595 
io_poll_remove_entry(struct io_poll_iocb * poll)6596 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
6597 {
6598 	struct wait_queue_head *head = smp_load_acquire(&poll->head);
6599 
6600 	if (head) {
6601 		spin_lock_irq(&head->lock);
6602 		list_del_init(&poll->wait.entry);
6603 		poll->head = NULL;
6604 		spin_unlock_irq(&head->lock);
6605 	}
6606 }
6607 
io_poll_remove_entries(struct io_kiocb * req)6608 static void io_poll_remove_entries(struct io_kiocb *req)
6609 {
6610 	/*
6611 	 * Nothing to do if neither of those flags are set. Avoid dipping
6612 	 * into the poll/apoll/double cachelines if we can.
6613 	 */
6614 	if (!(req->flags & (REQ_F_SINGLE_POLL | REQ_F_DOUBLE_POLL)))
6615 		return;
6616 
6617 	/*
6618 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
6619 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
6620 	 * lock in the first place can race with the waitqueue being freed.
6621 	 *
6622 	 * We solve this as eventpoll does: by taking advantage of the fact that
6623 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
6624 	 * we enter rcu_read_lock() and see that the pointer to the queue is
6625 	 * non-NULL, we can then lock it without the memory being freed out from
6626 	 * under us.
6627 	 *
6628 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
6629 	 * case the caller deletes the entry from the queue, leaving it empty.
6630 	 * In that case, only RCU prevents the queue memory from being freed.
6631 	 */
6632 	rcu_read_lock();
6633 	if (req->flags & REQ_F_SINGLE_POLL)
6634 		io_poll_remove_entry(io_poll_get_single(req));
6635 	if (req->flags & REQ_F_DOUBLE_POLL)
6636 		io_poll_remove_entry(io_poll_get_double(req));
6637 	rcu_read_unlock();
6638 }
6639 
6640 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags);
6641 /*
6642  * All poll tw should go through this. Checks for poll events, manages
6643  * references, does rewait, etc.
6644  *
6645  * Returns a negative error on failure. >0 when no action require, which is
6646  * either spurious wakeup or multishot CQE is served. 0 when it's done with
6647  * the request, then the mask is stored in req->cqe.res.
6648  */
io_poll_check_events(struct io_kiocb * req,bool * locked)6649 static int io_poll_check_events(struct io_kiocb *req, bool *locked)
6650 {
6651 	struct io_ring_ctx *ctx = req->ctx;
6652 	int v, ret;
6653 
6654 	/* req->task == current here, checking PF_EXITING is safe */
6655 	if (unlikely(req->task->flags & PF_EXITING))
6656 		return -ECANCELED;
6657 
6658 	do {
6659 		v = atomic_read(&req->poll_refs);
6660 
6661 		/* tw handler should be the owner, and so have some references */
6662 		if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
6663 			return 0;
6664 		if (v & IO_POLL_CANCEL_FLAG)
6665 			return -ECANCELED;
6666 
6667 		if (!req->cqe.res) {
6668 			struct poll_table_struct pt = { ._key = req->apoll_events };
6669 			req->cqe.res = vfs_poll(req->file, &pt) & req->apoll_events;
6670 		}
6671 
6672 		if ((unlikely(!req->cqe.res)))
6673 			continue;
6674 		if (req->apoll_events & EPOLLONESHOT)
6675 			return 0;
6676 
6677 		/* multishot, just fill a CQE and proceed */
6678 		if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
6679 			__poll_t mask = mangle_poll(req->cqe.res &
6680 						    req->apoll_events);
6681 			bool filled;
6682 
6683 			spin_lock(&ctx->completion_lock);
6684 			filled = io_fill_cqe_aux(ctx, req->cqe.user_data,
6685 						 mask, IORING_CQE_F_MORE);
6686 			io_commit_cqring(ctx);
6687 			spin_unlock(&ctx->completion_lock);
6688 			if (filled) {
6689 				io_cqring_ev_posted(ctx);
6690 				continue;
6691 			}
6692 			return -ECANCELED;
6693 		}
6694 
6695 		io_tw_lock(req->ctx, locked);
6696 		if (unlikely(req->task->flags & PF_EXITING))
6697 			return -EFAULT;
6698 		ret = io_issue_sqe(req,
6699 				   IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6700 		if (ret)
6701 			return ret;
6702 
6703 		/*
6704 		 * Release all references, retry if someone tried to restart
6705 		 * task_work while we were executing it.
6706 		 */
6707 	} while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs));
6708 
6709 	return 1;
6710 }
6711 
io_poll_task_func(struct io_kiocb * req,bool * locked)6712 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
6713 {
6714 	struct io_ring_ctx *ctx = req->ctx;
6715 	int ret;
6716 
6717 	ret = io_poll_check_events(req, locked);
6718 	if (ret > 0)
6719 		return;
6720 
6721 	if (!ret) {
6722 		req->cqe.res = mangle_poll(req->cqe.res & req->poll.events);
6723 	} else {
6724 		req->cqe.res = ret;
6725 		req_set_fail(req);
6726 	}
6727 
6728 	io_poll_remove_entries(req);
6729 	spin_lock(&ctx->completion_lock);
6730 	hash_del(&req->hash_node);
6731 	__io_req_complete_post(req, req->cqe.res, 0);
6732 	io_commit_cqring(ctx);
6733 	spin_unlock(&ctx->completion_lock);
6734 	io_cqring_ev_posted(ctx);
6735 }
6736 
io_apoll_task_func(struct io_kiocb * req,bool * locked)6737 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
6738 {
6739 	struct io_ring_ctx *ctx = req->ctx;
6740 	int ret;
6741 
6742 	ret = io_poll_check_events(req, locked);
6743 	if (ret > 0)
6744 		return;
6745 
6746 	io_poll_remove_entries(req);
6747 	spin_lock(&ctx->completion_lock);
6748 	hash_del(&req->hash_node);
6749 	spin_unlock(&ctx->completion_lock);
6750 
6751 	if (!ret)
6752 		io_req_task_submit(req, locked);
6753 	else
6754 		io_req_complete_failed(req, ret);
6755 }
6756 
__io_poll_execute(struct io_kiocb * req,int mask,__poll_t __maybe_unused events)6757 static void __io_poll_execute(struct io_kiocb *req, int mask,
6758 			      __poll_t __maybe_unused events)
6759 {
6760 	req->cqe.res = mask;
6761 	/*
6762 	 * This is useful for poll that is armed on behalf of another
6763 	 * request, and where the wakeup path could be on a different
6764 	 * CPU. We want to avoid pulling in req->apoll->events for that
6765 	 * case.
6766 	 */
6767 	if (req->opcode == IORING_OP_POLL_ADD)
6768 		req->io_task_work.func = io_poll_task_func;
6769 	else
6770 		req->io_task_work.func = io_apoll_task_func;
6771 
6772 	trace_io_uring_task_add(req->ctx, req, req->cqe.user_data, req->opcode, mask);
6773 	io_req_task_work_add(req);
6774 }
6775 
io_poll_execute(struct io_kiocb * req,int res,__poll_t events)6776 static inline void io_poll_execute(struct io_kiocb *req, int res,
6777 		__poll_t events)
6778 {
6779 	if (io_poll_get_ownership(req))
6780 		__io_poll_execute(req, res, events);
6781 }
6782 
io_poll_cancel_req(struct io_kiocb * req)6783 static void io_poll_cancel_req(struct io_kiocb *req)
6784 {
6785 	io_poll_mark_cancelled(req);
6786 	/* kick tw, which should complete the request */
6787 	io_poll_execute(req, 0, 0);
6788 }
6789 
6790 #define wqe_to_req(wait)	((void *)((unsigned long) (wait)->private & ~1))
6791 #define wqe_is_double(wait)	((unsigned long) (wait)->private & 1)
6792 #define IO_ASYNC_POLL_COMMON	(EPOLLONESHOT | EPOLLPRI)
6793 
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)6794 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
6795 			void *key)
6796 {
6797 	struct io_kiocb *req = wqe_to_req(wait);
6798 	struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
6799 						 wait);
6800 	__poll_t mask = key_to_poll(key);
6801 
6802 	if (unlikely(mask & POLLFREE)) {
6803 		io_poll_mark_cancelled(req);
6804 		/* we have to kick tw in case it's not already */
6805 		io_poll_execute(req, 0, poll->events);
6806 
6807 		/*
6808 		 * If the waitqueue is being freed early but someone is already
6809 		 * holds ownership over it, we have to tear down the request as
6810 		 * best we can. That means immediately removing the request from
6811 		 * its waitqueue and preventing all further accesses to the
6812 		 * waitqueue via the request.
6813 		 */
6814 		list_del_init(&poll->wait.entry);
6815 
6816 		/*
6817 		 * Careful: this *must* be the last step, since as soon
6818 		 * as req->head is NULL'ed out, the request can be
6819 		 * completed and freed, since aio_poll_complete_work()
6820 		 * will no longer need to take the waitqueue lock.
6821 		 */
6822 		smp_store_release(&poll->head, NULL);
6823 		return 1;
6824 	}
6825 
6826 	/* for instances that support it check for an event match first */
6827 	if (mask && !(mask & (poll->events & ~IO_ASYNC_POLL_COMMON)))
6828 		return 0;
6829 
6830 	if (io_poll_get_ownership(req)) {
6831 		/* optional, saves extra locking for removal in tw handler */
6832 		if (mask && poll->events & EPOLLONESHOT) {
6833 			list_del_init(&poll->wait.entry);
6834 			poll->head = NULL;
6835 			if (wqe_is_double(wait))
6836 				req->flags &= ~REQ_F_DOUBLE_POLL;
6837 			else
6838 				req->flags &= ~REQ_F_SINGLE_POLL;
6839 		}
6840 		__io_poll_execute(req, mask, poll->events);
6841 	}
6842 	return 1;
6843 }
6844 
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)6845 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
6846 			    struct wait_queue_head *head,
6847 			    struct io_poll_iocb **poll_ptr)
6848 {
6849 	struct io_kiocb *req = pt->req;
6850 	unsigned long wqe_private = (unsigned long) req;
6851 
6852 	/*
6853 	 * The file being polled uses multiple waitqueues for poll handling
6854 	 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
6855 	 * if this happens.
6856 	 */
6857 	if (unlikely(pt->nr_entries)) {
6858 		struct io_poll_iocb *first = poll;
6859 
6860 		/* double add on the same waitqueue head, ignore */
6861 		if (first->head == head)
6862 			return;
6863 		/* already have a 2nd entry, fail a third attempt */
6864 		if (*poll_ptr) {
6865 			if ((*poll_ptr)->head == head)
6866 				return;
6867 			pt->error = -EINVAL;
6868 			return;
6869 		}
6870 
6871 		poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
6872 		if (!poll) {
6873 			pt->error = -ENOMEM;
6874 			return;
6875 		}
6876 		/* mark as double wq entry */
6877 		wqe_private |= 1;
6878 		req->flags |= REQ_F_DOUBLE_POLL;
6879 		io_init_poll_iocb(poll, first->events, first->wait.func);
6880 		*poll_ptr = poll;
6881 		if (req->opcode == IORING_OP_POLL_ADD)
6882 			req->flags |= REQ_F_ASYNC_DATA;
6883 	}
6884 
6885 	req->flags |= REQ_F_SINGLE_POLL;
6886 	pt->nr_entries++;
6887 	poll->head = head;
6888 	poll->wait.private = (void *) wqe_private;
6889 
6890 	if (poll->events & EPOLLEXCLUSIVE)
6891 		add_wait_queue_exclusive(head, &poll->wait);
6892 	else
6893 		add_wait_queue(head, &poll->wait);
6894 }
6895 
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)6896 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
6897 			       struct poll_table_struct *p)
6898 {
6899 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
6900 
6901 	__io_queue_proc(&pt->req->poll, pt, head,
6902 			(struct io_poll_iocb **) &pt->req->async_data);
6903 }
6904 
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask)6905 static int __io_arm_poll_handler(struct io_kiocb *req,
6906 				 struct io_poll_iocb *poll,
6907 				 struct io_poll_table *ipt, __poll_t mask)
6908 {
6909 	struct io_ring_ctx *ctx = req->ctx;
6910 	int v;
6911 
6912 	INIT_HLIST_NODE(&req->hash_node);
6913 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
6914 	io_init_poll_iocb(poll, mask, io_poll_wake);
6915 	poll->file = req->file;
6916 
6917 	req->apoll_events = poll->events;
6918 
6919 	ipt->pt._key = mask;
6920 	ipt->req = req;
6921 	ipt->error = 0;
6922 	ipt->nr_entries = 0;
6923 
6924 	/*
6925 	 * Take the ownership to delay any tw execution up until we're done
6926 	 * with poll arming. see io_poll_get_ownership().
6927 	 */
6928 	atomic_set(&req->poll_refs, 1);
6929 	mask = vfs_poll(req->file, &ipt->pt) & poll->events;
6930 
6931 	if (mask && (poll->events & EPOLLONESHOT)) {
6932 		io_poll_remove_entries(req);
6933 		/* no one else has access to the req, forget about the ref */
6934 		return mask;
6935 	}
6936 	if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
6937 		io_poll_remove_entries(req);
6938 		if (!ipt->error)
6939 			ipt->error = -EINVAL;
6940 		return 0;
6941 	}
6942 
6943 	spin_lock(&ctx->completion_lock);
6944 	io_poll_req_insert(req);
6945 	spin_unlock(&ctx->completion_lock);
6946 
6947 	if (mask) {
6948 		/* can't multishot if failed, just queue the event we've got */
6949 		if (unlikely(ipt->error || !ipt->nr_entries)) {
6950 			poll->events |= EPOLLONESHOT;
6951 			req->apoll_events |= EPOLLONESHOT;
6952 			ipt->error = 0;
6953 		}
6954 		__io_poll_execute(req, mask, poll->events);
6955 		return 0;
6956 	}
6957 
6958 	/*
6959 	 * Release ownership. If someone tried to queue a tw while it was
6960 	 * locked, kick it off for them.
6961 	 */
6962 	v = atomic_dec_return(&req->poll_refs);
6963 	if (unlikely(v & IO_POLL_REF_MASK))
6964 		__io_poll_execute(req, 0, poll->events);
6965 	return 0;
6966 }
6967 
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)6968 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
6969 			       struct poll_table_struct *p)
6970 {
6971 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
6972 	struct async_poll *apoll = pt->req->apoll;
6973 
6974 	__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
6975 }
6976 
6977 enum {
6978 	IO_APOLL_OK,
6979 	IO_APOLL_ABORTED,
6980 	IO_APOLL_READY
6981 };
6982 
io_arm_poll_handler(struct io_kiocb * req,unsigned issue_flags)6983 static int io_arm_poll_handler(struct io_kiocb *req, unsigned issue_flags)
6984 {
6985 	const struct io_op_def *def = &io_op_defs[req->opcode];
6986 	struct io_ring_ctx *ctx = req->ctx;
6987 	struct async_poll *apoll;
6988 	struct io_poll_table ipt;
6989 	__poll_t mask = POLLPRI | POLLERR;
6990 	int ret;
6991 
6992 	if (!def->pollin && !def->pollout)
6993 		return IO_APOLL_ABORTED;
6994 	if (!file_can_poll(req->file))
6995 		return IO_APOLL_ABORTED;
6996 	if ((req->flags & (REQ_F_POLLED|REQ_F_PARTIAL_IO)) == REQ_F_POLLED)
6997 		return IO_APOLL_ABORTED;
6998 	if (!(req->flags & REQ_F_APOLL_MULTISHOT))
6999 		mask |= EPOLLONESHOT;
7000 
7001 	if (def->pollin) {
7002 		mask |= EPOLLIN | EPOLLRDNORM;
7003 
7004 		/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
7005 		if ((req->opcode == IORING_OP_RECVMSG) &&
7006 		    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
7007 			mask &= ~EPOLLIN;
7008 	} else {
7009 		mask |= EPOLLOUT | EPOLLWRNORM;
7010 	}
7011 	if (def->poll_exclusive)
7012 		mask |= EPOLLEXCLUSIVE;
7013 	if (req->flags & REQ_F_POLLED) {
7014 		apoll = req->apoll;
7015 		kfree(apoll->double_poll);
7016 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) &&
7017 		   !list_empty(&ctx->apoll_cache)) {
7018 		apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
7019 						poll.wait.entry);
7020 		list_del_init(&apoll->poll.wait.entry);
7021 	} else {
7022 		apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
7023 		if (unlikely(!apoll))
7024 			return IO_APOLL_ABORTED;
7025 	}
7026 	apoll->double_poll = NULL;
7027 	req->apoll = apoll;
7028 	req->flags |= REQ_F_POLLED;
7029 	ipt.pt._qproc = io_async_queue_proc;
7030 
7031 	io_kbuf_recycle(req, issue_flags);
7032 
7033 	ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
7034 	if (ret || ipt.error)
7035 		return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
7036 
7037 	trace_io_uring_poll_arm(ctx, req, req->cqe.user_data, req->opcode,
7038 				mask, apoll->poll.events);
7039 	return IO_APOLL_OK;
7040 }
7041 
7042 /*
7043  * Returns true if we found and killed one or more poll requests
7044  */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)7045 static __cold bool io_poll_remove_all(struct io_ring_ctx *ctx,
7046 				      struct task_struct *tsk, bool cancel_all)
7047 {
7048 	struct hlist_node *tmp;
7049 	struct io_kiocb *req;
7050 	bool found = false;
7051 	int i;
7052 
7053 	spin_lock(&ctx->completion_lock);
7054 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7055 		struct hlist_head *list;
7056 
7057 		list = &ctx->cancel_hash[i];
7058 		hlist_for_each_entry_safe(req, tmp, list, hash_node) {
7059 			if (io_match_task_safe(req, tsk, cancel_all)) {
7060 				hlist_del_init(&req->hash_node);
7061 				io_poll_cancel_req(req);
7062 				found = true;
7063 			}
7064 		}
7065 	}
7066 	spin_unlock(&ctx->completion_lock);
7067 	return found;
7068 }
7069 
io_poll_find(struct io_ring_ctx * ctx,bool poll_only,struct io_cancel_data * cd)7070 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, bool poll_only,
7071 				     struct io_cancel_data *cd)
7072 	__must_hold(&ctx->completion_lock)
7073 {
7074 	struct hlist_head *list;
7075 	struct io_kiocb *req;
7076 
7077 	list = &ctx->cancel_hash[hash_long(cd->data, ctx->cancel_hash_bits)];
7078 	hlist_for_each_entry(req, list, hash_node) {
7079 		if (cd->data != req->cqe.user_data)
7080 			continue;
7081 		if (poll_only && req->opcode != IORING_OP_POLL_ADD)
7082 			continue;
7083 		if (cd->flags & IORING_ASYNC_CANCEL_ALL) {
7084 			if (cd->seq == req->work.cancel_seq)
7085 				continue;
7086 			req->work.cancel_seq = cd->seq;
7087 		}
7088 		return req;
7089 	}
7090 	return NULL;
7091 }
7092 
io_poll_file_find(struct io_ring_ctx * ctx,struct io_cancel_data * cd)7093 static struct io_kiocb *io_poll_file_find(struct io_ring_ctx *ctx,
7094 					  struct io_cancel_data *cd)
7095 	__must_hold(&ctx->completion_lock)
7096 {
7097 	struct io_kiocb *req;
7098 	int i;
7099 
7100 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7101 		struct hlist_head *list;
7102 
7103 		list = &ctx->cancel_hash[i];
7104 		hlist_for_each_entry(req, list, hash_node) {
7105 			if (!(cd->flags & IORING_ASYNC_CANCEL_ANY) &&
7106 			    req->file != cd->file)
7107 				continue;
7108 			if (cd->seq == req->work.cancel_seq)
7109 				continue;
7110 			req->work.cancel_seq = cd->seq;
7111 			return req;
7112 		}
7113 	}
7114 	return NULL;
7115 }
7116 
io_poll_disarm(struct io_kiocb * req)7117 static bool io_poll_disarm(struct io_kiocb *req)
7118 	__must_hold(&ctx->completion_lock)
7119 {
7120 	if (!io_poll_get_ownership(req))
7121 		return false;
7122 	io_poll_remove_entries(req);
7123 	hash_del(&req->hash_node);
7124 	return true;
7125 }
7126 
io_poll_cancel(struct io_ring_ctx * ctx,struct io_cancel_data * cd)7127 static int io_poll_cancel(struct io_ring_ctx *ctx, struct io_cancel_data *cd)
7128 	__must_hold(&ctx->completion_lock)
7129 {
7130 	struct io_kiocb *req;
7131 
7132 	if (cd->flags & (IORING_ASYNC_CANCEL_FD|IORING_ASYNC_CANCEL_ANY))
7133 		req = io_poll_file_find(ctx, cd);
7134 	else
7135 		req = io_poll_find(ctx, false, cd);
7136 	if (!req)
7137 		return -ENOENT;
7138 	io_poll_cancel_req(req);
7139 	return 0;
7140 }
7141 
io_poll_parse_events(const struct io_uring_sqe * sqe,unsigned int flags)7142 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
7143 				     unsigned int flags)
7144 {
7145 	u32 events;
7146 
7147 	events = READ_ONCE(sqe->poll32_events);
7148 #ifdef __BIG_ENDIAN
7149 	events = swahw32(events);
7150 #endif
7151 	if (!(flags & IORING_POLL_ADD_MULTI))
7152 		events |= EPOLLONESHOT;
7153 	return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
7154 }
7155 
io_poll_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)7156 static int io_poll_remove_prep(struct io_kiocb *req,
7157 			       const struct io_uring_sqe *sqe)
7158 {
7159 	struct io_poll_update *upd = &req->poll_update;
7160 	u32 flags;
7161 
7162 	if (sqe->buf_index || sqe->splice_fd_in)
7163 		return -EINVAL;
7164 	flags = READ_ONCE(sqe->len);
7165 	if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
7166 		      IORING_POLL_ADD_MULTI))
7167 		return -EINVAL;
7168 	/* meaningless without update */
7169 	if (flags == IORING_POLL_ADD_MULTI)
7170 		return -EINVAL;
7171 
7172 	upd->old_user_data = READ_ONCE(sqe->addr);
7173 	upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
7174 	upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
7175 
7176 	upd->new_user_data = READ_ONCE(sqe->off);
7177 	if (!upd->update_user_data && upd->new_user_data)
7178 		return -EINVAL;
7179 	if (upd->update_events)
7180 		upd->events = io_poll_parse_events(sqe, flags);
7181 	else if (sqe->poll32_events)
7182 		return -EINVAL;
7183 
7184 	return 0;
7185 }
7186 
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)7187 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
7188 {
7189 	struct io_poll_iocb *poll = &req->poll;
7190 	u32 flags;
7191 
7192 	if (sqe->buf_index || sqe->off || sqe->addr)
7193 		return -EINVAL;
7194 	flags = READ_ONCE(sqe->len);
7195 	if (flags & ~IORING_POLL_ADD_MULTI)
7196 		return -EINVAL;
7197 	if ((flags & IORING_POLL_ADD_MULTI) && (req->flags & REQ_F_CQE_SKIP))
7198 		return -EINVAL;
7199 
7200 	io_req_set_refcount(req);
7201 	poll->events = io_poll_parse_events(sqe, flags);
7202 	return 0;
7203 }
7204 
io_poll_add(struct io_kiocb * req,unsigned int issue_flags)7205 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
7206 {
7207 	struct io_poll_iocb *poll = &req->poll;
7208 	struct io_poll_table ipt;
7209 	int ret;
7210 
7211 	ipt.pt._qproc = io_poll_queue_proc;
7212 
7213 	ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
7214 	if (!ret && ipt.error)
7215 		req_set_fail(req);
7216 	ret = ret ?: ipt.error;
7217 	if (ret)
7218 		__io_req_complete(req, issue_flags, ret, 0);
7219 	return 0;
7220 }
7221 
io_poll_remove(struct io_kiocb * req,unsigned int issue_flags)7222 static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
7223 {
7224 	struct io_cancel_data cd = { .data = req->poll_update.old_user_data, };
7225 	struct io_ring_ctx *ctx = req->ctx;
7226 	struct io_kiocb *preq;
7227 	int ret2, ret = 0;
7228 	bool locked;
7229 
7230 	spin_lock(&ctx->completion_lock);
7231 	preq = io_poll_find(ctx, true, &cd);
7232 	if (!preq || !io_poll_disarm(preq)) {
7233 		spin_unlock(&ctx->completion_lock);
7234 		ret = preq ? -EALREADY : -ENOENT;
7235 		goto out;
7236 	}
7237 	spin_unlock(&ctx->completion_lock);
7238 
7239 	if (req->poll_update.update_events || req->poll_update.update_user_data) {
7240 		/* only mask one event flags, keep behavior flags */
7241 		if (req->poll_update.update_events) {
7242 			preq->poll.events &= ~0xffff;
7243 			preq->poll.events |= req->poll_update.events & 0xffff;
7244 			preq->poll.events |= IO_POLL_UNMASK;
7245 		}
7246 		if (req->poll_update.update_user_data)
7247 			preq->cqe.user_data = req->poll_update.new_user_data;
7248 
7249 		ret2 = io_poll_add(preq, issue_flags);
7250 		/* successfully updated, don't complete poll request */
7251 		if (!ret2)
7252 			goto out;
7253 	}
7254 
7255 	req_set_fail(preq);
7256 	preq->cqe.res = -ECANCELED;
7257 	locked = !(issue_flags & IO_URING_F_UNLOCKED);
7258 	io_req_task_complete(preq, &locked);
7259 out:
7260 	if (ret < 0)
7261 		req_set_fail(req);
7262 	/* complete update request, we're done with it */
7263 	__io_req_complete(req, issue_flags, ret, 0);
7264 	return 0;
7265 }
7266 
io_timeout_fn(struct hrtimer * timer)7267 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
7268 {
7269 	struct io_timeout_data *data = container_of(timer,
7270 						struct io_timeout_data, timer);
7271 	struct io_kiocb *req = data->req;
7272 	struct io_ring_ctx *ctx = req->ctx;
7273 	unsigned long flags;
7274 
7275 	spin_lock_irqsave(&ctx->timeout_lock, flags);
7276 	list_del_init(&req->timeout.list);
7277 	atomic_set(&req->ctx->cq_timeouts,
7278 		atomic_read(&req->ctx->cq_timeouts) + 1);
7279 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7280 
7281 	if (!(data->flags & IORING_TIMEOUT_ETIME_SUCCESS))
7282 		req_set_fail(req);
7283 
7284 	req->cqe.res = -ETIME;
7285 	req->io_task_work.func = io_req_task_complete;
7286 	io_req_task_work_add(req);
7287 	return HRTIMER_NORESTART;
7288 }
7289 
io_timeout_extract(struct io_ring_ctx * ctx,struct io_cancel_data * cd)7290 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
7291 					   struct io_cancel_data *cd)
7292 	__must_hold(&ctx->timeout_lock)
7293 {
7294 	struct io_timeout_data *io;
7295 	struct io_kiocb *req;
7296 	bool found = false;
7297 
7298 	list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
7299 		if (!(cd->flags & IORING_ASYNC_CANCEL_ANY) &&
7300 		    cd->data != req->cqe.user_data)
7301 			continue;
7302 		if (cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY)) {
7303 			if (cd->seq == req->work.cancel_seq)
7304 				continue;
7305 			req->work.cancel_seq = cd->seq;
7306 		}
7307 		found = true;
7308 		break;
7309 	}
7310 	if (!found)
7311 		return ERR_PTR(-ENOENT);
7312 
7313 	io = req->async_data;
7314 	if (hrtimer_try_to_cancel(&io->timer) == -1)
7315 		return ERR_PTR(-EALREADY);
7316 	list_del_init(&req->timeout.list);
7317 	return req;
7318 }
7319 
io_timeout_cancel(struct io_ring_ctx * ctx,struct io_cancel_data * cd)7320 static int io_timeout_cancel(struct io_ring_ctx *ctx, struct io_cancel_data *cd)
7321 	__must_hold(&ctx->completion_lock)
7322 {
7323 	struct io_kiocb *req;
7324 
7325 	spin_lock_irq(&ctx->timeout_lock);
7326 	req = io_timeout_extract(ctx, cd);
7327 	spin_unlock_irq(&ctx->timeout_lock);
7328 
7329 	if (IS_ERR(req))
7330 		return PTR_ERR(req);
7331 	io_req_task_queue_fail(req, -ECANCELED);
7332 	return 0;
7333 }
7334 
io_timeout_get_clock(struct io_timeout_data * data)7335 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
7336 {
7337 	switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
7338 	case IORING_TIMEOUT_BOOTTIME:
7339 		return CLOCK_BOOTTIME;
7340 	case IORING_TIMEOUT_REALTIME:
7341 		return CLOCK_REALTIME;
7342 	default:
7343 		/* can't happen, vetted at prep time */
7344 		WARN_ON_ONCE(1);
7345 		fallthrough;
7346 	case 0:
7347 		return CLOCK_MONOTONIC;
7348 	}
7349 }
7350 
io_linked_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)7351 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
7352 				    struct timespec64 *ts, enum hrtimer_mode mode)
7353 	__must_hold(&ctx->timeout_lock)
7354 {
7355 	struct io_timeout_data *io;
7356 	struct io_kiocb *req;
7357 	bool found = false;
7358 
7359 	list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
7360 		found = user_data == req->cqe.user_data;
7361 		if (found)
7362 			break;
7363 	}
7364 	if (!found)
7365 		return -ENOENT;
7366 
7367 	io = req->async_data;
7368 	if (hrtimer_try_to_cancel(&io->timer) == -1)
7369 		return -EALREADY;
7370 	hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
7371 	io->timer.function = io_link_timeout_fn;
7372 	hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
7373 	return 0;
7374 }
7375 
io_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)7376 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
7377 			     struct timespec64 *ts, enum hrtimer_mode mode)
7378 	__must_hold(&ctx->timeout_lock)
7379 {
7380 	struct io_cancel_data cd = { .data = user_data, };
7381 	struct io_kiocb *req = io_timeout_extract(ctx, &cd);
7382 	struct io_timeout_data *data;
7383 
7384 	if (IS_ERR(req))
7385 		return PTR_ERR(req);
7386 
7387 	req->timeout.off = 0; /* noseq */
7388 	data = req->async_data;
7389 	list_add_tail(&req->timeout.list, &ctx->timeout_list);
7390 	hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
7391 	data->timer.function = io_timeout_fn;
7392 	hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
7393 	return 0;
7394 }
7395 
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)7396 static int io_timeout_remove_prep(struct io_kiocb *req,
7397 				  const struct io_uring_sqe *sqe)
7398 {
7399 	struct io_timeout_rem *tr = &req->timeout_rem;
7400 
7401 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
7402 		return -EINVAL;
7403 	if (sqe->buf_index || sqe->len || sqe->splice_fd_in)
7404 		return -EINVAL;
7405 
7406 	tr->ltimeout = false;
7407 	tr->addr = READ_ONCE(sqe->addr);
7408 	tr->flags = READ_ONCE(sqe->timeout_flags);
7409 	if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
7410 		if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
7411 			return -EINVAL;
7412 		if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
7413 			tr->ltimeout = true;
7414 		if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
7415 			return -EINVAL;
7416 		if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
7417 			return -EFAULT;
7418 		if (tr->ts.tv_sec < 0 || tr->ts.tv_nsec < 0)
7419 			return -EINVAL;
7420 	} else if (tr->flags) {
7421 		/* timeout removal doesn't support flags */
7422 		return -EINVAL;
7423 	}
7424 
7425 	return 0;
7426 }
7427 
io_translate_timeout_mode(unsigned int flags)7428 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
7429 {
7430 	return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
7431 					    : HRTIMER_MODE_REL;
7432 }
7433 
7434 /*
7435  * Remove or update an existing timeout command
7436  */
io_timeout_remove(struct io_kiocb * req,unsigned int issue_flags)7437 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
7438 {
7439 	struct io_timeout_rem *tr = &req->timeout_rem;
7440 	struct io_ring_ctx *ctx = req->ctx;
7441 	int ret;
7442 
7443 	if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
7444 		struct io_cancel_data cd = { .data = tr->addr, };
7445 
7446 		spin_lock(&ctx->completion_lock);
7447 		ret = io_timeout_cancel(ctx, &cd);
7448 		spin_unlock(&ctx->completion_lock);
7449 	} else {
7450 		enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
7451 
7452 		spin_lock_irq(&ctx->timeout_lock);
7453 		if (tr->ltimeout)
7454 			ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
7455 		else
7456 			ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
7457 		spin_unlock_irq(&ctx->timeout_lock);
7458 	}
7459 
7460 	if (ret < 0)
7461 		req_set_fail(req);
7462 	io_req_complete_post(req, ret, 0);
7463 	return 0;
7464 }
7465 
__io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)7466 static int __io_timeout_prep(struct io_kiocb *req,
7467 			     const struct io_uring_sqe *sqe,
7468 			     bool is_timeout_link)
7469 {
7470 	struct io_timeout_data *data;
7471 	unsigned flags;
7472 	u32 off = READ_ONCE(sqe->off);
7473 
7474 	if (sqe->buf_index || sqe->len != 1 || sqe->splice_fd_in)
7475 		return -EINVAL;
7476 	if (off && is_timeout_link)
7477 		return -EINVAL;
7478 	flags = READ_ONCE(sqe->timeout_flags);
7479 	if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK |
7480 		      IORING_TIMEOUT_ETIME_SUCCESS))
7481 		return -EINVAL;
7482 	/* more than one clock specified is invalid, obviously */
7483 	if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
7484 		return -EINVAL;
7485 
7486 	INIT_LIST_HEAD(&req->timeout.list);
7487 	req->timeout.off = off;
7488 	if (unlikely(off && !req->ctx->off_timeout_used))
7489 		req->ctx->off_timeout_used = true;
7490 
7491 	if (WARN_ON_ONCE(req_has_async_data(req)))
7492 		return -EFAULT;
7493 	if (io_alloc_async_data(req))
7494 		return -ENOMEM;
7495 
7496 	data = req->async_data;
7497 	data->req = req;
7498 	data->flags = flags;
7499 
7500 	if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
7501 		return -EFAULT;
7502 
7503 	if (data->ts.tv_sec < 0 || data->ts.tv_nsec < 0)
7504 		return -EINVAL;
7505 
7506 	INIT_LIST_HEAD(&req->timeout.list);
7507 	data->mode = io_translate_timeout_mode(flags);
7508 	hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
7509 
7510 	if (is_timeout_link) {
7511 		struct io_submit_link *link = &req->ctx->submit_state.link;
7512 
7513 		if (!link->head)
7514 			return -EINVAL;
7515 		if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
7516 			return -EINVAL;
7517 		req->timeout.head = link->last;
7518 		link->last->flags |= REQ_F_ARM_LTIMEOUT;
7519 	}
7520 	return 0;
7521 }
7522 
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)7523 static int io_timeout_prep(struct io_kiocb *req,
7524 			   const struct io_uring_sqe *sqe)
7525 {
7526 	return __io_timeout_prep(req, sqe, false);
7527 }
7528 
io_link_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)7529 static int io_link_timeout_prep(struct io_kiocb *req,
7530 				const struct io_uring_sqe *sqe)
7531 {
7532 	return __io_timeout_prep(req, sqe, true);
7533 }
7534 
io_timeout(struct io_kiocb * req,unsigned int issue_flags)7535 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
7536 {
7537 	struct io_ring_ctx *ctx = req->ctx;
7538 	struct io_timeout_data *data = req->async_data;
7539 	struct list_head *entry;
7540 	u32 tail, off = req->timeout.off;
7541 
7542 	spin_lock_irq(&ctx->timeout_lock);
7543 
7544 	/*
7545 	 * sqe->off holds how many events that need to occur for this
7546 	 * timeout event to be satisfied. If it isn't set, then this is
7547 	 * a pure timeout request, sequence isn't used.
7548 	 */
7549 	if (io_is_timeout_noseq(req)) {
7550 		entry = ctx->timeout_list.prev;
7551 		goto add;
7552 	}
7553 
7554 	tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
7555 	req->timeout.target_seq = tail + off;
7556 
7557 	/* Update the last seq here in case io_flush_timeouts() hasn't.
7558 	 * This is safe because ->completion_lock is held, and submissions
7559 	 * and completions are never mixed in the same ->completion_lock section.
7560 	 */
7561 	ctx->cq_last_tm_flush = tail;
7562 
7563 	/*
7564 	 * Insertion sort, ensuring the first entry in the list is always
7565 	 * the one we need first.
7566 	 */
7567 	list_for_each_prev(entry, &ctx->timeout_list) {
7568 		struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
7569 						  timeout.list);
7570 
7571 		if (io_is_timeout_noseq(nxt))
7572 			continue;
7573 		/* nxt.seq is behind @tail, otherwise would've been completed */
7574 		if (off >= nxt->timeout.target_seq - tail)
7575 			break;
7576 	}
7577 add:
7578 	list_add(&req->timeout.list, entry);
7579 	data->timer.function = io_timeout_fn;
7580 	hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
7581 	spin_unlock_irq(&ctx->timeout_lock);
7582 	return 0;
7583 }
7584 
io_cancel_cb(struct io_wq_work * work,void * data)7585 static bool io_cancel_cb(struct io_wq_work *work, void *data)
7586 {
7587 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7588 	struct io_cancel_data *cd = data;
7589 
7590 	if (req->ctx != cd->ctx)
7591 		return false;
7592 	if (cd->flags & IORING_ASYNC_CANCEL_ANY) {
7593 		;
7594 	} else if (cd->flags & IORING_ASYNC_CANCEL_FD) {
7595 		if (req->file != cd->file)
7596 			return false;
7597 	} else {
7598 		if (req->cqe.user_data != cd->data)
7599 			return false;
7600 	}
7601 	if (cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY)) {
7602 		if (cd->seq == req->work.cancel_seq)
7603 			return false;
7604 		req->work.cancel_seq = cd->seq;
7605 	}
7606 	return true;
7607 }
7608 
io_async_cancel_one(struct io_uring_task * tctx,struct io_cancel_data * cd)7609 static int io_async_cancel_one(struct io_uring_task *tctx,
7610 			       struct io_cancel_data *cd)
7611 {
7612 	enum io_wq_cancel cancel_ret;
7613 	int ret = 0;
7614 	bool all;
7615 
7616 	if (!tctx || !tctx->io_wq)
7617 		return -ENOENT;
7618 
7619 	all = cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY);
7620 	cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, cd, all);
7621 	switch (cancel_ret) {
7622 	case IO_WQ_CANCEL_OK:
7623 		ret = 0;
7624 		break;
7625 	case IO_WQ_CANCEL_RUNNING:
7626 		ret = -EALREADY;
7627 		break;
7628 	case IO_WQ_CANCEL_NOTFOUND:
7629 		ret = -ENOENT;
7630 		break;
7631 	}
7632 
7633 	return ret;
7634 }
7635 
io_try_cancel(struct io_kiocb * req,struct io_cancel_data * cd)7636 static int io_try_cancel(struct io_kiocb *req, struct io_cancel_data *cd)
7637 {
7638 	struct io_ring_ctx *ctx = req->ctx;
7639 	int ret;
7640 
7641 	WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
7642 
7643 	ret = io_async_cancel_one(req->task->io_uring, cd);
7644 	/*
7645 	 * Fall-through even for -EALREADY, as we may have poll armed
7646 	 * that need unarming.
7647 	 */
7648 	if (!ret)
7649 		return 0;
7650 
7651 	spin_lock(&ctx->completion_lock);
7652 	ret = io_poll_cancel(ctx, cd);
7653 	if (ret != -ENOENT)
7654 		goto out;
7655 	if (!(cd->flags & IORING_ASYNC_CANCEL_FD))
7656 		ret = io_timeout_cancel(ctx, cd);
7657 out:
7658 	spin_unlock(&ctx->completion_lock);
7659 	return ret;
7660 }
7661 
7662 #define CANCEL_FLAGS	(IORING_ASYNC_CANCEL_ALL | IORING_ASYNC_CANCEL_FD | \
7663 			 IORING_ASYNC_CANCEL_ANY)
7664 
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)7665 static int io_async_cancel_prep(struct io_kiocb *req,
7666 				const struct io_uring_sqe *sqe)
7667 {
7668 	if (unlikely(req->flags & REQ_F_BUFFER_SELECT))
7669 		return -EINVAL;
7670 	if (sqe->off || sqe->len || sqe->splice_fd_in)
7671 		return -EINVAL;
7672 
7673 	req->cancel.addr = READ_ONCE(sqe->addr);
7674 	req->cancel.flags = READ_ONCE(sqe->cancel_flags);
7675 	if (req->cancel.flags & ~CANCEL_FLAGS)
7676 		return -EINVAL;
7677 	if (req->cancel.flags & IORING_ASYNC_CANCEL_FD) {
7678 		if (req->cancel.flags & IORING_ASYNC_CANCEL_ANY)
7679 			return -EINVAL;
7680 		req->cancel.fd = READ_ONCE(sqe->fd);
7681 	}
7682 
7683 	return 0;
7684 }
7685 
__io_async_cancel(struct io_cancel_data * cd,struct io_kiocb * req,unsigned int issue_flags)7686 static int __io_async_cancel(struct io_cancel_data *cd, struct io_kiocb *req,
7687 			     unsigned int issue_flags)
7688 {
7689 	bool all = cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY);
7690 	struct io_ring_ctx *ctx = cd->ctx;
7691 	struct io_tctx_node *node;
7692 	int ret, nr = 0;
7693 
7694 	do {
7695 		ret = io_try_cancel(req, cd);
7696 		if (ret == -ENOENT)
7697 			break;
7698 		if (!all)
7699 			return ret;
7700 		nr++;
7701 	} while (1);
7702 
7703 	/* slow path, try all io-wq's */
7704 	io_ring_submit_lock(ctx, issue_flags);
7705 	ret = -ENOENT;
7706 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
7707 		struct io_uring_task *tctx = node->task->io_uring;
7708 
7709 		ret = io_async_cancel_one(tctx, cd);
7710 		if (ret != -ENOENT) {
7711 			if (!all)
7712 				break;
7713 			nr++;
7714 		}
7715 	}
7716 	io_ring_submit_unlock(ctx, issue_flags);
7717 	return all ? nr : ret;
7718 }
7719 
io_async_cancel(struct io_kiocb * req,unsigned int issue_flags)7720 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
7721 {
7722 	struct io_cancel_data cd = {
7723 		.ctx	= req->ctx,
7724 		.data	= req->cancel.addr,
7725 		.flags	= req->cancel.flags,
7726 		.seq	= atomic_inc_return(&req->ctx->cancel_seq),
7727 	};
7728 	int ret;
7729 
7730 	if (cd.flags & IORING_ASYNC_CANCEL_FD) {
7731 		if (req->flags & REQ_F_FIXED_FILE)
7732 			req->file = io_file_get_fixed(req, req->cancel.fd,
7733 							issue_flags);
7734 		else
7735 			req->file = io_file_get_normal(req, req->cancel.fd);
7736 		if (!req->file) {
7737 			ret = -EBADF;
7738 			goto done;
7739 		}
7740 		cd.file = req->file;
7741 	}
7742 
7743 	ret = __io_async_cancel(&cd, req, issue_flags);
7744 done:
7745 	if (ret < 0)
7746 		req_set_fail(req);
7747 	io_req_complete_post(req, ret, 0);
7748 	return 0;
7749 }
7750 
io_files_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)7751 static int io_files_update_prep(struct io_kiocb *req,
7752 				const struct io_uring_sqe *sqe)
7753 {
7754 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
7755 		return -EINVAL;
7756 	if (sqe->rw_flags || sqe->splice_fd_in)
7757 		return -EINVAL;
7758 
7759 	req->rsrc_update.offset = READ_ONCE(sqe->off);
7760 	req->rsrc_update.nr_args = READ_ONCE(sqe->len);
7761 	if (!req->rsrc_update.nr_args)
7762 		return -EINVAL;
7763 	req->rsrc_update.arg = READ_ONCE(sqe->addr);
7764 	return 0;
7765 }
7766 
io_files_update_with_index_alloc(struct io_kiocb * req,unsigned int issue_flags)7767 static int io_files_update_with_index_alloc(struct io_kiocb *req,
7768 					    unsigned int issue_flags)
7769 {
7770 	__s32 __user *fds = u64_to_user_ptr(req->rsrc_update.arg);
7771 	unsigned int done;
7772 	struct file *file;
7773 	int ret, fd;
7774 
7775 	if (!req->ctx->file_data)
7776 		return -ENXIO;
7777 
7778 	for (done = 0; done < req->rsrc_update.nr_args; done++) {
7779 		if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7780 			ret = -EFAULT;
7781 			break;
7782 		}
7783 
7784 		file = fget(fd);
7785 		if (!file) {
7786 			ret = -EBADF;
7787 			break;
7788 		}
7789 		ret = io_fixed_fd_install(req, issue_flags, file,
7790 					  IORING_FILE_INDEX_ALLOC);
7791 		if (ret < 0)
7792 			break;
7793 		if (copy_to_user(&fds[done], &ret, sizeof(ret))) {
7794 			__io_close_fixed(req, issue_flags, ret);
7795 			ret = -EFAULT;
7796 			break;
7797 		}
7798 	}
7799 
7800 	if (done)
7801 		return done;
7802 	return ret;
7803 }
7804 
io_files_update(struct io_kiocb * req,unsigned int issue_flags)7805 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
7806 {
7807 	struct io_ring_ctx *ctx = req->ctx;
7808 	struct io_uring_rsrc_update2 up;
7809 	int ret;
7810 
7811 	up.offset = req->rsrc_update.offset;
7812 	up.data = req->rsrc_update.arg;
7813 	up.nr = 0;
7814 	up.tags = 0;
7815 	up.resv = 0;
7816 	up.resv2 = 0;
7817 
7818 	if (req->rsrc_update.offset == IORING_FILE_INDEX_ALLOC) {
7819 		ret = io_files_update_with_index_alloc(req, issue_flags);
7820 	} else {
7821 		io_ring_submit_lock(ctx, issue_flags);
7822 		ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
7823 				&up, req->rsrc_update.nr_args);
7824 		io_ring_submit_unlock(ctx, issue_flags);
7825 	}
7826 
7827 	if (ret < 0)
7828 		req_set_fail(req);
7829 	__io_req_complete(req, issue_flags, ret, 0);
7830 	return 0;
7831 }
7832 
io_req_prep_async(struct io_kiocb * req)7833 static int io_req_prep_async(struct io_kiocb *req)
7834 {
7835 	const struct io_op_def *def = &io_op_defs[req->opcode];
7836 
7837 	/* assign early for deferred execution for non-fixed file */
7838 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
7839 		req->file = io_file_get_normal(req, req->cqe.fd);
7840 	if (!def->needs_async_setup)
7841 		return 0;
7842 	if (WARN_ON_ONCE(req_has_async_data(req)))
7843 		return -EFAULT;
7844 	if (io_alloc_async_data(req))
7845 		return -EAGAIN;
7846 
7847 	switch (req->opcode) {
7848 	case IORING_OP_READV:
7849 		return io_readv_prep_async(req);
7850 	case IORING_OP_WRITEV:
7851 		return io_writev_prep_async(req);
7852 	case IORING_OP_SENDMSG:
7853 		return io_sendmsg_prep_async(req);
7854 	case IORING_OP_RECVMSG:
7855 		return io_recvmsg_prep_async(req);
7856 	case IORING_OP_CONNECT:
7857 		return io_connect_prep_async(req);
7858 	case IORING_OP_URING_CMD:
7859 		return io_uring_cmd_prep_async(req);
7860 	}
7861 
7862 	printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
7863 			req->opcode);
7864 	return -EINVAL;
7865 }
7866 
io_get_sequence(struct io_kiocb * req)7867 static u32 io_get_sequence(struct io_kiocb *req)
7868 {
7869 	u32 seq = req->ctx->cached_sq_head;
7870 	struct io_kiocb *cur;
7871 
7872 	/* need original cached_sq_head, but it was increased for each req */
7873 	io_for_each_link(cur, req)
7874 		seq--;
7875 	return seq;
7876 }
7877 
io_drain_req(struct io_kiocb * req)7878 static __cold void io_drain_req(struct io_kiocb *req)
7879 {
7880 	struct io_ring_ctx *ctx = req->ctx;
7881 	struct io_defer_entry *de;
7882 	int ret;
7883 	u32 seq = io_get_sequence(req);
7884 
7885 	/* Still need defer if there is pending req in defer list. */
7886 	spin_lock(&ctx->completion_lock);
7887 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
7888 		spin_unlock(&ctx->completion_lock);
7889 queue:
7890 		ctx->drain_active = false;
7891 		io_req_task_queue(req);
7892 		return;
7893 	}
7894 	spin_unlock(&ctx->completion_lock);
7895 
7896 	ret = io_req_prep_async(req);
7897 	if (ret) {
7898 fail:
7899 		io_req_complete_failed(req, ret);
7900 		return;
7901 	}
7902 	io_prep_async_link(req);
7903 	de = kmalloc(sizeof(*de), GFP_KERNEL);
7904 	if (!de) {
7905 		ret = -ENOMEM;
7906 		goto fail;
7907 	}
7908 
7909 	spin_lock(&ctx->completion_lock);
7910 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
7911 		spin_unlock(&ctx->completion_lock);
7912 		kfree(de);
7913 		goto queue;
7914 	}
7915 
7916 	trace_io_uring_defer(ctx, req, req->cqe.user_data, req->opcode);
7917 	de->req = req;
7918 	de->seq = seq;
7919 	list_add_tail(&de->list, &ctx->defer_list);
7920 	spin_unlock(&ctx->completion_lock);
7921 }
7922 
io_clean_op(struct io_kiocb * req)7923 static void io_clean_op(struct io_kiocb *req)
7924 {
7925 	if (req->flags & REQ_F_BUFFER_SELECTED) {
7926 		spin_lock(&req->ctx->completion_lock);
7927 		io_put_kbuf_comp(req);
7928 		spin_unlock(&req->ctx->completion_lock);
7929 	}
7930 
7931 	if (req->flags & REQ_F_NEED_CLEANUP) {
7932 		switch (req->opcode) {
7933 		case IORING_OP_READV:
7934 		case IORING_OP_READ_FIXED:
7935 		case IORING_OP_READ:
7936 		case IORING_OP_WRITEV:
7937 		case IORING_OP_WRITE_FIXED:
7938 		case IORING_OP_WRITE: {
7939 			struct io_async_rw *io = req->async_data;
7940 
7941 			kfree(io->free_iovec);
7942 			break;
7943 			}
7944 		case IORING_OP_RECVMSG:
7945 		case IORING_OP_SENDMSG: {
7946 			struct io_async_msghdr *io = req->async_data;
7947 
7948 			kfree(io->free_iov);
7949 			break;
7950 			}
7951 		case IORING_OP_OPENAT:
7952 		case IORING_OP_OPENAT2:
7953 			if (req->open.filename)
7954 				putname(req->open.filename);
7955 			break;
7956 		case IORING_OP_RENAMEAT:
7957 			putname(req->rename.oldpath);
7958 			putname(req->rename.newpath);
7959 			break;
7960 		case IORING_OP_UNLINKAT:
7961 			putname(req->unlink.filename);
7962 			break;
7963 		case IORING_OP_MKDIRAT:
7964 			putname(req->mkdir.filename);
7965 			break;
7966 		case IORING_OP_SYMLINKAT:
7967 			putname(req->symlink.oldpath);
7968 			putname(req->symlink.newpath);
7969 			break;
7970 		case IORING_OP_LINKAT:
7971 			putname(req->hardlink.oldpath);
7972 			putname(req->hardlink.newpath);
7973 			break;
7974 		case IORING_OP_STATX:
7975 			if (req->statx.filename)
7976 				putname(req->statx.filename);
7977 			break;
7978 		case IORING_OP_SETXATTR:
7979 		case IORING_OP_FSETXATTR:
7980 		case IORING_OP_GETXATTR:
7981 		case IORING_OP_FGETXATTR:
7982 			__io_xattr_finish(req);
7983 			break;
7984 		}
7985 	}
7986 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
7987 		kfree(req->apoll->double_poll);
7988 		kfree(req->apoll);
7989 		req->apoll = NULL;
7990 	}
7991 	if (req->flags & REQ_F_INFLIGHT) {
7992 		struct io_uring_task *tctx = req->task->io_uring;
7993 
7994 		atomic_dec(&tctx->inflight_tracked);
7995 	}
7996 	if (req->flags & REQ_F_CREDS)
7997 		put_cred(req->creds);
7998 	if (req->flags & REQ_F_ASYNC_DATA) {
7999 		kfree(req->async_data);
8000 		req->async_data = NULL;
8001 	}
8002 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
8003 }
8004 
io_assign_file(struct io_kiocb * req,unsigned int issue_flags)8005 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
8006 {
8007 	if (req->file || !io_op_defs[req->opcode].needs_file)
8008 		return true;
8009 
8010 	if (req->flags & REQ_F_FIXED_FILE)
8011 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
8012 	else
8013 		req->file = io_file_get_normal(req, req->cqe.fd);
8014 
8015 	return !!req->file;
8016 }
8017 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)8018 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
8019 {
8020 	const struct io_op_def *def = &io_op_defs[req->opcode];
8021 	const struct cred *creds = NULL;
8022 	int ret;
8023 
8024 	if (unlikely(!io_assign_file(req, issue_flags)))
8025 		return -EBADF;
8026 
8027 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
8028 		creds = override_creds(req->creds);
8029 
8030 	if (!def->audit_skip)
8031 		audit_uring_entry(req->opcode);
8032 
8033 	ret = def->issue(req, issue_flags);
8034 
8035 	if (!def->audit_skip)
8036 		audit_uring_exit(!ret, ret);
8037 
8038 	if (creds)
8039 		revert_creds(creds);
8040 	if (ret)
8041 		return ret;
8042 	/* If the op doesn't have a file, we're not polling for it */
8043 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
8044 		io_iopoll_req_issued(req, issue_flags);
8045 
8046 	return 0;
8047 }
8048 
io_wq_free_work(struct io_wq_work * work)8049 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
8050 {
8051 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8052 
8053 	req = io_put_req_find_next(req);
8054 	return req ? &req->work : NULL;
8055 }
8056 
io_wq_submit_work(struct io_wq_work * work)8057 static void io_wq_submit_work(struct io_wq_work *work)
8058 {
8059 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8060 	const struct io_op_def *def = &io_op_defs[req->opcode];
8061 	unsigned int issue_flags = IO_URING_F_UNLOCKED;
8062 	bool needs_poll = false;
8063 	int ret = 0, err = -ECANCELED;
8064 
8065 	/* one will be dropped by ->io_free_work() after returning to io-wq */
8066 	if (!(req->flags & REQ_F_REFCOUNT))
8067 		__io_req_set_refcount(req, 2);
8068 	else
8069 		req_ref_get(req);
8070 
8071 	io_arm_ltimeout(req);
8072 
8073 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
8074 	if (work->flags & IO_WQ_WORK_CANCEL) {
8075 fail:
8076 		io_req_task_queue_fail(req, err);
8077 		return;
8078 	}
8079 	if (!io_assign_file(req, issue_flags)) {
8080 		err = -EBADF;
8081 		work->flags |= IO_WQ_WORK_CANCEL;
8082 		goto fail;
8083 	}
8084 
8085 	if (req->flags & REQ_F_FORCE_ASYNC) {
8086 		bool opcode_poll = def->pollin || def->pollout;
8087 
8088 		if (opcode_poll && file_can_poll(req->file)) {
8089 			needs_poll = true;
8090 			issue_flags |= IO_URING_F_NONBLOCK;
8091 		}
8092 	}
8093 
8094 	do {
8095 		ret = io_issue_sqe(req, issue_flags);
8096 		if (ret != -EAGAIN)
8097 			break;
8098 		/*
8099 		 * We can get EAGAIN for iopolled IO even though we're
8100 		 * forcing a sync submission from here, since we can't
8101 		 * wait for request slots on the block side.
8102 		 */
8103 		if (!needs_poll) {
8104 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
8105 				break;
8106 			cond_resched();
8107 			continue;
8108 		}
8109 
8110 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
8111 			return;
8112 		/* aborted or ready, in either case retry blocking */
8113 		needs_poll = false;
8114 		issue_flags &= ~IO_URING_F_NONBLOCK;
8115 	} while (1);
8116 
8117 	/* avoid locking problems by failing it from a clean context */
8118 	if (ret)
8119 		io_req_task_queue_fail(req, ret);
8120 }
8121 
io_fixed_file_slot(struct io_file_table * table,unsigned i)8122 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
8123 						       unsigned i)
8124 {
8125 	return &table->files[i];
8126 }
8127 
io_file_from_index(struct io_ring_ctx * ctx,int index)8128 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
8129 					      int index)
8130 {
8131 	struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
8132 
8133 	return (struct file *) (slot->file_ptr & FFS_MASK);
8134 }
8135 
io_fixed_file_set(struct io_fixed_file * file_slot,struct file * file)8136 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
8137 {
8138 	unsigned long file_ptr = (unsigned long) file;
8139 
8140 	file_ptr |= io_file_get_flags(file);
8141 	file_slot->file_ptr = file_ptr;
8142 }
8143 
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)8144 static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
8145 					     unsigned int issue_flags)
8146 {
8147 	struct io_ring_ctx *ctx = req->ctx;
8148 	struct file *file = NULL;
8149 	unsigned long file_ptr;
8150 
8151 	io_ring_submit_lock(ctx, issue_flags);
8152 
8153 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
8154 		goto out;
8155 	fd = array_index_nospec(fd, ctx->nr_user_files);
8156 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
8157 	file = (struct file *) (file_ptr & FFS_MASK);
8158 	file_ptr &= ~FFS_MASK;
8159 	/* mask in overlapping REQ_F and FFS bits */
8160 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
8161 	io_req_set_rsrc_node(req, ctx, 0);
8162 	WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap));
8163 out:
8164 	io_ring_submit_unlock(ctx, issue_flags);
8165 	return file;
8166 }
8167 
io_file_get_normal(struct io_kiocb * req,int fd)8168 static struct file *io_file_get_normal(struct io_kiocb *req, int fd)
8169 {
8170 	struct file *file = fget(fd);
8171 
8172 	trace_io_uring_file_get(req->ctx, req, req->cqe.user_data, fd);
8173 
8174 	/* we don't allow fixed io_uring files */
8175 	if (file && file->f_op == &io_uring_fops)
8176 		io_req_track_inflight(req);
8177 	return file;
8178 }
8179 
io_req_task_link_timeout(struct io_kiocb * req,bool * locked)8180 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
8181 {
8182 	struct io_kiocb *prev = req->timeout.prev;
8183 	int ret = -ENOENT;
8184 
8185 	if (prev) {
8186 		if (!(req->task->flags & PF_EXITING)) {
8187 			struct io_cancel_data cd = {
8188 				.ctx		= req->ctx,
8189 				.data		= prev->cqe.user_data,
8190 			};
8191 
8192 			ret = io_try_cancel(req, &cd);
8193 		}
8194 		io_req_complete_post(req, ret ?: -ETIME, 0);
8195 		io_put_req(prev);
8196 	} else {
8197 		io_req_complete_post(req, -ETIME, 0);
8198 	}
8199 }
8200 
io_link_timeout_fn(struct hrtimer * timer)8201 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
8202 {
8203 	struct io_timeout_data *data = container_of(timer,
8204 						struct io_timeout_data, timer);
8205 	struct io_kiocb *prev, *req = data->req;
8206 	struct io_ring_ctx *ctx = req->ctx;
8207 	unsigned long flags;
8208 
8209 	spin_lock_irqsave(&ctx->timeout_lock, flags);
8210 	prev = req->timeout.head;
8211 	req->timeout.head = NULL;
8212 
8213 	/*
8214 	 * We don't expect the list to be empty, that will only happen if we
8215 	 * race with the completion of the linked work.
8216 	 */
8217 	if (prev) {
8218 		io_remove_next_linked(prev);
8219 		if (!req_ref_inc_not_zero(prev))
8220 			prev = NULL;
8221 	}
8222 	list_del(&req->timeout.list);
8223 	req->timeout.prev = prev;
8224 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
8225 
8226 	req->io_task_work.func = io_req_task_link_timeout;
8227 	io_req_task_work_add(req);
8228 	return HRTIMER_NORESTART;
8229 }
8230 
io_queue_linked_timeout(struct io_kiocb * req)8231 static void io_queue_linked_timeout(struct io_kiocb *req)
8232 {
8233 	struct io_ring_ctx *ctx = req->ctx;
8234 
8235 	spin_lock_irq(&ctx->timeout_lock);
8236 	/*
8237 	 * If the back reference is NULL, then our linked request finished
8238 	 * before we got a chance to setup the timer
8239 	 */
8240 	if (req->timeout.head) {
8241 		struct io_timeout_data *data = req->async_data;
8242 
8243 		data->timer.function = io_link_timeout_fn;
8244 		hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
8245 				data->mode);
8246 		list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
8247 	}
8248 	spin_unlock_irq(&ctx->timeout_lock);
8249 	/* drop submission reference */
8250 	io_put_req(req);
8251 }
8252 
io_queue_async(struct io_kiocb * req,int ret)8253 static void io_queue_async(struct io_kiocb *req, int ret)
8254 	__must_hold(&req->ctx->uring_lock)
8255 {
8256 	struct io_kiocb *linked_timeout;
8257 
8258 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
8259 		io_req_complete_failed(req, ret);
8260 		return;
8261 	}
8262 
8263 	linked_timeout = io_prep_linked_timeout(req);
8264 
8265 	switch (io_arm_poll_handler(req, 0)) {
8266 	case IO_APOLL_READY:
8267 		io_kbuf_recycle(req, 0);
8268 		io_req_task_queue(req);
8269 		break;
8270 	case IO_APOLL_ABORTED:
8271 		/*
8272 		 * Queued up for async execution, worker will release
8273 		 * submit reference when the iocb is actually submitted.
8274 		 */
8275 		io_kbuf_recycle(req, 0);
8276 		io_queue_iowq(req, NULL);
8277 		break;
8278 	case IO_APOLL_OK:
8279 		break;
8280 	}
8281 
8282 	if (linked_timeout)
8283 		io_queue_linked_timeout(linked_timeout);
8284 }
8285 
io_queue_sqe(struct io_kiocb * req)8286 static inline void io_queue_sqe(struct io_kiocb *req)
8287 	__must_hold(&req->ctx->uring_lock)
8288 {
8289 	int ret;
8290 
8291 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
8292 
8293 	if (req->flags & REQ_F_COMPLETE_INLINE) {
8294 		io_req_add_compl_list(req);
8295 		return;
8296 	}
8297 	/*
8298 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
8299 	 * doesn't support non-blocking read/write attempts
8300 	 */
8301 	if (likely(!ret))
8302 		io_arm_ltimeout(req);
8303 	else
8304 		io_queue_async(req, ret);
8305 }
8306 
io_queue_sqe_fallback(struct io_kiocb * req)8307 static void io_queue_sqe_fallback(struct io_kiocb *req)
8308 	__must_hold(&req->ctx->uring_lock)
8309 {
8310 	if (unlikely(req->flags & REQ_F_FAIL)) {
8311 		/*
8312 		 * We don't submit, fail them all, for that replace hardlinks
8313 		 * with normal links. Extra REQ_F_LINK is tolerated.
8314 		 */
8315 		req->flags &= ~REQ_F_HARDLINK;
8316 		req->flags |= REQ_F_LINK;
8317 		io_req_complete_failed(req, req->cqe.res);
8318 	} else if (unlikely(req->ctx->drain_active)) {
8319 		io_drain_req(req);
8320 	} else {
8321 		int ret = io_req_prep_async(req);
8322 
8323 		if (unlikely(ret))
8324 			io_req_complete_failed(req, ret);
8325 		else
8326 			io_queue_iowq(req, NULL);
8327 	}
8328 }
8329 
8330 /*
8331  * Check SQE restrictions (opcode and flags).
8332  *
8333  * Returns 'true' if SQE is allowed, 'false' otherwise.
8334  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)8335 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
8336 					struct io_kiocb *req,
8337 					unsigned int sqe_flags)
8338 {
8339 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
8340 		return false;
8341 
8342 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
8343 	    ctx->restrictions.sqe_flags_required)
8344 		return false;
8345 
8346 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
8347 			  ctx->restrictions.sqe_flags_required))
8348 		return false;
8349 
8350 	return true;
8351 }
8352 
io_init_req_drain(struct io_kiocb * req)8353 static void io_init_req_drain(struct io_kiocb *req)
8354 {
8355 	struct io_ring_ctx *ctx = req->ctx;
8356 	struct io_kiocb *head = ctx->submit_state.link.head;
8357 
8358 	ctx->drain_active = true;
8359 	if (head) {
8360 		/*
8361 		 * If we need to drain a request in the middle of a link, drain
8362 		 * the head request and the next request/link after the current
8363 		 * link. Considering sequential execution of links,
8364 		 * REQ_F_IO_DRAIN will be maintained for every request of our
8365 		 * link.
8366 		 */
8367 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
8368 		ctx->drain_next = true;
8369 	}
8370 }
8371 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)8372 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
8373 		       const struct io_uring_sqe *sqe)
8374 	__must_hold(&ctx->uring_lock)
8375 {
8376 	const struct io_op_def *def;
8377 	unsigned int sqe_flags;
8378 	int personality;
8379 	u8 opcode;
8380 
8381 	/* req is partially pre-initialised, see io_preinit_req() */
8382 	req->opcode = opcode = READ_ONCE(sqe->opcode);
8383 	/* same numerical values with corresponding REQ_F_*, safe to copy */
8384 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
8385 	req->cqe.user_data = READ_ONCE(sqe->user_data);
8386 	req->file = NULL;
8387 	req->rsrc_node = NULL;
8388 	req->task = current;
8389 
8390 	if (unlikely(opcode >= IORING_OP_LAST)) {
8391 		req->opcode = 0;
8392 		return -EINVAL;
8393 	}
8394 	def = &io_op_defs[opcode];
8395 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
8396 		/* enforce forwards compatibility on users */
8397 		if (sqe_flags & ~SQE_VALID_FLAGS)
8398 			return -EINVAL;
8399 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
8400 			if (!def->buffer_select)
8401 				return -EOPNOTSUPP;
8402 			req->buf_index = READ_ONCE(sqe->buf_group);
8403 		}
8404 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
8405 			ctx->drain_disabled = true;
8406 		if (sqe_flags & IOSQE_IO_DRAIN) {
8407 			if (ctx->drain_disabled)
8408 				return -EOPNOTSUPP;
8409 			io_init_req_drain(req);
8410 		}
8411 	}
8412 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
8413 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
8414 			return -EACCES;
8415 		/* knock it to the slow queue path, will be drained there */
8416 		if (ctx->drain_active)
8417 			req->flags |= REQ_F_FORCE_ASYNC;
8418 		/* if there is no link, we're at "next" request and need to drain */
8419 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
8420 			ctx->drain_next = false;
8421 			ctx->drain_active = true;
8422 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
8423 		}
8424 	}
8425 
8426 	if (!def->ioprio && sqe->ioprio)
8427 		return -EINVAL;
8428 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
8429 		return -EINVAL;
8430 
8431 	if (def->needs_file) {
8432 		struct io_submit_state *state = &ctx->submit_state;
8433 
8434 		req->cqe.fd = READ_ONCE(sqe->fd);
8435 
8436 		/*
8437 		 * Plug now if we have more than 2 IO left after this, and the
8438 		 * target is potentially a read/write to block based storage.
8439 		 */
8440 		if (state->need_plug && def->plug) {
8441 			state->plug_started = true;
8442 			state->need_plug = false;
8443 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
8444 		}
8445 	}
8446 
8447 	personality = READ_ONCE(sqe->personality);
8448 	if (personality) {
8449 		int ret;
8450 
8451 		req->creds = xa_load(&ctx->personalities, personality);
8452 		if (!req->creds)
8453 			return -EINVAL;
8454 		get_cred(req->creds);
8455 		ret = security_uring_override_creds(req->creds);
8456 		if (ret) {
8457 			put_cred(req->creds);
8458 			return ret;
8459 		}
8460 		req->flags |= REQ_F_CREDS;
8461 	}
8462 
8463 	return def->prep(req, sqe);
8464 }
8465 
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)8466 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
8467 				      struct io_kiocb *req, int ret)
8468 {
8469 	struct io_ring_ctx *ctx = req->ctx;
8470 	struct io_submit_link *link = &ctx->submit_state.link;
8471 	struct io_kiocb *head = link->head;
8472 
8473 	trace_io_uring_req_failed(sqe, ctx, req, ret);
8474 
8475 	/*
8476 	 * Avoid breaking links in the middle as it renders links with SQPOLL
8477 	 * unusable. Instead of failing eagerly, continue assembling the link if
8478 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
8479 	 * should find the flag and handle the rest.
8480 	 */
8481 	req_fail_link_node(req, ret);
8482 	if (head && !(head->flags & REQ_F_FAIL))
8483 		req_fail_link_node(head, -ECANCELED);
8484 
8485 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
8486 		if (head) {
8487 			link->last->link = req;
8488 			link->head = NULL;
8489 			req = head;
8490 		}
8491 		io_queue_sqe_fallback(req);
8492 		return ret;
8493 	}
8494 
8495 	if (head)
8496 		link->last->link = req;
8497 	else
8498 		link->head = req;
8499 	link->last = req;
8500 	return 0;
8501 }
8502 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)8503 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
8504 			 const struct io_uring_sqe *sqe)
8505 	__must_hold(&ctx->uring_lock)
8506 {
8507 	struct io_submit_link *link = &ctx->submit_state.link;
8508 	int ret;
8509 
8510 	ret = io_init_req(ctx, req, sqe);
8511 	if (unlikely(ret))
8512 		return io_submit_fail_init(sqe, req, ret);
8513 
8514 	/* don't need @sqe from now on */
8515 	trace_io_uring_submit_sqe(ctx, req, req->cqe.user_data, req->opcode,
8516 				  req->flags, true,
8517 				  ctx->flags & IORING_SETUP_SQPOLL);
8518 
8519 	/*
8520 	 * If we already have a head request, queue this one for async
8521 	 * submittal once the head completes. If we don't have a head but
8522 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
8523 	 * submitted sync once the chain is complete. If none of those
8524 	 * conditions are true (normal request), then just queue it.
8525 	 */
8526 	if (unlikely(link->head)) {
8527 		ret = io_req_prep_async(req);
8528 		if (unlikely(ret))
8529 			return io_submit_fail_init(sqe, req, ret);
8530 
8531 		trace_io_uring_link(ctx, req, link->head);
8532 		link->last->link = req;
8533 		link->last = req;
8534 
8535 		if (req->flags & IO_REQ_LINK_FLAGS)
8536 			return 0;
8537 		/* last request of the link, flush it */
8538 		req = link->head;
8539 		link->head = NULL;
8540 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
8541 			goto fallback;
8542 
8543 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
8544 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
8545 		if (req->flags & IO_REQ_LINK_FLAGS) {
8546 			link->head = req;
8547 			link->last = req;
8548 		} else {
8549 fallback:
8550 			io_queue_sqe_fallback(req);
8551 		}
8552 		return 0;
8553 	}
8554 
8555 	io_queue_sqe(req);
8556 	return 0;
8557 }
8558 
8559 /*
8560  * Batched submission is done, ensure local IO is flushed out.
8561  */
io_submit_state_end(struct io_ring_ctx * ctx)8562 static void io_submit_state_end(struct io_ring_ctx *ctx)
8563 {
8564 	struct io_submit_state *state = &ctx->submit_state;
8565 
8566 	if (unlikely(state->link.head))
8567 		io_queue_sqe_fallback(state->link.head);
8568 	/* flush only after queuing links as they can generate completions */
8569 	io_submit_flush_completions(ctx);
8570 	if (state->plug_started)
8571 		blk_finish_plug(&state->plug);
8572 }
8573 
8574 /*
8575  * Start submission side cache.
8576  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)8577 static void io_submit_state_start(struct io_submit_state *state,
8578 				  unsigned int max_ios)
8579 {
8580 	state->plug_started = false;
8581 	state->need_plug = max_ios > 2;
8582 	state->submit_nr = max_ios;
8583 	/* set only head, no need to init link_last in advance */
8584 	state->link.head = NULL;
8585 }
8586 
io_commit_sqring(struct io_ring_ctx * ctx)8587 static void io_commit_sqring(struct io_ring_ctx *ctx)
8588 {
8589 	struct io_rings *rings = ctx->rings;
8590 
8591 	/*
8592 	 * Ensure any loads from the SQEs are done at this point,
8593 	 * since once we write the new head, the application could
8594 	 * write new data to them.
8595 	 */
8596 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
8597 }
8598 
8599 /*
8600  * Fetch an sqe, if one is available. Note this returns a pointer to memory
8601  * that is mapped by userspace. This means that care needs to be taken to
8602  * ensure that reads are stable, as we cannot rely on userspace always
8603  * being a good citizen. If members of the sqe are validated and then later
8604  * used, it's important that those reads are done through READ_ONCE() to
8605  * prevent a re-load down the line.
8606  */
io_get_sqe(struct io_ring_ctx * ctx)8607 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
8608 {
8609 	unsigned head, mask = ctx->sq_entries - 1;
8610 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
8611 
8612 	/*
8613 	 * The cached sq head (or cq tail) serves two purposes:
8614 	 *
8615 	 * 1) allows us to batch the cost of updating the user visible
8616 	 *    head updates.
8617 	 * 2) allows the kernel side to track the head on its own, even
8618 	 *    though the application is the one updating it.
8619 	 */
8620 	head = READ_ONCE(ctx->sq_array[sq_idx]);
8621 	if (likely(head < ctx->sq_entries)) {
8622 		/* double index for 128-byte SQEs, twice as long */
8623 		if (ctx->flags & IORING_SETUP_SQE128)
8624 			head <<= 1;
8625 		return &ctx->sq_sqes[head];
8626 	}
8627 
8628 	/* drop invalid entries */
8629 	ctx->cq_extra--;
8630 	WRITE_ONCE(ctx->rings->sq_dropped,
8631 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
8632 	return NULL;
8633 }
8634 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)8635 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
8636 	__must_hold(&ctx->uring_lock)
8637 {
8638 	unsigned int entries = io_sqring_entries(ctx);
8639 	unsigned int left;
8640 	int ret;
8641 
8642 	if (unlikely(!entries))
8643 		return 0;
8644 	/* make sure SQ entry isn't read before tail */
8645 	ret = left = min3(nr, ctx->sq_entries, entries);
8646 	io_get_task_refs(left);
8647 	io_submit_state_start(&ctx->submit_state, left);
8648 
8649 	do {
8650 		const struct io_uring_sqe *sqe;
8651 		struct io_kiocb *req;
8652 
8653 		if (unlikely(!io_alloc_req_refill(ctx)))
8654 			break;
8655 		req = io_alloc_req(ctx);
8656 		sqe = io_get_sqe(ctx);
8657 		if (unlikely(!sqe)) {
8658 			io_req_add_to_cache(req, ctx);
8659 			break;
8660 		}
8661 
8662 		/*
8663 		 * Continue submitting even for sqe failure if the
8664 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
8665 		 */
8666 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
8667 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
8668 			left--;
8669 			break;
8670 		}
8671 	} while (--left);
8672 
8673 	if (unlikely(left)) {
8674 		ret -= left;
8675 		/* try again if it submitted nothing and can't allocate a req */
8676 		if (!ret && io_req_cache_empty(ctx))
8677 			ret = -EAGAIN;
8678 		current->io_uring->cached_refs += left;
8679 	}
8680 
8681 	io_submit_state_end(ctx);
8682 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
8683 	io_commit_sqring(ctx);
8684 	return ret;
8685 }
8686 
io_sqd_events_pending(struct io_sq_data * sqd)8687 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
8688 {
8689 	return READ_ONCE(sqd->state);
8690 }
8691 
__io_sq_thread(struct io_ring_ctx * ctx,bool cap_entries)8692 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
8693 {
8694 	unsigned int to_submit;
8695 	int ret = 0;
8696 
8697 	to_submit = io_sqring_entries(ctx);
8698 	/* if we're handling multiple rings, cap submit size for fairness */
8699 	if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
8700 		to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
8701 
8702 	if (!wq_list_empty(&ctx->iopoll_list) || to_submit) {
8703 		const struct cred *creds = NULL;
8704 
8705 		if (ctx->sq_creds != current_cred())
8706 			creds = override_creds(ctx->sq_creds);
8707 
8708 		mutex_lock(&ctx->uring_lock);
8709 		if (!wq_list_empty(&ctx->iopoll_list))
8710 			io_do_iopoll(ctx, true);
8711 
8712 		/*
8713 		 * Don't submit if refs are dying, good for io_uring_register(),
8714 		 * but also it is relied upon by io_ring_exit_work()
8715 		 */
8716 		if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
8717 		    !(ctx->flags & IORING_SETUP_R_DISABLED))
8718 			ret = io_submit_sqes(ctx, to_submit);
8719 		mutex_unlock(&ctx->uring_lock);
8720 
8721 		if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
8722 			wake_up(&ctx->sqo_sq_wait);
8723 		if (creds)
8724 			revert_creds(creds);
8725 	}
8726 
8727 	return ret;
8728 }
8729 
io_sqd_update_thread_idle(struct io_sq_data * sqd)8730 static __cold void io_sqd_update_thread_idle(struct io_sq_data *sqd)
8731 {
8732 	struct io_ring_ctx *ctx;
8733 	unsigned sq_thread_idle = 0;
8734 
8735 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
8736 		sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
8737 	sqd->sq_thread_idle = sq_thread_idle;
8738 }
8739 
io_sqd_handle_event(struct io_sq_data * sqd)8740 static bool io_sqd_handle_event(struct io_sq_data *sqd)
8741 {
8742 	bool did_sig = false;
8743 	struct ksignal ksig;
8744 
8745 	if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
8746 	    signal_pending(current)) {
8747 		mutex_unlock(&sqd->lock);
8748 		if (signal_pending(current))
8749 			did_sig = get_signal(&ksig);
8750 		cond_resched();
8751 		mutex_lock(&sqd->lock);
8752 	}
8753 	return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8754 }
8755 
io_sq_thread(void * data)8756 static int io_sq_thread(void *data)
8757 {
8758 	struct io_sq_data *sqd = data;
8759 	struct io_ring_ctx *ctx;
8760 	unsigned long timeout = 0;
8761 	char buf[TASK_COMM_LEN];
8762 	DEFINE_WAIT(wait);
8763 
8764 	snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
8765 	set_task_comm(current, buf);
8766 
8767 	if (sqd->sq_cpu != -1)
8768 		set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
8769 	else
8770 		set_cpus_allowed_ptr(current, cpu_online_mask);
8771 	current->flags |= PF_NO_SETAFFINITY;
8772 
8773 	audit_alloc_kernel(current);
8774 
8775 	mutex_lock(&sqd->lock);
8776 	while (1) {
8777 		bool cap_entries, sqt_spin = false;
8778 
8779 		if (io_sqd_events_pending(sqd) || signal_pending(current)) {
8780 			if (io_sqd_handle_event(sqd))
8781 				break;
8782 			timeout = jiffies + sqd->sq_thread_idle;
8783 		}
8784 
8785 		cap_entries = !list_is_singular(&sqd->ctx_list);
8786 		list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
8787 			int ret = __io_sq_thread(ctx, cap_entries);
8788 
8789 			if (!sqt_spin && (ret > 0 || !wq_list_empty(&ctx->iopoll_list)))
8790 				sqt_spin = true;
8791 		}
8792 		if (io_run_task_work())
8793 			sqt_spin = true;
8794 
8795 		if (sqt_spin || !time_after(jiffies, timeout)) {
8796 			cond_resched();
8797 			if (sqt_spin)
8798 				timeout = jiffies + sqd->sq_thread_idle;
8799 			continue;
8800 		}
8801 
8802 		prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
8803 		if (!io_sqd_events_pending(sqd) && !task_work_pending(current)) {
8804 			bool needs_sched = true;
8805 
8806 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
8807 				atomic_or(IORING_SQ_NEED_WAKEUP,
8808 						&ctx->rings->sq_flags);
8809 				if ((ctx->flags & IORING_SETUP_IOPOLL) &&
8810 				    !wq_list_empty(&ctx->iopoll_list)) {
8811 					needs_sched = false;
8812 					break;
8813 				}
8814 
8815 				/*
8816 				 * Ensure the store of the wakeup flag is not
8817 				 * reordered with the load of the SQ tail
8818 				 */
8819 				smp_mb__after_atomic();
8820 
8821 				if (io_sqring_entries(ctx)) {
8822 					needs_sched = false;
8823 					break;
8824 				}
8825 			}
8826 
8827 			if (needs_sched) {
8828 				mutex_unlock(&sqd->lock);
8829 				schedule();
8830 				mutex_lock(&sqd->lock);
8831 			}
8832 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
8833 				atomic_andnot(IORING_SQ_NEED_WAKEUP,
8834 						&ctx->rings->sq_flags);
8835 		}
8836 
8837 		finish_wait(&sqd->wait, &wait);
8838 		timeout = jiffies + sqd->sq_thread_idle;
8839 	}
8840 
8841 	io_uring_cancel_generic(true, sqd);
8842 	sqd->thread = NULL;
8843 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
8844 		atomic_or(IORING_SQ_NEED_WAKEUP, &ctx->rings->sq_flags);
8845 	io_run_task_work();
8846 	mutex_unlock(&sqd->lock);
8847 
8848 	audit_free(current);
8849 
8850 	complete(&sqd->exited);
8851 	do_exit(0);
8852 }
8853 
8854 struct io_wait_queue {
8855 	struct wait_queue_entry wq;
8856 	struct io_ring_ctx *ctx;
8857 	unsigned cq_tail;
8858 	unsigned nr_timeouts;
8859 };
8860 
io_should_wake(struct io_wait_queue * iowq)8861 static inline bool io_should_wake(struct io_wait_queue *iowq)
8862 {
8863 	struct io_ring_ctx *ctx = iowq->ctx;
8864 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
8865 
8866 	/*
8867 	 * Wake up if we have enough events, or if a timeout occurred since we
8868 	 * started waiting. For timeouts, we always want to return to userspace,
8869 	 * regardless of event count.
8870 	 */
8871 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
8872 }
8873 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)8874 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
8875 			    int wake_flags, void *key)
8876 {
8877 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
8878 							wq);
8879 
8880 	/*
8881 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
8882 	 * the task, and the next invocation will do it.
8883 	 */
8884 	if (io_should_wake(iowq) ||
8885 	    test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &iowq->ctx->check_cq))
8886 		return autoremove_wake_function(curr, mode, wake_flags, key);
8887 	return -1;
8888 }
8889 
io_run_task_work_sig(void)8890 static int io_run_task_work_sig(void)
8891 {
8892 	if (io_run_task_work())
8893 		return 1;
8894 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
8895 		return -ERESTARTSYS;
8896 	if (task_sigpending(current))
8897 		return -EINTR;
8898 	return 0;
8899 }
8900 
8901 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t timeout)8902 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
8903 					  struct io_wait_queue *iowq,
8904 					  ktime_t timeout)
8905 {
8906 	int ret;
8907 	unsigned long check_cq;
8908 
8909 	/* make sure we run task_work before checking for signals */
8910 	ret = io_run_task_work_sig();
8911 	if (ret || io_should_wake(iowq))
8912 		return ret;
8913 	check_cq = READ_ONCE(ctx->check_cq);
8914 	/* let the caller flush overflows, retry */
8915 	if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
8916 		return 1;
8917 	if (unlikely(check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)))
8918 		return -EBADR;
8919 	if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
8920 		return -ETIME;
8921 	return 1;
8922 }
8923 
8924 /*
8925  * Wait until events become available, if we don't already have some. The
8926  * application must reap them itself, as they reside on the shared cq ring.
8927  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)8928 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
8929 			  const sigset_t __user *sig, size_t sigsz,
8930 			  struct __kernel_timespec __user *uts)
8931 {
8932 	struct io_wait_queue iowq;
8933 	struct io_rings *rings = ctx->rings;
8934 	ktime_t timeout = KTIME_MAX;
8935 	int ret;
8936 
8937 	do {
8938 		io_cqring_overflow_flush(ctx);
8939 		if (io_cqring_events(ctx) >= min_events)
8940 			return 0;
8941 		if (!io_run_task_work())
8942 			break;
8943 	} while (1);
8944 
8945 	if (sig) {
8946 #ifdef CONFIG_COMPAT
8947 		if (in_compat_syscall())
8948 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
8949 						      sigsz);
8950 		else
8951 #endif
8952 			ret = set_user_sigmask(sig, sigsz);
8953 
8954 		if (ret)
8955 			return ret;
8956 	}
8957 
8958 	if (uts) {
8959 		struct timespec64 ts;
8960 
8961 		if (get_timespec64(&ts, uts))
8962 			return -EFAULT;
8963 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
8964 	}
8965 
8966 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
8967 	iowq.wq.private = current;
8968 	INIT_LIST_HEAD(&iowq.wq.entry);
8969 	iowq.ctx = ctx;
8970 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
8971 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
8972 
8973 	trace_io_uring_cqring_wait(ctx, min_events);
8974 	do {
8975 		/* if we can't even flush overflow, don't wait for more */
8976 		if (!io_cqring_overflow_flush(ctx)) {
8977 			ret = -EBUSY;
8978 			break;
8979 		}
8980 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
8981 						TASK_INTERRUPTIBLE);
8982 		ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
8983 		cond_resched();
8984 	} while (ret > 0);
8985 
8986 	finish_wait(&ctx->cq_wait, &iowq.wq);
8987 	restore_saved_sigmask_unless(ret == -EINTR);
8988 
8989 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
8990 }
8991 
io_free_page_table(void ** table,size_t size)8992 static void io_free_page_table(void **table, size_t size)
8993 {
8994 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
8995 
8996 	for (i = 0; i < nr_tables; i++)
8997 		kfree(table[i]);
8998 	kfree(table);
8999 }
9000 
io_alloc_page_table(size_t size)9001 static __cold void **io_alloc_page_table(size_t size)
9002 {
9003 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
9004 	size_t init_size = size;
9005 	void **table;
9006 
9007 	table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
9008 	if (!table)
9009 		return NULL;
9010 
9011 	for (i = 0; i < nr_tables; i++) {
9012 		unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
9013 
9014 		table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
9015 		if (!table[i]) {
9016 			io_free_page_table(table, init_size);
9017 			return NULL;
9018 		}
9019 		size -= this_size;
9020 	}
9021 	return table;
9022 }
9023 
io_rsrc_node_destroy(struct io_rsrc_node * ref_node)9024 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
9025 {
9026 	percpu_ref_exit(&ref_node->refs);
9027 	kfree(ref_node);
9028 }
9029 
io_rsrc_node_ref_zero(struct percpu_ref * ref)9030 static __cold void io_rsrc_node_ref_zero(struct percpu_ref *ref)
9031 {
9032 	struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
9033 	struct io_ring_ctx *ctx = node->rsrc_data->ctx;
9034 	unsigned long flags;
9035 	bool first_add = false;
9036 	unsigned long delay = HZ;
9037 
9038 	spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
9039 	node->done = true;
9040 
9041 	/* if we are mid-quiesce then do not delay */
9042 	if (node->rsrc_data->quiesce)
9043 		delay = 0;
9044 
9045 	while (!list_empty(&ctx->rsrc_ref_list)) {
9046 		node = list_first_entry(&ctx->rsrc_ref_list,
9047 					    struct io_rsrc_node, node);
9048 		/* recycle ref nodes in order */
9049 		if (!node->done)
9050 			break;
9051 		list_del(&node->node);
9052 		first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
9053 	}
9054 	spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
9055 
9056 	if (first_add)
9057 		mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
9058 }
9059 
io_rsrc_node_alloc(void)9060 static struct io_rsrc_node *io_rsrc_node_alloc(void)
9061 {
9062 	struct io_rsrc_node *ref_node;
9063 
9064 	ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
9065 	if (!ref_node)
9066 		return NULL;
9067 
9068 	if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
9069 			    0, GFP_KERNEL)) {
9070 		kfree(ref_node);
9071 		return NULL;
9072 	}
9073 	INIT_LIST_HEAD(&ref_node->node);
9074 	INIT_LIST_HEAD(&ref_node->rsrc_list);
9075 	ref_node->done = false;
9076 	return ref_node;
9077 }
9078 
io_rsrc_node_switch(struct io_ring_ctx * ctx,struct io_rsrc_data * data_to_kill)9079 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
9080 				struct io_rsrc_data *data_to_kill)
9081 	__must_hold(&ctx->uring_lock)
9082 {
9083 	WARN_ON_ONCE(!ctx->rsrc_backup_node);
9084 	WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
9085 
9086 	io_rsrc_refs_drop(ctx);
9087 
9088 	if (data_to_kill) {
9089 		struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
9090 
9091 		rsrc_node->rsrc_data = data_to_kill;
9092 		spin_lock_irq(&ctx->rsrc_ref_lock);
9093 		list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
9094 		spin_unlock_irq(&ctx->rsrc_ref_lock);
9095 
9096 		atomic_inc(&data_to_kill->refs);
9097 		percpu_ref_kill(&rsrc_node->refs);
9098 		ctx->rsrc_node = NULL;
9099 	}
9100 
9101 	if (!ctx->rsrc_node) {
9102 		ctx->rsrc_node = ctx->rsrc_backup_node;
9103 		ctx->rsrc_backup_node = NULL;
9104 	}
9105 }
9106 
io_rsrc_node_switch_start(struct io_ring_ctx * ctx)9107 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
9108 {
9109 	if (ctx->rsrc_backup_node)
9110 		return 0;
9111 	ctx->rsrc_backup_node = io_rsrc_node_alloc();
9112 	return ctx->rsrc_backup_node ? 0 : -ENOMEM;
9113 }
9114 
io_rsrc_ref_quiesce(struct io_rsrc_data * data,struct io_ring_ctx * ctx)9115 static __cold int io_rsrc_ref_quiesce(struct io_rsrc_data *data,
9116 				      struct io_ring_ctx *ctx)
9117 {
9118 	int ret;
9119 
9120 	/* As we may drop ->uring_lock, other task may have started quiesce */
9121 	if (data->quiesce)
9122 		return -ENXIO;
9123 
9124 	data->quiesce = true;
9125 	do {
9126 		ret = io_rsrc_node_switch_start(ctx);
9127 		if (ret)
9128 			break;
9129 		io_rsrc_node_switch(ctx, data);
9130 
9131 		/* kill initial ref, already quiesced if zero */
9132 		if (atomic_dec_and_test(&data->refs))
9133 			break;
9134 		mutex_unlock(&ctx->uring_lock);
9135 		flush_delayed_work(&ctx->rsrc_put_work);
9136 		ret = wait_for_completion_interruptible(&data->done);
9137 		if (!ret) {
9138 			mutex_lock(&ctx->uring_lock);
9139 			if (atomic_read(&data->refs) > 0) {
9140 				/*
9141 				 * it has been revived by another thread while
9142 				 * we were unlocked
9143 				 */
9144 				mutex_unlock(&ctx->uring_lock);
9145 			} else {
9146 				break;
9147 			}
9148 		}
9149 
9150 		atomic_inc(&data->refs);
9151 		/* wait for all works potentially completing data->done */
9152 		flush_delayed_work(&ctx->rsrc_put_work);
9153 		reinit_completion(&data->done);
9154 
9155 		ret = io_run_task_work_sig();
9156 		mutex_lock(&ctx->uring_lock);
9157 	} while (ret >= 0);
9158 	data->quiesce = false;
9159 
9160 	return ret;
9161 }
9162 
io_get_tag_slot(struct io_rsrc_data * data,unsigned int idx)9163 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
9164 {
9165 	unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
9166 	unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
9167 
9168 	return &data->tags[table_idx][off];
9169 }
9170 
io_rsrc_data_free(struct io_rsrc_data * data)9171 static void io_rsrc_data_free(struct io_rsrc_data *data)
9172 {
9173 	size_t size = data->nr * sizeof(data->tags[0][0]);
9174 
9175 	if (data->tags)
9176 		io_free_page_table((void **)data->tags, size);
9177 	kfree(data);
9178 }
9179 
io_rsrc_data_alloc(struct io_ring_ctx * ctx,rsrc_put_fn * do_put,u64 __user * utags,unsigned nr,struct io_rsrc_data ** pdata)9180 static __cold int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
9181 				     u64 __user *utags, unsigned nr,
9182 				     struct io_rsrc_data **pdata)
9183 {
9184 	struct io_rsrc_data *data;
9185 	int ret = -ENOMEM;
9186 	unsigned i;
9187 
9188 	data = kzalloc(sizeof(*data), GFP_KERNEL);
9189 	if (!data)
9190 		return -ENOMEM;
9191 	data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
9192 	if (!data->tags) {
9193 		kfree(data);
9194 		return -ENOMEM;
9195 	}
9196 
9197 	data->nr = nr;
9198 	data->ctx = ctx;
9199 	data->do_put = do_put;
9200 	if (utags) {
9201 		ret = -EFAULT;
9202 		for (i = 0; i < nr; i++) {
9203 			u64 *tag_slot = io_get_tag_slot(data, i);
9204 
9205 			if (copy_from_user(tag_slot, &utags[i],
9206 					   sizeof(*tag_slot)))
9207 				goto fail;
9208 		}
9209 	}
9210 
9211 	atomic_set(&data->refs, 1);
9212 	init_completion(&data->done);
9213 	*pdata = data;
9214 	return 0;
9215 fail:
9216 	io_rsrc_data_free(data);
9217 	return ret;
9218 }
9219 
io_alloc_file_tables(struct io_file_table * table,unsigned nr_files)9220 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
9221 {
9222 	table->files = kvcalloc(nr_files, sizeof(table->files[0]),
9223 				GFP_KERNEL_ACCOUNT);
9224 	if (unlikely(!table->files))
9225 		return false;
9226 
9227 	table->bitmap = bitmap_zalloc(nr_files, GFP_KERNEL_ACCOUNT);
9228 	if (unlikely(!table->bitmap)) {
9229 		kvfree(table->files);
9230 		return false;
9231 	}
9232 
9233 	return true;
9234 }
9235 
io_free_file_tables(struct io_file_table * table)9236 static void io_free_file_tables(struct io_file_table *table)
9237 {
9238 	kvfree(table->files);
9239 	bitmap_free(table->bitmap);
9240 	table->files = NULL;
9241 	table->bitmap = NULL;
9242 }
9243 
io_file_bitmap_set(struct io_file_table * table,int bit)9244 static inline void io_file_bitmap_set(struct io_file_table *table, int bit)
9245 {
9246 	WARN_ON_ONCE(test_bit(bit, table->bitmap));
9247 	__set_bit(bit, table->bitmap);
9248 	table->alloc_hint = bit + 1;
9249 }
9250 
io_file_bitmap_clear(struct io_file_table * table,int bit)9251 static inline void io_file_bitmap_clear(struct io_file_table *table, int bit)
9252 {
9253 	__clear_bit(bit, table->bitmap);
9254 	table->alloc_hint = bit;
9255 }
9256 
__io_sqe_files_unregister(struct io_ring_ctx * ctx)9257 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
9258 {
9259 #if !defined(IO_URING_SCM_ALL)
9260 	int i;
9261 
9262 	for (i = 0; i < ctx->nr_user_files; i++) {
9263 		struct file *file = io_file_from_index(ctx, i);
9264 
9265 		if (!file)
9266 			continue;
9267 		if (io_fixed_file_slot(&ctx->file_table, i)->file_ptr & FFS_SCM)
9268 			continue;
9269 		io_file_bitmap_clear(&ctx->file_table, i);
9270 		fput(file);
9271 	}
9272 #endif
9273 
9274 #if defined(CONFIG_UNIX)
9275 	if (ctx->ring_sock) {
9276 		struct sock *sock = ctx->ring_sock->sk;
9277 		struct sk_buff *skb;
9278 
9279 		while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
9280 			kfree_skb(skb);
9281 	}
9282 #endif
9283 	io_free_file_tables(&ctx->file_table);
9284 	io_rsrc_data_free(ctx->file_data);
9285 	ctx->file_data = NULL;
9286 	ctx->nr_user_files = 0;
9287 }
9288 
io_sqe_files_unregister(struct io_ring_ctx * ctx)9289 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
9290 {
9291 	unsigned nr = ctx->nr_user_files;
9292 	int ret;
9293 
9294 	if (!ctx->file_data)
9295 		return -ENXIO;
9296 
9297 	/*
9298 	 * Quiesce may unlock ->uring_lock, and while it's not held
9299 	 * prevent new requests using the table.
9300 	 */
9301 	ctx->nr_user_files = 0;
9302 	ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
9303 	ctx->nr_user_files = nr;
9304 	if (!ret)
9305 		__io_sqe_files_unregister(ctx);
9306 	return ret;
9307 }
9308 
io_sq_thread_unpark(struct io_sq_data * sqd)9309 static void io_sq_thread_unpark(struct io_sq_data *sqd)
9310 	__releases(&sqd->lock)
9311 {
9312 	WARN_ON_ONCE(sqd->thread == current);
9313 
9314 	/*
9315 	 * Do the dance but not conditional clear_bit() because it'd race with
9316 	 * other threads incrementing park_pending and setting the bit.
9317 	 */
9318 	clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
9319 	if (atomic_dec_return(&sqd->park_pending))
9320 		set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
9321 	mutex_unlock(&sqd->lock);
9322 }
9323 
io_sq_thread_park(struct io_sq_data * sqd)9324 static void io_sq_thread_park(struct io_sq_data *sqd)
9325 	__acquires(&sqd->lock)
9326 {
9327 	WARN_ON_ONCE(sqd->thread == current);
9328 
9329 	atomic_inc(&sqd->park_pending);
9330 	set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
9331 	mutex_lock(&sqd->lock);
9332 	if (sqd->thread)
9333 		wake_up_process(sqd->thread);
9334 }
9335 
io_sq_thread_stop(struct io_sq_data * sqd)9336 static void io_sq_thread_stop(struct io_sq_data *sqd)
9337 {
9338 	WARN_ON_ONCE(sqd->thread == current);
9339 	WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
9340 
9341 	set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
9342 	mutex_lock(&sqd->lock);
9343 	if (sqd->thread)
9344 		wake_up_process(sqd->thread);
9345 	mutex_unlock(&sqd->lock);
9346 	wait_for_completion(&sqd->exited);
9347 }
9348 
io_put_sq_data(struct io_sq_data * sqd)9349 static void io_put_sq_data(struct io_sq_data *sqd)
9350 {
9351 	if (refcount_dec_and_test(&sqd->refs)) {
9352 		WARN_ON_ONCE(atomic_read(&sqd->park_pending));
9353 
9354 		io_sq_thread_stop(sqd);
9355 		kfree(sqd);
9356 	}
9357 }
9358 
io_sq_thread_finish(struct io_ring_ctx * ctx)9359 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
9360 {
9361 	struct io_sq_data *sqd = ctx->sq_data;
9362 
9363 	if (sqd) {
9364 		io_sq_thread_park(sqd);
9365 		list_del_init(&ctx->sqd_list);
9366 		io_sqd_update_thread_idle(sqd);
9367 		io_sq_thread_unpark(sqd);
9368 
9369 		io_put_sq_data(sqd);
9370 		ctx->sq_data = NULL;
9371 	}
9372 }
9373 
io_attach_sq_data(struct io_uring_params * p)9374 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
9375 {
9376 	struct io_ring_ctx *ctx_attach;
9377 	struct io_sq_data *sqd;
9378 	struct fd f;
9379 
9380 	f = fdget(p->wq_fd);
9381 	if (!f.file)
9382 		return ERR_PTR(-ENXIO);
9383 	if (f.file->f_op != &io_uring_fops) {
9384 		fdput(f);
9385 		return ERR_PTR(-EINVAL);
9386 	}
9387 
9388 	ctx_attach = f.file->private_data;
9389 	sqd = ctx_attach->sq_data;
9390 	if (!sqd) {
9391 		fdput(f);
9392 		return ERR_PTR(-EINVAL);
9393 	}
9394 	if (sqd->task_tgid != current->tgid) {
9395 		fdput(f);
9396 		return ERR_PTR(-EPERM);
9397 	}
9398 
9399 	refcount_inc(&sqd->refs);
9400 	fdput(f);
9401 	return sqd;
9402 }
9403 
io_get_sq_data(struct io_uring_params * p,bool * attached)9404 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
9405 					 bool *attached)
9406 {
9407 	struct io_sq_data *sqd;
9408 
9409 	*attached = false;
9410 	if (p->flags & IORING_SETUP_ATTACH_WQ) {
9411 		sqd = io_attach_sq_data(p);
9412 		if (!IS_ERR(sqd)) {
9413 			*attached = true;
9414 			return sqd;
9415 		}
9416 		/* fall through for EPERM case, setup new sqd/task */
9417 		if (PTR_ERR(sqd) != -EPERM)
9418 			return sqd;
9419 	}
9420 
9421 	sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
9422 	if (!sqd)
9423 		return ERR_PTR(-ENOMEM);
9424 
9425 	atomic_set(&sqd->park_pending, 0);
9426 	refcount_set(&sqd->refs, 1);
9427 	INIT_LIST_HEAD(&sqd->ctx_list);
9428 	mutex_init(&sqd->lock);
9429 	init_waitqueue_head(&sqd->wait);
9430 	init_completion(&sqd->exited);
9431 	return sqd;
9432 }
9433 
9434 /*
9435  * Ensure the UNIX gc is aware of our file set, so we are certain that
9436  * the io_uring can be safely unregistered on process exit, even if we have
9437  * loops in the file referencing. We account only files that can hold other
9438  * files because otherwise they can't form a loop and so are not interesting
9439  * for GC.
9440  */
io_scm_file_account(struct io_ring_ctx * ctx,struct file * file)9441 static int io_scm_file_account(struct io_ring_ctx *ctx, struct file *file)
9442 {
9443 #if defined(CONFIG_UNIX)
9444 	struct sock *sk = ctx->ring_sock->sk;
9445 	struct sk_buff_head *head = &sk->sk_receive_queue;
9446 	struct scm_fp_list *fpl;
9447 	struct sk_buff *skb;
9448 
9449 	if (likely(!io_file_need_scm(file)))
9450 		return 0;
9451 
9452 	/*
9453 	 * See if we can merge this file into an existing skb SCM_RIGHTS
9454 	 * file set. If there's no room, fall back to allocating a new skb
9455 	 * and filling it in.
9456 	 */
9457 	spin_lock_irq(&head->lock);
9458 	skb = skb_peek(head);
9459 	if (skb && UNIXCB(skb).fp->count < SCM_MAX_FD)
9460 		__skb_unlink(skb, head);
9461 	else
9462 		skb = NULL;
9463 	spin_unlock_irq(&head->lock);
9464 
9465 	if (!skb) {
9466 		fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
9467 		if (!fpl)
9468 			return -ENOMEM;
9469 
9470 		skb = alloc_skb(0, GFP_KERNEL);
9471 		if (!skb) {
9472 			kfree(fpl);
9473 			return -ENOMEM;
9474 		}
9475 
9476 		fpl->user = get_uid(current_user());
9477 		fpl->max = SCM_MAX_FD;
9478 		fpl->count = 0;
9479 
9480 		UNIXCB(skb).fp = fpl;
9481 		skb->sk = sk;
9482 		skb->destructor = unix_destruct_scm;
9483 		refcount_add(skb->truesize, &sk->sk_wmem_alloc);
9484 	}
9485 
9486 	fpl = UNIXCB(skb).fp;
9487 	fpl->fp[fpl->count++] = get_file(file);
9488 	unix_inflight(fpl->user, file);
9489 	skb_queue_head(head, skb);
9490 	fput(file);
9491 #endif
9492 	return 0;
9493 }
9494 
io_rsrc_file_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)9495 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
9496 {
9497 	struct file *file = prsrc->file;
9498 #if defined(CONFIG_UNIX)
9499 	struct sock *sock = ctx->ring_sock->sk;
9500 	struct sk_buff_head list, *head = &sock->sk_receive_queue;
9501 	struct sk_buff *skb;
9502 	int i;
9503 
9504 	if (!io_file_need_scm(file)) {
9505 		fput(file);
9506 		return;
9507 	}
9508 
9509 	__skb_queue_head_init(&list);
9510 
9511 	/*
9512 	 * Find the skb that holds this file in its SCM_RIGHTS. When found,
9513 	 * remove this entry and rearrange the file array.
9514 	 */
9515 	skb = skb_dequeue(head);
9516 	while (skb) {
9517 		struct scm_fp_list *fp;
9518 
9519 		fp = UNIXCB(skb).fp;
9520 		for (i = 0; i < fp->count; i++) {
9521 			int left;
9522 
9523 			if (fp->fp[i] != file)
9524 				continue;
9525 
9526 			unix_notinflight(fp->user, fp->fp[i]);
9527 			left = fp->count - 1 - i;
9528 			if (left) {
9529 				memmove(&fp->fp[i], &fp->fp[i + 1],
9530 						left * sizeof(struct file *));
9531 			}
9532 			fp->count--;
9533 			if (!fp->count) {
9534 				kfree_skb(skb);
9535 				skb = NULL;
9536 			} else {
9537 				__skb_queue_tail(&list, skb);
9538 			}
9539 			fput(file);
9540 			file = NULL;
9541 			break;
9542 		}
9543 
9544 		if (!file)
9545 			break;
9546 
9547 		__skb_queue_tail(&list, skb);
9548 
9549 		skb = skb_dequeue(head);
9550 	}
9551 
9552 	if (skb_peek(&list)) {
9553 		spin_lock_irq(&head->lock);
9554 		while ((skb = __skb_dequeue(&list)) != NULL)
9555 			__skb_queue_tail(head, skb);
9556 		spin_unlock_irq(&head->lock);
9557 	}
9558 #else
9559 	fput(file);
9560 #endif
9561 }
9562 
__io_rsrc_put_work(struct io_rsrc_node * ref_node)9563 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
9564 {
9565 	struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
9566 	struct io_ring_ctx *ctx = rsrc_data->ctx;
9567 	struct io_rsrc_put *prsrc, *tmp;
9568 
9569 	list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
9570 		list_del(&prsrc->list);
9571 
9572 		if (prsrc->tag) {
9573 			if (ctx->flags & IORING_SETUP_IOPOLL)
9574 				mutex_lock(&ctx->uring_lock);
9575 
9576 			spin_lock(&ctx->completion_lock);
9577 			io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
9578 			io_commit_cqring(ctx);
9579 			spin_unlock(&ctx->completion_lock);
9580 			io_cqring_ev_posted(ctx);
9581 
9582 			if (ctx->flags & IORING_SETUP_IOPOLL)
9583 				mutex_unlock(&ctx->uring_lock);
9584 		}
9585 
9586 		rsrc_data->do_put(ctx, prsrc);
9587 		kfree(prsrc);
9588 	}
9589 
9590 	io_rsrc_node_destroy(ref_node);
9591 	if (atomic_dec_and_test(&rsrc_data->refs))
9592 		complete(&rsrc_data->done);
9593 }
9594 
io_rsrc_put_work(struct work_struct * work)9595 static void io_rsrc_put_work(struct work_struct *work)
9596 {
9597 	struct io_ring_ctx *ctx;
9598 	struct llist_node *node;
9599 
9600 	ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
9601 	node = llist_del_all(&ctx->rsrc_put_llist);
9602 
9603 	while (node) {
9604 		struct io_rsrc_node *ref_node;
9605 		struct llist_node *next = node->next;
9606 
9607 		ref_node = llist_entry(node, struct io_rsrc_node, llist);
9608 		__io_rsrc_put_work(ref_node);
9609 		node = next;
9610 	}
9611 }
9612 
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args,u64 __user * tags)9613 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
9614 				 unsigned nr_args, u64 __user *tags)
9615 {
9616 	__s32 __user *fds = (__s32 __user *) arg;
9617 	struct file *file;
9618 	int fd, ret;
9619 	unsigned i;
9620 
9621 	if (ctx->file_data)
9622 		return -EBUSY;
9623 	if (!nr_args)
9624 		return -EINVAL;
9625 	if (nr_args > IORING_MAX_FIXED_FILES)
9626 		return -EMFILE;
9627 	if (nr_args > rlimit(RLIMIT_NOFILE))
9628 		return -EMFILE;
9629 	ret = io_rsrc_node_switch_start(ctx);
9630 	if (ret)
9631 		return ret;
9632 	ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
9633 				 &ctx->file_data);
9634 	if (ret)
9635 		return ret;
9636 
9637 	if (!io_alloc_file_tables(&ctx->file_table, nr_args)) {
9638 		io_rsrc_data_free(ctx->file_data);
9639 		ctx->file_data = NULL;
9640 		return -ENOMEM;
9641 	}
9642 
9643 	for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
9644 		struct io_fixed_file *file_slot;
9645 
9646 		if (fds && copy_from_user(&fd, &fds[i], sizeof(fd))) {
9647 			ret = -EFAULT;
9648 			goto fail;
9649 		}
9650 		/* allow sparse sets */
9651 		if (!fds || fd == -1) {
9652 			ret = -EINVAL;
9653 			if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
9654 				goto fail;
9655 			continue;
9656 		}
9657 
9658 		file = fget(fd);
9659 		ret = -EBADF;
9660 		if (unlikely(!file))
9661 			goto fail;
9662 
9663 		/*
9664 		 * Don't allow io_uring instances to be registered. If UNIX
9665 		 * isn't enabled, then this causes a reference cycle and this
9666 		 * instance can never get freed. If UNIX is enabled we'll
9667 		 * handle it just fine, but there's still no point in allowing
9668 		 * a ring fd as it doesn't support regular read/write anyway.
9669 		 */
9670 		if (file->f_op == &io_uring_fops) {
9671 			fput(file);
9672 			goto fail;
9673 		}
9674 		ret = io_scm_file_account(ctx, file);
9675 		if (ret) {
9676 			fput(file);
9677 			goto fail;
9678 		}
9679 		file_slot = io_fixed_file_slot(&ctx->file_table, i);
9680 		io_fixed_file_set(file_slot, file);
9681 		io_file_bitmap_set(&ctx->file_table, i);
9682 	}
9683 
9684 	io_rsrc_node_switch(ctx, NULL);
9685 	return 0;
9686 fail:
9687 	__io_sqe_files_unregister(ctx);
9688 	return ret;
9689 }
9690 
io_queue_rsrc_removal(struct io_rsrc_data * data,unsigned idx,struct io_rsrc_node * node,void * rsrc)9691 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
9692 				 struct io_rsrc_node *node, void *rsrc)
9693 {
9694 	u64 *tag_slot = io_get_tag_slot(data, idx);
9695 	struct io_rsrc_put *prsrc;
9696 
9697 	prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
9698 	if (!prsrc)
9699 		return -ENOMEM;
9700 
9701 	prsrc->tag = *tag_slot;
9702 	*tag_slot = 0;
9703 	prsrc->rsrc = rsrc;
9704 	list_add(&prsrc->list, &node->rsrc_list);
9705 	return 0;
9706 }
9707 
io_install_fixed_file(struct io_kiocb * req,struct file * file,unsigned int issue_flags,u32 slot_index)9708 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
9709 				 unsigned int issue_flags, u32 slot_index)
9710 	__must_hold(&req->ctx->uring_lock)
9711 {
9712 	struct io_ring_ctx *ctx = req->ctx;
9713 	bool needs_switch = false;
9714 	struct io_fixed_file *file_slot;
9715 	int ret;
9716 
9717 	if (file->f_op == &io_uring_fops)
9718 		return -EBADF;
9719 	if (!ctx->file_data)
9720 		return -ENXIO;
9721 	if (slot_index >= ctx->nr_user_files)
9722 		return -EINVAL;
9723 
9724 	slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
9725 	file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
9726 
9727 	if (file_slot->file_ptr) {
9728 		struct file *old_file;
9729 
9730 		ret = io_rsrc_node_switch_start(ctx);
9731 		if (ret)
9732 			goto err;
9733 
9734 		old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
9735 		ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
9736 					    ctx->rsrc_node, old_file);
9737 		if (ret)
9738 			goto err;
9739 		file_slot->file_ptr = 0;
9740 		io_file_bitmap_clear(&ctx->file_table, slot_index);
9741 		needs_switch = true;
9742 	}
9743 
9744 	ret = io_scm_file_account(ctx, file);
9745 	if (!ret) {
9746 		*io_get_tag_slot(ctx->file_data, slot_index) = 0;
9747 		io_fixed_file_set(file_slot, file);
9748 		io_file_bitmap_set(&ctx->file_table, slot_index);
9749 	}
9750 err:
9751 	if (needs_switch)
9752 		io_rsrc_node_switch(ctx, ctx->file_data);
9753 	if (ret)
9754 		fput(file);
9755 	return ret;
9756 }
9757 
__io_close_fixed(struct io_kiocb * req,unsigned int issue_flags,unsigned int offset)9758 static int __io_close_fixed(struct io_kiocb *req, unsigned int issue_flags,
9759 			    unsigned int offset)
9760 {
9761 	struct io_ring_ctx *ctx = req->ctx;
9762 	struct io_fixed_file *file_slot;
9763 	struct file *file;
9764 	int ret;
9765 
9766 	io_ring_submit_lock(ctx, issue_flags);
9767 	ret = -ENXIO;
9768 	if (unlikely(!ctx->file_data))
9769 		goto out;
9770 	ret = -EINVAL;
9771 	if (offset >= ctx->nr_user_files)
9772 		goto out;
9773 	ret = io_rsrc_node_switch_start(ctx);
9774 	if (ret)
9775 		goto out;
9776 
9777 	offset = array_index_nospec(offset, ctx->nr_user_files);
9778 	file_slot = io_fixed_file_slot(&ctx->file_table, offset);
9779 	ret = -EBADF;
9780 	if (!file_slot->file_ptr)
9781 		goto out;
9782 
9783 	file = (struct file *)(file_slot->file_ptr & FFS_MASK);
9784 	ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
9785 	if (ret)
9786 		goto out;
9787 
9788 	file_slot->file_ptr = 0;
9789 	io_file_bitmap_clear(&ctx->file_table, offset);
9790 	io_rsrc_node_switch(ctx, ctx->file_data);
9791 	ret = 0;
9792 out:
9793 	io_ring_submit_unlock(ctx, issue_flags);
9794 	return ret;
9795 }
9796 
io_close_fixed(struct io_kiocb * req,unsigned int issue_flags)9797 static inline int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
9798 {
9799 	return __io_close_fixed(req, issue_flags, req->close.file_slot - 1);
9800 }
9801 
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned nr_args)9802 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
9803 				 struct io_uring_rsrc_update2 *up,
9804 				 unsigned nr_args)
9805 {
9806 	u64 __user *tags = u64_to_user_ptr(up->tags);
9807 	__s32 __user *fds = u64_to_user_ptr(up->data);
9808 	struct io_rsrc_data *data = ctx->file_data;
9809 	struct io_fixed_file *file_slot;
9810 	struct file *file;
9811 	int fd, i, err = 0;
9812 	unsigned int done;
9813 	bool needs_switch = false;
9814 
9815 	if (!ctx->file_data)
9816 		return -ENXIO;
9817 	if (up->offset + nr_args > ctx->nr_user_files)
9818 		return -EINVAL;
9819 
9820 	for (done = 0; done < nr_args; done++) {
9821 		u64 tag = 0;
9822 
9823 		if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
9824 		    copy_from_user(&fd, &fds[done], sizeof(fd))) {
9825 			err = -EFAULT;
9826 			break;
9827 		}
9828 		if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
9829 			err = -EINVAL;
9830 			break;
9831 		}
9832 		if (fd == IORING_REGISTER_FILES_SKIP)
9833 			continue;
9834 
9835 		i = array_index_nospec(up->offset + done, ctx->nr_user_files);
9836 		file_slot = io_fixed_file_slot(&ctx->file_table, i);
9837 
9838 		if (file_slot->file_ptr) {
9839 			file = (struct file *)(file_slot->file_ptr & FFS_MASK);
9840 			err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
9841 			if (err)
9842 				break;
9843 			file_slot->file_ptr = 0;
9844 			io_file_bitmap_clear(&ctx->file_table, i);
9845 			needs_switch = true;
9846 		}
9847 		if (fd != -1) {
9848 			file = fget(fd);
9849 			if (!file) {
9850 				err = -EBADF;
9851 				break;
9852 			}
9853 			/*
9854 			 * Don't allow io_uring instances to be registered. If
9855 			 * UNIX isn't enabled, then this causes a reference
9856 			 * cycle and this instance can never get freed. If UNIX
9857 			 * is enabled we'll handle it just fine, but there's
9858 			 * still no point in allowing a ring fd as it doesn't
9859 			 * support regular read/write anyway.
9860 			 */
9861 			if (file->f_op == &io_uring_fops) {
9862 				fput(file);
9863 				err = -EBADF;
9864 				break;
9865 			}
9866 			err = io_scm_file_account(ctx, file);
9867 			if (err) {
9868 				fput(file);
9869 				break;
9870 			}
9871 			*io_get_tag_slot(data, i) = tag;
9872 			io_fixed_file_set(file_slot, file);
9873 			io_file_bitmap_set(&ctx->file_table, i);
9874 		}
9875 	}
9876 
9877 	if (needs_switch)
9878 		io_rsrc_node_switch(ctx, data);
9879 	return done ? done : err;
9880 }
9881 
io_init_wq_offload(struct io_ring_ctx * ctx,struct task_struct * task)9882 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
9883 					struct task_struct *task)
9884 {
9885 	struct io_wq_hash *hash;
9886 	struct io_wq_data data;
9887 	unsigned int concurrency;
9888 
9889 	mutex_lock(&ctx->uring_lock);
9890 	hash = ctx->hash_map;
9891 	if (!hash) {
9892 		hash = kzalloc(sizeof(*hash), GFP_KERNEL);
9893 		if (!hash) {
9894 			mutex_unlock(&ctx->uring_lock);
9895 			return ERR_PTR(-ENOMEM);
9896 		}
9897 		refcount_set(&hash->refs, 1);
9898 		init_waitqueue_head(&hash->wait);
9899 		ctx->hash_map = hash;
9900 	}
9901 	mutex_unlock(&ctx->uring_lock);
9902 
9903 	data.hash = hash;
9904 	data.task = task;
9905 	data.free_work = io_wq_free_work;
9906 	data.do_work = io_wq_submit_work;
9907 
9908 	/* Do QD, or 4 * CPUS, whatever is smallest */
9909 	concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
9910 
9911 	return io_wq_create(concurrency, &data);
9912 }
9913 
io_uring_alloc_task_context(struct task_struct * task,struct io_ring_ctx * ctx)9914 static __cold int io_uring_alloc_task_context(struct task_struct *task,
9915 					      struct io_ring_ctx *ctx)
9916 {
9917 	struct io_uring_task *tctx;
9918 	int ret;
9919 
9920 	tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
9921 	if (unlikely(!tctx))
9922 		return -ENOMEM;
9923 
9924 	tctx->registered_rings = kcalloc(IO_RINGFD_REG_MAX,
9925 					 sizeof(struct file *), GFP_KERNEL);
9926 	if (unlikely(!tctx->registered_rings)) {
9927 		kfree(tctx);
9928 		return -ENOMEM;
9929 	}
9930 
9931 	ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
9932 	if (unlikely(ret)) {
9933 		kfree(tctx->registered_rings);
9934 		kfree(tctx);
9935 		return ret;
9936 	}
9937 
9938 	tctx->io_wq = io_init_wq_offload(ctx, task);
9939 	if (IS_ERR(tctx->io_wq)) {
9940 		ret = PTR_ERR(tctx->io_wq);
9941 		percpu_counter_destroy(&tctx->inflight);
9942 		kfree(tctx->registered_rings);
9943 		kfree(tctx);
9944 		return ret;
9945 	}
9946 
9947 	xa_init(&tctx->xa);
9948 	init_waitqueue_head(&tctx->wait);
9949 	atomic_set(&tctx->in_idle, 0);
9950 	atomic_set(&tctx->inflight_tracked, 0);
9951 	task->io_uring = tctx;
9952 	spin_lock_init(&tctx->task_lock);
9953 	INIT_WQ_LIST(&tctx->task_list);
9954 	INIT_WQ_LIST(&tctx->prio_task_list);
9955 	init_task_work(&tctx->task_work, tctx_task_work);
9956 	return 0;
9957 }
9958 
__io_uring_free(struct task_struct * tsk)9959 void __io_uring_free(struct task_struct *tsk)
9960 {
9961 	struct io_uring_task *tctx = tsk->io_uring;
9962 
9963 	WARN_ON_ONCE(!xa_empty(&tctx->xa));
9964 	WARN_ON_ONCE(tctx->io_wq);
9965 	WARN_ON_ONCE(tctx->cached_refs);
9966 
9967 	kfree(tctx->registered_rings);
9968 	percpu_counter_destroy(&tctx->inflight);
9969 	kfree(tctx);
9970 	tsk->io_uring = NULL;
9971 }
9972 
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)9973 static __cold int io_sq_offload_create(struct io_ring_ctx *ctx,
9974 				       struct io_uring_params *p)
9975 {
9976 	int ret;
9977 
9978 	/* Retain compatibility with failing for an invalid attach attempt */
9979 	if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
9980 				IORING_SETUP_ATTACH_WQ) {
9981 		struct fd f;
9982 
9983 		f = fdget(p->wq_fd);
9984 		if (!f.file)
9985 			return -ENXIO;
9986 		if (f.file->f_op != &io_uring_fops) {
9987 			fdput(f);
9988 			return -EINVAL;
9989 		}
9990 		fdput(f);
9991 	}
9992 	if (ctx->flags & IORING_SETUP_SQPOLL) {
9993 		struct task_struct *tsk;
9994 		struct io_sq_data *sqd;
9995 		bool attached;
9996 
9997 		ret = security_uring_sqpoll();
9998 		if (ret)
9999 			return ret;
10000 
10001 		sqd = io_get_sq_data(p, &attached);
10002 		if (IS_ERR(sqd)) {
10003 			ret = PTR_ERR(sqd);
10004 			goto err;
10005 		}
10006 
10007 		ctx->sq_creds = get_current_cred();
10008 		ctx->sq_data = sqd;
10009 		ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
10010 		if (!ctx->sq_thread_idle)
10011 			ctx->sq_thread_idle = HZ;
10012 
10013 		io_sq_thread_park(sqd);
10014 		list_add(&ctx->sqd_list, &sqd->ctx_list);
10015 		io_sqd_update_thread_idle(sqd);
10016 		/* don't attach to a dying SQPOLL thread, would be racy */
10017 		ret = (attached && !sqd->thread) ? -ENXIO : 0;
10018 		io_sq_thread_unpark(sqd);
10019 
10020 		if (ret < 0)
10021 			goto err;
10022 		if (attached)
10023 			return 0;
10024 
10025 		if (p->flags & IORING_SETUP_SQ_AFF) {
10026 			int cpu = p->sq_thread_cpu;
10027 
10028 			ret = -EINVAL;
10029 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
10030 				goto err_sqpoll;
10031 			sqd->sq_cpu = cpu;
10032 		} else {
10033 			sqd->sq_cpu = -1;
10034 		}
10035 
10036 		sqd->task_pid = current->pid;
10037 		sqd->task_tgid = current->tgid;
10038 		tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
10039 		if (IS_ERR(tsk)) {
10040 			ret = PTR_ERR(tsk);
10041 			goto err_sqpoll;
10042 		}
10043 
10044 		sqd->thread = tsk;
10045 		ret = io_uring_alloc_task_context(tsk, ctx);
10046 		wake_up_new_task(tsk);
10047 		if (ret)
10048 			goto err;
10049 	} else if (p->flags & IORING_SETUP_SQ_AFF) {
10050 		/* Can't have SQ_AFF without SQPOLL */
10051 		ret = -EINVAL;
10052 		goto err;
10053 	}
10054 
10055 	return 0;
10056 err_sqpoll:
10057 	complete(&ctx->sq_data->exited);
10058 err:
10059 	io_sq_thread_finish(ctx);
10060 	return ret;
10061 }
10062 
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)10063 static inline void __io_unaccount_mem(struct user_struct *user,
10064 				      unsigned long nr_pages)
10065 {
10066 	atomic_long_sub(nr_pages, &user->locked_vm);
10067 }
10068 
__io_account_mem(struct user_struct * user,unsigned long nr_pages)10069 static inline int __io_account_mem(struct user_struct *user,
10070 				   unsigned long nr_pages)
10071 {
10072 	unsigned long page_limit, cur_pages, new_pages;
10073 
10074 	/* Don't allow more pages than we can safely lock */
10075 	page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
10076 
10077 	do {
10078 		cur_pages = atomic_long_read(&user->locked_vm);
10079 		new_pages = cur_pages + nr_pages;
10080 		if (new_pages > page_limit)
10081 			return -ENOMEM;
10082 	} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
10083 					new_pages) != cur_pages);
10084 
10085 	return 0;
10086 }
10087 
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)10088 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
10089 {
10090 	if (ctx->user)
10091 		__io_unaccount_mem(ctx->user, nr_pages);
10092 
10093 	if (ctx->mm_account)
10094 		atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
10095 }
10096 
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)10097 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
10098 {
10099 	int ret;
10100 
10101 	if (ctx->user) {
10102 		ret = __io_account_mem(ctx->user, nr_pages);
10103 		if (ret)
10104 			return ret;
10105 	}
10106 
10107 	if (ctx->mm_account)
10108 		atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
10109 
10110 	return 0;
10111 }
10112 
io_mem_free(void * ptr)10113 static void io_mem_free(void *ptr)
10114 {
10115 	struct page *page;
10116 
10117 	if (!ptr)
10118 		return;
10119 
10120 	page = virt_to_head_page(ptr);
10121 	if (put_page_testzero(page))
10122 		free_compound_page(page);
10123 }
10124 
io_mem_alloc(size_t size)10125 static void *io_mem_alloc(size_t size)
10126 {
10127 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
10128 
10129 	return (void *) __get_free_pages(gfp, get_order(size));
10130 }
10131 
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)10132 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
10133 				unsigned int cq_entries, size_t *sq_offset)
10134 {
10135 	struct io_rings *rings;
10136 	size_t off, sq_array_size;
10137 
10138 	off = struct_size(rings, cqes, cq_entries);
10139 	if (off == SIZE_MAX)
10140 		return SIZE_MAX;
10141 	if (ctx->flags & IORING_SETUP_CQE32) {
10142 		if (check_shl_overflow(off, 1, &off))
10143 			return SIZE_MAX;
10144 	}
10145 
10146 #ifdef CONFIG_SMP
10147 	off = ALIGN(off, SMP_CACHE_BYTES);
10148 	if (off == 0)
10149 		return SIZE_MAX;
10150 #endif
10151 
10152 	if (sq_offset)
10153 		*sq_offset = off;
10154 
10155 	sq_array_size = array_size(sizeof(u32), sq_entries);
10156 	if (sq_array_size == SIZE_MAX)
10157 		return SIZE_MAX;
10158 
10159 	if (check_add_overflow(off, sq_array_size, &off))
10160 		return SIZE_MAX;
10161 
10162 	return off;
10163 }
10164 
io_buffer_unmap(struct io_ring_ctx * ctx,struct io_mapped_ubuf ** slot)10165 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
10166 {
10167 	struct io_mapped_ubuf *imu = *slot;
10168 	unsigned int i;
10169 
10170 	if (imu != ctx->dummy_ubuf) {
10171 		for (i = 0; i < imu->nr_bvecs; i++)
10172 			unpin_user_page(imu->bvec[i].bv_page);
10173 		if (imu->acct_pages)
10174 			io_unaccount_mem(ctx, imu->acct_pages);
10175 		kvfree(imu);
10176 	}
10177 	*slot = NULL;
10178 }
10179 
io_rsrc_buf_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)10180 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
10181 {
10182 	io_buffer_unmap(ctx, &prsrc->buf);
10183 	prsrc->buf = NULL;
10184 }
10185 
__io_sqe_buffers_unregister(struct io_ring_ctx * ctx)10186 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
10187 {
10188 	unsigned int i;
10189 
10190 	for (i = 0; i < ctx->nr_user_bufs; i++)
10191 		io_buffer_unmap(ctx, &ctx->user_bufs[i]);
10192 	kfree(ctx->user_bufs);
10193 	io_rsrc_data_free(ctx->buf_data);
10194 	ctx->user_bufs = NULL;
10195 	ctx->buf_data = NULL;
10196 	ctx->nr_user_bufs = 0;
10197 }
10198 
io_sqe_buffers_unregister(struct io_ring_ctx * ctx)10199 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
10200 {
10201 	unsigned nr = ctx->nr_user_bufs;
10202 	int ret;
10203 
10204 	if (!ctx->buf_data)
10205 		return -ENXIO;
10206 
10207 	/*
10208 	 * Quiesce may unlock ->uring_lock, and while it's not held
10209 	 * prevent new requests using the table.
10210 	 */
10211 	ctx->nr_user_bufs = 0;
10212 	ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
10213 	ctx->nr_user_bufs = nr;
10214 	if (!ret)
10215 		__io_sqe_buffers_unregister(ctx);
10216 	return ret;
10217 }
10218 
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)10219 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
10220 		       void __user *arg, unsigned index)
10221 {
10222 	struct iovec __user *src;
10223 
10224 #ifdef CONFIG_COMPAT
10225 	if (ctx->compat) {
10226 		struct compat_iovec __user *ciovs;
10227 		struct compat_iovec ciov;
10228 
10229 		ciovs = (struct compat_iovec __user *) arg;
10230 		if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
10231 			return -EFAULT;
10232 
10233 		dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
10234 		dst->iov_len = ciov.iov_len;
10235 		return 0;
10236 	}
10237 #endif
10238 	src = (struct iovec __user *) arg;
10239 	if (copy_from_user(dst, &src[index], sizeof(*dst)))
10240 		return -EFAULT;
10241 	return 0;
10242 }
10243 
10244 /*
10245  * Not super efficient, but this is just a registration time. And we do cache
10246  * the last compound head, so generally we'll only do a full search if we don't
10247  * match that one.
10248  *
10249  * We check if the given compound head page has already been accounted, to
10250  * avoid double accounting it. This allows us to account the full size of the
10251  * page, not just the constituent pages of a huge page.
10252  */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)10253 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
10254 				  int nr_pages, struct page *hpage)
10255 {
10256 	int i, j;
10257 
10258 	/* check current page array */
10259 	for (i = 0; i < nr_pages; i++) {
10260 		if (!PageCompound(pages[i]))
10261 			continue;
10262 		if (compound_head(pages[i]) == hpage)
10263 			return true;
10264 	}
10265 
10266 	/* check previously registered pages */
10267 	for (i = 0; i < ctx->nr_user_bufs; i++) {
10268 		struct io_mapped_ubuf *imu = ctx->user_bufs[i];
10269 
10270 		for (j = 0; j < imu->nr_bvecs; j++) {
10271 			if (!PageCompound(imu->bvec[j].bv_page))
10272 				continue;
10273 			if (compound_head(imu->bvec[j].bv_page) == hpage)
10274 				return true;
10275 		}
10276 	}
10277 
10278 	return false;
10279 }
10280 
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)10281 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
10282 				 int nr_pages, struct io_mapped_ubuf *imu,
10283 				 struct page **last_hpage)
10284 {
10285 	int i, ret;
10286 
10287 	imu->acct_pages = 0;
10288 	for (i = 0; i < nr_pages; i++) {
10289 		if (!PageCompound(pages[i])) {
10290 			imu->acct_pages++;
10291 		} else {
10292 			struct page *hpage;
10293 
10294 			hpage = compound_head(pages[i]);
10295 			if (hpage == *last_hpage)
10296 				continue;
10297 			*last_hpage = hpage;
10298 			if (headpage_already_acct(ctx, pages, i, hpage))
10299 				continue;
10300 			imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
10301 		}
10302 	}
10303 
10304 	if (!imu->acct_pages)
10305 		return 0;
10306 
10307 	ret = io_account_mem(ctx, imu->acct_pages);
10308 	if (ret)
10309 		imu->acct_pages = 0;
10310 	return ret;
10311 }
10312 
io_pin_pages(unsigned long ubuf,unsigned long len,int * npages)10313 static struct page **io_pin_pages(unsigned long ubuf, unsigned long len,
10314 				  int *npages)
10315 {
10316 	unsigned long start, end, nr_pages;
10317 	struct vm_area_struct **vmas = NULL;
10318 	struct page **pages = NULL;
10319 	int i, pret, ret = -ENOMEM;
10320 
10321 	end = (ubuf + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
10322 	start = ubuf >> PAGE_SHIFT;
10323 	nr_pages = end - start;
10324 
10325 	pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
10326 	if (!pages)
10327 		goto done;
10328 
10329 	vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
10330 			      GFP_KERNEL);
10331 	if (!vmas)
10332 		goto done;
10333 
10334 	ret = 0;
10335 	mmap_read_lock(current->mm);
10336 	pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
10337 			      pages, vmas);
10338 	if (pret == nr_pages) {
10339 		/* don't support file backed memory */
10340 		for (i = 0; i < nr_pages; i++) {
10341 			struct vm_area_struct *vma = vmas[i];
10342 
10343 			if (vma_is_shmem(vma))
10344 				continue;
10345 			if (vma->vm_file &&
10346 			    !is_file_hugepages(vma->vm_file)) {
10347 				ret = -EOPNOTSUPP;
10348 				break;
10349 			}
10350 		}
10351 		*npages = nr_pages;
10352 	} else {
10353 		ret = pret < 0 ? pret : -EFAULT;
10354 	}
10355 	mmap_read_unlock(current->mm);
10356 	if (ret) {
10357 		/*
10358 		 * if we did partial map, or found file backed vmas,
10359 		 * release any pages we did get
10360 		 */
10361 		if (pret > 0)
10362 			unpin_user_pages(pages, pret);
10363 		goto done;
10364 	}
10365 	ret = 0;
10366 done:
10367 	kvfree(vmas);
10368 	if (ret < 0) {
10369 		kvfree(pages);
10370 		pages = ERR_PTR(ret);
10371 	}
10372 	return pages;
10373 }
10374 
io_sqe_buffer_register(struct io_ring_ctx * ctx,struct iovec * iov,struct io_mapped_ubuf ** pimu,struct page ** last_hpage)10375 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
10376 				  struct io_mapped_ubuf **pimu,
10377 				  struct page **last_hpage)
10378 {
10379 	struct io_mapped_ubuf *imu = NULL;
10380 	struct page **pages = NULL;
10381 	unsigned long off;
10382 	size_t size;
10383 	int ret, nr_pages, i;
10384 
10385 	if (!iov->iov_base) {
10386 		*pimu = ctx->dummy_ubuf;
10387 		return 0;
10388 	}
10389 
10390 	*pimu = NULL;
10391 	ret = -ENOMEM;
10392 
10393 	pages = io_pin_pages((unsigned long) iov->iov_base, iov->iov_len,
10394 				&nr_pages);
10395 	if (IS_ERR(pages)) {
10396 		ret = PTR_ERR(pages);
10397 		pages = NULL;
10398 		goto done;
10399 	}
10400 
10401 	imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
10402 	if (!imu)
10403 		goto done;
10404 
10405 	ret = io_buffer_account_pin(ctx, pages, nr_pages, imu, last_hpage);
10406 	if (ret) {
10407 		unpin_user_pages(pages, nr_pages);
10408 		goto done;
10409 	}
10410 
10411 	off = (unsigned long) iov->iov_base & ~PAGE_MASK;
10412 	size = iov->iov_len;
10413 	for (i = 0; i < nr_pages; i++) {
10414 		size_t vec_len;
10415 
10416 		vec_len = min_t(size_t, size, PAGE_SIZE - off);
10417 		imu->bvec[i].bv_page = pages[i];
10418 		imu->bvec[i].bv_len = vec_len;
10419 		imu->bvec[i].bv_offset = off;
10420 		off = 0;
10421 		size -= vec_len;
10422 	}
10423 	/* store original address for later verification */
10424 	imu->ubuf = (unsigned long) iov->iov_base;
10425 	imu->ubuf_end = imu->ubuf + iov->iov_len;
10426 	imu->nr_bvecs = nr_pages;
10427 	*pimu = imu;
10428 	ret = 0;
10429 done:
10430 	if (ret)
10431 		kvfree(imu);
10432 	kvfree(pages);
10433 	return ret;
10434 }
10435 
io_buffers_map_alloc(struct io_ring_ctx * ctx,unsigned int nr_args)10436 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
10437 {
10438 	ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
10439 	return ctx->user_bufs ? 0 : -ENOMEM;
10440 }
10441 
io_buffer_validate(struct iovec * iov)10442 static int io_buffer_validate(struct iovec *iov)
10443 {
10444 	unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
10445 
10446 	/*
10447 	 * Don't impose further limits on the size and buffer
10448 	 * constraints here, we'll -EINVAL later when IO is
10449 	 * submitted if they are wrong.
10450 	 */
10451 	if (!iov->iov_base)
10452 		return iov->iov_len ? -EFAULT : 0;
10453 	if (!iov->iov_len)
10454 		return -EFAULT;
10455 
10456 	/* arbitrary limit, but we need something */
10457 	if (iov->iov_len > SZ_1G)
10458 		return -EFAULT;
10459 
10460 	if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
10461 		return -EOVERFLOW;
10462 
10463 	return 0;
10464 }
10465 
io_sqe_buffers_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args,u64 __user * tags)10466 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
10467 				   unsigned int nr_args, u64 __user *tags)
10468 {
10469 	struct page *last_hpage = NULL;
10470 	struct io_rsrc_data *data;
10471 	int i, ret;
10472 	struct iovec iov;
10473 
10474 	if (ctx->user_bufs)
10475 		return -EBUSY;
10476 	if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
10477 		return -EINVAL;
10478 	ret = io_rsrc_node_switch_start(ctx);
10479 	if (ret)
10480 		return ret;
10481 	ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
10482 	if (ret)
10483 		return ret;
10484 	ret = io_buffers_map_alloc(ctx, nr_args);
10485 	if (ret) {
10486 		io_rsrc_data_free(data);
10487 		return ret;
10488 	}
10489 
10490 	for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
10491 		if (arg) {
10492 			ret = io_copy_iov(ctx, &iov, arg, i);
10493 			if (ret)
10494 				break;
10495 			ret = io_buffer_validate(&iov);
10496 			if (ret)
10497 				break;
10498 		} else {
10499 			memset(&iov, 0, sizeof(iov));
10500 		}
10501 
10502 		if (!iov.iov_base && *io_get_tag_slot(data, i)) {
10503 			ret = -EINVAL;
10504 			break;
10505 		}
10506 
10507 		ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
10508 					     &last_hpage);
10509 		if (ret)
10510 			break;
10511 	}
10512 
10513 	WARN_ON_ONCE(ctx->buf_data);
10514 
10515 	ctx->buf_data = data;
10516 	if (ret)
10517 		__io_sqe_buffers_unregister(ctx);
10518 	else
10519 		io_rsrc_node_switch(ctx, NULL);
10520 	return ret;
10521 }
10522 
__io_sqe_buffers_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned int nr_args)10523 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
10524 				   struct io_uring_rsrc_update2 *up,
10525 				   unsigned int nr_args)
10526 {
10527 	u64 __user *tags = u64_to_user_ptr(up->tags);
10528 	struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
10529 	struct page *last_hpage = NULL;
10530 	bool needs_switch = false;
10531 	__u32 done;
10532 	int i, err;
10533 
10534 	if (!ctx->buf_data)
10535 		return -ENXIO;
10536 	if (up->offset + nr_args > ctx->nr_user_bufs)
10537 		return -EINVAL;
10538 
10539 	for (done = 0; done < nr_args; done++) {
10540 		struct io_mapped_ubuf *imu;
10541 		int offset = up->offset + done;
10542 		u64 tag = 0;
10543 
10544 		err = io_copy_iov(ctx, &iov, iovs, done);
10545 		if (err)
10546 			break;
10547 		if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
10548 			err = -EFAULT;
10549 			break;
10550 		}
10551 		err = io_buffer_validate(&iov);
10552 		if (err)
10553 			break;
10554 		if (!iov.iov_base && tag) {
10555 			err = -EINVAL;
10556 			break;
10557 		}
10558 		err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
10559 		if (err)
10560 			break;
10561 
10562 		i = array_index_nospec(offset, ctx->nr_user_bufs);
10563 		if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
10564 			err = io_queue_rsrc_removal(ctx->buf_data, i,
10565 						    ctx->rsrc_node, ctx->user_bufs[i]);
10566 			if (unlikely(err)) {
10567 				io_buffer_unmap(ctx, &imu);
10568 				break;
10569 			}
10570 			ctx->user_bufs[i] = NULL;
10571 			needs_switch = true;
10572 		}
10573 
10574 		ctx->user_bufs[i] = imu;
10575 		*io_get_tag_slot(ctx->buf_data, offset) = tag;
10576 	}
10577 
10578 	if (needs_switch)
10579 		io_rsrc_node_switch(ctx, ctx->buf_data);
10580 	return done ? done : err;
10581 }
10582 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)10583 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
10584 			       unsigned int eventfd_async)
10585 {
10586 	struct io_ev_fd *ev_fd;
10587 	__s32 __user *fds = arg;
10588 	int fd;
10589 
10590 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
10591 					lockdep_is_held(&ctx->uring_lock));
10592 	if (ev_fd)
10593 		return -EBUSY;
10594 
10595 	if (copy_from_user(&fd, fds, sizeof(*fds)))
10596 		return -EFAULT;
10597 
10598 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
10599 	if (!ev_fd)
10600 		return -ENOMEM;
10601 
10602 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
10603 	if (IS_ERR(ev_fd->cq_ev_fd)) {
10604 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
10605 		kfree(ev_fd);
10606 		return ret;
10607 	}
10608 	ev_fd->eventfd_async = eventfd_async;
10609 	ctx->has_evfd = true;
10610 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
10611 	return 0;
10612 }
10613 
io_eventfd_put(struct rcu_head * rcu)10614 static void io_eventfd_put(struct rcu_head *rcu)
10615 {
10616 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
10617 
10618 	eventfd_ctx_put(ev_fd->cq_ev_fd);
10619 	kfree(ev_fd);
10620 }
10621 
io_eventfd_unregister(struct io_ring_ctx * ctx)10622 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
10623 {
10624 	struct io_ev_fd *ev_fd;
10625 
10626 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
10627 					lockdep_is_held(&ctx->uring_lock));
10628 	if (ev_fd) {
10629 		ctx->has_evfd = false;
10630 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
10631 		call_rcu(&ev_fd->rcu, io_eventfd_put);
10632 		return 0;
10633 	}
10634 
10635 	return -ENXIO;
10636 }
10637 
io_destroy_buffers(struct io_ring_ctx * ctx)10638 static void io_destroy_buffers(struct io_ring_ctx *ctx)
10639 {
10640 	struct io_buffer_list *bl;
10641 	unsigned long index;
10642 	int i;
10643 
10644 	for (i = 0; i < BGID_ARRAY; i++) {
10645 		if (!ctx->io_bl)
10646 			break;
10647 		__io_remove_buffers(ctx, &ctx->io_bl[i], -1U);
10648 	}
10649 
10650 	xa_for_each(&ctx->io_bl_xa, index, bl) {
10651 		xa_erase(&ctx->io_bl_xa, bl->bgid);
10652 		__io_remove_buffers(ctx, bl, -1U);
10653 		kfree(bl);
10654 	}
10655 
10656 	while (!list_empty(&ctx->io_buffers_pages)) {
10657 		struct page *page;
10658 
10659 		page = list_first_entry(&ctx->io_buffers_pages, struct page, lru);
10660 		list_del_init(&page->lru);
10661 		__free_page(page);
10662 	}
10663 }
10664 
io_req_caches_free(struct io_ring_ctx * ctx)10665 static void io_req_caches_free(struct io_ring_ctx *ctx)
10666 {
10667 	struct io_submit_state *state = &ctx->submit_state;
10668 	int nr = 0;
10669 
10670 	mutex_lock(&ctx->uring_lock);
10671 	io_flush_cached_locked_reqs(ctx, state);
10672 
10673 	while (!io_req_cache_empty(ctx)) {
10674 		struct io_wq_work_node *node;
10675 		struct io_kiocb *req;
10676 
10677 		node = wq_stack_extract(&state->free_list);
10678 		req = container_of(node, struct io_kiocb, comp_list);
10679 		kmem_cache_free(req_cachep, req);
10680 		nr++;
10681 	}
10682 	if (nr)
10683 		percpu_ref_put_many(&ctx->refs, nr);
10684 	mutex_unlock(&ctx->uring_lock);
10685 }
10686 
io_wait_rsrc_data(struct io_rsrc_data * data)10687 static void io_wait_rsrc_data(struct io_rsrc_data *data)
10688 {
10689 	if (data && !atomic_dec_and_test(&data->refs))
10690 		wait_for_completion(&data->done);
10691 }
10692 
io_flush_apoll_cache(struct io_ring_ctx * ctx)10693 static void io_flush_apoll_cache(struct io_ring_ctx *ctx)
10694 {
10695 	struct async_poll *apoll;
10696 
10697 	while (!list_empty(&ctx->apoll_cache)) {
10698 		apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
10699 						poll.wait.entry);
10700 		list_del(&apoll->poll.wait.entry);
10701 		kfree(apoll);
10702 	}
10703 }
10704 
io_ring_ctx_free(struct io_ring_ctx * ctx)10705 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
10706 {
10707 	io_sq_thread_finish(ctx);
10708 
10709 	if (ctx->mm_account) {
10710 		mmdrop(ctx->mm_account);
10711 		ctx->mm_account = NULL;
10712 	}
10713 
10714 	io_rsrc_refs_drop(ctx);
10715 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
10716 	io_wait_rsrc_data(ctx->buf_data);
10717 	io_wait_rsrc_data(ctx->file_data);
10718 
10719 	mutex_lock(&ctx->uring_lock);
10720 	if (ctx->buf_data)
10721 		__io_sqe_buffers_unregister(ctx);
10722 	if (ctx->file_data)
10723 		__io_sqe_files_unregister(ctx);
10724 	if (ctx->rings)
10725 		__io_cqring_overflow_flush(ctx, true);
10726 	io_eventfd_unregister(ctx);
10727 	io_flush_apoll_cache(ctx);
10728 	mutex_unlock(&ctx->uring_lock);
10729 	io_destroy_buffers(ctx);
10730 	if (ctx->sq_creds)
10731 		put_cred(ctx->sq_creds);
10732 
10733 	/* there are no registered resources left, nobody uses it */
10734 	if (ctx->rsrc_node)
10735 		io_rsrc_node_destroy(ctx->rsrc_node);
10736 	if (ctx->rsrc_backup_node)
10737 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
10738 	flush_delayed_work(&ctx->rsrc_put_work);
10739 	flush_delayed_work(&ctx->fallback_work);
10740 
10741 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
10742 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
10743 
10744 #if defined(CONFIG_UNIX)
10745 	if (ctx->ring_sock) {
10746 		ctx->ring_sock->file = NULL; /* so that iput() is called */
10747 		sock_release(ctx->ring_sock);
10748 	}
10749 #endif
10750 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
10751 
10752 	io_mem_free(ctx->rings);
10753 	io_mem_free(ctx->sq_sqes);
10754 
10755 	percpu_ref_exit(&ctx->refs);
10756 	free_uid(ctx->user);
10757 	io_req_caches_free(ctx);
10758 	if (ctx->hash_map)
10759 		io_wq_put_hash(ctx->hash_map);
10760 	kfree(ctx->cancel_hash);
10761 	kfree(ctx->dummy_ubuf);
10762 	kfree(ctx->io_bl);
10763 	xa_destroy(&ctx->io_bl_xa);
10764 	kfree(ctx);
10765 }
10766 
io_uring_poll(struct file * file,poll_table * wait)10767 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
10768 {
10769 	struct io_ring_ctx *ctx = file->private_data;
10770 	__poll_t mask = 0;
10771 
10772 	poll_wait(file, &ctx->cq_wait, wait);
10773 	/*
10774 	 * synchronizes with barrier from wq_has_sleeper call in
10775 	 * io_commit_cqring
10776 	 */
10777 	smp_rmb();
10778 	if (!io_sqring_full(ctx))
10779 		mask |= EPOLLOUT | EPOLLWRNORM;
10780 
10781 	/*
10782 	 * Don't flush cqring overflow list here, just do a simple check.
10783 	 * Otherwise there could possible be ABBA deadlock:
10784 	 *      CPU0                    CPU1
10785 	 *      ----                    ----
10786 	 * lock(&ctx->uring_lock);
10787 	 *                              lock(&ep->mtx);
10788 	 *                              lock(&ctx->uring_lock);
10789 	 * lock(&ep->mtx);
10790 	 *
10791 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
10792 	 * pushs them to do the flush.
10793 	 */
10794 	if (io_cqring_events(ctx) ||
10795 	    test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
10796 		mask |= EPOLLIN | EPOLLRDNORM;
10797 
10798 	return mask;
10799 }
10800 
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)10801 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
10802 {
10803 	const struct cred *creds;
10804 
10805 	creds = xa_erase(&ctx->personalities, id);
10806 	if (creds) {
10807 		put_cred(creds);
10808 		return 0;
10809 	}
10810 
10811 	return -EINVAL;
10812 }
10813 
10814 struct io_tctx_exit {
10815 	struct callback_head		task_work;
10816 	struct completion		completion;
10817 	struct io_ring_ctx		*ctx;
10818 };
10819 
io_tctx_exit_cb(struct callback_head * cb)10820 static __cold void io_tctx_exit_cb(struct callback_head *cb)
10821 {
10822 	struct io_uring_task *tctx = current->io_uring;
10823 	struct io_tctx_exit *work;
10824 
10825 	work = container_of(cb, struct io_tctx_exit, task_work);
10826 	/*
10827 	 * When @in_idle, we're in cancellation and it's racy to remove the
10828 	 * node. It'll be removed by the end of cancellation, just ignore it.
10829 	 */
10830 	if (!atomic_read(&tctx->in_idle))
10831 		io_uring_del_tctx_node((unsigned long)work->ctx);
10832 	complete(&work->completion);
10833 }
10834 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)10835 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
10836 {
10837 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
10838 
10839 	return req->ctx == data;
10840 }
10841 
io_ring_exit_work(struct work_struct * work)10842 static __cold void io_ring_exit_work(struct work_struct *work)
10843 {
10844 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
10845 	unsigned long timeout = jiffies + HZ * 60 * 5;
10846 	unsigned long interval = HZ / 20;
10847 	struct io_tctx_exit exit;
10848 	struct io_tctx_node *node;
10849 	int ret;
10850 
10851 	/*
10852 	 * If we're doing polled IO and end up having requests being
10853 	 * submitted async (out-of-line), then completions can come in while
10854 	 * we're waiting for refs to drop. We need to reap these manually,
10855 	 * as nobody else will be looking for them.
10856 	 */
10857 	do {
10858 		io_uring_try_cancel_requests(ctx, NULL, true);
10859 		if (ctx->sq_data) {
10860 			struct io_sq_data *sqd = ctx->sq_data;
10861 			struct task_struct *tsk;
10862 
10863 			io_sq_thread_park(sqd);
10864 			tsk = sqd->thread;
10865 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
10866 				io_wq_cancel_cb(tsk->io_uring->io_wq,
10867 						io_cancel_ctx_cb, ctx, true);
10868 			io_sq_thread_unpark(sqd);
10869 		}
10870 
10871 		io_req_caches_free(ctx);
10872 
10873 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
10874 			/* there is little hope left, don't run it too often */
10875 			interval = HZ * 60;
10876 		}
10877 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
10878 
10879 	init_completion(&exit.completion);
10880 	init_task_work(&exit.task_work, io_tctx_exit_cb);
10881 	exit.ctx = ctx;
10882 	/*
10883 	 * Some may use context even when all refs and requests have been put,
10884 	 * and they are free to do so while still holding uring_lock or
10885 	 * completion_lock, see io_req_task_submit(). Apart from other work,
10886 	 * this lock/unlock section also waits them to finish.
10887 	 */
10888 	mutex_lock(&ctx->uring_lock);
10889 	while (!list_empty(&ctx->tctx_list)) {
10890 		WARN_ON_ONCE(time_after(jiffies, timeout));
10891 
10892 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
10893 					ctx_node);
10894 		/* don't spin on a single task if cancellation failed */
10895 		list_rotate_left(&ctx->tctx_list);
10896 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
10897 		if (WARN_ON_ONCE(ret))
10898 			continue;
10899 
10900 		mutex_unlock(&ctx->uring_lock);
10901 		wait_for_completion(&exit.completion);
10902 		mutex_lock(&ctx->uring_lock);
10903 	}
10904 	mutex_unlock(&ctx->uring_lock);
10905 	spin_lock(&ctx->completion_lock);
10906 	spin_unlock(&ctx->completion_lock);
10907 
10908 	io_ring_ctx_free(ctx);
10909 }
10910 
10911 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)10912 static __cold bool io_kill_timeouts(struct io_ring_ctx *ctx,
10913 				    struct task_struct *tsk, bool cancel_all)
10914 {
10915 	struct io_kiocb *req, *tmp;
10916 	int canceled = 0;
10917 
10918 	spin_lock(&ctx->completion_lock);
10919 	spin_lock_irq(&ctx->timeout_lock);
10920 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
10921 		if (io_match_task(req, tsk, cancel_all)) {
10922 			io_kill_timeout(req, -ECANCELED);
10923 			canceled++;
10924 		}
10925 	}
10926 	spin_unlock_irq(&ctx->timeout_lock);
10927 	io_commit_cqring(ctx);
10928 	spin_unlock(&ctx->completion_lock);
10929 	if (canceled != 0)
10930 		io_cqring_ev_posted(ctx);
10931 	return canceled != 0;
10932 }
10933 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)10934 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
10935 {
10936 	unsigned long index;
10937 	struct creds *creds;
10938 
10939 	mutex_lock(&ctx->uring_lock);
10940 	percpu_ref_kill(&ctx->refs);
10941 	if (ctx->rings)
10942 		__io_cqring_overflow_flush(ctx, true);
10943 	xa_for_each(&ctx->personalities, index, creds)
10944 		io_unregister_personality(ctx, index);
10945 	mutex_unlock(&ctx->uring_lock);
10946 
10947 	/* failed during ring init, it couldn't have issued any requests */
10948 	if (ctx->rings) {
10949 		io_kill_timeouts(ctx, NULL, true);
10950 		io_poll_remove_all(ctx, NULL, true);
10951 		/* if we failed setting up the ctx, we might not have any rings */
10952 		io_iopoll_try_reap_events(ctx);
10953 	}
10954 
10955 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
10956 	/*
10957 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
10958 	 * if we're exiting a ton of rings at the same time. It just adds
10959 	 * noise and overhead, there's no discernable change in runtime
10960 	 * over using system_wq.
10961 	 */
10962 	queue_work(system_unbound_wq, &ctx->exit_work);
10963 }
10964 
io_uring_release(struct inode * inode,struct file * file)10965 static int io_uring_release(struct inode *inode, struct file *file)
10966 {
10967 	struct io_ring_ctx *ctx = file->private_data;
10968 
10969 	file->private_data = NULL;
10970 	io_ring_ctx_wait_and_kill(ctx);
10971 	return 0;
10972 }
10973 
10974 struct io_task_cancel {
10975 	struct task_struct *task;
10976 	bool all;
10977 };
10978 
io_cancel_task_cb(struct io_wq_work * work,void * data)10979 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
10980 {
10981 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
10982 	struct io_task_cancel *cancel = data;
10983 
10984 	return io_match_task_safe(req, cancel->task, cancel->all);
10985 }
10986 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)10987 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
10988 					 struct task_struct *task,
10989 					 bool cancel_all)
10990 {
10991 	struct io_defer_entry *de;
10992 	LIST_HEAD(list);
10993 
10994 	spin_lock(&ctx->completion_lock);
10995 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
10996 		if (io_match_task_safe(de->req, task, cancel_all)) {
10997 			list_cut_position(&list, &ctx->defer_list, &de->list);
10998 			break;
10999 		}
11000 	}
11001 	spin_unlock(&ctx->completion_lock);
11002 	if (list_empty(&list))
11003 		return false;
11004 
11005 	while (!list_empty(&list)) {
11006 		de = list_first_entry(&list, struct io_defer_entry, list);
11007 		list_del_init(&de->list);
11008 		io_req_complete_failed(de->req, -ECANCELED);
11009 		kfree(de);
11010 	}
11011 	return true;
11012 }
11013 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)11014 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
11015 {
11016 	struct io_tctx_node *node;
11017 	enum io_wq_cancel cret;
11018 	bool ret = false;
11019 
11020 	mutex_lock(&ctx->uring_lock);
11021 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
11022 		struct io_uring_task *tctx = node->task->io_uring;
11023 
11024 		/*
11025 		 * io_wq will stay alive while we hold uring_lock, because it's
11026 		 * killed after ctx nodes, which requires to take the lock.
11027 		 */
11028 		if (!tctx || !tctx->io_wq)
11029 			continue;
11030 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
11031 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
11032 	}
11033 	mutex_unlock(&ctx->uring_lock);
11034 
11035 	return ret;
11036 }
11037 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)11038 static __cold void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
11039 						struct task_struct *task,
11040 						bool cancel_all)
11041 {
11042 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
11043 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
11044 
11045 	/* failed during ring init, it couldn't have issued any requests */
11046 	if (!ctx->rings)
11047 		return;
11048 
11049 	while (1) {
11050 		enum io_wq_cancel cret;
11051 		bool ret = false;
11052 
11053 		if (!task) {
11054 			ret |= io_uring_try_cancel_iowq(ctx);
11055 		} else if (tctx && tctx->io_wq) {
11056 			/*
11057 			 * Cancels requests of all rings, not only @ctx, but
11058 			 * it's fine as the task is in exit/exec.
11059 			 */
11060 			cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
11061 					       &cancel, true);
11062 			ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
11063 		}
11064 
11065 		/* SQPOLL thread does its own polling */
11066 		if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
11067 		    (ctx->sq_data && ctx->sq_data->thread == current)) {
11068 			while (!wq_list_empty(&ctx->iopoll_list)) {
11069 				io_iopoll_try_reap_events(ctx);
11070 				ret = true;
11071 			}
11072 		}
11073 
11074 		ret |= io_cancel_defer_files(ctx, task, cancel_all);
11075 		ret |= io_poll_remove_all(ctx, task, cancel_all);
11076 		ret |= io_kill_timeouts(ctx, task, cancel_all);
11077 		if (task)
11078 			ret |= io_run_task_work();
11079 		if (!ret)
11080 			break;
11081 		cond_resched();
11082 	}
11083 }
11084 
__io_uring_add_tctx_node(struct io_ring_ctx * ctx)11085 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
11086 {
11087 	struct io_uring_task *tctx = current->io_uring;
11088 	struct io_tctx_node *node;
11089 	int ret;
11090 
11091 	if (unlikely(!tctx)) {
11092 		ret = io_uring_alloc_task_context(current, ctx);
11093 		if (unlikely(ret))
11094 			return ret;
11095 
11096 		tctx = current->io_uring;
11097 		if (ctx->iowq_limits_set) {
11098 			unsigned int limits[2] = { ctx->iowq_limits[0],
11099 						   ctx->iowq_limits[1], };
11100 
11101 			ret = io_wq_max_workers(tctx->io_wq, limits);
11102 			if (ret)
11103 				return ret;
11104 		}
11105 	}
11106 	if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
11107 		node = kmalloc(sizeof(*node), GFP_KERNEL);
11108 		if (!node)
11109 			return -ENOMEM;
11110 		node->ctx = ctx;
11111 		node->task = current;
11112 
11113 		ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
11114 					node, GFP_KERNEL));
11115 		if (ret) {
11116 			kfree(node);
11117 			return ret;
11118 		}
11119 
11120 		mutex_lock(&ctx->uring_lock);
11121 		list_add(&node->ctx_node, &ctx->tctx_list);
11122 		mutex_unlock(&ctx->uring_lock);
11123 	}
11124 	tctx->last = ctx;
11125 	return 0;
11126 }
11127 
11128 /*
11129  * Note that this task has used io_uring. We use it for cancelation purposes.
11130  */
io_uring_add_tctx_node(struct io_ring_ctx * ctx)11131 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
11132 {
11133 	struct io_uring_task *tctx = current->io_uring;
11134 
11135 	if (likely(tctx && tctx->last == ctx))
11136 		return 0;
11137 	return __io_uring_add_tctx_node(ctx);
11138 }
11139 
11140 /*
11141  * Remove this io_uring_file -> task mapping.
11142  */
io_uring_del_tctx_node(unsigned long index)11143 static __cold void io_uring_del_tctx_node(unsigned long index)
11144 {
11145 	struct io_uring_task *tctx = current->io_uring;
11146 	struct io_tctx_node *node;
11147 
11148 	if (!tctx)
11149 		return;
11150 	node = xa_erase(&tctx->xa, index);
11151 	if (!node)
11152 		return;
11153 
11154 	WARN_ON_ONCE(current != node->task);
11155 	WARN_ON_ONCE(list_empty(&node->ctx_node));
11156 
11157 	mutex_lock(&node->ctx->uring_lock);
11158 	list_del(&node->ctx_node);
11159 	mutex_unlock(&node->ctx->uring_lock);
11160 
11161 	if (tctx->last == node->ctx)
11162 		tctx->last = NULL;
11163 	kfree(node);
11164 }
11165 
io_uring_clean_tctx(struct io_uring_task * tctx)11166 static __cold void io_uring_clean_tctx(struct io_uring_task *tctx)
11167 {
11168 	struct io_wq *wq = tctx->io_wq;
11169 	struct io_tctx_node *node;
11170 	unsigned long index;
11171 
11172 	xa_for_each(&tctx->xa, index, node) {
11173 		io_uring_del_tctx_node(index);
11174 		cond_resched();
11175 	}
11176 	if (wq) {
11177 		/*
11178 		 * Must be after io_uring_del_tctx_node() (removes nodes under
11179 		 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
11180 		 */
11181 		io_wq_put_and_exit(wq);
11182 		tctx->io_wq = NULL;
11183 	}
11184 }
11185 
tctx_inflight(struct io_uring_task * tctx,bool tracked)11186 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
11187 {
11188 	if (tracked)
11189 		return atomic_read(&tctx->inflight_tracked);
11190 	return percpu_counter_sum(&tctx->inflight);
11191 }
11192 
11193 /*
11194  * Find any io_uring ctx that this task has registered or done IO on, and cancel
11195  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
11196  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)11197 static __cold void io_uring_cancel_generic(bool cancel_all,
11198 					   struct io_sq_data *sqd)
11199 {
11200 	struct io_uring_task *tctx = current->io_uring;
11201 	struct io_ring_ctx *ctx;
11202 	s64 inflight;
11203 	DEFINE_WAIT(wait);
11204 
11205 	WARN_ON_ONCE(sqd && sqd->thread != current);
11206 
11207 	if (!current->io_uring)
11208 		return;
11209 	if (tctx->io_wq)
11210 		io_wq_exit_start(tctx->io_wq);
11211 
11212 	atomic_inc(&tctx->in_idle);
11213 	do {
11214 		io_uring_drop_tctx_refs(current);
11215 		/* read completions before cancelations */
11216 		inflight = tctx_inflight(tctx, !cancel_all);
11217 		if (!inflight)
11218 			break;
11219 
11220 		if (!sqd) {
11221 			struct io_tctx_node *node;
11222 			unsigned long index;
11223 
11224 			xa_for_each(&tctx->xa, index, node) {
11225 				/* sqpoll task will cancel all its requests */
11226 				if (node->ctx->sq_data)
11227 					continue;
11228 				io_uring_try_cancel_requests(node->ctx, current,
11229 							     cancel_all);
11230 			}
11231 		} else {
11232 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
11233 				io_uring_try_cancel_requests(ctx, current,
11234 							     cancel_all);
11235 		}
11236 
11237 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
11238 		io_run_task_work();
11239 		io_uring_drop_tctx_refs(current);
11240 
11241 		/*
11242 		 * If we've seen completions, retry without waiting. This
11243 		 * avoids a race where a completion comes in before we did
11244 		 * prepare_to_wait().
11245 		 */
11246 		if (inflight == tctx_inflight(tctx, !cancel_all))
11247 			schedule();
11248 		finish_wait(&tctx->wait, &wait);
11249 	} while (1);
11250 
11251 	io_uring_clean_tctx(tctx);
11252 	if (cancel_all) {
11253 		/*
11254 		 * We shouldn't run task_works after cancel, so just leave
11255 		 * ->in_idle set for normal exit.
11256 		 */
11257 		atomic_dec(&tctx->in_idle);
11258 		/* for exec all current's requests should be gone, kill tctx */
11259 		__io_uring_free(current);
11260 	}
11261 }
11262 
__io_uring_cancel(bool cancel_all)11263 void __io_uring_cancel(bool cancel_all)
11264 {
11265 	io_uring_cancel_generic(cancel_all, NULL);
11266 }
11267 
io_uring_unreg_ringfd(void)11268 void io_uring_unreg_ringfd(void)
11269 {
11270 	struct io_uring_task *tctx = current->io_uring;
11271 	int i;
11272 
11273 	for (i = 0; i < IO_RINGFD_REG_MAX; i++) {
11274 		if (tctx->registered_rings[i]) {
11275 			fput(tctx->registered_rings[i]);
11276 			tctx->registered_rings[i] = NULL;
11277 		}
11278 	}
11279 }
11280 
io_ring_add_registered_fd(struct io_uring_task * tctx,int fd,int start,int end)11281 static int io_ring_add_registered_fd(struct io_uring_task *tctx, int fd,
11282 				     int start, int end)
11283 {
11284 	struct file *file;
11285 	int offset;
11286 
11287 	for (offset = start; offset < end; offset++) {
11288 		offset = array_index_nospec(offset, IO_RINGFD_REG_MAX);
11289 		if (tctx->registered_rings[offset])
11290 			continue;
11291 
11292 		file = fget(fd);
11293 		if (!file) {
11294 			return -EBADF;
11295 		} else if (file->f_op != &io_uring_fops) {
11296 			fput(file);
11297 			return -EOPNOTSUPP;
11298 		}
11299 		tctx->registered_rings[offset] = file;
11300 		return offset;
11301 	}
11302 
11303 	return -EBUSY;
11304 }
11305 
11306 /*
11307  * Register a ring fd to avoid fdget/fdput for each io_uring_enter()
11308  * invocation. User passes in an array of struct io_uring_rsrc_update
11309  * with ->data set to the ring_fd, and ->offset given for the desired
11310  * index. If no index is desired, application may set ->offset == -1U
11311  * and we'll find an available index. Returns number of entries
11312  * successfully processed, or < 0 on error if none were processed.
11313  */
io_ringfd_register(struct io_ring_ctx * ctx,void __user * __arg,unsigned nr_args)11314 static int io_ringfd_register(struct io_ring_ctx *ctx, void __user *__arg,
11315 			      unsigned nr_args)
11316 {
11317 	struct io_uring_rsrc_update __user *arg = __arg;
11318 	struct io_uring_rsrc_update reg;
11319 	struct io_uring_task *tctx;
11320 	int ret, i;
11321 
11322 	if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
11323 		return -EINVAL;
11324 
11325 	mutex_unlock(&ctx->uring_lock);
11326 	ret = io_uring_add_tctx_node(ctx);
11327 	mutex_lock(&ctx->uring_lock);
11328 	if (ret)
11329 		return ret;
11330 
11331 	tctx = current->io_uring;
11332 	for (i = 0; i < nr_args; i++) {
11333 		int start, end;
11334 
11335 		if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
11336 			ret = -EFAULT;
11337 			break;
11338 		}
11339 
11340 		if (reg.resv) {
11341 			ret = -EINVAL;
11342 			break;
11343 		}
11344 
11345 		if (reg.offset == -1U) {
11346 			start = 0;
11347 			end = IO_RINGFD_REG_MAX;
11348 		} else {
11349 			if (reg.offset >= IO_RINGFD_REG_MAX) {
11350 				ret = -EINVAL;
11351 				break;
11352 			}
11353 			start = reg.offset;
11354 			end = start + 1;
11355 		}
11356 
11357 		ret = io_ring_add_registered_fd(tctx, reg.data, start, end);
11358 		if (ret < 0)
11359 			break;
11360 
11361 		reg.offset = ret;
11362 		if (copy_to_user(&arg[i], &reg, sizeof(reg))) {
11363 			fput(tctx->registered_rings[reg.offset]);
11364 			tctx->registered_rings[reg.offset] = NULL;
11365 			ret = -EFAULT;
11366 			break;
11367 		}
11368 	}
11369 
11370 	return i ? i : ret;
11371 }
11372 
io_ringfd_unregister(struct io_ring_ctx * ctx,void __user * __arg,unsigned nr_args)11373 static int io_ringfd_unregister(struct io_ring_ctx *ctx, void __user *__arg,
11374 				unsigned nr_args)
11375 {
11376 	struct io_uring_rsrc_update __user *arg = __arg;
11377 	struct io_uring_task *tctx = current->io_uring;
11378 	struct io_uring_rsrc_update reg;
11379 	int ret = 0, i;
11380 
11381 	if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
11382 		return -EINVAL;
11383 	if (!tctx)
11384 		return 0;
11385 
11386 	for (i = 0; i < nr_args; i++) {
11387 		if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
11388 			ret = -EFAULT;
11389 			break;
11390 		}
11391 		if (reg.resv || reg.data || reg.offset >= IO_RINGFD_REG_MAX) {
11392 			ret = -EINVAL;
11393 			break;
11394 		}
11395 
11396 		reg.offset = array_index_nospec(reg.offset, IO_RINGFD_REG_MAX);
11397 		if (tctx->registered_rings[reg.offset]) {
11398 			fput(tctx->registered_rings[reg.offset]);
11399 			tctx->registered_rings[reg.offset] = NULL;
11400 		}
11401 	}
11402 
11403 	return i ? i : ret;
11404 }
11405 
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)11406 static void *io_uring_validate_mmap_request(struct file *file,
11407 					    loff_t pgoff, size_t sz)
11408 {
11409 	struct io_ring_ctx *ctx = file->private_data;
11410 	loff_t offset = pgoff << PAGE_SHIFT;
11411 	struct page *page;
11412 	void *ptr;
11413 
11414 	switch (offset) {
11415 	case IORING_OFF_SQ_RING:
11416 	case IORING_OFF_CQ_RING:
11417 		ptr = ctx->rings;
11418 		break;
11419 	case IORING_OFF_SQES:
11420 		ptr = ctx->sq_sqes;
11421 		break;
11422 	default:
11423 		return ERR_PTR(-EINVAL);
11424 	}
11425 
11426 	page = virt_to_head_page(ptr);
11427 	if (sz > page_size(page))
11428 		return ERR_PTR(-EINVAL);
11429 
11430 	return ptr;
11431 }
11432 
11433 #ifdef CONFIG_MMU
11434 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)11435 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
11436 {
11437 	size_t sz = vma->vm_end - vma->vm_start;
11438 	unsigned long pfn;
11439 	void *ptr;
11440 
11441 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
11442 	if (IS_ERR(ptr))
11443 		return PTR_ERR(ptr);
11444 
11445 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
11446 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
11447 }
11448 
11449 #else /* !CONFIG_MMU */
11450 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)11451 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
11452 {
11453 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
11454 }
11455 
io_uring_nommu_mmap_capabilities(struct file * file)11456 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
11457 {
11458 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
11459 }
11460 
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)11461 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
11462 	unsigned long addr, unsigned long len,
11463 	unsigned long pgoff, unsigned long flags)
11464 {
11465 	void *ptr;
11466 
11467 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
11468 	if (IS_ERR(ptr))
11469 		return PTR_ERR(ptr);
11470 
11471 	return (unsigned long) ptr;
11472 }
11473 
11474 #endif /* !CONFIG_MMU */
11475 
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)11476 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
11477 {
11478 	DEFINE_WAIT(wait);
11479 
11480 	do {
11481 		if (!io_sqring_full(ctx))
11482 			break;
11483 		prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
11484 
11485 		if (!io_sqring_full(ctx))
11486 			break;
11487 		schedule();
11488 	} while (!signal_pending(current));
11489 
11490 	finish_wait(&ctx->sqo_sq_wait, &wait);
11491 	return 0;
11492 }
11493 
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)11494 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
11495 {
11496 	if (flags & IORING_ENTER_EXT_ARG) {
11497 		struct io_uring_getevents_arg arg;
11498 
11499 		if (argsz != sizeof(arg))
11500 			return -EINVAL;
11501 		if (copy_from_user(&arg, argp, sizeof(arg)))
11502 			return -EFAULT;
11503 	}
11504 	return 0;
11505 }
11506 
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)11507 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
11508 			  struct __kernel_timespec __user **ts,
11509 			  const sigset_t __user **sig)
11510 {
11511 	struct io_uring_getevents_arg arg;
11512 
11513 	/*
11514 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
11515 	 * is just a pointer to the sigset_t.
11516 	 */
11517 	if (!(flags & IORING_ENTER_EXT_ARG)) {
11518 		*sig = (const sigset_t __user *) argp;
11519 		*ts = NULL;
11520 		return 0;
11521 	}
11522 
11523 	/*
11524 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
11525 	 * timespec and sigset_t pointers if good.
11526 	 */
11527 	if (*argsz != sizeof(arg))
11528 		return -EINVAL;
11529 	if (copy_from_user(&arg, argp, sizeof(arg)))
11530 		return -EFAULT;
11531 	if (arg.pad)
11532 		return -EINVAL;
11533 	*sig = u64_to_user_ptr(arg.sigmask);
11534 	*argsz = arg.sigmask_sz;
11535 	*ts = u64_to_user_ptr(arg.ts);
11536 	return 0;
11537 }
11538 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)11539 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
11540 		u32, min_complete, u32, flags, const void __user *, argp,
11541 		size_t, argsz)
11542 {
11543 	struct io_ring_ctx *ctx;
11544 	struct fd f;
11545 	long ret;
11546 
11547 	io_run_task_work();
11548 
11549 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
11550 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
11551 			       IORING_ENTER_REGISTERED_RING)))
11552 		return -EINVAL;
11553 
11554 	/*
11555 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
11556 	 * need only dereference our task private array to find it.
11557 	 */
11558 	if (flags & IORING_ENTER_REGISTERED_RING) {
11559 		struct io_uring_task *tctx = current->io_uring;
11560 
11561 		if (!tctx || fd >= IO_RINGFD_REG_MAX)
11562 			return -EINVAL;
11563 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
11564 		f.file = tctx->registered_rings[fd];
11565 		f.flags = 0;
11566 	} else {
11567 		f = fdget(fd);
11568 	}
11569 
11570 	if (unlikely(!f.file))
11571 		return -EBADF;
11572 
11573 	ret = -EOPNOTSUPP;
11574 	if (unlikely(f.file->f_op != &io_uring_fops))
11575 		goto out_fput;
11576 
11577 	ret = -ENXIO;
11578 	ctx = f.file->private_data;
11579 	if (unlikely(!percpu_ref_tryget(&ctx->refs)))
11580 		goto out_fput;
11581 
11582 	ret = -EBADFD;
11583 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
11584 		goto out;
11585 
11586 	/*
11587 	 * For SQ polling, the thread will do all submissions and completions.
11588 	 * Just return the requested submit count, and wake the thread if
11589 	 * we were asked to.
11590 	 */
11591 	ret = 0;
11592 	if (ctx->flags & IORING_SETUP_SQPOLL) {
11593 		io_cqring_overflow_flush(ctx);
11594 
11595 		if (unlikely(ctx->sq_data->thread == NULL)) {
11596 			ret = -EOWNERDEAD;
11597 			goto out;
11598 		}
11599 		if (flags & IORING_ENTER_SQ_WAKEUP)
11600 			wake_up(&ctx->sq_data->wait);
11601 		if (flags & IORING_ENTER_SQ_WAIT) {
11602 			ret = io_sqpoll_wait_sq(ctx);
11603 			if (ret)
11604 				goto out;
11605 		}
11606 		ret = to_submit;
11607 	} else if (to_submit) {
11608 		ret = io_uring_add_tctx_node(ctx);
11609 		if (unlikely(ret))
11610 			goto out;
11611 
11612 		mutex_lock(&ctx->uring_lock);
11613 		ret = io_submit_sqes(ctx, to_submit);
11614 		if (ret != to_submit) {
11615 			mutex_unlock(&ctx->uring_lock);
11616 			goto out;
11617 		}
11618 		if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll)
11619 			goto iopoll_locked;
11620 		mutex_unlock(&ctx->uring_lock);
11621 	}
11622 	if (flags & IORING_ENTER_GETEVENTS) {
11623 		int ret2;
11624 		if (ctx->syscall_iopoll) {
11625 			/*
11626 			 * We disallow the app entering submit/complete with
11627 			 * polling, but we still need to lock the ring to
11628 			 * prevent racing with polled issue that got punted to
11629 			 * a workqueue.
11630 			 */
11631 			mutex_lock(&ctx->uring_lock);
11632 iopoll_locked:
11633 			ret2 = io_validate_ext_arg(flags, argp, argsz);
11634 			if (likely(!ret2)) {
11635 				min_complete = min(min_complete,
11636 						   ctx->cq_entries);
11637 				ret2 = io_iopoll_check(ctx, min_complete);
11638 			}
11639 			mutex_unlock(&ctx->uring_lock);
11640 		} else {
11641 			const sigset_t __user *sig;
11642 			struct __kernel_timespec __user *ts;
11643 
11644 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
11645 			if (likely(!ret2)) {
11646 				min_complete = min(min_complete,
11647 						   ctx->cq_entries);
11648 				ret2 = io_cqring_wait(ctx, min_complete, sig,
11649 						      argsz, ts);
11650 			}
11651 		}
11652 
11653 		if (!ret) {
11654 			ret = ret2;
11655 
11656 			/*
11657 			 * EBADR indicates that one or more CQE were dropped.
11658 			 * Once the user has been informed we can clear the bit
11659 			 * as they are obviously ok with those drops.
11660 			 */
11661 			if (unlikely(ret2 == -EBADR))
11662 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
11663 					  &ctx->check_cq);
11664 		}
11665 	}
11666 
11667 out:
11668 	percpu_ref_put(&ctx->refs);
11669 out_fput:
11670 	fdput(f);
11671 	return ret;
11672 }
11673 
11674 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file * m,unsigned int id,const struct cred * cred)11675 static __cold int io_uring_show_cred(struct seq_file *m, unsigned int id,
11676 		const struct cred *cred)
11677 {
11678 	struct user_namespace *uns = seq_user_ns(m);
11679 	struct group_info *gi;
11680 	kernel_cap_t cap;
11681 	unsigned __capi;
11682 	int g;
11683 
11684 	seq_printf(m, "%5d\n", id);
11685 	seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
11686 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
11687 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
11688 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
11689 	seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
11690 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
11691 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
11692 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
11693 	seq_puts(m, "\n\tGroups:\t");
11694 	gi = cred->group_info;
11695 	for (g = 0; g < gi->ngroups; g++) {
11696 		seq_put_decimal_ull(m, g ? " " : "",
11697 					from_kgid_munged(uns, gi->gid[g]));
11698 	}
11699 	seq_puts(m, "\n\tCapEff:\t");
11700 	cap = cred->cap_effective;
11701 	CAP_FOR_EACH_U32(__capi)
11702 		seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
11703 	seq_putc(m, '\n');
11704 	return 0;
11705 }
11706 
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)11707 static __cold void __io_uring_show_fdinfo(struct io_ring_ctx *ctx,
11708 					  struct seq_file *m)
11709 {
11710 	struct io_sq_data *sq = NULL;
11711 	struct io_overflow_cqe *ocqe;
11712 	struct io_rings *r = ctx->rings;
11713 	unsigned int sq_mask = ctx->sq_entries - 1, cq_mask = ctx->cq_entries - 1;
11714 	unsigned int sq_head = READ_ONCE(r->sq.head);
11715 	unsigned int sq_tail = READ_ONCE(r->sq.tail);
11716 	unsigned int cq_head = READ_ONCE(r->cq.head);
11717 	unsigned int cq_tail = READ_ONCE(r->cq.tail);
11718 	unsigned int cq_shift = 0;
11719 	unsigned int sq_entries, cq_entries;
11720 	bool has_lock;
11721 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
11722 	unsigned int i;
11723 
11724 	if (is_cqe32)
11725 		cq_shift = 1;
11726 
11727 	/*
11728 	 * we may get imprecise sqe and cqe info if uring is actively running
11729 	 * since we get cached_sq_head and cached_cq_tail without uring_lock
11730 	 * and sq_tail and cq_head are changed by userspace. But it's ok since
11731 	 * we usually use these info when it is stuck.
11732 	 */
11733 	seq_printf(m, "SqMask:\t0x%x\n", sq_mask);
11734 	seq_printf(m, "SqHead:\t%u\n", sq_head);
11735 	seq_printf(m, "SqTail:\t%u\n", sq_tail);
11736 	seq_printf(m, "CachedSqHead:\t%u\n", ctx->cached_sq_head);
11737 	seq_printf(m, "CqMask:\t0x%x\n", cq_mask);
11738 	seq_printf(m, "CqHead:\t%u\n", cq_head);
11739 	seq_printf(m, "CqTail:\t%u\n", cq_tail);
11740 	seq_printf(m, "CachedCqTail:\t%u\n", ctx->cached_cq_tail);
11741 	seq_printf(m, "SQEs:\t%u\n", sq_tail - ctx->cached_sq_head);
11742 	sq_entries = min(sq_tail - sq_head, ctx->sq_entries);
11743 	for (i = 0; i < sq_entries; i++) {
11744 		unsigned int entry = i + sq_head;
11745 		unsigned int sq_idx = READ_ONCE(ctx->sq_array[entry & sq_mask]);
11746 		struct io_uring_sqe *sqe;
11747 
11748 		if (sq_idx > sq_mask)
11749 			continue;
11750 		sqe = &ctx->sq_sqes[sq_idx];
11751 		seq_printf(m, "%5u: opcode:%d, fd:%d, flags:%x, user_data:%llu\n",
11752 			   sq_idx, sqe->opcode, sqe->fd, sqe->flags,
11753 			   sqe->user_data);
11754 	}
11755 	seq_printf(m, "CQEs:\t%u\n", cq_tail - cq_head);
11756 	cq_entries = min(cq_tail - cq_head, ctx->cq_entries);
11757 	for (i = 0; i < cq_entries; i++) {
11758 		unsigned int entry = i + cq_head;
11759 		struct io_uring_cqe *cqe = &r->cqes[(entry & cq_mask) << cq_shift];
11760 
11761 		if (!is_cqe32) {
11762 			seq_printf(m, "%5u: user_data:%llu, res:%d, flag:%x\n",
11763 			   entry & cq_mask, cqe->user_data, cqe->res,
11764 			   cqe->flags);
11765 		} else {
11766 			seq_printf(m, "%5u: user_data:%llu, res:%d, flag:%x, "
11767 				"extra1:%llu, extra2:%llu\n",
11768 				entry & cq_mask, cqe->user_data, cqe->res,
11769 				cqe->flags, cqe->big_cqe[0], cqe->big_cqe[1]);
11770 		}
11771 	}
11772 
11773 	/*
11774 	 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
11775 	 * since fdinfo case grabs it in the opposite direction of normal use
11776 	 * cases. If we fail to get the lock, we just don't iterate any
11777 	 * structures that could be going away outside the io_uring mutex.
11778 	 */
11779 	has_lock = mutex_trylock(&ctx->uring_lock);
11780 
11781 	if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
11782 		sq = ctx->sq_data;
11783 		if (!sq->thread)
11784 			sq = NULL;
11785 	}
11786 
11787 	seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
11788 	seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
11789 	seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
11790 	for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
11791 		struct file *f = io_file_from_index(ctx, i);
11792 
11793 		if (f)
11794 			seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
11795 		else
11796 			seq_printf(m, "%5u: <none>\n", i);
11797 	}
11798 	seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
11799 	for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
11800 		struct io_mapped_ubuf *buf = ctx->user_bufs[i];
11801 		unsigned int len = buf->ubuf_end - buf->ubuf;
11802 
11803 		seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
11804 	}
11805 	if (has_lock && !xa_empty(&ctx->personalities)) {
11806 		unsigned long index;
11807 		const struct cred *cred;
11808 
11809 		seq_printf(m, "Personalities:\n");
11810 		xa_for_each(&ctx->personalities, index, cred)
11811 			io_uring_show_cred(m, index, cred);
11812 	}
11813 	if (has_lock)
11814 		mutex_unlock(&ctx->uring_lock);
11815 
11816 	seq_puts(m, "PollList:\n");
11817 	spin_lock(&ctx->completion_lock);
11818 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
11819 		struct hlist_head *list = &ctx->cancel_hash[i];
11820 		struct io_kiocb *req;
11821 
11822 		hlist_for_each_entry(req, list, hash_node)
11823 			seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
11824 					task_work_pending(req->task));
11825 	}
11826 
11827 	seq_puts(m, "CqOverflowList:\n");
11828 	list_for_each_entry(ocqe, &ctx->cq_overflow_list, list) {
11829 		struct io_uring_cqe *cqe = &ocqe->cqe;
11830 
11831 		seq_printf(m, "  user_data=%llu, res=%d, flags=%x\n",
11832 			   cqe->user_data, cqe->res, cqe->flags);
11833 
11834 	}
11835 
11836 	spin_unlock(&ctx->completion_lock);
11837 }
11838 
io_uring_show_fdinfo(struct seq_file * m,struct file * f)11839 static __cold void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
11840 {
11841 	struct io_ring_ctx *ctx = f->private_data;
11842 
11843 	if (percpu_ref_tryget(&ctx->refs)) {
11844 		__io_uring_show_fdinfo(ctx, m);
11845 		percpu_ref_put(&ctx->refs);
11846 	}
11847 }
11848 #endif
11849 
11850 static const struct file_operations io_uring_fops = {
11851 	.release	= io_uring_release,
11852 	.mmap		= io_uring_mmap,
11853 #ifndef CONFIG_MMU
11854 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
11855 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
11856 #endif
11857 	.poll		= io_uring_poll,
11858 #ifdef CONFIG_PROC_FS
11859 	.show_fdinfo	= io_uring_show_fdinfo,
11860 #endif
11861 };
11862 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)11863 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
11864 					 struct io_uring_params *p)
11865 {
11866 	struct io_rings *rings;
11867 	size_t size, sq_array_offset;
11868 
11869 	/* make sure these are sane, as we already accounted them */
11870 	ctx->sq_entries = p->sq_entries;
11871 	ctx->cq_entries = p->cq_entries;
11872 
11873 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
11874 	if (size == SIZE_MAX)
11875 		return -EOVERFLOW;
11876 
11877 	rings = io_mem_alloc(size);
11878 	if (!rings)
11879 		return -ENOMEM;
11880 
11881 	ctx->rings = rings;
11882 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
11883 	rings->sq_ring_mask = p->sq_entries - 1;
11884 	rings->cq_ring_mask = p->cq_entries - 1;
11885 	rings->sq_ring_entries = p->sq_entries;
11886 	rings->cq_ring_entries = p->cq_entries;
11887 
11888 	if (p->flags & IORING_SETUP_SQE128)
11889 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
11890 	else
11891 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
11892 	if (size == SIZE_MAX) {
11893 		io_mem_free(ctx->rings);
11894 		ctx->rings = NULL;
11895 		return -EOVERFLOW;
11896 	}
11897 
11898 	ctx->sq_sqes = io_mem_alloc(size);
11899 	if (!ctx->sq_sqes) {
11900 		io_mem_free(ctx->rings);
11901 		ctx->rings = NULL;
11902 		return -ENOMEM;
11903 	}
11904 
11905 	return 0;
11906 }
11907 
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)11908 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
11909 {
11910 	int ret, fd;
11911 
11912 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
11913 	if (fd < 0)
11914 		return fd;
11915 
11916 	ret = io_uring_add_tctx_node(ctx);
11917 	if (ret) {
11918 		put_unused_fd(fd);
11919 		return ret;
11920 	}
11921 	fd_install(fd, file);
11922 	return fd;
11923 }
11924 
11925 /*
11926  * Allocate an anonymous fd, this is what constitutes the application
11927  * visible backing of an io_uring instance. The application mmaps this
11928  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
11929  * we have to tie this fd to a socket for file garbage collection purposes.
11930  */
io_uring_get_file(struct io_ring_ctx * ctx)11931 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
11932 {
11933 	struct file *file;
11934 #if defined(CONFIG_UNIX)
11935 	int ret;
11936 
11937 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
11938 				&ctx->ring_sock);
11939 	if (ret)
11940 		return ERR_PTR(ret);
11941 #endif
11942 
11943 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
11944 					 O_RDWR | O_CLOEXEC, NULL);
11945 #if defined(CONFIG_UNIX)
11946 	if (IS_ERR(file)) {
11947 		sock_release(ctx->ring_sock);
11948 		ctx->ring_sock = NULL;
11949 	} else {
11950 		ctx->ring_sock->file = file;
11951 	}
11952 #endif
11953 	return file;
11954 }
11955 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)11956 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
11957 				  struct io_uring_params __user *params)
11958 {
11959 	struct io_ring_ctx *ctx;
11960 	struct file *file;
11961 	int ret;
11962 
11963 	if (!entries)
11964 		return -EINVAL;
11965 	if (entries > IORING_MAX_ENTRIES) {
11966 		if (!(p->flags & IORING_SETUP_CLAMP))
11967 			return -EINVAL;
11968 		entries = IORING_MAX_ENTRIES;
11969 	}
11970 
11971 	/*
11972 	 * Use twice as many entries for the CQ ring. It's possible for the
11973 	 * application to drive a higher depth than the size of the SQ ring,
11974 	 * since the sqes are only used at submission time. This allows for
11975 	 * some flexibility in overcommitting a bit. If the application has
11976 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
11977 	 * of CQ ring entries manually.
11978 	 */
11979 	p->sq_entries = roundup_pow_of_two(entries);
11980 	if (p->flags & IORING_SETUP_CQSIZE) {
11981 		/*
11982 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
11983 		 * to a power-of-two, if it isn't already. We do NOT impose
11984 		 * any cq vs sq ring sizing.
11985 		 */
11986 		if (!p->cq_entries)
11987 			return -EINVAL;
11988 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
11989 			if (!(p->flags & IORING_SETUP_CLAMP))
11990 				return -EINVAL;
11991 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
11992 		}
11993 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
11994 		if (p->cq_entries < p->sq_entries)
11995 			return -EINVAL;
11996 	} else {
11997 		p->cq_entries = 2 * p->sq_entries;
11998 	}
11999 
12000 	ctx = io_ring_ctx_alloc(p);
12001 	if (!ctx)
12002 		return -ENOMEM;
12003 
12004 	/*
12005 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
12006 	 * space applications don't need to do io completion events
12007 	 * polling again, they can rely on io_sq_thread to do polling
12008 	 * work, which can reduce cpu usage and uring_lock contention.
12009 	 */
12010 	if (ctx->flags & IORING_SETUP_IOPOLL &&
12011 	    !(ctx->flags & IORING_SETUP_SQPOLL))
12012 		ctx->syscall_iopoll = 1;
12013 
12014 	ctx->compat = in_compat_syscall();
12015 	if (!capable(CAP_IPC_LOCK))
12016 		ctx->user = get_uid(current_user());
12017 
12018 	/*
12019 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
12020 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
12021 	 */
12022 	ret = -EINVAL;
12023 	if (ctx->flags & IORING_SETUP_SQPOLL) {
12024 		/* IPI related flags don't make sense with SQPOLL */
12025 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
12026 				  IORING_SETUP_TASKRUN_FLAG))
12027 			goto err;
12028 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
12029 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
12030 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
12031 	} else {
12032 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
12033 			goto err;
12034 		ctx->notify_method = TWA_SIGNAL;
12035 	}
12036 
12037 	/*
12038 	 * This is just grabbed for accounting purposes. When a process exits,
12039 	 * the mm is exited and dropped before the files, hence we need to hang
12040 	 * on to this mm purely for the purposes of being able to unaccount
12041 	 * memory (locked/pinned vm). It's not used for anything else.
12042 	 */
12043 	mmgrab(current->mm);
12044 	ctx->mm_account = current->mm;
12045 
12046 	ret = io_allocate_scq_urings(ctx, p);
12047 	if (ret)
12048 		goto err;
12049 
12050 	ret = io_sq_offload_create(ctx, p);
12051 	if (ret)
12052 		goto err;
12053 	/* always set a rsrc node */
12054 	ret = io_rsrc_node_switch_start(ctx);
12055 	if (ret)
12056 		goto err;
12057 	io_rsrc_node_switch(ctx, NULL);
12058 
12059 	memset(&p->sq_off, 0, sizeof(p->sq_off));
12060 	p->sq_off.head = offsetof(struct io_rings, sq.head);
12061 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
12062 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
12063 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
12064 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
12065 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
12066 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
12067 
12068 	memset(&p->cq_off, 0, sizeof(p->cq_off));
12069 	p->cq_off.head = offsetof(struct io_rings, cq.head);
12070 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
12071 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
12072 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
12073 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
12074 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
12075 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
12076 
12077 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
12078 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
12079 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
12080 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
12081 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
12082 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
12083 			IORING_FEAT_LINKED_FILE;
12084 
12085 	if (copy_to_user(params, p, sizeof(*p))) {
12086 		ret = -EFAULT;
12087 		goto err;
12088 	}
12089 
12090 	file = io_uring_get_file(ctx);
12091 	if (IS_ERR(file)) {
12092 		ret = PTR_ERR(file);
12093 		goto err;
12094 	}
12095 
12096 	/*
12097 	 * Install ring fd as the very last thing, so we don't risk someone
12098 	 * having closed it before we finish setup
12099 	 */
12100 	ret = io_uring_install_fd(ctx, file);
12101 	if (ret < 0) {
12102 		/* fput will clean it up */
12103 		fput(file);
12104 		return ret;
12105 	}
12106 
12107 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
12108 	return ret;
12109 err:
12110 	io_ring_ctx_wait_and_kill(ctx);
12111 	return ret;
12112 }
12113 
12114 /*
12115  * Sets up an aio uring context, and returns the fd. Applications asks for a
12116  * ring size, we return the actual sq/cq ring sizes (among other things) in the
12117  * params structure passed in.
12118  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)12119 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
12120 {
12121 	struct io_uring_params p;
12122 	int i;
12123 
12124 	if (copy_from_user(&p, params, sizeof(p)))
12125 		return -EFAULT;
12126 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
12127 		if (p.resv[i])
12128 			return -EINVAL;
12129 	}
12130 
12131 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
12132 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
12133 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
12134 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
12135 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
12136 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32))
12137 		return -EINVAL;
12138 
12139 	return io_uring_create(entries, &p, params);
12140 }
12141 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)12142 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
12143 		struct io_uring_params __user *, params)
12144 {
12145 	return io_uring_setup(entries, params);
12146 }
12147 
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)12148 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
12149 			   unsigned nr_args)
12150 {
12151 	struct io_uring_probe *p;
12152 	size_t size;
12153 	int i, ret;
12154 
12155 	size = struct_size(p, ops, nr_args);
12156 	if (size == SIZE_MAX)
12157 		return -EOVERFLOW;
12158 	p = kzalloc(size, GFP_KERNEL);
12159 	if (!p)
12160 		return -ENOMEM;
12161 
12162 	ret = -EFAULT;
12163 	if (copy_from_user(p, arg, size))
12164 		goto out;
12165 	ret = -EINVAL;
12166 	if (memchr_inv(p, 0, size))
12167 		goto out;
12168 
12169 	p->last_op = IORING_OP_LAST - 1;
12170 	if (nr_args > IORING_OP_LAST)
12171 		nr_args = IORING_OP_LAST;
12172 
12173 	for (i = 0; i < nr_args; i++) {
12174 		p->ops[i].op = i;
12175 		if (!io_op_defs[i].not_supported)
12176 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
12177 	}
12178 	p->ops_len = i;
12179 
12180 	ret = 0;
12181 	if (copy_to_user(arg, p, size))
12182 		ret = -EFAULT;
12183 out:
12184 	kfree(p);
12185 	return ret;
12186 }
12187 
io_register_personality(struct io_ring_ctx * ctx)12188 static int io_register_personality(struct io_ring_ctx *ctx)
12189 {
12190 	const struct cred *creds;
12191 	u32 id;
12192 	int ret;
12193 
12194 	creds = get_current_cred();
12195 
12196 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
12197 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
12198 	if (ret < 0) {
12199 		put_cred(creds);
12200 		return ret;
12201 	}
12202 	return id;
12203 }
12204 
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)12205 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
12206 					   void __user *arg, unsigned int nr_args)
12207 {
12208 	struct io_uring_restriction *res;
12209 	size_t size;
12210 	int i, ret;
12211 
12212 	/* Restrictions allowed only if rings started disabled */
12213 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
12214 		return -EBADFD;
12215 
12216 	/* We allow only a single restrictions registration */
12217 	if (ctx->restrictions.registered)
12218 		return -EBUSY;
12219 
12220 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
12221 		return -EINVAL;
12222 
12223 	size = array_size(nr_args, sizeof(*res));
12224 	if (size == SIZE_MAX)
12225 		return -EOVERFLOW;
12226 
12227 	res = memdup_user(arg, size);
12228 	if (IS_ERR(res))
12229 		return PTR_ERR(res);
12230 
12231 	ret = 0;
12232 
12233 	for (i = 0; i < nr_args; i++) {
12234 		switch (res[i].opcode) {
12235 		case IORING_RESTRICTION_REGISTER_OP:
12236 			if (res[i].register_op >= IORING_REGISTER_LAST) {
12237 				ret = -EINVAL;
12238 				goto out;
12239 			}
12240 
12241 			__set_bit(res[i].register_op,
12242 				  ctx->restrictions.register_op);
12243 			break;
12244 		case IORING_RESTRICTION_SQE_OP:
12245 			if (res[i].sqe_op >= IORING_OP_LAST) {
12246 				ret = -EINVAL;
12247 				goto out;
12248 			}
12249 
12250 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
12251 			break;
12252 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
12253 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
12254 			break;
12255 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
12256 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
12257 			break;
12258 		default:
12259 			ret = -EINVAL;
12260 			goto out;
12261 		}
12262 	}
12263 
12264 out:
12265 	/* Reset all restrictions if an error happened */
12266 	if (ret != 0)
12267 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
12268 	else
12269 		ctx->restrictions.registered = true;
12270 
12271 	kfree(res);
12272 	return ret;
12273 }
12274 
io_register_enable_rings(struct io_ring_ctx * ctx)12275 static int io_register_enable_rings(struct io_ring_ctx *ctx)
12276 {
12277 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
12278 		return -EBADFD;
12279 
12280 	if (ctx->restrictions.registered)
12281 		ctx->restricted = 1;
12282 
12283 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
12284 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
12285 		wake_up(&ctx->sq_data->wait);
12286 	return 0;
12287 }
12288 
__io_register_rsrc_update(struct io_ring_ctx * ctx,unsigned type,struct io_uring_rsrc_update2 * up,unsigned nr_args)12289 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
12290 				     struct io_uring_rsrc_update2 *up,
12291 				     unsigned nr_args)
12292 {
12293 	__u32 tmp;
12294 	int err;
12295 
12296 	if (check_add_overflow(up->offset, nr_args, &tmp))
12297 		return -EOVERFLOW;
12298 	err = io_rsrc_node_switch_start(ctx);
12299 	if (err)
12300 		return err;
12301 
12302 	switch (type) {
12303 	case IORING_RSRC_FILE:
12304 		return __io_sqe_files_update(ctx, up, nr_args);
12305 	case IORING_RSRC_BUFFER:
12306 		return __io_sqe_buffers_update(ctx, up, nr_args);
12307 	}
12308 	return -EINVAL;
12309 }
12310 
io_register_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)12311 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
12312 				    unsigned nr_args)
12313 {
12314 	struct io_uring_rsrc_update2 up;
12315 
12316 	if (!nr_args)
12317 		return -EINVAL;
12318 	memset(&up, 0, sizeof(up));
12319 	if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
12320 		return -EFAULT;
12321 	if (up.resv || up.resv2)
12322 		return -EINVAL;
12323 	return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
12324 }
12325 
io_register_rsrc_update(struct io_ring_ctx * ctx,void __user * arg,unsigned size,unsigned type)12326 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
12327 				   unsigned size, unsigned type)
12328 {
12329 	struct io_uring_rsrc_update2 up;
12330 
12331 	if (size != sizeof(up))
12332 		return -EINVAL;
12333 	if (copy_from_user(&up, arg, sizeof(up)))
12334 		return -EFAULT;
12335 	if (!up.nr || up.resv || up.resv2)
12336 		return -EINVAL;
12337 	return __io_register_rsrc_update(ctx, type, &up, up.nr);
12338 }
12339 
io_register_rsrc(struct io_ring_ctx * ctx,void __user * arg,unsigned int size,unsigned int type)12340 static __cold int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
12341 			    unsigned int size, unsigned int type)
12342 {
12343 	struct io_uring_rsrc_register rr;
12344 
12345 	/* keep it extendible */
12346 	if (size != sizeof(rr))
12347 		return -EINVAL;
12348 
12349 	memset(&rr, 0, sizeof(rr));
12350 	if (copy_from_user(&rr, arg, size))
12351 		return -EFAULT;
12352 	if (!rr.nr || rr.resv2)
12353 		return -EINVAL;
12354 	if (rr.flags & ~IORING_RSRC_REGISTER_SPARSE)
12355 		return -EINVAL;
12356 
12357 	switch (type) {
12358 	case IORING_RSRC_FILE:
12359 		if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
12360 			break;
12361 		return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
12362 					     rr.nr, u64_to_user_ptr(rr.tags));
12363 	case IORING_RSRC_BUFFER:
12364 		if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
12365 			break;
12366 		return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
12367 					       rr.nr, u64_to_user_ptr(rr.tags));
12368 	}
12369 	return -EINVAL;
12370 }
12371 
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)12372 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
12373 				       void __user *arg, unsigned len)
12374 {
12375 	struct io_uring_task *tctx = current->io_uring;
12376 	cpumask_var_t new_mask;
12377 	int ret;
12378 
12379 	if (!tctx || !tctx->io_wq)
12380 		return -EINVAL;
12381 
12382 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
12383 		return -ENOMEM;
12384 
12385 	cpumask_clear(new_mask);
12386 	if (len > cpumask_size())
12387 		len = cpumask_size();
12388 
12389 	if (in_compat_syscall()) {
12390 		ret = compat_get_bitmap(cpumask_bits(new_mask),
12391 					(const compat_ulong_t __user *)arg,
12392 					len * 8 /* CHAR_BIT */);
12393 	} else {
12394 		ret = copy_from_user(new_mask, arg, len);
12395 	}
12396 
12397 	if (ret) {
12398 		free_cpumask_var(new_mask);
12399 		return -EFAULT;
12400 	}
12401 
12402 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
12403 	free_cpumask_var(new_mask);
12404 	return ret;
12405 }
12406 
io_unregister_iowq_aff(struct io_ring_ctx * ctx)12407 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
12408 {
12409 	struct io_uring_task *tctx = current->io_uring;
12410 
12411 	if (!tctx || !tctx->io_wq)
12412 		return -EINVAL;
12413 
12414 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
12415 }
12416 
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)12417 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
12418 					       void __user *arg)
12419 	__must_hold(&ctx->uring_lock)
12420 {
12421 	struct io_tctx_node *node;
12422 	struct io_uring_task *tctx = NULL;
12423 	struct io_sq_data *sqd = NULL;
12424 	__u32 new_count[2];
12425 	int i, ret;
12426 
12427 	if (copy_from_user(new_count, arg, sizeof(new_count)))
12428 		return -EFAULT;
12429 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
12430 		if (new_count[i] > INT_MAX)
12431 			return -EINVAL;
12432 
12433 	if (ctx->flags & IORING_SETUP_SQPOLL) {
12434 		sqd = ctx->sq_data;
12435 		if (sqd) {
12436 			/*
12437 			 * Observe the correct sqd->lock -> ctx->uring_lock
12438 			 * ordering. Fine to drop uring_lock here, we hold
12439 			 * a ref to the ctx.
12440 			 */
12441 			refcount_inc(&sqd->refs);
12442 			mutex_unlock(&ctx->uring_lock);
12443 			mutex_lock(&sqd->lock);
12444 			mutex_lock(&ctx->uring_lock);
12445 			if (sqd->thread)
12446 				tctx = sqd->thread->io_uring;
12447 		}
12448 	} else {
12449 		tctx = current->io_uring;
12450 	}
12451 
12452 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
12453 
12454 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
12455 		if (new_count[i])
12456 			ctx->iowq_limits[i] = new_count[i];
12457 	ctx->iowq_limits_set = true;
12458 
12459 	if (tctx && tctx->io_wq) {
12460 		ret = io_wq_max_workers(tctx->io_wq, new_count);
12461 		if (ret)
12462 			goto err;
12463 	} else {
12464 		memset(new_count, 0, sizeof(new_count));
12465 	}
12466 
12467 	if (sqd) {
12468 		mutex_unlock(&sqd->lock);
12469 		io_put_sq_data(sqd);
12470 	}
12471 
12472 	if (copy_to_user(arg, new_count, sizeof(new_count)))
12473 		return -EFAULT;
12474 
12475 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
12476 	if (sqd)
12477 		return 0;
12478 
12479 	/* now propagate the restriction to all registered users */
12480 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
12481 		struct io_uring_task *tctx = node->task->io_uring;
12482 
12483 		if (WARN_ON_ONCE(!tctx->io_wq))
12484 			continue;
12485 
12486 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
12487 			new_count[i] = ctx->iowq_limits[i];
12488 		/* ignore errors, it always returns zero anyway */
12489 		(void)io_wq_max_workers(tctx->io_wq, new_count);
12490 	}
12491 	return 0;
12492 err:
12493 	if (sqd) {
12494 		mutex_unlock(&sqd->lock);
12495 		io_put_sq_data(sqd);
12496 	}
12497 	return ret;
12498 }
12499 
io_register_pbuf_ring(struct io_ring_ctx * ctx,void __user * arg)12500 static int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
12501 {
12502 	struct io_uring_buf_ring *br;
12503 	struct io_uring_buf_reg reg;
12504 	struct io_buffer_list *bl, *free_bl = NULL;
12505 	struct page **pages;
12506 	int nr_pages;
12507 
12508 	if (copy_from_user(&reg, arg, sizeof(reg)))
12509 		return -EFAULT;
12510 
12511 	if (reg.pad || reg.resv[0] || reg.resv[1] || reg.resv[2])
12512 		return -EINVAL;
12513 	if (!reg.ring_addr)
12514 		return -EFAULT;
12515 	if (reg.ring_addr & ~PAGE_MASK)
12516 		return -EINVAL;
12517 	if (!is_power_of_2(reg.ring_entries))
12518 		return -EINVAL;
12519 
12520 	/* cannot disambiguate full vs empty due to head/tail size */
12521 	if (reg.ring_entries >= 65536)
12522 		return -EINVAL;
12523 
12524 	if (unlikely(reg.bgid < BGID_ARRAY && !ctx->io_bl)) {
12525 		int ret = io_init_bl_list(ctx);
12526 		if (ret)
12527 			return ret;
12528 	}
12529 
12530 	bl = io_buffer_get_list(ctx, reg.bgid);
12531 	if (bl) {
12532 		/* if mapped buffer ring OR classic exists, don't allow */
12533 		if (bl->buf_nr_pages || !list_empty(&bl->buf_list))
12534 			return -EEXIST;
12535 	} else {
12536 		free_bl = bl = kzalloc(sizeof(*bl), GFP_KERNEL);
12537 		if (!bl)
12538 			return -ENOMEM;
12539 	}
12540 
12541 	pages = io_pin_pages(reg.ring_addr,
12542 			     struct_size(br, bufs, reg.ring_entries),
12543 			     &nr_pages);
12544 	if (IS_ERR(pages)) {
12545 		kfree(free_bl);
12546 		return PTR_ERR(pages);
12547 	}
12548 
12549 	br = page_address(pages[0]);
12550 	bl->buf_pages = pages;
12551 	bl->buf_nr_pages = nr_pages;
12552 	bl->nr_entries = reg.ring_entries;
12553 	bl->buf_ring = br;
12554 	bl->mask = reg.ring_entries - 1;
12555 	io_buffer_add_list(ctx, bl, reg.bgid);
12556 	return 0;
12557 }
12558 
io_unregister_pbuf_ring(struct io_ring_ctx * ctx,void __user * arg)12559 static int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
12560 {
12561 	struct io_uring_buf_reg reg;
12562 	struct io_buffer_list *bl;
12563 
12564 	if (copy_from_user(&reg, arg, sizeof(reg)))
12565 		return -EFAULT;
12566 	if (reg.pad || reg.resv[0] || reg.resv[1] || reg.resv[2])
12567 		return -EINVAL;
12568 
12569 	bl = io_buffer_get_list(ctx, reg.bgid);
12570 	if (!bl)
12571 		return -ENOENT;
12572 	if (!bl->buf_nr_pages)
12573 		return -EINVAL;
12574 
12575 	__io_remove_buffers(ctx, bl, -1U);
12576 	if (bl->bgid >= BGID_ARRAY) {
12577 		xa_erase(&ctx->io_bl_xa, bl->bgid);
12578 		kfree(bl);
12579 	}
12580 	return 0;
12581 }
12582 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)12583 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
12584 			       void __user *arg, unsigned nr_args)
12585 	__releases(ctx->uring_lock)
12586 	__acquires(ctx->uring_lock)
12587 {
12588 	int ret;
12589 
12590 	/*
12591 	 * We're inside the ring mutex, if the ref is already dying, then
12592 	 * someone else killed the ctx or is already going through
12593 	 * io_uring_register().
12594 	 */
12595 	if (percpu_ref_is_dying(&ctx->refs))
12596 		return -ENXIO;
12597 
12598 	if (ctx->restricted) {
12599 		if (opcode >= IORING_REGISTER_LAST)
12600 			return -EINVAL;
12601 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
12602 		if (!test_bit(opcode, ctx->restrictions.register_op))
12603 			return -EACCES;
12604 	}
12605 
12606 	switch (opcode) {
12607 	case IORING_REGISTER_BUFFERS:
12608 		ret = -EFAULT;
12609 		if (!arg)
12610 			break;
12611 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
12612 		break;
12613 	case IORING_UNREGISTER_BUFFERS:
12614 		ret = -EINVAL;
12615 		if (arg || nr_args)
12616 			break;
12617 		ret = io_sqe_buffers_unregister(ctx);
12618 		break;
12619 	case IORING_REGISTER_FILES:
12620 		ret = -EFAULT;
12621 		if (!arg)
12622 			break;
12623 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
12624 		break;
12625 	case IORING_UNREGISTER_FILES:
12626 		ret = -EINVAL;
12627 		if (arg || nr_args)
12628 			break;
12629 		ret = io_sqe_files_unregister(ctx);
12630 		break;
12631 	case IORING_REGISTER_FILES_UPDATE:
12632 		ret = io_register_files_update(ctx, arg, nr_args);
12633 		break;
12634 	case IORING_REGISTER_EVENTFD:
12635 		ret = -EINVAL;
12636 		if (nr_args != 1)
12637 			break;
12638 		ret = io_eventfd_register(ctx, arg, 0);
12639 		break;
12640 	case IORING_REGISTER_EVENTFD_ASYNC:
12641 		ret = -EINVAL;
12642 		if (nr_args != 1)
12643 			break;
12644 		ret = io_eventfd_register(ctx, arg, 1);
12645 		break;
12646 	case IORING_UNREGISTER_EVENTFD:
12647 		ret = -EINVAL;
12648 		if (arg || nr_args)
12649 			break;
12650 		ret = io_eventfd_unregister(ctx);
12651 		break;
12652 	case IORING_REGISTER_PROBE:
12653 		ret = -EINVAL;
12654 		if (!arg || nr_args > 256)
12655 			break;
12656 		ret = io_probe(ctx, arg, nr_args);
12657 		break;
12658 	case IORING_REGISTER_PERSONALITY:
12659 		ret = -EINVAL;
12660 		if (arg || nr_args)
12661 			break;
12662 		ret = io_register_personality(ctx);
12663 		break;
12664 	case IORING_UNREGISTER_PERSONALITY:
12665 		ret = -EINVAL;
12666 		if (arg)
12667 			break;
12668 		ret = io_unregister_personality(ctx, nr_args);
12669 		break;
12670 	case IORING_REGISTER_ENABLE_RINGS:
12671 		ret = -EINVAL;
12672 		if (arg || nr_args)
12673 			break;
12674 		ret = io_register_enable_rings(ctx);
12675 		break;
12676 	case IORING_REGISTER_RESTRICTIONS:
12677 		ret = io_register_restrictions(ctx, arg, nr_args);
12678 		break;
12679 	case IORING_REGISTER_FILES2:
12680 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
12681 		break;
12682 	case IORING_REGISTER_FILES_UPDATE2:
12683 		ret = io_register_rsrc_update(ctx, arg, nr_args,
12684 					      IORING_RSRC_FILE);
12685 		break;
12686 	case IORING_REGISTER_BUFFERS2:
12687 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
12688 		break;
12689 	case IORING_REGISTER_BUFFERS_UPDATE:
12690 		ret = io_register_rsrc_update(ctx, arg, nr_args,
12691 					      IORING_RSRC_BUFFER);
12692 		break;
12693 	case IORING_REGISTER_IOWQ_AFF:
12694 		ret = -EINVAL;
12695 		if (!arg || !nr_args)
12696 			break;
12697 		ret = io_register_iowq_aff(ctx, arg, nr_args);
12698 		break;
12699 	case IORING_UNREGISTER_IOWQ_AFF:
12700 		ret = -EINVAL;
12701 		if (arg || nr_args)
12702 			break;
12703 		ret = io_unregister_iowq_aff(ctx);
12704 		break;
12705 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
12706 		ret = -EINVAL;
12707 		if (!arg || nr_args != 2)
12708 			break;
12709 		ret = io_register_iowq_max_workers(ctx, arg);
12710 		break;
12711 	case IORING_REGISTER_RING_FDS:
12712 		ret = io_ringfd_register(ctx, arg, nr_args);
12713 		break;
12714 	case IORING_UNREGISTER_RING_FDS:
12715 		ret = io_ringfd_unregister(ctx, arg, nr_args);
12716 		break;
12717 	case IORING_REGISTER_PBUF_RING:
12718 		ret = -EINVAL;
12719 		if (!arg || nr_args != 1)
12720 			break;
12721 		ret = io_register_pbuf_ring(ctx, arg);
12722 		break;
12723 	case IORING_UNREGISTER_PBUF_RING:
12724 		ret = -EINVAL;
12725 		if (!arg || nr_args != 1)
12726 			break;
12727 		ret = io_unregister_pbuf_ring(ctx, arg);
12728 		break;
12729 	default:
12730 		ret = -EINVAL;
12731 		break;
12732 	}
12733 
12734 	return ret;
12735 }
12736 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)12737 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
12738 		void __user *, arg, unsigned int, nr_args)
12739 {
12740 	struct io_ring_ctx *ctx;
12741 	long ret = -EBADF;
12742 	struct fd f;
12743 
12744 	f = fdget(fd);
12745 	if (!f.file)
12746 		return -EBADF;
12747 
12748 	ret = -EOPNOTSUPP;
12749 	if (f.file->f_op != &io_uring_fops)
12750 		goto out_fput;
12751 
12752 	ctx = f.file->private_data;
12753 
12754 	io_run_task_work();
12755 
12756 	mutex_lock(&ctx->uring_lock);
12757 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
12758 	mutex_unlock(&ctx->uring_lock);
12759 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
12760 out_fput:
12761 	fdput(f);
12762 	return ret;
12763 }
12764 
io_no_issue(struct io_kiocb * req,unsigned int issue_flags)12765 static int io_no_issue(struct io_kiocb *req, unsigned int issue_flags)
12766 {
12767 	WARN_ON_ONCE(1);
12768 	return -ECANCELED;
12769 }
12770 
12771 static const struct io_op_def io_op_defs[] = {
12772 	[IORING_OP_NOP] = {
12773 		.audit_skip		= 1,
12774 		.iopoll			= 1,
12775 		.prep			= io_nop_prep,
12776 		.issue			= io_nop,
12777 	},
12778 	[IORING_OP_READV] = {
12779 		.needs_file		= 1,
12780 		.unbound_nonreg_file	= 1,
12781 		.pollin			= 1,
12782 		.buffer_select		= 1,
12783 		.needs_async_setup	= 1,
12784 		.plug			= 1,
12785 		.audit_skip		= 1,
12786 		.ioprio			= 1,
12787 		.iopoll			= 1,
12788 		.async_size		= sizeof(struct io_async_rw),
12789 		.prep			= io_prep_rw,
12790 		.issue			= io_read,
12791 	},
12792 	[IORING_OP_WRITEV] = {
12793 		.needs_file		= 1,
12794 		.hash_reg_file		= 1,
12795 		.unbound_nonreg_file	= 1,
12796 		.pollout		= 1,
12797 		.needs_async_setup	= 1,
12798 		.plug			= 1,
12799 		.audit_skip		= 1,
12800 		.ioprio			= 1,
12801 		.iopoll			= 1,
12802 		.async_size		= sizeof(struct io_async_rw),
12803 		.prep			= io_prep_rw,
12804 		.issue			= io_write,
12805 	},
12806 	[IORING_OP_FSYNC] = {
12807 		.needs_file		= 1,
12808 		.audit_skip		= 1,
12809 		.prep			= io_fsync_prep,
12810 		.issue			= io_fsync,
12811 	},
12812 	[IORING_OP_READ_FIXED] = {
12813 		.needs_file		= 1,
12814 		.unbound_nonreg_file	= 1,
12815 		.pollin			= 1,
12816 		.plug			= 1,
12817 		.audit_skip		= 1,
12818 		.ioprio			= 1,
12819 		.iopoll			= 1,
12820 		.async_size		= sizeof(struct io_async_rw),
12821 		.prep			= io_prep_rw,
12822 		.issue			= io_read,
12823 	},
12824 	[IORING_OP_WRITE_FIXED] = {
12825 		.needs_file		= 1,
12826 		.hash_reg_file		= 1,
12827 		.unbound_nonreg_file	= 1,
12828 		.pollout		= 1,
12829 		.plug			= 1,
12830 		.audit_skip		= 1,
12831 		.ioprio			= 1,
12832 		.iopoll			= 1,
12833 		.async_size		= sizeof(struct io_async_rw),
12834 		.prep			= io_prep_rw,
12835 		.issue			= io_write,
12836 	},
12837 	[IORING_OP_POLL_ADD] = {
12838 		.needs_file		= 1,
12839 		.unbound_nonreg_file	= 1,
12840 		.audit_skip		= 1,
12841 		.prep			= io_poll_add_prep,
12842 		.issue			= io_poll_add,
12843 	},
12844 	[IORING_OP_POLL_REMOVE] = {
12845 		.audit_skip		= 1,
12846 		.prep			= io_poll_remove_prep,
12847 		.issue			= io_poll_remove,
12848 	},
12849 	[IORING_OP_SYNC_FILE_RANGE] = {
12850 		.needs_file		= 1,
12851 		.audit_skip		= 1,
12852 		.prep			= io_sfr_prep,
12853 		.issue			= io_sync_file_range,
12854 	},
12855 	[IORING_OP_SENDMSG] = {
12856 		.needs_file		= 1,
12857 		.unbound_nonreg_file	= 1,
12858 		.pollout		= 1,
12859 		.needs_async_setup	= 1,
12860 		.ioprio			= 1,
12861 		.async_size		= sizeof(struct io_async_msghdr),
12862 		.prep			= io_sendmsg_prep,
12863 		.issue			= io_sendmsg,
12864 	},
12865 	[IORING_OP_RECVMSG] = {
12866 		.needs_file		= 1,
12867 		.unbound_nonreg_file	= 1,
12868 		.pollin			= 1,
12869 		.buffer_select		= 1,
12870 		.needs_async_setup	= 1,
12871 		.ioprio			= 1,
12872 		.async_size		= sizeof(struct io_async_msghdr),
12873 		.prep			= io_recvmsg_prep,
12874 		.issue			= io_recvmsg,
12875 	},
12876 	[IORING_OP_TIMEOUT] = {
12877 		.audit_skip		= 1,
12878 		.async_size		= sizeof(struct io_timeout_data),
12879 		.prep			= io_timeout_prep,
12880 		.issue			= io_timeout,
12881 	},
12882 	[IORING_OP_TIMEOUT_REMOVE] = {
12883 		/* used by timeout updates' prep() */
12884 		.audit_skip		= 1,
12885 		.prep			= io_timeout_remove_prep,
12886 		.issue			= io_timeout_remove,
12887 	},
12888 	[IORING_OP_ACCEPT] = {
12889 		.needs_file		= 1,
12890 		.unbound_nonreg_file	= 1,
12891 		.pollin			= 1,
12892 		.poll_exclusive		= 1,
12893 		.ioprio			= 1,	/* used for flags */
12894 		.prep			= io_accept_prep,
12895 		.issue			= io_accept,
12896 	},
12897 	[IORING_OP_ASYNC_CANCEL] = {
12898 		.audit_skip		= 1,
12899 		.prep			= io_async_cancel_prep,
12900 		.issue			= io_async_cancel,
12901 	},
12902 	[IORING_OP_LINK_TIMEOUT] = {
12903 		.audit_skip		= 1,
12904 		.async_size		= sizeof(struct io_timeout_data),
12905 		.prep			= io_link_timeout_prep,
12906 		.issue			= io_no_issue,
12907 	},
12908 	[IORING_OP_CONNECT] = {
12909 		.needs_file		= 1,
12910 		.unbound_nonreg_file	= 1,
12911 		.pollout		= 1,
12912 		.needs_async_setup	= 1,
12913 		.async_size		= sizeof(struct io_async_connect),
12914 		.prep			= io_connect_prep,
12915 		.issue			= io_connect,
12916 	},
12917 	[IORING_OP_FALLOCATE] = {
12918 		.needs_file		= 1,
12919 		.prep			= io_fallocate_prep,
12920 		.issue			= io_fallocate,
12921 	},
12922 	[IORING_OP_OPENAT] = {
12923 		.prep			= io_openat_prep,
12924 		.issue			= io_openat,
12925 	},
12926 	[IORING_OP_CLOSE] = {
12927 		.prep			= io_close_prep,
12928 		.issue			= io_close,
12929 	},
12930 	[IORING_OP_FILES_UPDATE] = {
12931 		.audit_skip		= 1,
12932 		.iopoll			= 1,
12933 		.prep			= io_files_update_prep,
12934 		.issue			= io_files_update,
12935 	},
12936 	[IORING_OP_STATX] = {
12937 		.audit_skip		= 1,
12938 		.prep			= io_statx_prep,
12939 		.issue			= io_statx,
12940 	},
12941 	[IORING_OP_READ] = {
12942 		.needs_file		= 1,
12943 		.unbound_nonreg_file	= 1,
12944 		.pollin			= 1,
12945 		.buffer_select		= 1,
12946 		.plug			= 1,
12947 		.audit_skip		= 1,
12948 		.ioprio			= 1,
12949 		.iopoll			= 1,
12950 		.async_size		= sizeof(struct io_async_rw),
12951 		.prep			= io_prep_rw,
12952 		.issue			= io_read,
12953 	},
12954 	[IORING_OP_WRITE] = {
12955 		.needs_file		= 1,
12956 		.hash_reg_file		= 1,
12957 		.unbound_nonreg_file	= 1,
12958 		.pollout		= 1,
12959 		.plug			= 1,
12960 		.audit_skip		= 1,
12961 		.ioprio			= 1,
12962 		.iopoll			= 1,
12963 		.async_size		= sizeof(struct io_async_rw),
12964 		.prep			= io_prep_rw,
12965 		.issue			= io_write,
12966 	},
12967 	[IORING_OP_FADVISE] = {
12968 		.needs_file		= 1,
12969 		.audit_skip		= 1,
12970 		.prep			= io_fadvise_prep,
12971 		.issue			= io_fadvise,
12972 	},
12973 	[IORING_OP_MADVISE] = {
12974 		.prep			= io_madvise_prep,
12975 		.issue			= io_madvise,
12976 	},
12977 	[IORING_OP_SEND] = {
12978 		.needs_file		= 1,
12979 		.unbound_nonreg_file	= 1,
12980 		.pollout		= 1,
12981 		.audit_skip		= 1,
12982 		.ioprio			= 1,
12983 		.prep			= io_sendmsg_prep,
12984 		.issue			= io_send,
12985 	},
12986 	[IORING_OP_RECV] = {
12987 		.needs_file		= 1,
12988 		.unbound_nonreg_file	= 1,
12989 		.pollin			= 1,
12990 		.buffer_select		= 1,
12991 		.audit_skip		= 1,
12992 		.ioprio			= 1,
12993 		.prep			= io_recvmsg_prep,
12994 		.issue			= io_recv,
12995 	},
12996 	[IORING_OP_OPENAT2] = {
12997 		.prep			= io_openat2_prep,
12998 		.issue			= io_openat2,
12999 	},
13000 	[IORING_OP_EPOLL_CTL] = {
13001 		.unbound_nonreg_file	= 1,
13002 		.audit_skip		= 1,
13003 		.prep			= io_epoll_ctl_prep,
13004 		.issue			= io_epoll_ctl,
13005 	},
13006 	[IORING_OP_SPLICE] = {
13007 		.needs_file		= 1,
13008 		.hash_reg_file		= 1,
13009 		.unbound_nonreg_file	= 1,
13010 		.audit_skip		= 1,
13011 		.prep			= io_splice_prep,
13012 		.issue			= io_splice,
13013 	},
13014 	[IORING_OP_PROVIDE_BUFFERS] = {
13015 		.audit_skip		= 1,
13016 		.iopoll			= 1,
13017 		.prep			= io_provide_buffers_prep,
13018 		.issue			= io_provide_buffers,
13019 	},
13020 	[IORING_OP_REMOVE_BUFFERS] = {
13021 		.audit_skip		= 1,
13022 		.iopoll			= 1,
13023 		.prep			= io_remove_buffers_prep,
13024 		.issue			= io_remove_buffers,
13025 	},
13026 	[IORING_OP_TEE] = {
13027 		.needs_file		= 1,
13028 		.hash_reg_file		= 1,
13029 		.unbound_nonreg_file	= 1,
13030 		.audit_skip		= 1,
13031 		.prep			= io_tee_prep,
13032 		.issue			= io_tee,
13033 	},
13034 	[IORING_OP_SHUTDOWN] = {
13035 		.needs_file		= 1,
13036 		.prep			= io_shutdown_prep,
13037 		.issue			= io_shutdown,
13038 	},
13039 	[IORING_OP_RENAMEAT] = {
13040 		.prep			= io_renameat_prep,
13041 		.issue			= io_renameat,
13042 	},
13043 	[IORING_OP_UNLINKAT] = {
13044 		.prep			= io_unlinkat_prep,
13045 		.issue			= io_unlinkat,
13046 	},
13047 	[IORING_OP_MKDIRAT] = {
13048 		.prep			= io_mkdirat_prep,
13049 		.issue			= io_mkdirat,
13050 	},
13051 	[IORING_OP_SYMLINKAT] = {
13052 		.prep			= io_symlinkat_prep,
13053 		.issue			= io_symlinkat,
13054 	},
13055 	[IORING_OP_LINKAT] = {
13056 		.prep			= io_linkat_prep,
13057 		.issue			= io_linkat,
13058 	},
13059 	[IORING_OP_MSG_RING] = {
13060 		.needs_file		= 1,
13061 		.iopoll			= 1,
13062 		.prep			= io_msg_ring_prep,
13063 		.issue			= io_msg_ring,
13064 	},
13065 	[IORING_OP_FSETXATTR] = {
13066 		.needs_file = 1,
13067 		.prep			= io_fsetxattr_prep,
13068 		.issue			= io_fsetxattr,
13069 	},
13070 	[IORING_OP_SETXATTR] = {
13071 		.prep			= io_setxattr_prep,
13072 		.issue			= io_setxattr,
13073 	},
13074 	[IORING_OP_FGETXATTR] = {
13075 		.needs_file = 1,
13076 		.prep			= io_fgetxattr_prep,
13077 		.issue			= io_fgetxattr,
13078 	},
13079 	[IORING_OP_GETXATTR] = {
13080 		.prep			= io_getxattr_prep,
13081 		.issue			= io_getxattr,
13082 	},
13083 	[IORING_OP_SOCKET] = {
13084 		.audit_skip		= 1,
13085 		.prep			= io_socket_prep,
13086 		.issue			= io_socket,
13087 	},
13088 	[IORING_OP_URING_CMD] = {
13089 		.needs_file		= 1,
13090 		.plug			= 1,
13091 		.needs_async_setup	= 1,
13092 		.async_size		= uring_cmd_pdu_size(1),
13093 		.prep			= io_uring_cmd_prep,
13094 		.issue			= io_uring_cmd,
13095 	},
13096 };
13097 
io_uring_init(void)13098 static int __init io_uring_init(void)
13099 {
13100 	int i;
13101 
13102 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
13103 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
13104 	BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
13105 } while (0)
13106 
13107 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
13108 	__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
13109 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
13110 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
13111 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
13112 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
13113 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
13114 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
13115 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
13116 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
13117 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
13118 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
13119 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
13120 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
13121 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
13122 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
13123 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
13124 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
13125 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
13126 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
13127 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
13128 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
13129 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
13130 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
13131 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
13132 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
13133 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
13134 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
13135 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
13136 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
13137 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
13138 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
13139 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
13140 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
13141 
13142 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
13143 		     sizeof(struct io_uring_rsrc_update));
13144 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
13145 		     sizeof(struct io_uring_rsrc_update2));
13146 
13147 	/* ->buf_index is u16 */
13148 	BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
13149 	BUILD_BUG_ON(BGID_ARRAY * sizeof(struct io_buffer_list) > PAGE_SIZE);
13150 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
13151 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
13152 		     offsetof(struct io_uring_buf_ring, tail));
13153 
13154 	/* should fit into one byte */
13155 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
13156 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
13157 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
13158 
13159 	BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
13160 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
13161 
13162 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
13163 
13164 	BUILD_BUG_ON(sizeof(struct io_uring_cmd) > 64);
13165 
13166 	for (i = 0; i < ARRAY_SIZE(io_op_defs); i++) {
13167 		BUG_ON(!io_op_defs[i].prep);
13168 		BUG_ON(!io_op_defs[i].issue);
13169 	}
13170 
13171 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
13172 				SLAB_ACCOUNT);
13173 	return 0;
13174 };
13175 __initcall(io_uring_init);
13176