1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 union {
165 __addrpair skc_addrpair;
166 struct {
167 __be32 skc_daddr;
168 __be32 skc_rcv_saddr;
169 };
170 };
171 union {
172 unsigned int skc_hash;
173 __u16 skc_u16hashes[2];
174 };
175 /* skc_dport && skc_num must be grouped as well */
176 union {
177 __portpair skc_portpair;
178 struct {
179 __be16 skc_dport;
180 __u16 skc_num;
181 };
182 };
183
184 unsigned short skc_family;
185 volatile unsigned char skc_state;
186 unsigned char skc_reuse:4;
187 unsigned char skc_reuseport:1;
188 unsigned char skc_ipv6only:1;
189 unsigned char skc_net_refcnt:1;
190 int skc_bound_dev_if;
191 union {
192 struct hlist_node skc_bind_node;
193 struct hlist_node skc_portaddr_node;
194 };
195 struct proto *skc_prot;
196 possible_net_t skc_net;
197
198 #if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
201 #endif
202
203 atomic64_t skc_cookie;
204
205 /* following fields are padding to force
206 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 * assuming IPV6 is enabled. We use this padding differently
208 * for different kind of 'sockets'
209 */
210 union {
211 unsigned long skc_flags;
212 struct sock *skc_listener; /* request_sock */
213 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 };
215 /*
216 * fields between dontcopy_begin/dontcopy_end
217 * are not copied in sock_copy()
218 */
219 /* private: */
220 int skc_dontcopy_begin[0];
221 /* public: */
222 union {
223 struct hlist_node skc_node;
224 struct hlist_nulls_node skc_nulls_node;
225 };
226 unsigned short skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 unsigned short skc_rx_queue_mapping;
229 #endif
230 union {
231 int skc_incoming_cpu;
232 u32 skc_rcv_wnd;
233 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
234 };
235
236 refcount_t skc_refcnt;
237 /* private: */
238 int skc_dontcopy_end[0];
239 union {
240 u32 skc_rxhash;
241 u32 skc_window_clamp;
242 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 };
244 /* public: */
245 };
246
247 struct bpf_local_storage;
248 struct sk_filter;
249
250 /**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
304 * @sk_busy_poll_budget: napi processing budget when busypolling
305 * @sk_priority: %SO_PRIORITY setting
306 * @sk_type: socket type (%SOCK_STREAM, etc)
307 * @sk_protocol: which protocol this socket belongs in this network family
308 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_txrehash: enable TX hash rethink
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322 * for timestamping
323 * @sk_tskey: counter to disambiguate concurrent tstamp requests
324 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
325 * @sk_socket: Identd and reporting IO signals
326 * @sk_user_data: RPC layer private data
327 * @sk_frag: cached page frag
328 * @sk_peek_off: current peek_offset value
329 * @sk_send_head: front of stuff to transmit
330 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331 * @sk_security: used by security modules
332 * @sk_mark: generic packet mark
333 * @sk_cgrp_data: cgroup data for this cgroup
334 * @sk_memcg: this socket's memory cgroup association
335 * @sk_write_pending: a write to stream socket waits to start
336 * @sk_state_change: callback to indicate change in the state of the sock
337 * @sk_data_ready: callback to indicate there is data to be processed
338 * @sk_write_space: callback to indicate there is bf sending space available
339 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340 * @sk_backlog_rcv: callback to process the backlog
341 * @sk_validate_xmit_skb: ptr to an optional validate function
342 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343 * @sk_reuseport_cb: reuseport group container
344 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345 * @sk_rcu: used during RCU grace period
346 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
349 * @sk_txtime_unused: unused txtime flags
350 * @ns_tracker: tracker for netns reference
351 */
352 struct sock {
353 /*
354 * Now struct inet_timewait_sock also uses sock_common, so please just
355 * don't add nothing before this first member (__sk_common) --acme
356 */
357 struct sock_common __sk_common;
358 #define sk_node __sk_common.skc_node
359 #define sk_nulls_node __sk_common.skc_nulls_node
360 #define sk_refcnt __sk_common.skc_refcnt
361 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
364 #endif
365
366 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
368 #define sk_hash __sk_common.skc_hash
369 #define sk_portpair __sk_common.skc_portpair
370 #define sk_num __sk_common.skc_num
371 #define sk_dport __sk_common.skc_dport
372 #define sk_addrpair __sk_common.skc_addrpair
373 #define sk_daddr __sk_common.skc_daddr
374 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
375 #define sk_family __sk_common.skc_family
376 #define sk_state __sk_common.skc_state
377 #define sk_reuse __sk_common.skc_reuse
378 #define sk_reuseport __sk_common.skc_reuseport
379 #define sk_ipv6only __sk_common.skc_ipv6only
380 #define sk_net_refcnt __sk_common.skc_net_refcnt
381 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
382 #define sk_bind_node __sk_common.skc_bind_node
383 #define sk_prot __sk_common.skc_prot
384 #define sk_net __sk_common.skc_net
385 #define sk_v6_daddr __sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
387 #define sk_cookie __sk_common.skc_cookie
388 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
389 #define sk_flags __sk_common.skc_flags
390 #define sk_rxhash __sk_common.skc_rxhash
391
392 /* early demux fields */
393 struct dst_entry __rcu *sk_rx_dst;
394 int sk_rx_dst_ifindex;
395 u32 sk_rx_dst_cookie;
396
397 socket_lock_t sk_lock;
398 atomic_t sk_drops;
399 int sk_rcvlowat;
400 struct sk_buff_head sk_error_queue;
401 struct sk_buff_head sk_receive_queue;
402 /*
403 * The backlog queue is special, it is always used with
404 * the per-socket spinlock held and requires low latency
405 * access. Therefore we special case it's implementation.
406 * Note : rmem_alloc is in this structure to fill a hole
407 * on 64bit arches, not because its logically part of
408 * backlog.
409 */
410 struct {
411 atomic_t rmem_alloc;
412 int len;
413 struct sk_buff *head;
414 struct sk_buff *tail;
415 } sk_backlog;
416
417 #define sk_rmem_alloc sk_backlog.rmem_alloc
418
419 int sk_forward_alloc;
420 u32 sk_reserved_mem;
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 unsigned int sk_ll_usec;
423 /* ===== mostly read cache line ===== */
424 unsigned int sk_napi_id;
425 #endif
426 int sk_rcvbuf;
427
428 struct sk_filter __rcu *sk_filter;
429 union {
430 struct socket_wq __rcu *sk_wq;
431 /* private: */
432 struct socket_wq *sk_wq_raw;
433 /* public: */
434 };
435 #ifdef CONFIG_XFRM
436 struct xfrm_policy __rcu *sk_policy[2];
437 #endif
438
439 struct dst_entry __rcu *sk_dst_cache;
440 atomic_t sk_omem_alloc;
441 int sk_sndbuf;
442
443 /* ===== cache line for TX ===== */
444 int sk_wmem_queued;
445 refcount_t sk_wmem_alloc;
446 unsigned long sk_tsq_flags;
447 union {
448 struct sk_buff *sk_send_head;
449 struct rb_root tcp_rtx_queue;
450 };
451 struct sk_buff_head sk_write_queue;
452 __s32 sk_peek_off;
453 int sk_write_pending;
454 __u32 sk_dst_pending_confirm;
455 u32 sk_pacing_status; /* see enum sk_pacing */
456 long sk_sndtimeo;
457 struct timer_list sk_timer;
458 __u32 sk_priority;
459 __u32 sk_mark;
460 unsigned long sk_pacing_rate; /* bytes per second */
461 unsigned long sk_max_pacing_rate;
462 struct page_frag sk_frag;
463 netdev_features_t sk_route_caps;
464 int sk_gso_type;
465 unsigned int sk_gso_max_size;
466 gfp_t sk_allocation;
467 __u32 sk_txhash;
468
469 /*
470 * Because of non atomicity rules, all
471 * changes are protected by socket lock.
472 */
473 u8 sk_gso_disabled : 1,
474 sk_kern_sock : 1,
475 sk_no_check_tx : 1,
476 sk_no_check_rx : 1,
477 sk_userlocks : 4;
478 u8 sk_pacing_shift;
479 u16 sk_type;
480 u16 sk_protocol;
481 u16 sk_gso_max_segs;
482 unsigned long sk_lingertime;
483 struct proto *sk_prot_creator;
484 rwlock_t sk_callback_lock;
485 int sk_err,
486 sk_err_soft;
487 u32 sk_ack_backlog;
488 u32 sk_max_ack_backlog;
489 kuid_t sk_uid;
490 u8 sk_txrehash;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 u8 sk_prefer_busy_poll;
493 u16 sk_busy_poll_budget;
494 #endif
495 spinlock_t sk_peer_lock;
496 int sk_bind_phc;
497 struct pid *sk_peer_pid;
498 const struct cred *sk_peer_cred;
499
500 long sk_rcvtimeo;
501 ktime_t sk_stamp;
502 #if BITS_PER_LONG==32
503 seqlock_t sk_stamp_seq;
504 #endif
505 u16 sk_tsflags;
506 u8 sk_shutdown;
507 atomic_t sk_tskey;
508 atomic_t sk_zckey;
509
510 u8 sk_clockid;
511 u8 sk_txtime_deadline_mode : 1,
512 sk_txtime_report_errors : 1,
513 sk_txtime_unused : 6;
514
515 struct socket *sk_socket;
516 void *sk_user_data;
517 #ifdef CONFIG_SECURITY
518 void *sk_security;
519 #endif
520 struct sock_cgroup_data sk_cgrp_data;
521 struct mem_cgroup *sk_memcg;
522 void (*sk_state_change)(struct sock *sk);
523 void (*sk_data_ready)(struct sock *sk);
524 void (*sk_write_space)(struct sock *sk);
525 void (*sk_error_report)(struct sock *sk);
526 int (*sk_backlog_rcv)(struct sock *sk,
527 struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
530 struct net_device *dev,
531 struct sk_buff *skb);
532 #endif
533 void (*sk_destruct)(struct sock *sk);
534 struct sock_reuseport __rcu *sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 struct bpf_local_storage __rcu *sk_bpf_storage;
537 #endif
538 struct rcu_head sk_rcu;
539 netns_tracker ns_tracker;
540 };
541
542 enum sk_pacing {
543 SK_PACING_NONE = 0,
544 SK_PACING_NEEDED = 1,
545 SK_PACING_FQ = 2,
546 };
547
548 /* flag bits in sk_user_data
549 *
550 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
551 * not be suitable for copying when cloning the socket. For instance,
552 * it can point to a reference counted object. sk_user_data bottom
553 * bit is set if pointer must not be copied.
554 *
555 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
556 * managed/owned by a BPF reuseport array. This bit should be set
557 * when sk_user_data's sk is added to the bpf's reuseport_array.
558 *
559 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
560 * sk_user_data points to psock type. This bit should be set
561 * when sk_user_data is assigned to a psock object.
562 */
563 #define SK_USER_DATA_NOCOPY 1UL
564 #define SK_USER_DATA_BPF 2UL
565 #define SK_USER_DATA_PSOCK 4UL
566 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
567 SK_USER_DATA_PSOCK)
568
569 /**
570 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
571 * @sk: socket
572 */
sk_user_data_is_nocopy(const struct sock * sk)573 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
574 {
575 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
576 }
577
578 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
579
580 /**
581 * __rcu_dereference_sk_user_data_with_flags - return the pointer
582 * only if argument flags all has been set in sk_user_data. Otherwise
583 * return NULL
584 *
585 * @sk: socket
586 * @flags: flag bits
587 */
588 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)589 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
590 uintptr_t flags)
591 {
592 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
593
594 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
595
596 if ((sk_user_data & flags) == flags)
597 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
598 return NULL;
599 }
600
601 #define rcu_dereference_sk_user_data(sk) \
602 __rcu_dereference_sk_user_data_with_flags(sk, 0)
603 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
604 ({ \
605 uintptr_t __tmp1 = (uintptr_t)(ptr), \
606 __tmp2 = (uintptr_t)(flags); \
607 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
608 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
609 rcu_assign_pointer(__sk_user_data((sk)), \
610 __tmp1 | __tmp2); \
611 })
612 #define rcu_assign_sk_user_data(sk, ptr) \
613 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
614
615 static inline
sock_net(const struct sock * sk)616 struct net *sock_net(const struct sock *sk)
617 {
618 return read_pnet(&sk->sk_net);
619 }
620
621 static inline
sock_net_set(struct sock * sk,struct net * net)622 void sock_net_set(struct sock *sk, struct net *net)
623 {
624 write_pnet(&sk->sk_net, net);
625 }
626
627 /*
628 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
629 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
630 * on a socket means that the socket will reuse everybody else's port
631 * without looking at the other's sk_reuse value.
632 */
633
634 #define SK_NO_REUSE 0
635 #define SK_CAN_REUSE 1
636 #define SK_FORCE_REUSE 2
637
638 int sk_set_peek_off(struct sock *sk, int val);
639
sk_peek_offset(struct sock * sk,int flags)640 static inline int sk_peek_offset(struct sock *sk, int flags)
641 {
642 if (unlikely(flags & MSG_PEEK)) {
643 return READ_ONCE(sk->sk_peek_off);
644 }
645
646 return 0;
647 }
648
sk_peek_offset_bwd(struct sock * sk,int val)649 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
650 {
651 s32 off = READ_ONCE(sk->sk_peek_off);
652
653 if (unlikely(off >= 0)) {
654 off = max_t(s32, off - val, 0);
655 WRITE_ONCE(sk->sk_peek_off, off);
656 }
657 }
658
sk_peek_offset_fwd(struct sock * sk,int val)659 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
660 {
661 sk_peek_offset_bwd(sk, -val);
662 }
663
664 /*
665 * Hashed lists helper routines
666 */
sk_entry(const struct hlist_node * node)667 static inline struct sock *sk_entry(const struct hlist_node *node)
668 {
669 return hlist_entry(node, struct sock, sk_node);
670 }
671
__sk_head(const struct hlist_head * head)672 static inline struct sock *__sk_head(const struct hlist_head *head)
673 {
674 return hlist_entry(head->first, struct sock, sk_node);
675 }
676
sk_head(const struct hlist_head * head)677 static inline struct sock *sk_head(const struct hlist_head *head)
678 {
679 return hlist_empty(head) ? NULL : __sk_head(head);
680 }
681
__sk_nulls_head(const struct hlist_nulls_head * head)682 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
683 {
684 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
685 }
686
sk_nulls_head(const struct hlist_nulls_head * head)687 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
688 {
689 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
690 }
691
sk_next(const struct sock * sk)692 static inline struct sock *sk_next(const struct sock *sk)
693 {
694 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
695 }
696
sk_nulls_next(const struct sock * sk)697 static inline struct sock *sk_nulls_next(const struct sock *sk)
698 {
699 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
700 hlist_nulls_entry(sk->sk_nulls_node.next,
701 struct sock, sk_nulls_node) :
702 NULL;
703 }
704
sk_unhashed(const struct sock * sk)705 static inline bool sk_unhashed(const struct sock *sk)
706 {
707 return hlist_unhashed(&sk->sk_node);
708 }
709
sk_hashed(const struct sock * sk)710 static inline bool sk_hashed(const struct sock *sk)
711 {
712 return !sk_unhashed(sk);
713 }
714
sk_node_init(struct hlist_node * node)715 static inline void sk_node_init(struct hlist_node *node)
716 {
717 node->pprev = NULL;
718 }
719
sk_nulls_node_init(struct hlist_nulls_node * node)720 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
721 {
722 node->pprev = NULL;
723 }
724
__sk_del_node(struct sock * sk)725 static inline void __sk_del_node(struct sock *sk)
726 {
727 __hlist_del(&sk->sk_node);
728 }
729
730 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)731 static inline bool __sk_del_node_init(struct sock *sk)
732 {
733 if (sk_hashed(sk)) {
734 __sk_del_node(sk);
735 sk_node_init(&sk->sk_node);
736 return true;
737 }
738 return false;
739 }
740
741 /* Grab socket reference count. This operation is valid only
742 when sk is ALREADY grabbed f.e. it is found in hash table
743 or a list and the lookup is made under lock preventing hash table
744 modifications.
745 */
746
sock_hold(struct sock * sk)747 static __always_inline void sock_hold(struct sock *sk)
748 {
749 refcount_inc(&sk->sk_refcnt);
750 }
751
752 /* Ungrab socket in the context, which assumes that socket refcnt
753 cannot hit zero, f.e. it is true in context of any socketcall.
754 */
__sock_put(struct sock * sk)755 static __always_inline void __sock_put(struct sock *sk)
756 {
757 refcount_dec(&sk->sk_refcnt);
758 }
759
sk_del_node_init(struct sock * sk)760 static inline bool sk_del_node_init(struct sock *sk)
761 {
762 bool rc = __sk_del_node_init(sk);
763
764 if (rc) {
765 /* paranoid for a while -acme */
766 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
767 __sock_put(sk);
768 }
769 return rc;
770 }
771 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
772
__sk_nulls_del_node_init_rcu(struct sock * sk)773 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
774 {
775 if (sk_hashed(sk)) {
776 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
777 return true;
778 }
779 return false;
780 }
781
sk_nulls_del_node_init_rcu(struct sock * sk)782 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
783 {
784 bool rc = __sk_nulls_del_node_init_rcu(sk);
785
786 if (rc) {
787 /* paranoid for a while -acme */
788 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
789 __sock_put(sk);
790 }
791 return rc;
792 }
793
__sk_add_node(struct sock * sk,struct hlist_head * list)794 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
795 {
796 hlist_add_head(&sk->sk_node, list);
797 }
798
sk_add_node(struct sock * sk,struct hlist_head * list)799 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
800 {
801 sock_hold(sk);
802 __sk_add_node(sk, list);
803 }
804
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)805 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
806 {
807 sock_hold(sk);
808 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
809 sk->sk_family == AF_INET6)
810 hlist_add_tail_rcu(&sk->sk_node, list);
811 else
812 hlist_add_head_rcu(&sk->sk_node, list);
813 }
814
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)815 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
816 {
817 sock_hold(sk);
818 hlist_add_tail_rcu(&sk->sk_node, list);
819 }
820
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)821 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
822 {
823 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
824 }
825
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)826 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
827 {
828 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
829 }
830
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)831 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
832 {
833 sock_hold(sk);
834 __sk_nulls_add_node_rcu(sk, list);
835 }
836
__sk_del_bind_node(struct sock * sk)837 static inline void __sk_del_bind_node(struct sock *sk)
838 {
839 __hlist_del(&sk->sk_bind_node);
840 }
841
sk_add_bind_node(struct sock * sk,struct hlist_head * list)842 static inline void sk_add_bind_node(struct sock *sk,
843 struct hlist_head *list)
844 {
845 hlist_add_head(&sk->sk_bind_node, list);
846 }
847
848 #define sk_for_each(__sk, list) \
849 hlist_for_each_entry(__sk, list, sk_node)
850 #define sk_for_each_rcu(__sk, list) \
851 hlist_for_each_entry_rcu(__sk, list, sk_node)
852 #define sk_nulls_for_each(__sk, node, list) \
853 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
854 #define sk_nulls_for_each_rcu(__sk, node, list) \
855 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
856 #define sk_for_each_from(__sk) \
857 hlist_for_each_entry_from(__sk, sk_node)
858 #define sk_nulls_for_each_from(__sk, node) \
859 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
860 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
861 #define sk_for_each_safe(__sk, tmp, list) \
862 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
863 #define sk_for_each_bound(__sk, list) \
864 hlist_for_each_entry(__sk, list, sk_bind_node)
865
866 /**
867 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
868 * @tpos: the type * to use as a loop cursor.
869 * @pos: the &struct hlist_node to use as a loop cursor.
870 * @head: the head for your list.
871 * @offset: offset of hlist_node within the struct.
872 *
873 */
874 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
875 for (pos = rcu_dereference(hlist_first_rcu(head)); \
876 pos != NULL && \
877 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
878 pos = rcu_dereference(hlist_next_rcu(pos)))
879
sk_user_ns(struct sock * sk)880 static inline struct user_namespace *sk_user_ns(struct sock *sk)
881 {
882 /* Careful only use this in a context where these parameters
883 * can not change and must all be valid, such as recvmsg from
884 * userspace.
885 */
886 return sk->sk_socket->file->f_cred->user_ns;
887 }
888
889 /* Sock flags */
890 enum sock_flags {
891 SOCK_DEAD,
892 SOCK_DONE,
893 SOCK_URGINLINE,
894 SOCK_KEEPOPEN,
895 SOCK_LINGER,
896 SOCK_DESTROY,
897 SOCK_BROADCAST,
898 SOCK_TIMESTAMP,
899 SOCK_ZAPPED,
900 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
901 SOCK_DBG, /* %SO_DEBUG setting */
902 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
903 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
904 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
905 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
906 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
907 SOCK_FASYNC, /* fasync() active */
908 SOCK_RXQ_OVFL,
909 SOCK_ZEROCOPY, /* buffers from userspace */
910 SOCK_WIFI_STATUS, /* push wifi status to userspace */
911 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
912 * Will use last 4 bytes of packet sent from
913 * user-space instead.
914 */
915 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
916 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
917 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
918 SOCK_TXTIME,
919 SOCK_XDP, /* XDP is attached */
920 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
921 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
922 };
923
924 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
925
sock_copy_flags(struct sock * nsk,struct sock * osk)926 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
927 {
928 nsk->sk_flags = osk->sk_flags;
929 }
930
sock_set_flag(struct sock * sk,enum sock_flags flag)931 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
932 {
933 __set_bit(flag, &sk->sk_flags);
934 }
935
sock_reset_flag(struct sock * sk,enum sock_flags flag)936 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
937 {
938 __clear_bit(flag, &sk->sk_flags);
939 }
940
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)941 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
942 int valbool)
943 {
944 if (valbool)
945 sock_set_flag(sk, bit);
946 else
947 sock_reset_flag(sk, bit);
948 }
949
sock_flag(const struct sock * sk,enum sock_flags flag)950 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
951 {
952 return test_bit(flag, &sk->sk_flags);
953 }
954
955 #ifdef CONFIG_NET
956 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)957 static inline int sk_memalloc_socks(void)
958 {
959 return static_branch_unlikely(&memalloc_socks_key);
960 }
961
962 void __receive_sock(struct file *file);
963 #else
964
sk_memalloc_socks(void)965 static inline int sk_memalloc_socks(void)
966 {
967 return 0;
968 }
969
__receive_sock(struct file * file)970 static inline void __receive_sock(struct file *file)
971 { }
972 #endif
973
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)974 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
975 {
976 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
977 }
978
sk_acceptq_removed(struct sock * sk)979 static inline void sk_acceptq_removed(struct sock *sk)
980 {
981 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
982 }
983
sk_acceptq_added(struct sock * sk)984 static inline void sk_acceptq_added(struct sock *sk)
985 {
986 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
987 }
988
989 /* Note: If you think the test should be:
990 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
991 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
992 */
sk_acceptq_is_full(const struct sock * sk)993 static inline bool sk_acceptq_is_full(const struct sock *sk)
994 {
995 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
996 }
997
998 /*
999 * Compute minimal free write space needed to queue new packets.
1000 */
sk_stream_min_wspace(const struct sock * sk)1001 static inline int sk_stream_min_wspace(const struct sock *sk)
1002 {
1003 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1004 }
1005
sk_stream_wspace(const struct sock * sk)1006 static inline int sk_stream_wspace(const struct sock *sk)
1007 {
1008 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1009 }
1010
sk_wmem_queued_add(struct sock * sk,int val)1011 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1012 {
1013 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1014 }
1015
1016 void sk_stream_write_space(struct sock *sk);
1017
1018 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1019 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1020 {
1021 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1022 skb_dst_force(skb);
1023
1024 if (!sk->sk_backlog.tail)
1025 WRITE_ONCE(sk->sk_backlog.head, skb);
1026 else
1027 sk->sk_backlog.tail->next = skb;
1028
1029 WRITE_ONCE(sk->sk_backlog.tail, skb);
1030 skb->next = NULL;
1031 }
1032
1033 /*
1034 * Take into account size of receive queue and backlog queue
1035 * Do not take into account this skb truesize,
1036 * to allow even a single big packet to come.
1037 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1038 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1039 {
1040 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1041
1042 return qsize > limit;
1043 }
1044
1045 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1046 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1047 unsigned int limit)
1048 {
1049 if (sk_rcvqueues_full(sk, limit))
1050 return -ENOBUFS;
1051
1052 /*
1053 * If the skb was allocated from pfmemalloc reserves, only
1054 * allow SOCK_MEMALLOC sockets to use it as this socket is
1055 * helping free memory
1056 */
1057 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1058 return -ENOMEM;
1059
1060 __sk_add_backlog(sk, skb);
1061 sk->sk_backlog.len += skb->truesize;
1062 return 0;
1063 }
1064
1065 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1066
1067 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1068 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1069
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1070 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1071 {
1072 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1073 return __sk_backlog_rcv(sk, skb);
1074
1075 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1076 tcp_v6_do_rcv,
1077 tcp_v4_do_rcv,
1078 sk, skb);
1079 }
1080
sk_incoming_cpu_update(struct sock * sk)1081 static inline void sk_incoming_cpu_update(struct sock *sk)
1082 {
1083 int cpu = raw_smp_processor_id();
1084
1085 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1086 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1087 }
1088
sock_rps_record_flow_hash(__u32 hash)1089 static inline void sock_rps_record_flow_hash(__u32 hash)
1090 {
1091 #ifdef CONFIG_RPS
1092 struct rps_sock_flow_table *sock_flow_table;
1093
1094 rcu_read_lock();
1095 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1096 rps_record_sock_flow(sock_flow_table, hash);
1097 rcu_read_unlock();
1098 #endif
1099 }
1100
sock_rps_record_flow(const struct sock * sk)1101 static inline void sock_rps_record_flow(const struct sock *sk)
1102 {
1103 #ifdef CONFIG_RPS
1104 if (static_branch_unlikely(&rfs_needed)) {
1105 /* Reading sk->sk_rxhash might incur an expensive cache line
1106 * miss.
1107 *
1108 * TCP_ESTABLISHED does cover almost all states where RFS
1109 * might be useful, and is cheaper [1] than testing :
1110 * IPv4: inet_sk(sk)->inet_daddr
1111 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1112 * OR an additional socket flag
1113 * [1] : sk_state and sk_prot are in the same cache line.
1114 */
1115 if (sk->sk_state == TCP_ESTABLISHED)
1116 sock_rps_record_flow_hash(sk->sk_rxhash);
1117 }
1118 #endif
1119 }
1120
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1121 static inline void sock_rps_save_rxhash(struct sock *sk,
1122 const struct sk_buff *skb)
1123 {
1124 #ifdef CONFIG_RPS
1125 if (unlikely(sk->sk_rxhash != skb->hash))
1126 sk->sk_rxhash = skb->hash;
1127 #endif
1128 }
1129
sock_rps_reset_rxhash(struct sock * sk)1130 static inline void sock_rps_reset_rxhash(struct sock *sk)
1131 {
1132 #ifdef CONFIG_RPS
1133 sk->sk_rxhash = 0;
1134 #endif
1135 }
1136
1137 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1138 ({ int __rc; \
1139 release_sock(__sk); \
1140 __rc = __condition; \
1141 if (!__rc) { \
1142 *(__timeo) = wait_woken(__wait, \
1143 TASK_INTERRUPTIBLE, \
1144 *(__timeo)); \
1145 } \
1146 sched_annotate_sleep(); \
1147 lock_sock(__sk); \
1148 __rc = __condition; \
1149 __rc; \
1150 })
1151
1152 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1153 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1154 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1155 int sk_stream_error(struct sock *sk, int flags, int err);
1156 void sk_stream_kill_queues(struct sock *sk);
1157 void sk_set_memalloc(struct sock *sk);
1158 void sk_clear_memalloc(struct sock *sk);
1159
1160 void __sk_flush_backlog(struct sock *sk);
1161
sk_flush_backlog(struct sock * sk)1162 static inline bool sk_flush_backlog(struct sock *sk)
1163 {
1164 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1165 __sk_flush_backlog(sk);
1166 return true;
1167 }
1168 return false;
1169 }
1170
1171 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1172
1173 struct request_sock_ops;
1174 struct timewait_sock_ops;
1175 struct inet_hashinfo;
1176 struct raw_hashinfo;
1177 struct smc_hashinfo;
1178 struct module;
1179 struct sk_psock;
1180
1181 /*
1182 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1183 * un-modified. Special care is taken when initializing object to zero.
1184 */
sk_prot_clear_nulls(struct sock * sk,int size)1185 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1186 {
1187 if (offsetof(struct sock, sk_node.next) != 0)
1188 memset(sk, 0, offsetof(struct sock, sk_node.next));
1189 memset(&sk->sk_node.pprev, 0,
1190 size - offsetof(struct sock, sk_node.pprev));
1191 }
1192
1193 /* Networking protocol blocks we attach to sockets.
1194 * socket layer -> transport layer interface
1195 */
1196 struct proto {
1197 void (*close)(struct sock *sk,
1198 long timeout);
1199 int (*pre_connect)(struct sock *sk,
1200 struct sockaddr *uaddr,
1201 int addr_len);
1202 int (*connect)(struct sock *sk,
1203 struct sockaddr *uaddr,
1204 int addr_len);
1205 int (*disconnect)(struct sock *sk, int flags);
1206
1207 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1208 bool kern);
1209
1210 int (*ioctl)(struct sock *sk, int cmd,
1211 unsigned long arg);
1212 int (*init)(struct sock *sk);
1213 void (*destroy)(struct sock *sk);
1214 void (*shutdown)(struct sock *sk, int how);
1215 int (*setsockopt)(struct sock *sk, int level,
1216 int optname, sockptr_t optval,
1217 unsigned int optlen);
1218 int (*getsockopt)(struct sock *sk, int level,
1219 int optname, char __user *optval,
1220 int __user *option);
1221 void (*keepalive)(struct sock *sk, int valbool);
1222 #ifdef CONFIG_COMPAT
1223 int (*compat_ioctl)(struct sock *sk,
1224 unsigned int cmd, unsigned long arg);
1225 #endif
1226 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1227 size_t len);
1228 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1229 size_t len, int flags, int *addr_len);
1230 int (*sendpage)(struct sock *sk, struct page *page,
1231 int offset, size_t size, int flags);
1232 int (*bind)(struct sock *sk,
1233 struct sockaddr *addr, int addr_len);
1234 int (*bind_add)(struct sock *sk,
1235 struct sockaddr *addr, int addr_len);
1236
1237 int (*backlog_rcv) (struct sock *sk,
1238 struct sk_buff *skb);
1239 bool (*bpf_bypass_getsockopt)(int level,
1240 int optname);
1241
1242 void (*release_cb)(struct sock *sk);
1243
1244 /* Keeping track of sk's, looking them up, and port selection methods. */
1245 int (*hash)(struct sock *sk);
1246 void (*unhash)(struct sock *sk);
1247 void (*rehash)(struct sock *sk);
1248 int (*get_port)(struct sock *sk, unsigned short snum);
1249 void (*put_port)(struct sock *sk);
1250 #ifdef CONFIG_BPF_SYSCALL
1251 int (*psock_update_sk_prot)(struct sock *sk,
1252 struct sk_psock *psock,
1253 bool restore);
1254 #endif
1255
1256 /* Keeping track of sockets in use */
1257 #ifdef CONFIG_PROC_FS
1258 unsigned int inuse_idx;
1259 #endif
1260
1261 #if IS_ENABLED(CONFIG_MPTCP)
1262 int (*forward_alloc_get)(const struct sock *sk);
1263 #endif
1264
1265 bool (*stream_memory_free)(const struct sock *sk, int wake);
1266 bool (*sock_is_readable)(struct sock *sk);
1267 /* Memory pressure */
1268 void (*enter_memory_pressure)(struct sock *sk);
1269 void (*leave_memory_pressure)(struct sock *sk);
1270 atomic_long_t *memory_allocated; /* Current allocated memory. */
1271 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1272
1273 /*
1274 * Pressure flag: try to collapse.
1275 * Technical note: it is used by multiple contexts non atomically.
1276 * All the __sk_mem_schedule() is of this nature: accounting
1277 * is strict, actions are advisory and have some latency.
1278 */
1279 unsigned long *memory_pressure;
1280 long *sysctl_mem;
1281
1282 int *sysctl_wmem;
1283 int *sysctl_rmem;
1284 u32 sysctl_wmem_offset;
1285 u32 sysctl_rmem_offset;
1286
1287 int max_header;
1288 bool no_autobind;
1289
1290 struct kmem_cache *slab;
1291 unsigned int obj_size;
1292 slab_flags_t slab_flags;
1293 unsigned int useroffset; /* Usercopy region offset */
1294 unsigned int usersize; /* Usercopy region size */
1295
1296 unsigned int __percpu *orphan_count;
1297
1298 struct request_sock_ops *rsk_prot;
1299 struct timewait_sock_ops *twsk_prot;
1300
1301 union {
1302 struct inet_hashinfo *hashinfo;
1303 struct udp_table *udp_table;
1304 struct raw_hashinfo *raw_hash;
1305 struct smc_hashinfo *smc_hash;
1306 } h;
1307
1308 struct module *owner;
1309
1310 char name[32];
1311
1312 struct list_head node;
1313 #ifdef SOCK_REFCNT_DEBUG
1314 atomic_t socks;
1315 #endif
1316 int (*diag_destroy)(struct sock *sk, int err);
1317 } __randomize_layout;
1318
1319 int proto_register(struct proto *prot, int alloc_slab);
1320 void proto_unregister(struct proto *prot);
1321 int sock_load_diag_module(int family, int protocol);
1322
1323 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1324 static inline void sk_refcnt_debug_inc(struct sock *sk)
1325 {
1326 atomic_inc(&sk->sk_prot->socks);
1327 }
1328
sk_refcnt_debug_dec(struct sock * sk)1329 static inline void sk_refcnt_debug_dec(struct sock *sk)
1330 {
1331 atomic_dec(&sk->sk_prot->socks);
1332 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1333 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1334 }
1335
sk_refcnt_debug_release(const struct sock * sk)1336 static inline void sk_refcnt_debug_release(const struct sock *sk)
1337 {
1338 if (refcount_read(&sk->sk_refcnt) != 1)
1339 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1340 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1341 }
1342 #else /* SOCK_REFCNT_DEBUG */
1343 #define sk_refcnt_debug_inc(sk) do { } while (0)
1344 #define sk_refcnt_debug_dec(sk) do { } while (0)
1345 #define sk_refcnt_debug_release(sk) do { } while (0)
1346 #endif /* SOCK_REFCNT_DEBUG */
1347
1348 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1349
sk_forward_alloc_get(const struct sock * sk)1350 static inline int sk_forward_alloc_get(const struct sock *sk)
1351 {
1352 #if IS_ENABLED(CONFIG_MPTCP)
1353 if (sk->sk_prot->forward_alloc_get)
1354 return sk->sk_prot->forward_alloc_get(sk);
1355 #endif
1356 return sk->sk_forward_alloc;
1357 }
1358
__sk_stream_memory_free(const struct sock * sk,int wake)1359 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1360 {
1361 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1362 return false;
1363
1364 return sk->sk_prot->stream_memory_free ?
1365 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1366 tcp_stream_memory_free, sk, wake) : true;
1367 }
1368
sk_stream_memory_free(const struct sock * sk)1369 static inline bool sk_stream_memory_free(const struct sock *sk)
1370 {
1371 return __sk_stream_memory_free(sk, 0);
1372 }
1373
__sk_stream_is_writeable(const struct sock * sk,int wake)1374 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1375 {
1376 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1377 __sk_stream_memory_free(sk, wake);
1378 }
1379
sk_stream_is_writeable(const struct sock * sk)1380 static inline bool sk_stream_is_writeable(const struct sock *sk)
1381 {
1382 return __sk_stream_is_writeable(sk, 0);
1383 }
1384
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1385 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1386 struct cgroup *ancestor)
1387 {
1388 #ifdef CONFIG_SOCK_CGROUP_DATA
1389 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1390 ancestor);
1391 #else
1392 return -ENOTSUPP;
1393 #endif
1394 }
1395
sk_has_memory_pressure(const struct sock * sk)1396 static inline bool sk_has_memory_pressure(const struct sock *sk)
1397 {
1398 return sk->sk_prot->memory_pressure != NULL;
1399 }
1400
sk_under_memory_pressure(const struct sock * sk)1401 static inline bool sk_under_memory_pressure(const struct sock *sk)
1402 {
1403 if (!sk->sk_prot->memory_pressure)
1404 return false;
1405
1406 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1407 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1408 return true;
1409
1410 return !!*sk->sk_prot->memory_pressure;
1411 }
1412
1413 static inline long
sk_memory_allocated(const struct sock * sk)1414 sk_memory_allocated(const struct sock *sk)
1415 {
1416 return atomic_long_read(sk->sk_prot->memory_allocated);
1417 }
1418
1419 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1420 sk_memory_allocated_add(struct sock *sk, int amt)
1421 {
1422 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1423 }
1424
1425 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1426 sk_memory_allocated_sub(struct sock *sk, int amt)
1427 {
1428 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1429 }
1430
1431 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1432
sk_sockets_allocated_dec(struct sock * sk)1433 static inline void sk_sockets_allocated_dec(struct sock *sk)
1434 {
1435 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1436 SK_ALLOC_PERCPU_COUNTER_BATCH);
1437 }
1438
sk_sockets_allocated_inc(struct sock * sk)1439 static inline void sk_sockets_allocated_inc(struct sock *sk)
1440 {
1441 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1442 SK_ALLOC_PERCPU_COUNTER_BATCH);
1443 }
1444
1445 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1446 sk_sockets_allocated_read_positive(struct sock *sk)
1447 {
1448 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1449 }
1450
1451 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1452 proto_sockets_allocated_sum_positive(struct proto *prot)
1453 {
1454 return percpu_counter_sum_positive(prot->sockets_allocated);
1455 }
1456
1457 static inline long
proto_memory_allocated(struct proto * prot)1458 proto_memory_allocated(struct proto *prot)
1459 {
1460 return atomic_long_read(prot->memory_allocated);
1461 }
1462
1463 static inline bool
proto_memory_pressure(struct proto * prot)1464 proto_memory_pressure(struct proto *prot)
1465 {
1466 if (!prot->memory_pressure)
1467 return false;
1468 return !!*prot->memory_pressure;
1469 }
1470
1471
1472 #ifdef CONFIG_PROC_FS
1473 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1474 struct prot_inuse {
1475 int all;
1476 int val[PROTO_INUSE_NR];
1477 };
1478
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1479 static inline void sock_prot_inuse_add(const struct net *net,
1480 const struct proto *prot, int val)
1481 {
1482 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1483 }
1484
sock_inuse_add(const struct net * net,int val)1485 static inline void sock_inuse_add(const struct net *net, int val)
1486 {
1487 this_cpu_add(net->core.prot_inuse->all, val);
1488 }
1489
1490 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1491 int sock_inuse_get(struct net *net);
1492 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1493 static inline void sock_prot_inuse_add(const struct net *net,
1494 const struct proto *prot, int val)
1495 {
1496 }
1497
sock_inuse_add(const struct net * net,int val)1498 static inline void sock_inuse_add(const struct net *net, int val)
1499 {
1500 }
1501 #endif
1502
1503
1504 /* With per-bucket locks this operation is not-atomic, so that
1505 * this version is not worse.
1506 */
__sk_prot_rehash(struct sock * sk)1507 static inline int __sk_prot_rehash(struct sock *sk)
1508 {
1509 sk->sk_prot->unhash(sk);
1510 return sk->sk_prot->hash(sk);
1511 }
1512
1513 /* About 10 seconds */
1514 #define SOCK_DESTROY_TIME (10*HZ)
1515
1516 /* Sockets 0-1023 can't be bound to unless you are superuser */
1517 #define PROT_SOCK 1024
1518
1519 #define SHUTDOWN_MASK 3
1520 #define RCV_SHUTDOWN 1
1521 #define SEND_SHUTDOWN 2
1522
1523 #define SOCK_BINDADDR_LOCK 4
1524 #define SOCK_BINDPORT_LOCK 8
1525
1526 struct socket_alloc {
1527 struct socket socket;
1528 struct inode vfs_inode;
1529 };
1530
SOCKET_I(struct inode * inode)1531 static inline struct socket *SOCKET_I(struct inode *inode)
1532 {
1533 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1534 }
1535
SOCK_INODE(struct socket * socket)1536 static inline struct inode *SOCK_INODE(struct socket *socket)
1537 {
1538 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1539 }
1540
1541 /*
1542 * Functions for memory accounting
1543 */
1544 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1545 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1546 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1547 void __sk_mem_reclaim(struct sock *sk, int amount);
1548
1549 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1550 * do not necessarily have 16x time more memory than 4KB ones.
1551 */
1552 #define SK_MEM_QUANTUM 4096
1553 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1554 #define SK_MEM_SEND 0
1555 #define SK_MEM_RECV 1
1556
1557 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1558 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1559 {
1560 long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1561
1562 #if PAGE_SIZE > SK_MEM_QUANTUM
1563 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1564 #elif PAGE_SIZE < SK_MEM_QUANTUM
1565 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1566 #endif
1567 return val;
1568 }
1569
sk_mem_pages(int amt)1570 static inline int sk_mem_pages(int amt)
1571 {
1572 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1573 }
1574
sk_has_account(struct sock * sk)1575 static inline bool sk_has_account(struct sock *sk)
1576 {
1577 /* return true if protocol supports memory accounting */
1578 return !!sk->sk_prot->memory_allocated;
1579 }
1580
sk_wmem_schedule(struct sock * sk,int size)1581 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1582 {
1583 int delta;
1584
1585 if (!sk_has_account(sk))
1586 return true;
1587 delta = size - sk->sk_forward_alloc;
1588 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1589 }
1590
1591 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1592 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1593 {
1594 int delta;
1595
1596 if (!sk_has_account(sk))
1597 return true;
1598 delta = size - sk->sk_forward_alloc;
1599 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1600 skb_pfmemalloc(skb);
1601 }
1602
sk_unused_reserved_mem(const struct sock * sk)1603 static inline int sk_unused_reserved_mem(const struct sock *sk)
1604 {
1605 int unused_mem;
1606
1607 if (likely(!sk->sk_reserved_mem))
1608 return 0;
1609
1610 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1611 atomic_read(&sk->sk_rmem_alloc);
1612
1613 return unused_mem > 0 ? unused_mem : 0;
1614 }
1615
sk_mem_reclaim(struct sock * sk)1616 static inline void sk_mem_reclaim(struct sock *sk)
1617 {
1618 int reclaimable;
1619
1620 if (!sk_has_account(sk))
1621 return;
1622
1623 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1624
1625 if (reclaimable >= SK_MEM_QUANTUM)
1626 __sk_mem_reclaim(sk, reclaimable);
1627 }
1628
sk_mem_reclaim_final(struct sock * sk)1629 static inline void sk_mem_reclaim_final(struct sock *sk)
1630 {
1631 sk->sk_reserved_mem = 0;
1632 sk_mem_reclaim(sk);
1633 }
1634
sk_mem_reclaim_partial(struct sock * sk)1635 static inline void sk_mem_reclaim_partial(struct sock *sk)
1636 {
1637 int reclaimable;
1638
1639 if (!sk_has_account(sk))
1640 return;
1641
1642 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1643
1644 if (reclaimable > SK_MEM_QUANTUM)
1645 __sk_mem_reclaim(sk, reclaimable - 1);
1646 }
1647
sk_mem_charge(struct sock * sk,int size)1648 static inline void sk_mem_charge(struct sock *sk, int size)
1649 {
1650 if (!sk_has_account(sk))
1651 return;
1652 sk->sk_forward_alloc -= size;
1653 }
1654
1655 /* the following macros control memory reclaiming in sk_mem_uncharge()
1656 */
1657 #define SK_RECLAIM_THRESHOLD (1 << 21)
1658 #define SK_RECLAIM_CHUNK (1 << 20)
1659
sk_mem_uncharge(struct sock * sk,int size)1660 static inline void sk_mem_uncharge(struct sock *sk, int size)
1661 {
1662 int reclaimable;
1663
1664 if (!sk_has_account(sk))
1665 return;
1666 sk->sk_forward_alloc += size;
1667 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1668
1669 /* Avoid a possible overflow.
1670 * TCP send queues can make this happen, if sk_mem_reclaim()
1671 * is not called and more than 2 GBytes are released at once.
1672 *
1673 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1674 * no need to hold that much forward allocation anyway.
1675 */
1676 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1677 __sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1678 }
1679
1680 /*
1681 * Macro so as to not evaluate some arguments when
1682 * lockdep is not enabled.
1683 *
1684 * Mark both the sk_lock and the sk_lock.slock as a
1685 * per-address-family lock class.
1686 */
1687 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1688 do { \
1689 sk->sk_lock.owned = 0; \
1690 init_waitqueue_head(&sk->sk_lock.wq); \
1691 spin_lock_init(&(sk)->sk_lock.slock); \
1692 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1693 sizeof((sk)->sk_lock)); \
1694 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1695 (skey), (sname)); \
1696 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1697 } while (0)
1698
lockdep_sock_is_held(const struct sock * sk)1699 static inline bool lockdep_sock_is_held(const struct sock *sk)
1700 {
1701 return lockdep_is_held(&sk->sk_lock) ||
1702 lockdep_is_held(&sk->sk_lock.slock);
1703 }
1704
1705 void lock_sock_nested(struct sock *sk, int subclass);
1706
lock_sock(struct sock * sk)1707 static inline void lock_sock(struct sock *sk)
1708 {
1709 lock_sock_nested(sk, 0);
1710 }
1711
1712 void __lock_sock(struct sock *sk);
1713 void __release_sock(struct sock *sk);
1714 void release_sock(struct sock *sk);
1715
1716 /* BH context may only use the following locking interface. */
1717 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1718 #define bh_lock_sock_nested(__sk) \
1719 spin_lock_nested(&((__sk)->sk_lock.slock), \
1720 SINGLE_DEPTH_NESTING)
1721 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1722
1723 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1724
1725 /**
1726 * lock_sock_fast - fast version of lock_sock
1727 * @sk: socket
1728 *
1729 * This version should be used for very small section, where process wont block
1730 * return false if fast path is taken:
1731 *
1732 * sk_lock.slock locked, owned = 0, BH disabled
1733 *
1734 * return true if slow path is taken:
1735 *
1736 * sk_lock.slock unlocked, owned = 1, BH enabled
1737 */
lock_sock_fast(struct sock * sk)1738 static inline bool lock_sock_fast(struct sock *sk)
1739 {
1740 /* The sk_lock has mutex_lock() semantics here. */
1741 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1742
1743 return __lock_sock_fast(sk);
1744 }
1745
1746 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1747 static inline bool lock_sock_fast_nested(struct sock *sk)
1748 {
1749 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1750
1751 return __lock_sock_fast(sk);
1752 }
1753
1754 /**
1755 * unlock_sock_fast - complement of lock_sock_fast
1756 * @sk: socket
1757 * @slow: slow mode
1758 *
1759 * fast unlock socket for user context.
1760 * If slow mode is on, we call regular release_sock()
1761 */
unlock_sock_fast(struct sock * sk,bool slow)1762 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1763 __releases(&sk->sk_lock.slock)
1764 {
1765 if (slow) {
1766 release_sock(sk);
1767 __release(&sk->sk_lock.slock);
1768 } else {
1769 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1770 spin_unlock_bh(&sk->sk_lock.slock);
1771 }
1772 }
1773
1774 /* Used by processes to "lock" a socket state, so that
1775 * interrupts and bottom half handlers won't change it
1776 * from under us. It essentially blocks any incoming
1777 * packets, so that we won't get any new data or any
1778 * packets that change the state of the socket.
1779 *
1780 * While locked, BH processing will add new packets to
1781 * the backlog queue. This queue is processed by the
1782 * owner of the socket lock right before it is released.
1783 *
1784 * Since ~2.3.5 it is also exclusive sleep lock serializing
1785 * accesses from user process context.
1786 */
1787
sock_owned_by_me(const struct sock * sk)1788 static inline void sock_owned_by_me(const struct sock *sk)
1789 {
1790 #ifdef CONFIG_LOCKDEP
1791 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1792 #endif
1793 }
1794
sock_owned_by_user(const struct sock * sk)1795 static inline bool sock_owned_by_user(const struct sock *sk)
1796 {
1797 sock_owned_by_me(sk);
1798 return sk->sk_lock.owned;
1799 }
1800
sock_owned_by_user_nocheck(const struct sock * sk)1801 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1802 {
1803 return sk->sk_lock.owned;
1804 }
1805
sock_release_ownership(struct sock * sk)1806 static inline void sock_release_ownership(struct sock *sk)
1807 {
1808 if (sock_owned_by_user_nocheck(sk)) {
1809 sk->sk_lock.owned = 0;
1810
1811 /* The sk_lock has mutex_unlock() semantics: */
1812 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1813 }
1814 }
1815
1816 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1817 static inline bool sock_allow_reclassification(const struct sock *csk)
1818 {
1819 struct sock *sk = (struct sock *)csk;
1820
1821 return !sock_owned_by_user_nocheck(sk) &&
1822 !spin_is_locked(&sk->sk_lock.slock);
1823 }
1824
1825 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1826 struct proto *prot, int kern);
1827 void sk_free(struct sock *sk);
1828 void sk_destruct(struct sock *sk);
1829 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1830 void sk_free_unlock_clone(struct sock *sk);
1831
1832 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1833 gfp_t priority);
1834 void __sock_wfree(struct sk_buff *skb);
1835 void sock_wfree(struct sk_buff *skb);
1836 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1837 gfp_t priority);
1838 void skb_orphan_partial(struct sk_buff *skb);
1839 void sock_rfree(struct sk_buff *skb);
1840 void sock_efree(struct sk_buff *skb);
1841 #ifdef CONFIG_INET
1842 void sock_edemux(struct sk_buff *skb);
1843 void sock_pfree(struct sk_buff *skb);
1844 #else
1845 #define sock_edemux sock_efree
1846 #endif
1847
1848 int sock_setsockopt(struct socket *sock, int level, int op,
1849 sockptr_t optval, unsigned int optlen);
1850
1851 int sock_getsockopt(struct socket *sock, int level, int op,
1852 char __user *optval, int __user *optlen);
1853 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1854 bool timeval, bool time32);
1855 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1856 unsigned long data_len, int noblock,
1857 int *errcode, int max_page_order);
1858
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1859 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1860 unsigned long size,
1861 int noblock, int *errcode)
1862 {
1863 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1864 }
1865
1866 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1867 void sock_kfree_s(struct sock *sk, void *mem, int size);
1868 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1869 void sk_send_sigurg(struct sock *sk);
1870
1871 struct sockcm_cookie {
1872 u64 transmit_time;
1873 u32 mark;
1874 u16 tsflags;
1875 };
1876
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1877 static inline void sockcm_init(struct sockcm_cookie *sockc,
1878 const struct sock *sk)
1879 {
1880 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1881 }
1882
1883 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1884 struct sockcm_cookie *sockc);
1885 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1886 struct sockcm_cookie *sockc);
1887
1888 /*
1889 * Functions to fill in entries in struct proto_ops when a protocol
1890 * does not implement a particular function.
1891 */
1892 int sock_no_bind(struct socket *, struct sockaddr *, int);
1893 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1894 int sock_no_socketpair(struct socket *, struct socket *);
1895 int sock_no_accept(struct socket *, struct socket *, int, bool);
1896 int sock_no_getname(struct socket *, struct sockaddr *, int);
1897 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1898 int sock_no_listen(struct socket *, int);
1899 int sock_no_shutdown(struct socket *, int);
1900 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1901 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1902 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1903 int sock_no_mmap(struct file *file, struct socket *sock,
1904 struct vm_area_struct *vma);
1905 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1906 size_t size, int flags);
1907 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1908 int offset, size_t size, int flags);
1909
1910 /*
1911 * Functions to fill in entries in struct proto_ops when a protocol
1912 * uses the inet style.
1913 */
1914 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1915 char __user *optval, int __user *optlen);
1916 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1917 int flags);
1918 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1919 sockptr_t optval, unsigned int optlen);
1920
1921 void sk_common_release(struct sock *sk);
1922
1923 /*
1924 * Default socket callbacks and setup code
1925 */
1926
1927 /* Initialise core socket variables */
1928 void sock_init_data(struct socket *sock, struct sock *sk);
1929
1930 /*
1931 * Socket reference counting postulates.
1932 *
1933 * * Each user of socket SHOULD hold a reference count.
1934 * * Each access point to socket (an hash table bucket, reference from a list,
1935 * running timer, skb in flight MUST hold a reference count.
1936 * * When reference count hits 0, it means it will never increase back.
1937 * * When reference count hits 0, it means that no references from
1938 * outside exist to this socket and current process on current CPU
1939 * is last user and may/should destroy this socket.
1940 * * sk_free is called from any context: process, BH, IRQ. When
1941 * it is called, socket has no references from outside -> sk_free
1942 * may release descendant resources allocated by the socket, but
1943 * to the time when it is called, socket is NOT referenced by any
1944 * hash tables, lists etc.
1945 * * Packets, delivered from outside (from network or from another process)
1946 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1947 * when they sit in queue. Otherwise, packets will leak to hole, when
1948 * socket is looked up by one cpu and unhasing is made by another CPU.
1949 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1950 * (leak to backlog). Packet socket does all the processing inside
1951 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1952 * use separate SMP lock, so that they are prone too.
1953 */
1954
1955 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1956 static inline void sock_put(struct sock *sk)
1957 {
1958 if (refcount_dec_and_test(&sk->sk_refcnt))
1959 sk_free(sk);
1960 }
1961 /* Generic version of sock_put(), dealing with all sockets
1962 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1963 */
1964 void sock_gen_put(struct sock *sk);
1965
1966 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1967 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1968 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1969 const int nested)
1970 {
1971 return __sk_receive_skb(sk, skb, nested, 1, true);
1972 }
1973
sk_tx_queue_set(struct sock * sk,int tx_queue)1974 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1975 {
1976 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1977 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1978 return;
1979 sk->sk_tx_queue_mapping = tx_queue;
1980 }
1981
1982 #define NO_QUEUE_MAPPING USHRT_MAX
1983
sk_tx_queue_clear(struct sock * sk)1984 static inline void sk_tx_queue_clear(struct sock *sk)
1985 {
1986 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1987 }
1988
sk_tx_queue_get(const struct sock * sk)1989 static inline int sk_tx_queue_get(const struct sock *sk)
1990 {
1991 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1992 return sk->sk_tx_queue_mapping;
1993
1994 return -1;
1995 }
1996
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)1997 static inline void __sk_rx_queue_set(struct sock *sk,
1998 const struct sk_buff *skb,
1999 bool force_set)
2000 {
2001 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2002 if (skb_rx_queue_recorded(skb)) {
2003 u16 rx_queue = skb_get_rx_queue(skb);
2004
2005 if (force_set ||
2006 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2007 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2008 }
2009 #endif
2010 }
2011
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2012 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2013 {
2014 __sk_rx_queue_set(sk, skb, true);
2015 }
2016
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2017 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2018 {
2019 __sk_rx_queue_set(sk, skb, false);
2020 }
2021
sk_rx_queue_clear(struct sock * sk)2022 static inline void sk_rx_queue_clear(struct sock *sk)
2023 {
2024 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2025 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2026 #endif
2027 }
2028
sk_rx_queue_get(const struct sock * sk)2029 static inline int sk_rx_queue_get(const struct sock *sk)
2030 {
2031 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2032 if (sk) {
2033 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2034
2035 if (res != NO_QUEUE_MAPPING)
2036 return res;
2037 }
2038 #endif
2039
2040 return -1;
2041 }
2042
sk_set_socket(struct sock * sk,struct socket * sock)2043 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2044 {
2045 sk->sk_socket = sock;
2046 }
2047
sk_sleep(struct sock * sk)2048 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2049 {
2050 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2051 return &rcu_dereference_raw(sk->sk_wq)->wait;
2052 }
2053 /* Detach socket from process context.
2054 * Announce socket dead, detach it from wait queue and inode.
2055 * Note that parent inode held reference count on this struct sock,
2056 * we do not release it in this function, because protocol
2057 * probably wants some additional cleanups or even continuing
2058 * to work with this socket (TCP).
2059 */
sock_orphan(struct sock * sk)2060 static inline void sock_orphan(struct sock *sk)
2061 {
2062 write_lock_bh(&sk->sk_callback_lock);
2063 sock_set_flag(sk, SOCK_DEAD);
2064 sk_set_socket(sk, NULL);
2065 sk->sk_wq = NULL;
2066 write_unlock_bh(&sk->sk_callback_lock);
2067 }
2068
sock_graft(struct sock * sk,struct socket * parent)2069 static inline void sock_graft(struct sock *sk, struct socket *parent)
2070 {
2071 WARN_ON(parent->sk);
2072 write_lock_bh(&sk->sk_callback_lock);
2073 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2074 parent->sk = sk;
2075 sk_set_socket(sk, parent);
2076 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2077 security_sock_graft(sk, parent);
2078 write_unlock_bh(&sk->sk_callback_lock);
2079 }
2080
2081 kuid_t sock_i_uid(struct sock *sk);
2082 unsigned long sock_i_ino(struct sock *sk);
2083
sock_net_uid(const struct net * net,const struct sock * sk)2084 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2085 {
2086 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2087 }
2088
net_tx_rndhash(void)2089 static inline u32 net_tx_rndhash(void)
2090 {
2091 u32 v = prandom_u32();
2092
2093 return v ?: 1;
2094 }
2095
sk_set_txhash(struct sock * sk)2096 static inline void sk_set_txhash(struct sock *sk)
2097 {
2098 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2099 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2100 }
2101
sk_rethink_txhash(struct sock * sk)2102 static inline bool sk_rethink_txhash(struct sock *sk)
2103 {
2104 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2105 sk_set_txhash(sk);
2106 return true;
2107 }
2108 return false;
2109 }
2110
2111 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)2112 __sk_dst_get(struct sock *sk)
2113 {
2114 return rcu_dereference_check(sk->sk_dst_cache,
2115 lockdep_sock_is_held(sk));
2116 }
2117
2118 static inline struct dst_entry *
sk_dst_get(struct sock * sk)2119 sk_dst_get(struct sock *sk)
2120 {
2121 struct dst_entry *dst;
2122
2123 rcu_read_lock();
2124 dst = rcu_dereference(sk->sk_dst_cache);
2125 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2126 dst = NULL;
2127 rcu_read_unlock();
2128 return dst;
2129 }
2130
__dst_negative_advice(struct sock * sk)2131 static inline void __dst_negative_advice(struct sock *sk)
2132 {
2133 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2134
2135 if (dst && dst->ops->negative_advice) {
2136 ndst = dst->ops->negative_advice(dst);
2137
2138 if (ndst != dst) {
2139 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2140 sk_tx_queue_clear(sk);
2141 sk->sk_dst_pending_confirm = 0;
2142 }
2143 }
2144 }
2145
dst_negative_advice(struct sock * sk)2146 static inline void dst_negative_advice(struct sock *sk)
2147 {
2148 sk_rethink_txhash(sk);
2149 __dst_negative_advice(sk);
2150 }
2151
2152 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2153 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2154 {
2155 struct dst_entry *old_dst;
2156
2157 sk_tx_queue_clear(sk);
2158 sk->sk_dst_pending_confirm = 0;
2159 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2160 lockdep_sock_is_held(sk));
2161 rcu_assign_pointer(sk->sk_dst_cache, dst);
2162 dst_release(old_dst);
2163 }
2164
2165 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2166 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2167 {
2168 struct dst_entry *old_dst;
2169
2170 sk_tx_queue_clear(sk);
2171 sk->sk_dst_pending_confirm = 0;
2172 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2173 dst_release(old_dst);
2174 }
2175
2176 static inline void
__sk_dst_reset(struct sock * sk)2177 __sk_dst_reset(struct sock *sk)
2178 {
2179 __sk_dst_set(sk, NULL);
2180 }
2181
2182 static inline void
sk_dst_reset(struct sock * sk)2183 sk_dst_reset(struct sock *sk)
2184 {
2185 sk_dst_set(sk, NULL);
2186 }
2187
2188 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2189
2190 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2191
sk_dst_confirm(struct sock * sk)2192 static inline void sk_dst_confirm(struct sock *sk)
2193 {
2194 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2195 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2196 }
2197
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2198 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2199 {
2200 if (skb_get_dst_pending_confirm(skb)) {
2201 struct sock *sk = skb->sk;
2202
2203 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2204 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2205 neigh_confirm(n);
2206 }
2207 }
2208
2209 bool sk_mc_loop(struct sock *sk);
2210
sk_can_gso(const struct sock * sk)2211 static inline bool sk_can_gso(const struct sock *sk)
2212 {
2213 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2214 }
2215
2216 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2217
sk_gso_disable(struct sock * sk)2218 static inline void sk_gso_disable(struct sock *sk)
2219 {
2220 sk->sk_gso_disabled = 1;
2221 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2222 }
2223
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2224 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2225 struct iov_iter *from, char *to,
2226 int copy, int offset)
2227 {
2228 if (skb->ip_summed == CHECKSUM_NONE) {
2229 __wsum csum = 0;
2230 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2231 return -EFAULT;
2232 skb->csum = csum_block_add(skb->csum, csum, offset);
2233 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2234 if (!copy_from_iter_full_nocache(to, copy, from))
2235 return -EFAULT;
2236 } else if (!copy_from_iter_full(to, copy, from))
2237 return -EFAULT;
2238
2239 return 0;
2240 }
2241
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2242 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2243 struct iov_iter *from, int copy)
2244 {
2245 int err, offset = skb->len;
2246
2247 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2248 copy, offset);
2249 if (err)
2250 __skb_trim(skb, offset);
2251
2252 return err;
2253 }
2254
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2255 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2256 struct sk_buff *skb,
2257 struct page *page,
2258 int off, int copy)
2259 {
2260 int err;
2261
2262 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2263 copy, skb->len);
2264 if (err)
2265 return err;
2266
2267 skb->len += copy;
2268 skb->data_len += copy;
2269 skb->truesize += copy;
2270 sk_wmem_queued_add(sk, copy);
2271 sk_mem_charge(sk, copy);
2272 return 0;
2273 }
2274
2275 /**
2276 * sk_wmem_alloc_get - returns write allocations
2277 * @sk: socket
2278 *
2279 * Return: sk_wmem_alloc minus initial offset of one
2280 */
sk_wmem_alloc_get(const struct sock * sk)2281 static inline int sk_wmem_alloc_get(const struct sock *sk)
2282 {
2283 return refcount_read(&sk->sk_wmem_alloc) - 1;
2284 }
2285
2286 /**
2287 * sk_rmem_alloc_get - returns read allocations
2288 * @sk: socket
2289 *
2290 * Return: sk_rmem_alloc
2291 */
sk_rmem_alloc_get(const struct sock * sk)2292 static inline int sk_rmem_alloc_get(const struct sock *sk)
2293 {
2294 return atomic_read(&sk->sk_rmem_alloc);
2295 }
2296
2297 /**
2298 * sk_has_allocations - check if allocations are outstanding
2299 * @sk: socket
2300 *
2301 * Return: true if socket has write or read allocations
2302 */
sk_has_allocations(const struct sock * sk)2303 static inline bool sk_has_allocations(const struct sock *sk)
2304 {
2305 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2306 }
2307
2308 /**
2309 * skwq_has_sleeper - check if there are any waiting processes
2310 * @wq: struct socket_wq
2311 *
2312 * Return: true if socket_wq has waiting processes
2313 *
2314 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2315 * barrier call. They were added due to the race found within the tcp code.
2316 *
2317 * Consider following tcp code paths::
2318 *
2319 * CPU1 CPU2
2320 * sys_select receive packet
2321 * ... ...
2322 * __add_wait_queue update tp->rcv_nxt
2323 * ... ...
2324 * tp->rcv_nxt check sock_def_readable
2325 * ... {
2326 * schedule rcu_read_lock();
2327 * wq = rcu_dereference(sk->sk_wq);
2328 * if (wq && waitqueue_active(&wq->wait))
2329 * wake_up_interruptible(&wq->wait)
2330 * ...
2331 * }
2332 *
2333 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2334 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2335 * could then endup calling schedule and sleep forever if there are no more
2336 * data on the socket.
2337 *
2338 */
skwq_has_sleeper(struct socket_wq * wq)2339 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2340 {
2341 return wq && wq_has_sleeper(&wq->wait);
2342 }
2343
2344 /**
2345 * sock_poll_wait - place memory barrier behind the poll_wait call.
2346 * @filp: file
2347 * @sock: socket to wait on
2348 * @p: poll_table
2349 *
2350 * See the comments in the wq_has_sleeper function.
2351 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2352 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2353 poll_table *p)
2354 {
2355 if (!poll_does_not_wait(p)) {
2356 poll_wait(filp, &sock->wq.wait, p);
2357 /* We need to be sure we are in sync with the
2358 * socket flags modification.
2359 *
2360 * This memory barrier is paired in the wq_has_sleeper.
2361 */
2362 smp_mb();
2363 }
2364 }
2365
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2366 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2367 {
2368 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2369 u32 txhash = READ_ONCE(sk->sk_txhash);
2370
2371 if (txhash) {
2372 skb->l4_hash = 1;
2373 skb->hash = txhash;
2374 }
2375 }
2376
2377 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2378
2379 /*
2380 * Queue a received datagram if it will fit. Stream and sequenced
2381 * protocols can't normally use this as they need to fit buffers in
2382 * and play with them.
2383 *
2384 * Inlined as it's very short and called for pretty much every
2385 * packet ever received.
2386 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2387 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2388 {
2389 skb_orphan(skb);
2390 skb->sk = sk;
2391 skb->destructor = sock_rfree;
2392 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2393 sk_mem_charge(sk, skb->truesize);
2394 }
2395
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2396 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2397 {
2398 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2399 skb_orphan(skb);
2400 skb->destructor = sock_efree;
2401 skb->sk = sk;
2402 return true;
2403 }
2404 return false;
2405 }
2406
skb_prepare_for_gro(struct sk_buff * skb)2407 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2408 {
2409 if (skb->destructor != sock_wfree) {
2410 skb_orphan(skb);
2411 return;
2412 }
2413 skb->slow_gro = 1;
2414 }
2415
2416 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2417 unsigned long expires);
2418
2419 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2420
2421 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2422
2423 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2424 struct sk_buff *skb, unsigned int flags,
2425 void (*destructor)(struct sock *sk,
2426 struct sk_buff *skb));
2427 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2428
2429 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2430 enum skb_drop_reason *reason);
2431
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2432 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2433 {
2434 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2435 }
2436
2437 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2438 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2439
2440 /*
2441 * Recover an error report and clear atomically
2442 */
2443
sock_error(struct sock * sk)2444 static inline int sock_error(struct sock *sk)
2445 {
2446 int err;
2447
2448 /* Avoid an atomic operation for the common case.
2449 * This is racy since another cpu/thread can change sk_err under us.
2450 */
2451 if (likely(data_race(!sk->sk_err)))
2452 return 0;
2453
2454 err = xchg(&sk->sk_err, 0);
2455 return -err;
2456 }
2457
2458 void sk_error_report(struct sock *sk);
2459
sock_wspace(struct sock * sk)2460 static inline unsigned long sock_wspace(struct sock *sk)
2461 {
2462 int amt = 0;
2463
2464 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2465 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2466 if (amt < 0)
2467 amt = 0;
2468 }
2469 return amt;
2470 }
2471
2472 /* Note:
2473 * We use sk->sk_wq_raw, from contexts knowing this
2474 * pointer is not NULL and cannot disappear/change.
2475 */
sk_set_bit(int nr,struct sock * sk)2476 static inline void sk_set_bit(int nr, struct sock *sk)
2477 {
2478 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2479 !sock_flag(sk, SOCK_FASYNC))
2480 return;
2481
2482 set_bit(nr, &sk->sk_wq_raw->flags);
2483 }
2484
sk_clear_bit(int nr,struct sock * sk)2485 static inline void sk_clear_bit(int nr, struct sock *sk)
2486 {
2487 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2488 !sock_flag(sk, SOCK_FASYNC))
2489 return;
2490
2491 clear_bit(nr, &sk->sk_wq_raw->flags);
2492 }
2493
sk_wake_async(const struct sock * sk,int how,int band)2494 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2495 {
2496 if (sock_flag(sk, SOCK_FASYNC)) {
2497 rcu_read_lock();
2498 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2499 rcu_read_unlock();
2500 }
2501 }
2502
2503 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2504 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2505 * Note: for send buffers, TCP works better if we can build two skbs at
2506 * minimum.
2507 */
2508 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2509
2510 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2511 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2512
sk_stream_moderate_sndbuf(struct sock * sk)2513 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2514 {
2515 u32 val;
2516
2517 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2518 return;
2519
2520 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2521 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2522
2523 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2524 }
2525
2526 /**
2527 * sk_page_frag - return an appropriate page_frag
2528 * @sk: socket
2529 *
2530 * Use the per task page_frag instead of the per socket one for
2531 * optimization when we know that we're in process context and own
2532 * everything that's associated with %current.
2533 *
2534 * Both direct reclaim and page faults can nest inside other
2535 * socket operations and end up recursing into sk_page_frag()
2536 * while it's already in use: explicitly avoid task page_frag
2537 * usage if the caller is potentially doing any of them.
2538 * This assumes that page fault handlers use the GFP_NOFS flags.
2539 *
2540 * Return: a per task page_frag if context allows that,
2541 * otherwise a per socket one.
2542 */
sk_page_frag(struct sock * sk)2543 static inline struct page_frag *sk_page_frag(struct sock *sk)
2544 {
2545 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2546 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2547 return ¤t->task_frag;
2548
2549 return &sk->sk_frag;
2550 }
2551
2552 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2553
2554 /*
2555 * Default write policy as shown to user space via poll/select/SIGIO
2556 */
sock_writeable(const struct sock * sk)2557 static inline bool sock_writeable(const struct sock *sk)
2558 {
2559 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2560 }
2561
gfp_any(void)2562 static inline gfp_t gfp_any(void)
2563 {
2564 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2565 }
2566
gfp_memcg_charge(void)2567 static inline gfp_t gfp_memcg_charge(void)
2568 {
2569 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2570 }
2571
sock_rcvtimeo(const struct sock * sk,bool noblock)2572 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2573 {
2574 return noblock ? 0 : sk->sk_rcvtimeo;
2575 }
2576
sock_sndtimeo(const struct sock * sk,bool noblock)2577 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2578 {
2579 return noblock ? 0 : sk->sk_sndtimeo;
2580 }
2581
sock_rcvlowat(const struct sock * sk,int waitall,int len)2582 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2583 {
2584 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2585
2586 return v ?: 1;
2587 }
2588
2589 /* Alas, with timeout socket operations are not restartable.
2590 * Compare this to poll().
2591 */
sock_intr_errno(long timeo)2592 static inline int sock_intr_errno(long timeo)
2593 {
2594 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2595 }
2596
2597 struct sock_skb_cb {
2598 u32 dropcount;
2599 };
2600
2601 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2602 * using skb->cb[] would keep using it directly and utilize its
2603 * alignement guarantee.
2604 */
2605 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2606 sizeof(struct sock_skb_cb)))
2607
2608 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2609 SOCK_SKB_CB_OFFSET))
2610
2611 #define sock_skb_cb_check_size(size) \
2612 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2613
2614 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2615 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2616 {
2617 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2618 atomic_read(&sk->sk_drops) : 0;
2619 }
2620
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2621 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2622 {
2623 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2624
2625 atomic_add(segs, &sk->sk_drops);
2626 }
2627
sock_read_timestamp(struct sock * sk)2628 static inline ktime_t sock_read_timestamp(struct sock *sk)
2629 {
2630 #if BITS_PER_LONG==32
2631 unsigned int seq;
2632 ktime_t kt;
2633
2634 do {
2635 seq = read_seqbegin(&sk->sk_stamp_seq);
2636 kt = sk->sk_stamp;
2637 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2638
2639 return kt;
2640 #else
2641 return READ_ONCE(sk->sk_stamp);
2642 #endif
2643 }
2644
sock_write_timestamp(struct sock * sk,ktime_t kt)2645 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2646 {
2647 #if BITS_PER_LONG==32
2648 write_seqlock(&sk->sk_stamp_seq);
2649 sk->sk_stamp = kt;
2650 write_sequnlock(&sk->sk_stamp_seq);
2651 #else
2652 WRITE_ONCE(sk->sk_stamp, kt);
2653 #endif
2654 }
2655
2656 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2657 struct sk_buff *skb);
2658 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2659 struct sk_buff *skb);
2660
2661 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2662 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2663 {
2664 ktime_t kt = skb->tstamp;
2665 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2666
2667 /*
2668 * generate control messages if
2669 * - receive time stamping in software requested
2670 * - software time stamp available and wanted
2671 * - hardware time stamps available and wanted
2672 */
2673 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2674 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2675 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2676 (hwtstamps->hwtstamp &&
2677 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2678 __sock_recv_timestamp(msg, sk, skb);
2679 else
2680 sock_write_timestamp(sk, kt);
2681
2682 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2683 __sock_recv_wifi_status(msg, sk, skb);
2684 }
2685
2686 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2687 struct sk_buff *skb);
2688
2689 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2690 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2691 struct sk_buff *skb)
2692 {
2693 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2694 (1UL << SOCK_RCVTSTAMP) | \
2695 (1UL << SOCK_RCVMARK))
2696 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2697 SOF_TIMESTAMPING_RAW_HARDWARE)
2698
2699 if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2700 __sock_recv_cmsgs(msg, sk, skb);
2701 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2702 sock_write_timestamp(sk, skb->tstamp);
2703 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2704 sock_write_timestamp(sk, 0);
2705 }
2706
2707 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2708
2709 /**
2710 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2711 * @sk: socket sending this packet
2712 * @tsflags: timestamping flags to use
2713 * @tx_flags: completed with instructions for time stamping
2714 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2715 *
2716 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2717 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2718 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2719 __u8 *tx_flags, __u32 *tskey)
2720 {
2721 if (unlikely(tsflags)) {
2722 __sock_tx_timestamp(tsflags, tx_flags);
2723 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2724 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2725 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2726 }
2727 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2728 *tx_flags |= SKBTX_WIFI_STATUS;
2729 }
2730
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2731 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2732 __u8 *tx_flags)
2733 {
2734 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2735 }
2736
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2737 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2738 {
2739 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2740 &skb_shinfo(skb)->tskey);
2741 }
2742
sk_is_tcp(const struct sock * sk)2743 static inline bool sk_is_tcp(const struct sock *sk)
2744 {
2745 return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2746 }
2747
2748 /**
2749 * sk_eat_skb - Release a skb if it is no longer needed
2750 * @sk: socket to eat this skb from
2751 * @skb: socket buffer to eat
2752 *
2753 * This routine must be called with interrupts disabled or with the socket
2754 * locked so that the sk_buff queue operation is ok.
2755 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2756 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2757 {
2758 __skb_unlink(skb, &sk->sk_receive_queue);
2759 __kfree_skb(skb);
2760 }
2761
2762 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2763 skb_sk_is_prefetched(struct sk_buff *skb)
2764 {
2765 #ifdef CONFIG_INET
2766 return skb->destructor == sock_pfree;
2767 #else
2768 return false;
2769 #endif /* CONFIG_INET */
2770 }
2771
2772 /* This helper checks if a socket is a full socket,
2773 * ie _not_ a timewait or request socket.
2774 */
sk_fullsock(const struct sock * sk)2775 static inline bool sk_fullsock(const struct sock *sk)
2776 {
2777 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2778 }
2779
2780 static inline bool
sk_is_refcounted(struct sock * sk)2781 sk_is_refcounted(struct sock *sk)
2782 {
2783 /* Only full sockets have sk->sk_flags. */
2784 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2785 }
2786
2787 /**
2788 * skb_steal_sock - steal a socket from an sk_buff
2789 * @skb: sk_buff to steal the socket from
2790 * @refcounted: is set to true if the socket is reference-counted
2791 */
2792 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2793 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2794 {
2795 if (skb->sk) {
2796 struct sock *sk = skb->sk;
2797
2798 *refcounted = true;
2799 if (skb_sk_is_prefetched(skb))
2800 *refcounted = sk_is_refcounted(sk);
2801 skb->destructor = NULL;
2802 skb->sk = NULL;
2803 return sk;
2804 }
2805 *refcounted = false;
2806 return NULL;
2807 }
2808
2809 /* Checks if this SKB belongs to an HW offloaded socket
2810 * and whether any SW fallbacks are required based on dev.
2811 * Check decrypted mark in case skb_orphan() cleared socket.
2812 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2813 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2814 struct net_device *dev)
2815 {
2816 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2817 struct sock *sk = skb->sk;
2818
2819 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2820 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2821 #ifdef CONFIG_TLS_DEVICE
2822 } else if (unlikely(skb->decrypted)) {
2823 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2824 kfree_skb(skb);
2825 skb = NULL;
2826 #endif
2827 }
2828 #endif
2829
2830 return skb;
2831 }
2832
2833 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2834 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2835 */
sk_listener(const struct sock * sk)2836 static inline bool sk_listener(const struct sock *sk)
2837 {
2838 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2839 }
2840
2841 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2842 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2843 int type);
2844
2845 bool sk_ns_capable(const struct sock *sk,
2846 struct user_namespace *user_ns, int cap);
2847 bool sk_capable(const struct sock *sk, int cap);
2848 bool sk_net_capable(const struct sock *sk, int cap);
2849
2850 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2851
2852 /* Take into consideration the size of the struct sk_buff overhead in the
2853 * determination of these values, since that is non-constant across
2854 * platforms. This makes socket queueing behavior and performance
2855 * not depend upon such differences.
2856 */
2857 #define _SK_MEM_PACKETS 256
2858 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2859 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2860 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2861
2862 extern __u32 sysctl_wmem_max;
2863 extern __u32 sysctl_rmem_max;
2864
2865 extern int sysctl_tstamp_allow_data;
2866 extern int sysctl_optmem_max;
2867
2868 extern __u32 sysctl_wmem_default;
2869 extern __u32 sysctl_rmem_default;
2870
2871 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2872 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2873
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2874 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2875 {
2876 /* Does this proto have per netns sysctl_wmem ? */
2877 if (proto->sysctl_wmem_offset)
2878 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2879
2880 return READ_ONCE(*proto->sysctl_wmem);
2881 }
2882
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2883 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2884 {
2885 /* Does this proto have per netns sysctl_rmem ? */
2886 if (proto->sysctl_rmem_offset)
2887 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2888
2889 return READ_ONCE(*proto->sysctl_rmem);
2890 }
2891
2892 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2893 * Some wifi drivers need to tweak it to get more chunks.
2894 * They can use this helper from their ndo_start_xmit()
2895 */
sk_pacing_shift_update(struct sock * sk,int val)2896 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2897 {
2898 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2899 return;
2900 WRITE_ONCE(sk->sk_pacing_shift, val);
2901 }
2902
2903 /* if a socket is bound to a device, check that the given device
2904 * index is either the same or that the socket is bound to an L3
2905 * master device and the given device index is also enslaved to
2906 * that L3 master
2907 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2908 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2909 {
2910 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2911 int mdif;
2912
2913 if (!bound_dev_if || bound_dev_if == dif)
2914 return true;
2915
2916 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2917 if (mdif && mdif == bound_dev_if)
2918 return true;
2919
2920 return false;
2921 }
2922
2923 void sock_def_readable(struct sock *sk);
2924
2925 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2926 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2927 int sock_set_timestamping(struct sock *sk, int optname,
2928 struct so_timestamping timestamping);
2929
2930 void sock_enable_timestamps(struct sock *sk);
2931 void sock_no_linger(struct sock *sk);
2932 void sock_set_keepalive(struct sock *sk);
2933 void sock_set_priority(struct sock *sk, u32 priority);
2934 void sock_set_rcvbuf(struct sock *sk, int val);
2935 void sock_set_mark(struct sock *sk, u32 val);
2936 void sock_set_reuseaddr(struct sock *sk);
2937 void sock_set_reuseport(struct sock *sk);
2938 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2939
2940 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2941
2942 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2943 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2944 sockptr_t optval, int optlen, bool old_timeval);
2945
sk_is_readable(struct sock * sk)2946 static inline bool sk_is_readable(struct sock *sk)
2947 {
2948 if (sk->sk_prot->sock_is_readable)
2949 return sk->sk_prot->sock_is_readable(sk);
2950 return false;
2951 }
2952 #endif /* _SOCK_H */
2953