1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <linux/cn_proc.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102
103 #include "../../lib/kstrtox.h"
104
105 /* NOTE:
106 * Implementing inode permission operations in /proc is almost
107 * certainly an error. Permission checks need to happen during
108 * each system call not at open time. The reason is that most of
109 * what we wish to check for permissions in /proc varies at runtime.
110 *
111 * The classic example of a problem is opening file descriptors
112 * in /proc for a task before it execs a suid executable.
113 */
114
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117
118 struct pid_entry {
119 const char *name;
120 unsigned int len;
121 umode_t mode;
122 const struct inode_operations *iop;
123 const struct file_operations *fop;
124 union proc_op op;
125 };
126
127 #define NOD(NAME, MODE, IOP, FOP, OP) { \
128 .name = (NAME), \
129 .len = sizeof(NAME) - 1, \
130 .mode = MODE, \
131 .iop = IOP, \
132 .fop = FOP, \
133 .op = OP, \
134 }
135
136 #define DIR(NAME, MODE, iops, fops) \
137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link) \
139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
140 &proc_pid_link_inode_operations, NULL, \
141 { .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops) \
143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show) \
145 NOD(NAME, (S_IFREG|(MODE)), \
146 NULL, &proc_single_file_operations, \
147 { .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE) \
149 NOD(NAME, (S_IFREG|(MODE)), \
150 NULL, &proc_pid_attr_operations, \
151 { .lsm = LSM })
152
153 /*
154 * Count the number of hardlinks for the pid_entry table, excluding the .
155 * and .. links.
156 */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 unsigned int n)
159 {
160 unsigned int i;
161 unsigned int count;
162
163 count = 2;
164 for (i = 0; i < n; ++i) {
165 if (S_ISDIR(entries[i].mode))
166 ++count;
167 }
168
169 return count;
170 }
171
get_task_root(struct task_struct * task,struct path * root)172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 int result = -ENOENT;
175
176 task_lock(task);
177 if (task->fs) {
178 get_fs_root(task->fs, root);
179 result = 0;
180 }
181 task_unlock(task);
182 return result;
183 }
184
proc_cwd_link(struct dentry * dentry,struct path * path)185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 struct task_struct *task = get_proc_task(d_inode(dentry));
188 int result = -ENOENT;
189
190 if (task) {
191 task_lock(task);
192 if (task->fs) {
193 get_fs_pwd(task->fs, path);
194 result = 0;
195 }
196 task_unlock(task);
197 put_task_struct(task);
198 }
199 return result;
200 }
201
proc_root_link(struct dentry * dentry,struct path * path)202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 struct task_struct *task = get_proc_task(d_inode(dentry));
205 int result = -ENOENT;
206
207 if (task) {
208 result = get_task_root(task, path);
209 put_task_struct(task);
210 }
211 return result;
212 }
213
214 /*
215 * If the user used setproctitle(), we just get the string from
216 * user space at arg_start, and limit it to a maximum of one page.
217 */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 size_t count, unsigned long pos,
220 unsigned long arg_start)
221 {
222 char *page;
223 int ret, got;
224
225 if (pos >= PAGE_SIZE)
226 return 0;
227
228 page = (char *)__get_free_page(GFP_KERNEL);
229 if (!page)
230 return -ENOMEM;
231
232 ret = 0;
233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 if (got > 0) {
235 int len = strnlen(page, got);
236
237 /* Include the NUL character if it was found */
238 if (len < got)
239 len++;
240
241 if (len > pos) {
242 len -= pos;
243 if (len > count)
244 len = count;
245 len -= copy_to_user(buf, page+pos, len);
246 if (!len)
247 len = -EFAULT;
248 ret = len;
249 }
250 }
251 free_page((unsigned long)page);
252 return ret;
253 }
254
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 size_t count, loff_t *ppos)
257 {
258 unsigned long arg_start, arg_end, env_start, env_end;
259 unsigned long pos, len;
260 char *page, c;
261
262 /* Check if process spawned far enough to have cmdline. */
263 if (!mm->env_end)
264 return 0;
265
266 spin_lock(&mm->arg_lock);
267 arg_start = mm->arg_start;
268 arg_end = mm->arg_end;
269 env_start = mm->env_start;
270 env_end = mm->env_end;
271 spin_unlock(&mm->arg_lock);
272
273 if (arg_start >= arg_end)
274 return 0;
275
276 /*
277 * We allow setproctitle() to overwrite the argument
278 * strings, and overflow past the original end. But
279 * only when it overflows into the environment area.
280 */
281 if (env_start != arg_end || env_end < env_start)
282 env_start = env_end = arg_end;
283 len = env_end - arg_start;
284
285 /* We're not going to care if "*ppos" has high bits set */
286 pos = *ppos;
287 if (pos >= len)
288 return 0;
289 if (count > len - pos)
290 count = len - pos;
291 if (!count)
292 return 0;
293
294 /*
295 * Magical special case: if the argv[] end byte is not
296 * zero, the user has overwritten it with setproctitle(3).
297 *
298 * Possible future enhancement: do this only once when
299 * pos is 0, and set a flag in the 'struct file'.
300 */
301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 return get_mm_proctitle(mm, buf, count, pos, arg_start);
303
304 /*
305 * For the non-setproctitle() case we limit things strictly
306 * to the [arg_start, arg_end[ range.
307 */
308 pos += arg_start;
309 if (pos < arg_start || pos >= arg_end)
310 return 0;
311 if (count > arg_end - pos)
312 count = arg_end - pos;
313
314 page = (char *)__get_free_page(GFP_KERNEL);
315 if (!page)
316 return -ENOMEM;
317
318 len = 0;
319 while (count) {
320 int got;
321 size_t size = min_t(size_t, PAGE_SIZE, count);
322
323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 if (got <= 0)
325 break;
326 got -= copy_to_user(buf, page, got);
327 if (unlikely(!got)) {
328 if (!len)
329 len = -EFAULT;
330 break;
331 }
332 pos += got;
333 buf += got;
334 len += got;
335 count -= got;
336 }
337
338 free_page((unsigned long)page);
339 return len;
340 }
341
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 size_t count, loff_t *pos)
344 {
345 struct mm_struct *mm;
346 ssize_t ret;
347
348 mm = get_task_mm(tsk);
349 if (!mm)
350 return 0;
351
352 ret = get_mm_cmdline(mm, buf, count, pos);
353 mmput(mm);
354 return ret;
355 }
356
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 size_t count, loff_t *pos)
359 {
360 struct task_struct *tsk;
361 ssize_t ret;
362
363 BUG_ON(*pos < 0);
364
365 tsk = get_proc_task(file_inode(file));
366 if (!tsk)
367 return -ESRCH;
368 ret = get_task_cmdline(tsk, buf, count, pos);
369 put_task_struct(tsk);
370 if (ret > 0)
371 *pos += ret;
372 return ret;
373 }
374
375 static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378 };
379
380 #ifdef CONFIG_KALLSYMS
381 /*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387 {
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400 print0:
401 seq_putc(m, '0');
402 return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405
lock_trace(struct task_struct * task)406 static int lock_trace(struct task_struct *task)
407 {
408 int err = down_read_killable(&task->signal->exec_update_lock);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 up_read(&task->signal->exec_update_lock);
413 return -EPERM;
414 }
415 return 0;
416 }
417
unlock_trace(struct task_struct * task)418 static void unlock_trace(struct task_struct *task)
419 {
420 up_read(&task->signal->exec_update_lock);
421 }
422
423 #ifdef CONFIG_STACKTRACE
424
425 #define MAX_STACK_TRACE_DEPTH 64
426
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429 {
430 unsigned long *entries;
431 int err;
432
433 /*
434 * The ability to racily run the kernel stack unwinder on a running task
435 * and then observe the unwinder output is scary; while it is useful for
436 * debugging kernel issues, it can also allow an attacker to leak kernel
437 * stack contents.
438 * Doing this in a manner that is at least safe from races would require
439 * some work to ensure that the remote task can not be scheduled; and
440 * even then, this would still expose the unwinder as local attack
441 * surface.
442 * Therefore, this interface is restricted to root.
443 */
444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 return -EACCES;
446
447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 GFP_KERNEL);
449 if (!entries)
450 return -ENOMEM;
451
452 err = lock_trace(task);
453 if (!err) {
454 unsigned int i, nr_entries;
455
456 nr_entries = stack_trace_save_tsk(task, entries,
457 MAX_STACK_TRACE_DEPTH, 0);
458
459 for (i = 0; i < nr_entries; i++) {
460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 }
462
463 unlock_trace(task);
464 }
465 kfree(entries);
466
467 return err;
468 }
469 #endif
470
471 #ifdef CONFIG_SCHED_INFO
472 /*
473 * Provides /proc/PID/schedstat
474 */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 struct pid *pid, struct task_struct *task)
477 {
478 if (unlikely(!sched_info_on()))
479 seq_puts(m, "0 0 0\n");
480 else
481 seq_printf(m, "%llu %llu %lu\n",
482 (unsigned long long)task->se.sum_exec_runtime,
483 (unsigned long long)task->sched_info.run_delay,
484 task->sched_info.pcount);
485
486 return 0;
487 }
488 #endif
489
490 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493 int i;
494 struct inode *inode = m->private;
495 struct task_struct *task = get_proc_task(inode);
496
497 if (!task)
498 return -ESRCH;
499 seq_puts(m, "Latency Top version : v0.1\n");
500 for (i = 0; i < LT_SAVECOUNT; i++) {
501 struct latency_record *lr = &task->latency_record[i];
502 if (lr->backtrace[0]) {
503 int q;
504 seq_printf(m, "%i %li %li",
505 lr->count, lr->time, lr->max);
506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 unsigned long bt = lr->backtrace[q];
508
509 if (!bt)
510 break;
511 seq_printf(m, " %ps", (void *)bt);
512 }
513 seq_putc(m, '\n');
514 }
515
516 }
517 put_task_struct(task);
518 return 0;
519 }
520
lstats_open(struct inode * inode,struct file * file)521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523 return single_open(file, lstats_show_proc, inode);
524 }
525
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527 size_t count, loff_t *offs)
528 {
529 struct task_struct *task = get_proc_task(file_inode(file));
530
531 if (!task)
532 return -ESRCH;
533 clear_tsk_latency_tracing(task);
534 put_task_struct(task);
535
536 return count;
537 }
538
539 static const struct file_operations proc_lstats_operations = {
540 .open = lstats_open,
541 .read = seq_read,
542 .write = lstats_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545 };
546
547 #endif
548
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 struct pid *pid, struct task_struct *task)
551 {
552 unsigned long totalpages = totalram_pages() + total_swap_pages;
553 unsigned long points = 0;
554 long badness;
555
556 badness = oom_badness(task, totalpages);
557 /*
558 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 * badness value into [0, 2000] range which we have been
560 * exporting for a long time so userspace might depend on it.
561 */
562 if (badness != LONG_MIN)
563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564
565 seq_printf(m, "%lu\n", points);
566
567 return 0;
568 }
569
570 struct limit_names {
571 const char *name;
572 const char *unit;
573 };
574
575 static const struct limit_names lnames[RLIM_NLIMITS] = {
576 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 [RLIMIT_DATA] = {"Max data size", "bytes"},
579 [RLIMIT_STACK] = {"Max stack size", "bytes"},
580 [RLIMIT_CORE] = {"Max core file size", "bytes"},
581 [RLIMIT_RSS] = {"Max resident set", "bytes"},
582 [RLIMIT_NPROC] = {"Max processes", "processes"},
583 [RLIMIT_NOFILE] = {"Max open files", "files"},
584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 [RLIMIT_AS] = {"Max address space", "bytes"},
586 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 [RLIMIT_NICE] = {"Max nice priority", NULL},
590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592 };
593
594 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 struct pid *pid, struct task_struct *task)
597 {
598 unsigned int i;
599 unsigned long flags;
600
601 struct rlimit rlim[RLIM_NLIMITS];
602
603 if (!lock_task_sighand(task, &flags))
604 return 0;
605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 unlock_task_sighand(task, &flags);
607
608 /*
609 * print the file header
610 */
611 seq_puts(m, "Limit "
612 "Soft Limit "
613 "Hard Limit "
614 "Units \n");
615
616 for (i = 0; i < RLIM_NLIMITS; i++) {
617 if (rlim[i].rlim_cur == RLIM_INFINITY)
618 seq_printf(m, "%-25s %-20s ",
619 lnames[i].name, "unlimited");
620 else
621 seq_printf(m, "%-25s %-20lu ",
622 lnames[i].name, rlim[i].rlim_cur);
623
624 if (rlim[i].rlim_max == RLIM_INFINITY)
625 seq_printf(m, "%-20s ", "unlimited");
626 else
627 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628
629 if (lnames[i].unit)
630 seq_printf(m, "%-10s\n", lnames[i].unit);
631 else
632 seq_putc(m, '\n');
633 }
634
635 return 0;
636 }
637
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 struct pid *pid, struct task_struct *task)
641 {
642 struct syscall_info info;
643 u64 *args = &info.data.args[0];
644 int res;
645
646 res = lock_trace(task);
647 if (res)
648 return res;
649
650 if (task_current_syscall(task, &info))
651 seq_puts(m, "running\n");
652 else if (info.data.nr < 0)
653 seq_printf(m, "%d 0x%llx 0x%llx\n",
654 info.data.nr, info.sp, info.data.instruction_pointer);
655 else
656 seq_printf(m,
657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 info.data.nr,
659 args[0], args[1], args[2], args[3], args[4], args[5],
660 info.sp, info.data.instruction_pointer);
661 unlock_trace(task);
662
663 return 0;
664 }
665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666
667 /************************************************************************/
668 /* Here the fs part begins */
669 /************************************************************************/
670
671 /* permission checks */
proc_fd_access_allowed(struct inode * inode)672 static bool proc_fd_access_allowed(struct inode *inode)
673 {
674 struct task_struct *task;
675 bool allowed = false;
676 /* Allow access to a task's file descriptors if it is us or we
677 * may use ptrace attach to the process and find out that
678 * information.
679 */
680 task = get_proc_task(inode);
681 if (task) {
682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 put_task_struct(task);
684 }
685 return allowed;
686 }
687
proc_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)688 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
689 struct iattr *attr)
690 {
691 int error;
692 struct inode *inode = d_inode(dentry);
693
694 if (attr->ia_valid & ATTR_MODE)
695 return -EPERM;
696
697 error = setattr_prepare(&init_user_ns, dentry, attr);
698 if (error)
699 return error;
700
701 setattr_copy(&init_user_ns, inode, attr);
702 mark_inode_dirty(inode);
703 return 0;
704 }
705
706 /*
707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708 * or euid/egid (for hide_pid_min=2)?
709 */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)710 static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 struct task_struct *task,
712 enum proc_hidepid hide_pid_min)
713 {
714 /*
715 * If 'hidpid' mount option is set force a ptrace check,
716 * we indicate that we are using a filesystem syscall
717 * by passing PTRACE_MODE_READ_FSCREDS
718 */
719 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721
722 if (fs_info->hide_pid < hide_pid_min)
723 return true;
724 if (in_group_p(fs_info->pid_gid))
725 return true;
726 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727 }
728
729
proc_pid_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)730 static int proc_pid_permission(struct user_namespace *mnt_userns,
731 struct inode *inode, int mask)
732 {
733 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
734 struct task_struct *task;
735 bool has_perms;
736
737 task = get_proc_task(inode);
738 if (!task)
739 return -ESRCH;
740 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
741 put_task_struct(task);
742
743 if (!has_perms) {
744 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
745 /*
746 * Let's make getdents(), stat(), and open()
747 * consistent with each other. If a process
748 * may not stat() a file, it shouldn't be seen
749 * in procfs at all.
750 */
751 return -ENOENT;
752 }
753
754 return -EPERM;
755 }
756 return generic_permission(&init_user_ns, inode, mask);
757 }
758
759
760
761 static const struct inode_operations proc_def_inode_operations = {
762 .setattr = proc_setattr,
763 };
764
proc_single_show(struct seq_file * m,void * v)765 static int proc_single_show(struct seq_file *m, void *v)
766 {
767 struct inode *inode = m->private;
768 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
769 struct pid *pid = proc_pid(inode);
770 struct task_struct *task;
771 int ret;
772
773 task = get_pid_task(pid, PIDTYPE_PID);
774 if (!task)
775 return -ESRCH;
776
777 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
778
779 put_task_struct(task);
780 return ret;
781 }
782
proc_single_open(struct inode * inode,struct file * filp)783 static int proc_single_open(struct inode *inode, struct file *filp)
784 {
785 return single_open(filp, proc_single_show, inode);
786 }
787
788 static const struct file_operations proc_single_file_operations = {
789 .open = proc_single_open,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793 };
794
795
proc_mem_open(struct inode * inode,unsigned int mode)796 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
797 {
798 struct task_struct *task = get_proc_task(inode);
799 struct mm_struct *mm = ERR_PTR(-ESRCH);
800
801 if (task) {
802 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
803 put_task_struct(task);
804
805 if (!IS_ERR_OR_NULL(mm)) {
806 /* ensure this mm_struct can't be freed */
807 mmgrab(mm);
808 /* but do not pin its memory */
809 mmput(mm);
810 }
811 }
812
813 return mm;
814 }
815
__mem_open(struct inode * inode,struct file * file,unsigned int mode)816 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
817 {
818 struct mm_struct *mm = proc_mem_open(inode, mode);
819
820 if (IS_ERR(mm))
821 return PTR_ERR(mm);
822
823 file->private_data = mm;
824 return 0;
825 }
826
mem_open(struct inode * inode,struct file * file)827 static int mem_open(struct inode *inode, struct file *file)
828 {
829 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
830
831 /* OK to pass negative loff_t, we can catch out-of-range */
832 file->f_mode |= FMODE_UNSIGNED_OFFSET;
833
834 return ret;
835 }
836
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)837 static ssize_t mem_rw(struct file *file, char __user *buf,
838 size_t count, loff_t *ppos, int write)
839 {
840 struct mm_struct *mm = file->private_data;
841 unsigned long addr = *ppos;
842 ssize_t copied;
843 char *page;
844 unsigned int flags;
845
846 if (!mm)
847 return 0;
848
849 page = (char *)__get_free_page(GFP_KERNEL);
850 if (!page)
851 return -ENOMEM;
852
853 copied = 0;
854 if (!mmget_not_zero(mm))
855 goto free;
856
857 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
858
859 while (count > 0) {
860 size_t this_len = min_t(size_t, count, PAGE_SIZE);
861
862 if (write && copy_from_user(page, buf, this_len)) {
863 copied = -EFAULT;
864 break;
865 }
866
867 this_len = access_remote_vm(mm, addr, page, this_len, flags);
868 if (!this_len) {
869 if (!copied)
870 copied = -EIO;
871 break;
872 }
873
874 if (!write && copy_to_user(buf, page, this_len)) {
875 copied = -EFAULT;
876 break;
877 }
878
879 buf += this_len;
880 addr += this_len;
881 copied += this_len;
882 count -= this_len;
883 }
884 *ppos = addr;
885
886 mmput(mm);
887 free:
888 free_page((unsigned long) page);
889 return copied;
890 }
891
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)892 static ssize_t mem_read(struct file *file, char __user *buf,
893 size_t count, loff_t *ppos)
894 {
895 return mem_rw(file, buf, count, ppos, 0);
896 }
897
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)898 static ssize_t mem_write(struct file *file, const char __user *buf,
899 size_t count, loff_t *ppos)
900 {
901 return mem_rw(file, (char __user*)buf, count, ppos, 1);
902 }
903
mem_lseek(struct file * file,loff_t offset,int orig)904 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
905 {
906 switch (orig) {
907 case 0:
908 file->f_pos = offset;
909 break;
910 case 1:
911 file->f_pos += offset;
912 break;
913 default:
914 return -EINVAL;
915 }
916 force_successful_syscall_return();
917 return file->f_pos;
918 }
919
mem_release(struct inode * inode,struct file * file)920 static int mem_release(struct inode *inode, struct file *file)
921 {
922 struct mm_struct *mm = file->private_data;
923 if (mm)
924 mmdrop(mm);
925 return 0;
926 }
927
928 static const struct file_operations proc_mem_operations = {
929 .llseek = mem_lseek,
930 .read = mem_read,
931 .write = mem_write,
932 .open = mem_open,
933 .release = mem_release,
934 };
935
environ_open(struct inode * inode,struct file * file)936 static int environ_open(struct inode *inode, struct file *file)
937 {
938 return __mem_open(inode, file, PTRACE_MODE_READ);
939 }
940
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)941 static ssize_t environ_read(struct file *file, char __user *buf,
942 size_t count, loff_t *ppos)
943 {
944 char *page;
945 unsigned long src = *ppos;
946 int ret = 0;
947 struct mm_struct *mm = file->private_data;
948 unsigned long env_start, env_end;
949
950 /* Ensure the process spawned far enough to have an environment. */
951 if (!mm || !mm->env_end)
952 return 0;
953
954 page = (char *)__get_free_page(GFP_KERNEL);
955 if (!page)
956 return -ENOMEM;
957
958 ret = 0;
959 if (!mmget_not_zero(mm))
960 goto free;
961
962 spin_lock(&mm->arg_lock);
963 env_start = mm->env_start;
964 env_end = mm->env_end;
965 spin_unlock(&mm->arg_lock);
966
967 while (count > 0) {
968 size_t this_len, max_len;
969 int retval;
970
971 if (src >= (env_end - env_start))
972 break;
973
974 this_len = env_end - (env_start + src);
975
976 max_len = min_t(size_t, PAGE_SIZE, count);
977 this_len = min(max_len, this_len);
978
979 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
980
981 if (retval <= 0) {
982 ret = retval;
983 break;
984 }
985
986 if (copy_to_user(buf, page, retval)) {
987 ret = -EFAULT;
988 break;
989 }
990
991 ret += retval;
992 src += retval;
993 buf += retval;
994 count -= retval;
995 }
996 *ppos = src;
997 mmput(mm);
998
999 free:
1000 free_page((unsigned long) page);
1001 return ret;
1002 }
1003
1004 static const struct file_operations proc_environ_operations = {
1005 .open = environ_open,
1006 .read = environ_read,
1007 .llseek = generic_file_llseek,
1008 .release = mem_release,
1009 };
1010
auxv_open(struct inode * inode,struct file * file)1011 static int auxv_open(struct inode *inode, struct file *file)
1012 {
1013 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1014 }
1015
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1016 static ssize_t auxv_read(struct file *file, char __user *buf,
1017 size_t count, loff_t *ppos)
1018 {
1019 struct mm_struct *mm = file->private_data;
1020 unsigned int nwords = 0;
1021
1022 if (!mm)
1023 return 0;
1024 do {
1025 nwords += 2;
1026 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028 nwords * sizeof(mm->saved_auxv[0]));
1029 }
1030
1031 static const struct file_operations proc_auxv_operations = {
1032 .open = auxv_open,
1033 .read = auxv_read,
1034 .llseek = generic_file_llseek,
1035 .release = mem_release,
1036 };
1037
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1038 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1039 loff_t *ppos)
1040 {
1041 struct task_struct *task = get_proc_task(file_inode(file));
1042 char buffer[PROC_NUMBUF];
1043 int oom_adj = OOM_ADJUST_MIN;
1044 size_t len;
1045
1046 if (!task)
1047 return -ESRCH;
1048 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049 oom_adj = OOM_ADJUST_MAX;
1050 else
1051 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1052 OOM_SCORE_ADJ_MAX;
1053 put_task_struct(task);
1054 if (oom_adj > OOM_ADJUST_MAX)
1055 oom_adj = OOM_ADJUST_MAX;
1056 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1058 }
1059
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1060 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1061 {
1062 struct mm_struct *mm = NULL;
1063 struct task_struct *task;
1064 int err = 0;
1065
1066 task = get_proc_task(file_inode(file));
1067 if (!task)
1068 return -ESRCH;
1069
1070 mutex_lock(&oom_adj_mutex);
1071 if (legacy) {
1072 if (oom_adj < task->signal->oom_score_adj &&
1073 !capable(CAP_SYS_RESOURCE)) {
1074 err = -EACCES;
1075 goto err_unlock;
1076 }
1077 /*
1078 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079 * /proc/pid/oom_score_adj instead.
1080 */
1081 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082 current->comm, task_pid_nr(current), task_pid_nr(task),
1083 task_pid_nr(task));
1084 } else {
1085 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086 !capable(CAP_SYS_RESOURCE)) {
1087 err = -EACCES;
1088 goto err_unlock;
1089 }
1090 }
1091
1092 /*
1093 * Make sure we will check other processes sharing the mm if this is
1094 * not vfrok which wants its own oom_score_adj.
1095 * pin the mm so it doesn't go away and get reused after task_unlock
1096 */
1097 if (!task->vfork_done) {
1098 struct task_struct *p = find_lock_task_mm(task);
1099
1100 if (p) {
1101 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1102 mm = p->mm;
1103 mmgrab(mm);
1104 }
1105 task_unlock(p);
1106 }
1107 }
1108
1109 task->signal->oom_score_adj = oom_adj;
1110 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111 task->signal->oom_score_adj_min = (short)oom_adj;
1112 trace_oom_score_adj_update(task);
1113
1114 if (mm) {
1115 struct task_struct *p;
1116
1117 rcu_read_lock();
1118 for_each_process(p) {
1119 if (same_thread_group(task, p))
1120 continue;
1121
1122 /* do not touch kernel threads or the global init */
1123 if (p->flags & PF_KTHREAD || is_global_init(p))
1124 continue;
1125
1126 task_lock(p);
1127 if (!p->vfork_done && process_shares_mm(p, mm)) {
1128 p->signal->oom_score_adj = oom_adj;
1129 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130 p->signal->oom_score_adj_min = (short)oom_adj;
1131 }
1132 task_unlock(p);
1133 }
1134 rcu_read_unlock();
1135 mmdrop(mm);
1136 }
1137 err_unlock:
1138 mutex_unlock(&oom_adj_mutex);
1139 put_task_struct(task);
1140 return err;
1141 }
1142
1143 /*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels. The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1153 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154 size_t count, loff_t *ppos)
1155 {
1156 char buffer[PROC_NUMBUF];
1157 int oom_adj;
1158 int err;
1159
1160 memset(buffer, 0, sizeof(buffer));
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count)) {
1164 err = -EFAULT;
1165 goto out;
1166 }
1167
1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169 if (err)
1170 goto out;
1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 oom_adj != OOM_DISABLE) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /*
1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 * value is always attainable.
1180 */
1181 if (oom_adj == OOM_ADJUST_MAX)
1182 oom_adj = OOM_SCORE_ADJ_MAX;
1183 else
1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186 err = __set_oom_adj(file, oom_adj, true);
1187 out:
1188 return err < 0 ? err : count;
1189 }
1190
1191 static const struct file_operations proc_oom_adj_operations = {
1192 .read = oom_adj_read,
1193 .write = oom_adj_write,
1194 .llseek = generic_file_llseek,
1195 };
1196
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1197 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 size_t count, loff_t *ppos)
1199 {
1200 struct task_struct *task = get_proc_task(file_inode(file));
1201 char buffer[PROC_NUMBUF];
1202 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203 size_t len;
1204
1205 if (!task)
1206 return -ESRCH;
1207 oom_score_adj = task->signal->oom_score_adj;
1208 put_task_struct(task);
1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211 }
1212
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1213 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 size_t count, loff_t *ppos)
1215 {
1216 char buffer[PROC_NUMBUF];
1217 int oom_score_adj;
1218 int err;
1219
1220 memset(buffer, 0, sizeof(buffer));
1221 if (count > sizeof(buffer) - 1)
1222 count = sizeof(buffer) - 1;
1223 if (copy_from_user(buffer, buf, count)) {
1224 err = -EFAULT;
1225 goto out;
1226 }
1227
1228 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229 if (err)
1230 goto out;
1231 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233 err = -EINVAL;
1234 goto out;
1235 }
1236
1237 err = __set_oom_adj(file, oom_score_adj, false);
1238 out:
1239 return err < 0 ? err : count;
1240 }
1241
1242 static const struct file_operations proc_oom_score_adj_operations = {
1243 .read = oom_score_adj_read,
1244 .write = oom_score_adj_write,
1245 .llseek = default_llseek,
1246 };
1247
1248 #ifdef CONFIG_AUDIT
1249 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1250 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251 size_t count, loff_t *ppos)
1252 {
1253 struct inode * inode = file_inode(file);
1254 struct task_struct *task = get_proc_task(inode);
1255 ssize_t length;
1256 char tmpbuf[TMPBUFLEN];
1257
1258 if (!task)
1259 return -ESRCH;
1260 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261 from_kuid(file->f_cred->user_ns,
1262 audit_get_loginuid(task)));
1263 put_task_struct(task);
1264 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265 }
1266
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1267 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268 size_t count, loff_t *ppos)
1269 {
1270 struct inode * inode = file_inode(file);
1271 uid_t loginuid;
1272 kuid_t kloginuid;
1273 int rv;
1274
1275 /* Don't let kthreads write their own loginuid */
1276 if (current->flags & PF_KTHREAD)
1277 return -EPERM;
1278
1279 rcu_read_lock();
1280 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1281 rcu_read_unlock();
1282 return -EPERM;
1283 }
1284 rcu_read_unlock();
1285
1286 if (*ppos != 0) {
1287 /* No partial writes. */
1288 return -EINVAL;
1289 }
1290
1291 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1292 if (rv < 0)
1293 return rv;
1294
1295 /* is userspace tring to explicitly UNSET the loginuid? */
1296 if (loginuid == AUDIT_UID_UNSET) {
1297 kloginuid = INVALID_UID;
1298 } else {
1299 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1300 if (!uid_valid(kloginuid))
1301 return -EINVAL;
1302 }
1303
1304 rv = audit_set_loginuid(kloginuid);
1305 if (rv < 0)
1306 return rv;
1307 return count;
1308 }
1309
1310 static const struct file_operations proc_loginuid_operations = {
1311 .read = proc_loginuid_read,
1312 .write = proc_loginuid_write,
1313 .llseek = generic_file_llseek,
1314 };
1315
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1316 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1317 size_t count, loff_t *ppos)
1318 {
1319 struct inode * inode = file_inode(file);
1320 struct task_struct *task = get_proc_task(inode);
1321 ssize_t length;
1322 char tmpbuf[TMPBUFLEN];
1323
1324 if (!task)
1325 return -ESRCH;
1326 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1327 audit_get_sessionid(task));
1328 put_task_struct(task);
1329 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1330 }
1331
1332 static const struct file_operations proc_sessionid_operations = {
1333 .read = proc_sessionid_read,
1334 .llseek = generic_file_llseek,
1335 };
1336 #endif
1337
1338 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1339 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1340 size_t count, loff_t *ppos)
1341 {
1342 struct task_struct *task = get_proc_task(file_inode(file));
1343 char buffer[PROC_NUMBUF];
1344 size_t len;
1345 int make_it_fail;
1346
1347 if (!task)
1348 return -ESRCH;
1349 make_it_fail = task->make_it_fail;
1350 put_task_struct(task);
1351
1352 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1353
1354 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1355 }
1356
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1357 static ssize_t proc_fault_inject_write(struct file * file,
1358 const char __user * buf, size_t count, loff_t *ppos)
1359 {
1360 struct task_struct *task;
1361 char buffer[PROC_NUMBUF];
1362 int make_it_fail;
1363 int rv;
1364
1365 if (!capable(CAP_SYS_RESOURCE))
1366 return -EPERM;
1367 memset(buffer, 0, sizeof(buffer));
1368 if (count > sizeof(buffer) - 1)
1369 count = sizeof(buffer) - 1;
1370 if (copy_from_user(buffer, buf, count))
1371 return -EFAULT;
1372 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1373 if (rv < 0)
1374 return rv;
1375 if (make_it_fail < 0 || make_it_fail > 1)
1376 return -EINVAL;
1377
1378 task = get_proc_task(file_inode(file));
1379 if (!task)
1380 return -ESRCH;
1381 task->make_it_fail = make_it_fail;
1382 put_task_struct(task);
1383
1384 return count;
1385 }
1386
1387 static const struct file_operations proc_fault_inject_operations = {
1388 .read = proc_fault_inject_read,
1389 .write = proc_fault_inject_write,
1390 .llseek = generic_file_llseek,
1391 };
1392
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1393 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1394 size_t count, loff_t *ppos)
1395 {
1396 struct task_struct *task;
1397 int err;
1398 unsigned int n;
1399
1400 err = kstrtouint_from_user(buf, count, 0, &n);
1401 if (err)
1402 return err;
1403
1404 task = get_proc_task(file_inode(file));
1405 if (!task)
1406 return -ESRCH;
1407 task->fail_nth = n;
1408 put_task_struct(task);
1409
1410 return count;
1411 }
1412
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1413 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1414 size_t count, loff_t *ppos)
1415 {
1416 struct task_struct *task;
1417 char numbuf[PROC_NUMBUF];
1418 ssize_t len;
1419
1420 task = get_proc_task(file_inode(file));
1421 if (!task)
1422 return -ESRCH;
1423 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1424 put_task_struct(task);
1425 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1426 }
1427
1428 static const struct file_operations proc_fail_nth_operations = {
1429 .read = proc_fail_nth_read,
1430 .write = proc_fail_nth_write,
1431 };
1432 #endif
1433
1434
1435 #ifdef CONFIG_SCHED_DEBUG
1436 /*
1437 * Print out various scheduling related per-task fields:
1438 */
sched_show(struct seq_file * m,void * v)1439 static int sched_show(struct seq_file *m, void *v)
1440 {
1441 struct inode *inode = m->private;
1442 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1443 struct task_struct *p;
1444
1445 p = get_proc_task(inode);
1446 if (!p)
1447 return -ESRCH;
1448 proc_sched_show_task(p, ns, m);
1449
1450 put_task_struct(p);
1451
1452 return 0;
1453 }
1454
1455 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1456 sched_write(struct file *file, const char __user *buf,
1457 size_t count, loff_t *offset)
1458 {
1459 struct inode *inode = file_inode(file);
1460 struct task_struct *p;
1461
1462 p = get_proc_task(inode);
1463 if (!p)
1464 return -ESRCH;
1465 proc_sched_set_task(p);
1466
1467 put_task_struct(p);
1468
1469 return count;
1470 }
1471
sched_open(struct inode * inode,struct file * filp)1472 static int sched_open(struct inode *inode, struct file *filp)
1473 {
1474 return single_open(filp, sched_show, inode);
1475 }
1476
1477 static const struct file_operations proc_pid_sched_operations = {
1478 .open = sched_open,
1479 .read = seq_read,
1480 .write = sched_write,
1481 .llseek = seq_lseek,
1482 .release = single_release,
1483 };
1484
1485 #endif
1486
1487 #ifdef CONFIG_SCHED_AUTOGROUP
1488 /*
1489 * Print out autogroup related information:
1490 */
sched_autogroup_show(struct seq_file * m,void * v)1491 static int sched_autogroup_show(struct seq_file *m, void *v)
1492 {
1493 struct inode *inode = m->private;
1494 struct task_struct *p;
1495
1496 p = get_proc_task(inode);
1497 if (!p)
1498 return -ESRCH;
1499 proc_sched_autogroup_show_task(p, m);
1500
1501 put_task_struct(p);
1502
1503 return 0;
1504 }
1505
1506 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1507 sched_autogroup_write(struct file *file, const char __user *buf,
1508 size_t count, loff_t *offset)
1509 {
1510 struct inode *inode = file_inode(file);
1511 struct task_struct *p;
1512 char buffer[PROC_NUMBUF];
1513 int nice;
1514 int err;
1515
1516 memset(buffer, 0, sizeof(buffer));
1517 if (count > sizeof(buffer) - 1)
1518 count = sizeof(buffer) - 1;
1519 if (copy_from_user(buffer, buf, count))
1520 return -EFAULT;
1521
1522 err = kstrtoint(strstrip(buffer), 0, &nice);
1523 if (err < 0)
1524 return err;
1525
1526 p = get_proc_task(inode);
1527 if (!p)
1528 return -ESRCH;
1529
1530 err = proc_sched_autogroup_set_nice(p, nice);
1531 if (err)
1532 count = err;
1533
1534 put_task_struct(p);
1535
1536 return count;
1537 }
1538
sched_autogroup_open(struct inode * inode,struct file * filp)1539 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1540 {
1541 int ret;
1542
1543 ret = single_open(filp, sched_autogroup_show, NULL);
1544 if (!ret) {
1545 struct seq_file *m = filp->private_data;
1546
1547 m->private = inode;
1548 }
1549 return ret;
1550 }
1551
1552 static const struct file_operations proc_pid_sched_autogroup_operations = {
1553 .open = sched_autogroup_open,
1554 .read = seq_read,
1555 .write = sched_autogroup_write,
1556 .llseek = seq_lseek,
1557 .release = single_release,
1558 };
1559
1560 #endif /* CONFIG_SCHED_AUTOGROUP */
1561
1562 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1563 static int timens_offsets_show(struct seq_file *m, void *v)
1564 {
1565 struct task_struct *p;
1566
1567 p = get_proc_task(file_inode(m->file));
1568 if (!p)
1569 return -ESRCH;
1570 proc_timens_show_offsets(p, m);
1571
1572 put_task_struct(p);
1573
1574 return 0;
1575 }
1576
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1577 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1578 size_t count, loff_t *ppos)
1579 {
1580 struct inode *inode = file_inode(file);
1581 struct proc_timens_offset offsets[2];
1582 char *kbuf = NULL, *pos, *next_line;
1583 struct task_struct *p;
1584 int ret, noffsets;
1585
1586 /* Only allow < page size writes at the beginning of the file */
1587 if ((*ppos != 0) || (count >= PAGE_SIZE))
1588 return -EINVAL;
1589
1590 /* Slurp in the user data */
1591 kbuf = memdup_user_nul(buf, count);
1592 if (IS_ERR(kbuf))
1593 return PTR_ERR(kbuf);
1594
1595 /* Parse the user data */
1596 ret = -EINVAL;
1597 noffsets = 0;
1598 for (pos = kbuf; pos; pos = next_line) {
1599 struct proc_timens_offset *off = &offsets[noffsets];
1600 char clock[10];
1601 int err;
1602
1603 /* Find the end of line and ensure we don't look past it */
1604 next_line = strchr(pos, '\n');
1605 if (next_line) {
1606 *next_line = '\0';
1607 next_line++;
1608 if (*next_line == '\0')
1609 next_line = NULL;
1610 }
1611
1612 err = sscanf(pos, "%9s %lld %lu", clock,
1613 &off->val.tv_sec, &off->val.tv_nsec);
1614 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1615 goto out;
1616
1617 clock[sizeof(clock) - 1] = 0;
1618 if (strcmp(clock, "monotonic") == 0 ||
1619 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1620 off->clockid = CLOCK_MONOTONIC;
1621 else if (strcmp(clock, "boottime") == 0 ||
1622 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1623 off->clockid = CLOCK_BOOTTIME;
1624 else
1625 goto out;
1626
1627 noffsets++;
1628 if (noffsets == ARRAY_SIZE(offsets)) {
1629 if (next_line)
1630 count = next_line - kbuf;
1631 break;
1632 }
1633 }
1634
1635 ret = -ESRCH;
1636 p = get_proc_task(inode);
1637 if (!p)
1638 goto out;
1639 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1640 put_task_struct(p);
1641 if (ret)
1642 goto out;
1643
1644 ret = count;
1645 out:
1646 kfree(kbuf);
1647 return ret;
1648 }
1649
timens_offsets_open(struct inode * inode,struct file * filp)1650 static int timens_offsets_open(struct inode *inode, struct file *filp)
1651 {
1652 return single_open(filp, timens_offsets_show, inode);
1653 }
1654
1655 static const struct file_operations proc_timens_offsets_operations = {
1656 .open = timens_offsets_open,
1657 .read = seq_read,
1658 .write = timens_offsets_write,
1659 .llseek = seq_lseek,
1660 .release = single_release,
1661 };
1662 #endif /* CONFIG_TIME_NS */
1663
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1664 static ssize_t comm_write(struct file *file, const char __user *buf,
1665 size_t count, loff_t *offset)
1666 {
1667 struct inode *inode = file_inode(file);
1668 struct task_struct *p;
1669 char buffer[TASK_COMM_LEN];
1670 const size_t maxlen = sizeof(buffer) - 1;
1671
1672 memset(buffer, 0, sizeof(buffer));
1673 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1674 return -EFAULT;
1675
1676 p = get_proc_task(inode);
1677 if (!p)
1678 return -ESRCH;
1679
1680 if (same_thread_group(current, p)) {
1681 set_task_comm(p, buffer);
1682 proc_comm_connector(p);
1683 }
1684 else
1685 count = -EINVAL;
1686
1687 put_task_struct(p);
1688
1689 return count;
1690 }
1691
comm_show(struct seq_file * m,void * v)1692 static int comm_show(struct seq_file *m, void *v)
1693 {
1694 struct inode *inode = m->private;
1695 struct task_struct *p;
1696
1697 p = get_proc_task(inode);
1698 if (!p)
1699 return -ESRCH;
1700
1701 proc_task_name(m, p, false);
1702 seq_putc(m, '\n');
1703
1704 put_task_struct(p);
1705
1706 return 0;
1707 }
1708
comm_open(struct inode * inode,struct file * filp)1709 static int comm_open(struct inode *inode, struct file *filp)
1710 {
1711 return single_open(filp, comm_show, inode);
1712 }
1713
1714 static const struct file_operations proc_pid_set_comm_operations = {
1715 .open = comm_open,
1716 .read = seq_read,
1717 .write = comm_write,
1718 .llseek = seq_lseek,
1719 .release = single_release,
1720 };
1721
proc_exe_link(struct dentry * dentry,struct path * exe_path)1722 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1723 {
1724 struct task_struct *task;
1725 struct file *exe_file;
1726
1727 task = get_proc_task(d_inode(dentry));
1728 if (!task)
1729 return -ENOENT;
1730 exe_file = get_task_exe_file(task);
1731 put_task_struct(task);
1732 if (exe_file) {
1733 *exe_path = exe_file->f_path;
1734 path_get(&exe_file->f_path);
1735 fput(exe_file);
1736 return 0;
1737 } else
1738 return -ENOENT;
1739 }
1740
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1741 static const char *proc_pid_get_link(struct dentry *dentry,
1742 struct inode *inode,
1743 struct delayed_call *done)
1744 {
1745 struct path path;
1746 int error = -EACCES;
1747
1748 if (!dentry)
1749 return ERR_PTR(-ECHILD);
1750
1751 /* Are we allowed to snoop on the tasks file descriptors? */
1752 if (!proc_fd_access_allowed(inode))
1753 goto out;
1754
1755 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1756 if (error)
1757 goto out;
1758
1759 error = nd_jump_link(&path);
1760 out:
1761 return ERR_PTR(error);
1762 }
1763
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1764 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1765 {
1766 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1767 char *pathname;
1768 int len;
1769
1770 if (!tmp)
1771 return -ENOMEM;
1772
1773 pathname = d_path(path, tmp, PATH_MAX);
1774 len = PTR_ERR(pathname);
1775 if (IS_ERR(pathname))
1776 goto out;
1777 len = tmp + PATH_MAX - 1 - pathname;
1778
1779 if (len > buflen)
1780 len = buflen;
1781 if (copy_to_user(buffer, pathname, len))
1782 len = -EFAULT;
1783 out:
1784 kfree(tmp);
1785 return len;
1786 }
1787
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1788 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1789 {
1790 int error = -EACCES;
1791 struct inode *inode = d_inode(dentry);
1792 struct path path;
1793
1794 /* Are we allowed to snoop on the tasks file descriptors? */
1795 if (!proc_fd_access_allowed(inode))
1796 goto out;
1797
1798 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1799 if (error)
1800 goto out;
1801
1802 error = do_proc_readlink(&path, buffer, buflen);
1803 path_put(&path);
1804 out:
1805 return error;
1806 }
1807
1808 const struct inode_operations proc_pid_link_inode_operations = {
1809 .readlink = proc_pid_readlink,
1810 .get_link = proc_pid_get_link,
1811 .setattr = proc_setattr,
1812 };
1813
1814
1815 /* building an inode */
1816
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1817 void task_dump_owner(struct task_struct *task, umode_t mode,
1818 kuid_t *ruid, kgid_t *rgid)
1819 {
1820 /* Depending on the state of dumpable compute who should own a
1821 * proc file for a task.
1822 */
1823 const struct cred *cred;
1824 kuid_t uid;
1825 kgid_t gid;
1826
1827 if (unlikely(task->flags & PF_KTHREAD)) {
1828 *ruid = GLOBAL_ROOT_UID;
1829 *rgid = GLOBAL_ROOT_GID;
1830 return;
1831 }
1832
1833 /* Default to the tasks effective ownership */
1834 rcu_read_lock();
1835 cred = __task_cred(task);
1836 uid = cred->euid;
1837 gid = cred->egid;
1838 rcu_read_unlock();
1839
1840 /*
1841 * Before the /proc/pid/status file was created the only way to read
1842 * the effective uid of a /process was to stat /proc/pid. Reading
1843 * /proc/pid/status is slow enough that procps and other packages
1844 * kept stating /proc/pid. To keep the rules in /proc simple I have
1845 * made this apply to all per process world readable and executable
1846 * directories.
1847 */
1848 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1849 struct mm_struct *mm;
1850 task_lock(task);
1851 mm = task->mm;
1852 /* Make non-dumpable tasks owned by some root */
1853 if (mm) {
1854 if (get_dumpable(mm) != SUID_DUMP_USER) {
1855 struct user_namespace *user_ns = mm->user_ns;
1856
1857 uid = make_kuid(user_ns, 0);
1858 if (!uid_valid(uid))
1859 uid = GLOBAL_ROOT_UID;
1860
1861 gid = make_kgid(user_ns, 0);
1862 if (!gid_valid(gid))
1863 gid = GLOBAL_ROOT_GID;
1864 }
1865 } else {
1866 uid = GLOBAL_ROOT_UID;
1867 gid = GLOBAL_ROOT_GID;
1868 }
1869 task_unlock(task);
1870 }
1871 *ruid = uid;
1872 *rgid = gid;
1873 }
1874
proc_pid_evict_inode(struct proc_inode * ei)1875 void proc_pid_evict_inode(struct proc_inode *ei)
1876 {
1877 struct pid *pid = ei->pid;
1878
1879 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1880 spin_lock(&pid->lock);
1881 hlist_del_init_rcu(&ei->sibling_inodes);
1882 spin_unlock(&pid->lock);
1883 }
1884
1885 put_pid(pid);
1886 }
1887
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1888 struct inode *proc_pid_make_inode(struct super_block *sb,
1889 struct task_struct *task, umode_t mode)
1890 {
1891 struct inode * inode;
1892 struct proc_inode *ei;
1893 struct pid *pid;
1894
1895 /* We need a new inode */
1896
1897 inode = new_inode(sb);
1898 if (!inode)
1899 goto out;
1900
1901 /* Common stuff */
1902 ei = PROC_I(inode);
1903 inode->i_mode = mode;
1904 inode->i_ino = get_next_ino();
1905 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1906 inode->i_op = &proc_def_inode_operations;
1907
1908 /*
1909 * grab the reference to task.
1910 */
1911 pid = get_task_pid(task, PIDTYPE_PID);
1912 if (!pid)
1913 goto out_unlock;
1914
1915 /* Let the pid remember us for quick removal */
1916 ei->pid = pid;
1917
1918 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919 security_task_to_inode(task, inode);
1920
1921 out:
1922 return inode;
1923
1924 out_unlock:
1925 iput(inode);
1926 return NULL;
1927 }
1928
1929 /*
1930 * Generating an inode and adding it into @pid->inodes, so that task will
1931 * invalidate inode's dentry before being released.
1932 *
1933 * This helper is used for creating dir-type entries under '/proc' and
1934 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1935 * can be released by invalidating '/proc/<tgid>' dentry.
1936 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1937 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1938 * thread exiting situation: Any one of threads should invalidate its
1939 * '/proc/<tgid>/task/<pid>' dentry before released.
1940 */
proc_pid_make_base_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1941 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1942 struct task_struct *task, umode_t mode)
1943 {
1944 struct inode *inode;
1945 struct proc_inode *ei;
1946 struct pid *pid;
1947
1948 inode = proc_pid_make_inode(sb, task, mode);
1949 if (!inode)
1950 return NULL;
1951
1952 /* Let proc_flush_pid find this directory inode */
1953 ei = PROC_I(inode);
1954 pid = ei->pid;
1955 spin_lock(&pid->lock);
1956 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1957 spin_unlock(&pid->lock);
1958
1959 return inode;
1960 }
1961
pid_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1962 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1963 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1964 {
1965 struct inode *inode = d_inode(path->dentry);
1966 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1967 struct task_struct *task;
1968
1969 generic_fillattr(&init_user_ns, inode, stat);
1970
1971 stat->uid = GLOBAL_ROOT_UID;
1972 stat->gid = GLOBAL_ROOT_GID;
1973 rcu_read_lock();
1974 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1975 if (task) {
1976 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1977 rcu_read_unlock();
1978 /*
1979 * This doesn't prevent learning whether PID exists,
1980 * it only makes getattr() consistent with readdir().
1981 */
1982 return -ENOENT;
1983 }
1984 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1985 }
1986 rcu_read_unlock();
1987 return 0;
1988 }
1989
1990 /* dentry stuff */
1991
1992 /*
1993 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1994 */
pid_update_inode(struct task_struct * task,struct inode * inode)1995 void pid_update_inode(struct task_struct *task, struct inode *inode)
1996 {
1997 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1998
1999 inode->i_mode &= ~(S_ISUID | S_ISGID);
2000 security_task_to_inode(task, inode);
2001 }
2002
2003 /*
2004 * Rewrite the inode's ownerships here because the owning task may have
2005 * performed a setuid(), etc.
2006 *
2007 */
pid_revalidate(struct dentry * dentry,unsigned int flags)2008 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2009 {
2010 struct inode *inode;
2011 struct task_struct *task;
2012 int ret = 0;
2013
2014 rcu_read_lock();
2015 inode = d_inode_rcu(dentry);
2016 if (!inode)
2017 goto out;
2018 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2019
2020 if (task) {
2021 pid_update_inode(task, inode);
2022 ret = 1;
2023 }
2024 out:
2025 rcu_read_unlock();
2026 return ret;
2027 }
2028
proc_inode_is_dead(struct inode * inode)2029 static inline bool proc_inode_is_dead(struct inode *inode)
2030 {
2031 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2032 }
2033
pid_delete_dentry(const struct dentry * dentry)2034 int pid_delete_dentry(const struct dentry *dentry)
2035 {
2036 /* Is the task we represent dead?
2037 * If so, then don't put the dentry on the lru list,
2038 * kill it immediately.
2039 */
2040 return proc_inode_is_dead(d_inode(dentry));
2041 }
2042
2043 const struct dentry_operations pid_dentry_operations =
2044 {
2045 .d_revalidate = pid_revalidate,
2046 .d_delete = pid_delete_dentry,
2047 };
2048
2049 /* Lookups */
2050
2051 /*
2052 * Fill a directory entry.
2053 *
2054 * If possible create the dcache entry and derive our inode number and
2055 * file type from dcache entry.
2056 *
2057 * Since all of the proc inode numbers are dynamically generated, the inode
2058 * numbers do not exist until the inode is cache. This means creating
2059 * the dcache entry in readdir is necessary to keep the inode numbers
2060 * reported by readdir in sync with the inode numbers reported
2061 * by stat.
2062 */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2063 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2064 const char *name, unsigned int len,
2065 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2066 {
2067 struct dentry *child, *dir = file->f_path.dentry;
2068 struct qstr qname = QSTR_INIT(name, len);
2069 struct inode *inode;
2070 unsigned type = DT_UNKNOWN;
2071 ino_t ino = 1;
2072
2073 child = d_hash_and_lookup(dir, &qname);
2074 if (!child) {
2075 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2076 child = d_alloc_parallel(dir, &qname, &wq);
2077 if (IS_ERR(child))
2078 goto end_instantiate;
2079 if (d_in_lookup(child)) {
2080 struct dentry *res;
2081 res = instantiate(child, task, ptr);
2082 d_lookup_done(child);
2083 if (unlikely(res)) {
2084 dput(child);
2085 child = res;
2086 if (IS_ERR(child))
2087 goto end_instantiate;
2088 }
2089 }
2090 }
2091 inode = d_inode(child);
2092 ino = inode->i_ino;
2093 type = inode->i_mode >> 12;
2094 dput(child);
2095 end_instantiate:
2096 return dir_emit(ctx, name, len, ino, type);
2097 }
2098
2099 /*
2100 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2101 * which represent vma start and end addresses.
2102 */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2103 static int dname_to_vma_addr(struct dentry *dentry,
2104 unsigned long *start, unsigned long *end)
2105 {
2106 const char *str = dentry->d_name.name;
2107 unsigned long long sval, eval;
2108 unsigned int len;
2109
2110 if (str[0] == '0' && str[1] != '-')
2111 return -EINVAL;
2112 len = _parse_integer(str, 16, &sval);
2113 if (len & KSTRTOX_OVERFLOW)
2114 return -EINVAL;
2115 if (sval != (unsigned long)sval)
2116 return -EINVAL;
2117 str += len;
2118
2119 if (*str != '-')
2120 return -EINVAL;
2121 str++;
2122
2123 if (str[0] == '0' && str[1])
2124 return -EINVAL;
2125 len = _parse_integer(str, 16, &eval);
2126 if (len & KSTRTOX_OVERFLOW)
2127 return -EINVAL;
2128 if (eval != (unsigned long)eval)
2129 return -EINVAL;
2130 str += len;
2131
2132 if (*str != '\0')
2133 return -EINVAL;
2134
2135 *start = sval;
2136 *end = eval;
2137
2138 return 0;
2139 }
2140
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2141 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2142 {
2143 unsigned long vm_start, vm_end;
2144 bool exact_vma_exists = false;
2145 struct mm_struct *mm = NULL;
2146 struct task_struct *task;
2147 struct inode *inode;
2148 int status = 0;
2149
2150 if (flags & LOOKUP_RCU)
2151 return -ECHILD;
2152
2153 inode = d_inode(dentry);
2154 task = get_proc_task(inode);
2155 if (!task)
2156 goto out_notask;
2157
2158 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2159 if (IS_ERR_OR_NULL(mm))
2160 goto out;
2161
2162 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2163 status = mmap_read_lock_killable(mm);
2164 if (!status) {
2165 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2166 vm_end);
2167 mmap_read_unlock(mm);
2168 }
2169 }
2170
2171 mmput(mm);
2172
2173 if (exact_vma_exists) {
2174 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2175
2176 security_task_to_inode(task, inode);
2177 status = 1;
2178 }
2179
2180 out:
2181 put_task_struct(task);
2182
2183 out_notask:
2184 return status;
2185 }
2186
2187 static const struct dentry_operations tid_map_files_dentry_operations = {
2188 .d_revalidate = map_files_d_revalidate,
2189 .d_delete = pid_delete_dentry,
2190 };
2191
map_files_get_link(struct dentry * dentry,struct path * path)2192 static int map_files_get_link(struct dentry *dentry, struct path *path)
2193 {
2194 unsigned long vm_start, vm_end;
2195 struct vm_area_struct *vma;
2196 struct task_struct *task;
2197 struct mm_struct *mm;
2198 int rc;
2199
2200 rc = -ENOENT;
2201 task = get_proc_task(d_inode(dentry));
2202 if (!task)
2203 goto out;
2204
2205 mm = get_task_mm(task);
2206 put_task_struct(task);
2207 if (!mm)
2208 goto out;
2209
2210 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2211 if (rc)
2212 goto out_mmput;
2213
2214 rc = mmap_read_lock_killable(mm);
2215 if (rc)
2216 goto out_mmput;
2217
2218 rc = -ENOENT;
2219 vma = find_exact_vma(mm, vm_start, vm_end);
2220 if (vma && vma->vm_file) {
2221 *path = vma->vm_file->f_path;
2222 path_get(path);
2223 rc = 0;
2224 }
2225 mmap_read_unlock(mm);
2226
2227 out_mmput:
2228 mmput(mm);
2229 out:
2230 return rc;
2231 }
2232
2233 struct map_files_info {
2234 unsigned long start;
2235 unsigned long end;
2236 fmode_t mode;
2237 };
2238
2239 /*
2240 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2241 * to concerns about how the symlinks may be used to bypass permissions on
2242 * ancestor directories in the path to the file in question.
2243 */
2244 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2245 proc_map_files_get_link(struct dentry *dentry,
2246 struct inode *inode,
2247 struct delayed_call *done)
2248 {
2249 if (!checkpoint_restore_ns_capable(&init_user_ns))
2250 return ERR_PTR(-EPERM);
2251
2252 return proc_pid_get_link(dentry, inode, done);
2253 }
2254
2255 /*
2256 * Identical to proc_pid_link_inode_operations except for get_link()
2257 */
2258 static const struct inode_operations proc_map_files_link_inode_operations = {
2259 .readlink = proc_pid_readlink,
2260 .get_link = proc_map_files_get_link,
2261 .setattr = proc_setattr,
2262 };
2263
2264 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2265 proc_map_files_instantiate(struct dentry *dentry,
2266 struct task_struct *task, const void *ptr)
2267 {
2268 fmode_t mode = (fmode_t)(unsigned long)ptr;
2269 struct proc_inode *ei;
2270 struct inode *inode;
2271
2272 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2273 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2274 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2275 if (!inode)
2276 return ERR_PTR(-ENOENT);
2277
2278 ei = PROC_I(inode);
2279 ei->op.proc_get_link = map_files_get_link;
2280
2281 inode->i_op = &proc_map_files_link_inode_operations;
2282 inode->i_size = 64;
2283
2284 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2285 return d_splice_alias(inode, dentry);
2286 }
2287
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2288 static struct dentry *proc_map_files_lookup(struct inode *dir,
2289 struct dentry *dentry, unsigned int flags)
2290 {
2291 unsigned long vm_start, vm_end;
2292 struct vm_area_struct *vma;
2293 struct task_struct *task;
2294 struct dentry *result;
2295 struct mm_struct *mm;
2296
2297 result = ERR_PTR(-ENOENT);
2298 task = get_proc_task(dir);
2299 if (!task)
2300 goto out;
2301
2302 result = ERR_PTR(-EACCES);
2303 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2304 goto out_put_task;
2305
2306 result = ERR_PTR(-ENOENT);
2307 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2308 goto out_put_task;
2309
2310 mm = get_task_mm(task);
2311 if (!mm)
2312 goto out_put_task;
2313
2314 result = ERR_PTR(-EINTR);
2315 if (mmap_read_lock_killable(mm))
2316 goto out_put_mm;
2317
2318 result = ERR_PTR(-ENOENT);
2319 vma = find_exact_vma(mm, vm_start, vm_end);
2320 if (!vma)
2321 goto out_no_vma;
2322
2323 if (vma->vm_file)
2324 result = proc_map_files_instantiate(dentry, task,
2325 (void *)(unsigned long)vma->vm_file->f_mode);
2326
2327 out_no_vma:
2328 mmap_read_unlock(mm);
2329 out_put_mm:
2330 mmput(mm);
2331 out_put_task:
2332 put_task_struct(task);
2333 out:
2334 return result;
2335 }
2336
2337 static const struct inode_operations proc_map_files_inode_operations = {
2338 .lookup = proc_map_files_lookup,
2339 .permission = proc_fd_permission,
2340 .setattr = proc_setattr,
2341 };
2342
2343 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2344 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2345 {
2346 struct vm_area_struct *vma;
2347 struct task_struct *task;
2348 struct mm_struct *mm;
2349 unsigned long nr_files, pos, i;
2350 GENRADIX(struct map_files_info) fa;
2351 struct map_files_info *p;
2352 int ret;
2353
2354 genradix_init(&fa);
2355
2356 ret = -ENOENT;
2357 task = get_proc_task(file_inode(file));
2358 if (!task)
2359 goto out;
2360
2361 ret = -EACCES;
2362 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2363 goto out_put_task;
2364
2365 ret = 0;
2366 if (!dir_emit_dots(file, ctx))
2367 goto out_put_task;
2368
2369 mm = get_task_mm(task);
2370 if (!mm)
2371 goto out_put_task;
2372
2373 ret = mmap_read_lock_killable(mm);
2374 if (ret) {
2375 mmput(mm);
2376 goto out_put_task;
2377 }
2378
2379 nr_files = 0;
2380
2381 /*
2382 * We need two passes here:
2383 *
2384 * 1) Collect vmas of mapped files with mmap_lock taken
2385 * 2) Release mmap_lock and instantiate entries
2386 *
2387 * otherwise we get lockdep complained, since filldir()
2388 * routine might require mmap_lock taken in might_fault().
2389 */
2390
2391 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2392 if (!vma->vm_file)
2393 continue;
2394 if (++pos <= ctx->pos)
2395 continue;
2396
2397 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2398 if (!p) {
2399 ret = -ENOMEM;
2400 mmap_read_unlock(mm);
2401 mmput(mm);
2402 goto out_put_task;
2403 }
2404
2405 p->start = vma->vm_start;
2406 p->end = vma->vm_end;
2407 p->mode = vma->vm_file->f_mode;
2408 }
2409 mmap_read_unlock(mm);
2410 mmput(mm);
2411
2412 for (i = 0; i < nr_files; i++) {
2413 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2414 unsigned int len;
2415
2416 p = genradix_ptr(&fa, i);
2417 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2418 if (!proc_fill_cache(file, ctx,
2419 buf, len,
2420 proc_map_files_instantiate,
2421 task,
2422 (void *)(unsigned long)p->mode))
2423 break;
2424 ctx->pos++;
2425 }
2426
2427 out_put_task:
2428 put_task_struct(task);
2429 out:
2430 genradix_free(&fa);
2431 return ret;
2432 }
2433
2434 static const struct file_operations proc_map_files_operations = {
2435 .read = generic_read_dir,
2436 .iterate_shared = proc_map_files_readdir,
2437 .llseek = generic_file_llseek,
2438 };
2439
2440 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2441 struct timers_private {
2442 struct pid *pid;
2443 struct task_struct *task;
2444 struct sighand_struct *sighand;
2445 struct pid_namespace *ns;
2446 unsigned long flags;
2447 };
2448
timers_start(struct seq_file * m,loff_t * pos)2449 static void *timers_start(struct seq_file *m, loff_t *pos)
2450 {
2451 struct timers_private *tp = m->private;
2452
2453 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2454 if (!tp->task)
2455 return ERR_PTR(-ESRCH);
2456
2457 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2458 if (!tp->sighand)
2459 return ERR_PTR(-ESRCH);
2460
2461 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2462 }
2463
timers_next(struct seq_file * m,void * v,loff_t * pos)2464 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2465 {
2466 struct timers_private *tp = m->private;
2467 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2468 }
2469
timers_stop(struct seq_file * m,void * v)2470 static void timers_stop(struct seq_file *m, void *v)
2471 {
2472 struct timers_private *tp = m->private;
2473
2474 if (tp->sighand) {
2475 unlock_task_sighand(tp->task, &tp->flags);
2476 tp->sighand = NULL;
2477 }
2478
2479 if (tp->task) {
2480 put_task_struct(tp->task);
2481 tp->task = NULL;
2482 }
2483 }
2484
show_timer(struct seq_file * m,void * v)2485 static int show_timer(struct seq_file *m, void *v)
2486 {
2487 struct k_itimer *timer;
2488 struct timers_private *tp = m->private;
2489 int notify;
2490 static const char * const nstr[] = {
2491 [SIGEV_SIGNAL] = "signal",
2492 [SIGEV_NONE] = "none",
2493 [SIGEV_THREAD] = "thread",
2494 };
2495
2496 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2497 notify = timer->it_sigev_notify;
2498
2499 seq_printf(m, "ID: %d\n", timer->it_id);
2500 seq_printf(m, "signal: %d/%px\n",
2501 timer->sigq->info.si_signo,
2502 timer->sigq->info.si_value.sival_ptr);
2503 seq_printf(m, "notify: %s/%s.%d\n",
2504 nstr[notify & ~SIGEV_THREAD_ID],
2505 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2506 pid_nr_ns(timer->it_pid, tp->ns));
2507 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2508
2509 return 0;
2510 }
2511
2512 static const struct seq_operations proc_timers_seq_ops = {
2513 .start = timers_start,
2514 .next = timers_next,
2515 .stop = timers_stop,
2516 .show = show_timer,
2517 };
2518
proc_timers_open(struct inode * inode,struct file * file)2519 static int proc_timers_open(struct inode *inode, struct file *file)
2520 {
2521 struct timers_private *tp;
2522
2523 tp = __seq_open_private(file, &proc_timers_seq_ops,
2524 sizeof(struct timers_private));
2525 if (!tp)
2526 return -ENOMEM;
2527
2528 tp->pid = proc_pid(inode);
2529 tp->ns = proc_pid_ns(inode->i_sb);
2530 return 0;
2531 }
2532
2533 static const struct file_operations proc_timers_operations = {
2534 .open = proc_timers_open,
2535 .read = seq_read,
2536 .llseek = seq_lseek,
2537 .release = seq_release_private,
2538 };
2539 #endif
2540
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2541 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2542 size_t count, loff_t *offset)
2543 {
2544 struct inode *inode = file_inode(file);
2545 struct task_struct *p;
2546 u64 slack_ns;
2547 int err;
2548
2549 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2550 if (err < 0)
2551 return err;
2552
2553 p = get_proc_task(inode);
2554 if (!p)
2555 return -ESRCH;
2556
2557 if (p != current) {
2558 rcu_read_lock();
2559 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2560 rcu_read_unlock();
2561 count = -EPERM;
2562 goto out;
2563 }
2564 rcu_read_unlock();
2565
2566 err = security_task_setscheduler(p);
2567 if (err) {
2568 count = err;
2569 goto out;
2570 }
2571 }
2572
2573 task_lock(p);
2574 if (slack_ns == 0)
2575 p->timer_slack_ns = p->default_timer_slack_ns;
2576 else
2577 p->timer_slack_ns = slack_ns;
2578 task_unlock(p);
2579
2580 out:
2581 put_task_struct(p);
2582
2583 return count;
2584 }
2585
timerslack_ns_show(struct seq_file * m,void * v)2586 static int timerslack_ns_show(struct seq_file *m, void *v)
2587 {
2588 struct inode *inode = m->private;
2589 struct task_struct *p;
2590 int err = 0;
2591
2592 p = get_proc_task(inode);
2593 if (!p)
2594 return -ESRCH;
2595
2596 if (p != current) {
2597 rcu_read_lock();
2598 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2599 rcu_read_unlock();
2600 err = -EPERM;
2601 goto out;
2602 }
2603 rcu_read_unlock();
2604
2605 err = security_task_getscheduler(p);
2606 if (err)
2607 goto out;
2608 }
2609
2610 task_lock(p);
2611 seq_printf(m, "%llu\n", p->timer_slack_ns);
2612 task_unlock(p);
2613
2614 out:
2615 put_task_struct(p);
2616
2617 return err;
2618 }
2619
timerslack_ns_open(struct inode * inode,struct file * filp)2620 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2621 {
2622 return single_open(filp, timerslack_ns_show, inode);
2623 }
2624
2625 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2626 .open = timerslack_ns_open,
2627 .read = seq_read,
2628 .write = timerslack_ns_write,
2629 .llseek = seq_lseek,
2630 .release = single_release,
2631 };
2632
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2633 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2634 struct task_struct *task, const void *ptr)
2635 {
2636 const struct pid_entry *p = ptr;
2637 struct inode *inode;
2638 struct proc_inode *ei;
2639
2640 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2641 if (!inode)
2642 return ERR_PTR(-ENOENT);
2643
2644 ei = PROC_I(inode);
2645 if (S_ISDIR(inode->i_mode))
2646 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2647 if (p->iop)
2648 inode->i_op = p->iop;
2649 if (p->fop)
2650 inode->i_fop = p->fop;
2651 ei->op = p->op;
2652 pid_update_inode(task, inode);
2653 d_set_d_op(dentry, &pid_dentry_operations);
2654 return d_splice_alias(inode, dentry);
2655 }
2656
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2657 static struct dentry *proc_pident_lookup(struct inode *dir,
2658 struct dentry *dentry,
2659 const struct pid_entry *p,
2660 const struct pid_entry *end)
2661 {
2662 struct task_struct *task = get_proc_task(dir);
2663 struct dentry *res = ERR_PTR(-ENOENT);
2664
2665 if (!task)
2666 goto out_no_task;
2667
2668 /*
2669 * Yes, it does not scale. And it should not. Don't add
2670 * new entries into /proc/<tgid>/ without very good reasons.
2671 */
2672 for (; p < end; p++) {
2673 if (p->len != dentry->d_name.len)
2674 continue;
2675 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2676 res = proc_pident_instantiate(dentry, task, p);
2677 break;
2678 }
2679 }
2680 put_task_struct(task);
2681 out_no_task:
2682 return res;
2683 }
2684
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2685 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2686 const struct pid_entry *ents, unsigned int nents)
2687 {
2688 struct task_struct *task = get_proc_task(file_inode(file));
2689 const struct pid_entry *p;
2690
2691 if (!task)
2692 return -ENOENT;
2693
2694 if (!dir_emit_dots(file, ctx))
2695 goto out;
2696
2697 if (ctx->pos >= nents + 2)
2698 goto out;
2699
2700 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2701 if (!proc_fill_cache(file, ctx, p->name, p->len,
2702 proc_pident_instantiate, task, p))
2703 break;
2704 ctx->pos++;
2705 }
2706 out:
2707 put_task_struct(task);
2708 return 0;
2709 }
2710
2711 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2712 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2713 {
2714 file->private_data = NULL;
2715 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2716 return 0;
2717 }
2718
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2719 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2720 size_t count, loff_t *ppos)
2721 {
2722 struct inode * inode = file_inode(file);
2723 char *p = NULL;
2724 ssize_t length;
2725 struct task_struct *task = get_proc_task(inode);
2726
2727 if (!task)
2728 return -ESRCH;
2729
2730 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2731 (char*)file->f_path.dentry->d_name.name,
2732 &p);
2733 put_task_struct(task);
2734 if (length > 0)
2735 length = simple_read_from_buffer(buf, count, ppos, p, length);
2736 kfree(p);
2737 return length;
2738 }
2739
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2740 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2741 size_t count, loff_t *ppos)
2742 {
2743 struct inode * inode = file_inode(file);
2744 struct task_struct *task;
2745 void *page;
2746 int rv;
2747
2748 /* A task may only write when it was the opener. */
2749 if (file->private_data != current->mm)
2750 return -EPERM;
2751
2752 rcu_read_lock();
2753 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2754 if (!task) {
2755 rcu_read_unlock();
2756 return -ESRCH;
2757 }
2758 /* A task may only write its own attributes. */
2759 if (current != task) {
2760 rcu_read_unlock();
2761 return -EACCES;
2762 }
2763 /* Prevent changes to overridden credentials. */
2764 if (current_cred() != current_real_cred()) {
2765 rcu_read_unlock();
2766 return -EBUSY;
2767 }
2768 rcu_read_unlock();
2769
2770 if (count > PAGE_SIZE)
2771 count = PAGE_SIZE;
2772
2773 /* No partial writes. */
2774 if (*ppos != 0)
2775 return -EINVAL;
2776
2777 page = memdup_user(buf, count);
2778 if (IS_ERR(page)) {
2779 rv = PTR_ERR(page);
2780 goto out;
2781 }
2782
2783 /* Guard against adverse ptrace interaction */
2784 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2785 if (rv < 0)
2786 goto out_free;
2787
2788 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2789 file->f_path.dentry->d_name.name, page,
2790 count);
2791 mutex_unlock(¤t->signal->cred_guard_mutex);
2792 out_free:
2793 kfree(page);
2794 out:
2795 return rv;
2796 }
2797
2798 static const struct file_operations proc_pid_attr_operations = {
2799 .open = proc_pid_attr_open,
2800 .read = proc_pid_attr_read,
2801 .write = proc_pid_attr_write,
2802 .llseek = generic_file_llseek,
2803 .release = mem_release,
2804 };
2805
2806 #define LSM_DIR_OPS(LSM) \
2807 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2808 struct dir_context *ctx) \
2809 { \
2810 return proc_pident_readdir(filp, ctx, \
2811 LSM##_attr_dir_stuff, \
2812 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2813 } \
2814 \
2815 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2816 .read = generic_read_dir, \
2817 .iterate = proc_##LSM##_attr_dir_iterate, \
2818 .llseek = default_llseek, \
2819 }; \
2820 \
2821 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2822 struct dentry *dentry, unsigned int flags) \
2823 { \
2824 return proc_pident_lookup(dir, dentry, \
2825 LSM##_attr_dir_stuff, \
2826 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2827 } \
2828 \
2829 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2830 .lookup = proc_##LSM##_attr_dir_lookup, \
2831 .getattr = pid_getattr, \
2832 .setattr = proc_setattr, \
2833 }
2834
2835 #ifdef CONFIG_SECURITY_SMACK
2836 static const struct pid_entry smack_attr_dir_stuff[] = {
2837 ATTR("smack", "current", 0666),
2838 };
2839 LSM_DIR_OPS(smack);
2840 #endif
2841
2842 #ifdef CONFIG_SECURITY_APPARMOR
2843 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2844 ATTR("apparmor", "current", 0666),
2845 ATTR("apparmor", "prev", 0444),
2846 ATTR("apparmor", "exec", 0666),
2847 };
2848 LSM_DIR_OPS(apparmor);
2849 #endif
2850
2851 static const struct pid_entry attr_dir_stuff[] = {
2852 ATTR(NULL, "current", 0666),
2853 ATTR(NULL, "prev", 0444),
2854 ATTR(NULL, "exec", 0666),
2855 ATTR(NULL, "fscreate", 0666),
2856 ATTR(NULL, "keycreate", 0666),
2857 ATTR(NULL, "sockcreate", 0666),
2858 #ifdef CONFIG_SECURITY_SMACK
2859 DIR("smack", 0555,
2860 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2861 #endif
2862 #ifdef CONFIG_SECURITY_APPARMOR
2863 DIR("apparmor", 0555,
2864 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2865 #endif
2866 };
2867
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2868 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2869 {
2870 return proc_pident_readdir(file, ctx,
2871 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2872 }
2873
2874 static const struct file_operations proc_attr_dir_operations = {
2875 .read = generic_read_dir,
2876 .iterate_shared = proc_attr_dir_readdir,
2877 .llseek = generic_file_llseek,
2878 };
2879
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2880 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2881 struct dentry *dentry, unsigned int flags)
2882 {
2883 return proc_pident_lookup(dir, dentry,
2884 attr_dir_stuff,
2885 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2886 }
2887
2888 static const struct inode_operations proc_attr_dir_inode_operations = {
2889 .lookup = proc_attr_dir_lookup,
2890 .getattr = pid_getattr,
2891 .setattr = proc_setattr,
2892 };
2893
2894 #endif
2895
2896 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2897 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2898 size_t count, loff_t *ppos)
2899 {
2900 struct task_struct *task = get_proc_task(file_inode(file));
2901 struct mm_struct *mm;
2902 char buffer[PROC_NUMBUF];
2903 size_t len;
2904 int ret;
2905
2906 if (!task)
2907 return -ESRCH;
2908
2909 ret = 0;
2910 mm = get_task_mm(task);
2911 if (mm) {
2912 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2913 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2914 MMF_DUMP_FILTER_SHIFT));
2915 mmput(mm);
2916 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2917 }
2918
2919 put_task_struct(task);
2920
2921 return ret;
2922 }
2923
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2924 static ssize_t proc_coredump_filter_write(struct file *file,
2925 const char __user *buf,
2926 size_t count,
2927 loff_t *ppos)
2928 {
2929 struct task_struct *task;
2930 struct mm_struct *mm;
2931 unsigned int val;
2932 int ret;
2933 int i;
2934 unsigned long mask;
2935
2936 ret = kstrtouint_from_user(buf, count, 0, &val);
2937 if (ret < 0)
2938 return ret;
2939
2940 ret = -ESRCH;
2941 task = get_proc_task(file_inode(file));
2942 if (!task)
2943 goto out_no_task;
2944
2945 mm = get_task_mm(task);
2946 if (!mm)
2947 goto out_no_mm;
2948 ret = 0;
2949
2950 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2951 if (val & mask)
2952 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2953 else
2954 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2955 }
2956
2957 mmput(mm);
2958 out_no_mm:
2959 put_task_struct(task);
2960 out_no_task:
2961 if (ret < 0)
2962 return ret;
2963 return count;
2964 }
2965
2966 static const struct file_operations proc_coredump_filter_operations = {
2967 .read = proc_coredump_filter_read,
2968 .write = proc_coredump_filter_write,
2969 .llseek = generic_file_llseek,
2970 };
2971 #endif
2972
2973 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)2974 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2975 {
2976 struct task_io_accounting acct = task->ioac;
2977 unsigned long flags;
2978 int result;
2979
2980 result = down_read_killable(&task->signal->exec_update_lock);
2981 if (result)
2982 return result;
2983
2984 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2985 result = -EACCES;
2986 goto out_unlock;
2987 }
2988
2989 if (whole && lock_task_sighand(task, &flags)) {
2990 struct task_struct *t = task;
2991
2992 task_io_accounting_add(&acct, &task->signal->ioac);
2993 while_each_thread(task, t)
2994 task_io_accounting_add(&acct, &t->ioac);
2995
2996 unlock_task_sighand(task, &flags);
2997 }
2998 seq_printf(m,
2999 "rchar: %llu\n"
3000 "wchar: %llu\n"
3001 "syscr: %llu\n"
3002 "syscw: %llu\n"
3003 "read_bytes: %llu\n"
3004 "write_bytes: %llu\n"
3005 "cancelled_write_bytes: %llu\n",
3006 (unsigned long long)acct.rchar,
3007 (unsigned long long)acct.wchar,
3008 (unsigned long long)acct.syscr,
3009 (unsigned long long)acct.syscw,
3010 (unsigned long long)acct.read_bytes,
3011 (unsigned long long)acct.write_bytes,
3012 (unsigned long long)acct.cancelled_write_bytes);
3013 result = 0;
3014
3015 out_unlock:
3016 up_read(&task->signal->exec_update_lock);
3017 return result;
3018 }
3019
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3020 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3021 struct pid *pid, struct task_struct *task)
3022 {
3023 return do_io_accounting(task, m, 0);
3024 }
3025
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3026 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3027 struct pid *pid, struct task_struct *task)
3028 {
3029 return do_io_accounting(task, m, 1);
3030 }
3031 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3032
3033 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3034 static int proc_id_map_open(struct inode *inode, struct file *file,
3035 const struct seq_operations *seq_ops)
3036 {
3037 struct user_namespace *ns = NULL;
3038 struct task_struct *task;
3039 struct seq_file *seq;
3040 int ret = -EINVAL;
3041
3042 task = get_proc_task(inode);
3043 if (task) {
3044 rcu_read_lock();
3045 ns = get_user_ns(task_cred_xxx(task, user_ns));
3046 rcu_read_unlock();
3047 put_task_struct(task);
3048 }
3049 if (!ns)
3050 goto err;
3051
3052 ret = seq_open(file, seq_ops);
3053 if (ret)
3054 goto err_put_ns;
3055
3056 seq = file->private_data;
3057 seq->private = ns;
3058
3059 return 0;
3060 err_put_ns:
3061 put_user_ns(ns);
3062 err:
3063 return ret;
3064 }
3065
proc_id_map_release(struct inode * inode,struct file * file)3066 static int proc_id_map_release(struct inode *inode, struct file *file)
3067 {
3068 struct seq_file *seq = file->private_data;
3069 struct user_namespace *ns = seq->private;
3070 put_user_ns(ns);
3071 return seq_release(inode, file);
3072 }
3073
proc_uid_map_open(struct inode * inode,struct file * file)3074 static int proc_uid_map_open(struct inode *inode, struct file *file)
3075 {
3076 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3077 }
3078
proc_gid_map_open(struct inode * inode,struct file * file)3079 static int proc_gid_map_open(struct inode *inode, struct file *file)
3080 {
3081 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3082 }
3083
proc_projid_map_open(struct inode * inode,struct file * file)3084 static int proc_projid_map_open(struct inode *inode, struct file *file)
3085 {
3086 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3087 }
3088
3089 static const struct file_operations proc_uid_map_operations = {
3090 .open = proc_uid_map_open,
3091 .write = proc_uid_map_write,
3092 .read = seq_read,
3093 .llseek = seq_lseek,
3094 .release = proc_id_map_release,
3095 };
3096
3097 static const struct file_operations proc_gid_map_operations = {
3098 .open = proc_gid_map_open,
3099 .write = proc_gid_map_write,
3100 .read = seq_read,
3101 .llseek = seq_lseek,
3102 .release = proc_id_map_release,
3103 };
3104
3105 static const struct file_operations proc_projid_map_operations = {
3106 .open = proc_projid_map_open,
3107 .write = proc_projid_map_write,
3108 .read = seq_read,
3109 .llseek = seq_lseek,
3110 .release = proc_id_map_release,
3111 };
3112
proc_setgroups_open(struct inode * inode,struct file * file)3113 static int proc_setgroups_open(struct inode *inode, struct file *file)
3114 {
3115 struct user_namespace *ns = NULL;
3116 struct task_struct *task;
3117 int ret;
3118
3119 ret = -ESRCH;
3120 task = get_proc_task(inode);
3121 if (task) {
3122 rcu_read_lock();
3123 ns = get_user_ns(task_cred_xxx(task, user_ns));
3124 rcu_read_unlock();
3125 put_task_struct(task);
3126 }
3127 if (!ns)
3128 goto err;
3129
3130 if (file->f_mode & FMODE_WRITE) {
3131 ret = -EACCES;
3132 if (!ns_capable(ns, CAP_SYS_ADMIN))
3133 goto err_put_ns;
3134 }
3135
3136 ret = single_open(file, &proc_setgroups_show, ns);
3137 if (ret)
3138 goto err_put_ns;
3139
3140 return 0;
3141 err_put_ns:
3142 put_user_ns(ns);
3143 err:
3144 return ret;
3145 }
3146
proc_setgroups_release(struct inode * inode,struct file * file)3147 static int proc_setgroups_release(struct inode *inode, struct file *file)
3148 {
3149 struct seq_file *seq = file->private_data;
3150 struct user_namespace *ns = seq->private;
3151 int ret = single_release(inode, file);
3152 put_user_ns(ns);
3153 return ret;
3154 }
3155
3156 static const struct file_operations proc_setgroups_operations = {
3157 .open = proc_setgroups_open,
3158 .write = proc_setgroups_write,
3159 .read = seq_read,
3160 .llseek = seq_lseek,
3161 .release = proc_setgroups_release,
3162 };
3163 #endif /* CONFIG_USER_NS */
3164
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3165 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3166 struct pid *pid, struct task_struct *task)
3167 {
3168 int err = lock_trace(task);
3169 if (!err) {
3170 seq_printf(m, "%08x\n", task->personality);
3171 unlock_trace(task);
3172 }
3173 return err;
3174 }
3175
3176 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3177 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3178 struct pid *pid, struct task_struct *task)
3179 {
3180 seq_printf(m, "%d\n", task->patch_state);
3181 return 0;
3182 }
3183 #endif /* CONFIG_LIVEPATCH */
3184
3185 #ifdef CONFIG_KSM
proc_pid_ksm_merging_pages(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3186 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3187 struct pid *pid, struct task_struct *task)
3188 {
3189 struct mm_struct *mm;
3190
3191 mm = get_task_mm(task);
3192 if (mm) {
3193 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3194 mmput(mm);
3195 }
3196
3197 return 0;
3198 }
3199 #endif /* CONFIG_KSM */
3200
3201 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3202 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3203 struct pid *pid, struct task_struct *task)
3204 {
3205 unsigned long prev_depth = THREAD_SIZE -
3206 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3207 unsigned long depth = THREAD_SIZE -
3208 (task->lowest_stack & (THREAD_SIZE - 1));
3209
3210 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3211 prev_depth, depth);
3212 return 0;
3213 }
3214 #endif /* CONFIG_STACKLEAK_METRICS */
3215
3216 /*
3217 * Thread groups
3218 */
3219 static const struct file_operations proc_task_operations;
3220 static const struct inode_operations proc_task_inode_operations;
3221
3222 static const struct pid_entry tgid_base_stuff[] = {
3223 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3224 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3225 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3226 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3227 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3228 #ifdef CONFIG_NET
3229 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3230 #endif
3231 REG("environ", S_IRUSR, proc_environ_operations),
3232 REG("auxv", S_IRUSR, proc_auxv_operations),
3233 ONE("status", S_IRUGO, proc_pid_status),
3234 ONE("personality", S_IRUSR, proc_pid_personality),
3235 ONE("limits", S_IRUGO, proc_pid_limits),
3236 #ifdef CONFIG_SCHED_DEBUG
3237 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3238 #endif
3239 #ifdef CONFIG_SCHED_AUTOGROUP
3240 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3241 #endif
3242 #ifdef CONFIG_TIME_NS
3243 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3244 #endif
3245 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3246 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3247 ONE("syscall", S_IRUSR, proc_pid_syscall),
3248 #endif
3249 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3250 ONE("stat", S_IRUGO, proc_tgid_stat),
3251 ONE("statm", S_IRUGO, proc_pid_statm),
3252 REG("maps", S_IRUGO, proc_pid_maps_operations),
3253 #ifdef CONFIG_NUMA
3254 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3255 #endif
3256 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3257 LNK("cwd", proc_cwd_link),
3258 LNK("root", proc_root_link),
3259 LNK("exe", proc_exe_link),
3260 REG("mounts", S_IRUGO, proc_mounts_operations),
3261 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3262 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3263 #ifdef CONFIG_PROC_PAGE_MONITOR
3264 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3265 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3266 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3267 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3268 #endif
3269 #ifdef CONFIG_SECURITY
3270 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3271 #endif
3272 #ifdef CONFIG_KALLSYMS
3273 ONE("wchan", S_IRUGO, proc_pid_wchan),
3274 #endif
3275 #ifdef CONFIG_STACKTRACE
3276 ONE("stack", S_IRUSR, proc_pid_stack),
3277 #endif
3278 #ifdef CONFIG_SCHED_INFO
3279 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3280 #endif
3281 #ifdef CONFIG_LATENCYTOP
3282 REG("latency", S_IRUGO, proc_lstats_operations),
3283 #endif
3284 #ifdef CONFIG_PROC_PID_CPUSET
3285 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3286 #endif
3287 #ifdef CONFIG_CGROUPS
3288 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3289 #endif
3290 #ifdef CONFIG_PROC_CPU_RESCTRL
3291 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3292 #endif
3293 ONE("oom_score", S_IRUGO, proc_oom_score),
3294 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3295 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3296 #ifdef CONFIG_AUDIT
3297 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3298 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3299 #endif
3300 #ifdef CONFIG_FAULT_INJECTION
3301 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3302 REG("fail-nth", 0644, proc_fail_nth_operations),
3303 #endif
3304 #ifdef CONFIG_ELF_CORE
3305 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3306 #endif
3307 #ifdef CONFIG_TASK_IO_ACCOUNTING
3308 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3309 #endif
3310 #ifdef CONFIG_USER_NS
3311 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3312 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3313 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3314 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3315 #endif
3316 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3317 REG("timers", S_IRUGO, proc_timers_operations),
3318 #endif
3319 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3320 #ifdef CONFIG_LIVEPATCH
3321 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3322 #endif
3323 #ifdef CONFIG_STACKLEAK_METRICS
3324 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3325 #endif
3326 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3327 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3328 #endif
3329 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3330 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3331 #endif
3332 #ifdef CONFIG_KSM
3333 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3334 #endif
3335 };
3336
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3337 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3338 {
3339 return proc_pident_readdir(file, ctx,
3340 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3341 }
3342
3343 static const struct file_operations proc_tgid_base_operations = {
3344 .read = generic_read_dir,
3345 .iterate_shared = proc_tgid_base_readdir,
3346 .llseek = generic_file_llseek,
3347 };
3348
tgid_pidfd_to_pid(const struct file * file)3349 struct pid *tgid_pidfd_to_pid(const struct file *file)
3350 {
3351 if (file->f_op != &proc_tgid_base_operations)
3352 return ERR_PTR(-EBADF);
3353
3354 return proc_pid(file_inode(file));
3355 }
3356
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3357 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3358 {
3359 return proc_pident_lookup(dir, dentry,
3360 tgid_base_stuff,
3361 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3362 }
3363
3364 static const struct inode_operations proc_tgid_base_inode_operations = {
3365 .lookup = proc_tgid_base_lookup,
3366 .getattr = pid_getattr,
3367 .setattr = proc_setattr,
3368 .permission = proc_pid_permission,
3369 };
3370
3371 /**
3372 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3373 * @pid: pid that should be flushed.
3374 *
3375 * This function walks a list of inodes (that belong to any proc
3376 * filesystem) that are attached to the pid and flushes them from
3377 * the dentry cache.
3378 *
3379 * It is safe and reasonable to cache /proc entries for a task until
3380 * that task exits. After that they just clog up the dcache with
3381 * useless entries, possibly causing useful dcache entries to be
3382 * flushed instead. This routine is provided to flush those useless
3383 * dcache entries when a process is reaped.
3384 *
3385 * NOTE: This routine is just an optimization so it does not guarantee
3386 * that no dcache entries will exist after a process is reaped
3387 * it just makes it very unlikely that any will persist.
3388 */
3389
proc_flush_pid(struct pid * pid)3390 void proc_flush_pid(struct pid *pid)
3391 {
3392 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3393 }
3394
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3395 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3396 struct task_struct *task, const void *ptr)
3397 {
3398 struct inode *inode;
3399
3400 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3401 S_IFDIR | S_IRUGO | S_IXUGO);
3402 if (!inode)
3403 return ERR_PTR(-ENOENT);
3404
3405 inode->i_op = &proc_tgid_base_inode_operations;
3406 inode->i_fop = &proc_tgid_base_operations;
3407 inode->i_flags|=S_IMMUTABLE;
3408
3409 set_nlink(inode, nlink_tgid);
3410 pid_update_inode(task, inode);
3411
3412 d_set_d_op(dentry, &pid_dentry_operations);
3413 return d_splice_alias(inode, dentry);
3414 }
3415
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3416 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3417 {
3418 struct task_struct *task;
3419 unsigned tgid;
3420 struct proc_fs_info *fs_info;
3421 struct pid_namespace *ns;
3422 struct dentry *result = ERR_PTR(-ENOENT);
3423
3424 tgid = name_to_int(&dentry->d_name);
3425 if (tgid == ~0U)
3426 goto out;
3427
3428 fs_info = proc_sb_info(dentry->d_sb);
3429 ns = fs_info->pid_ns;
3430 rcu_read_lock();
3431 task = find_task_by_pid_ns(tgid, ns);
3432 if (task)
3433 get_task_struct(task);
3434 rcu_read_unlock();
3435 if (!task)
3436 goto out;
3437
3438 /* Limit procfs to only ptraceable tasks */
3439 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3440 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3441 goto out_put_task;
3442 }
3443
3444 result = proc_pid_instantiate(dentry, task, NULL);
3445 out_put_task:
3446 put_task_struct(task);
3447 out:
3448 return result;
3449 }
3450
3451 /*
3452 * Find the first task with tgid >= tgid
3453 *
3454 */
3455 struct tgid_iter {
3456 unsigned int tgid;
3457 struct task_struct *task;
3458 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3459 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3460 {
3461 struct pid *pid;
3462
3463 if (iter.task)
3464 put_task_struct(iter.task);
3465 rcu_read_lock();
3466 retry:
3467 iter.task = NULL;
3468 pid = find_ge_pid(iter.tgid, ns);
3469 if (pid) {
3470 iter.tgid = pid_nr_ns(pid, ns);
3471 iter.task = pid_task(pid, PIDTYPE_TGID);
3472 if (!iter.task) {
3473 iter.tgid += 1;
3474 goto retry;
3475 }
3476 get_task_struct(iter.task);
3477 }
3478 rcu_read_unlock();
3479 return iter;
3480 }
3481
3482 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3483
3484 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3485 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3486 {
3487 struct tgid_iter iter;
3488 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3489 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3490 loff_t pos = ctx->pos;
3491
3492 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3493 return 0;
3494
3495 if (pos == TGID_OFFSET - 2) {
3496 struct inode *inode = d_inode(fs_info->proc_self);
3497 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3498 return 0;
3499 ctx->pos = pos = pos + 1;
3500 }
3501 if (pos == TGID_OFFSET - 1) {
3502 struct inode *inode = d_inode(fs_info->proc_thread_self);
3503 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3504 return 0;
3505 ctx->pos = pos = pos + 1;
3506 }
3507 iter.tgid = pos - TGID_OFFSET;
3508 iter.task = NULL;
3509 for (iter = next_tgid(ns, iter);
3510 iter.task;
3511 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3512 char name[10 + 1];
3513 unsigned int len;
3514
3515 cond_resched();
3516 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3517 continue;
3518
3519 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3520 ctx->pos = iter.tgid + TGID_OFFSET;
3521 if (!proc_fill_cache(file, ctx, name, len,
3522 proc_pid_instantiate, iter.task, NULL)) {
3523 put_task_struct(iter.task);
3524 return 0;
3525 }
3526 }
3527 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3528 return 0;
3529 }
3530
3531 /*
3532 * proc_tid_comm_permission is a special permission function exclusively
3533 * used for the node /proc/<pid>/task/<tid>/comm.
3534 * It bypasses generic permission checks in the case where a task of the same
3535 * task group attempts to access the node.
3536 * The rationale behind this is that glibc and bionic access this node for
3537 * cross thread naming (pthread_set/getname_np(!self)). However, if
3538 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3539 * which locks out the cross thread naming implementation.
3540 * This function makes sure that the node is always accessible for members of
3541 * same thread group.
3542 */
proc_tid_comm_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)3543 static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3544 struct inode *inode, int mask)
3545 {
3546 bool is_same_tgroup;
3547 struct task_struct *task;
3548
3549 task = get_proc_task(inode);
3550 if (!task)
3551 return -ESRCH;
3552 is_same_tgroup = same_thread_group(current, task);
3553 put_task_struct(task);
3554
3555 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3556 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3557 * read or written by the members of the corresponding
3558 * thread group.
3559 */
3560 return 0;
3561 }
3562
3563 return generic_permission(&init_user_ns, inode, mask);
3564 }
3565
3566 static const struct inode_operations proc_tid_comm_inode_operations = {
3567 .permission = proc_tid_comm_permission,
3568 };
3569
3570 /*
3571 * Tasks
3572 */
3573 static const struct pid_entry tid_base_stuff[] = {
3574 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3575 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3576 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3577 #ifdef CONFIG_NET
3578 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3579 #endif
3580 REG("environ", S_IRUSR, proc_environ_operations),
3581 REG("auxv", S_IRUSR, proc_auxv_operations),
3582 ONE("status", S_IRUGO, proc_pid_status),
3583 ONE("personality", S_IRUSR, proc_pid_personality),
3584 ONE("limits", S_IRUGO, proc_pid_limits),
3585 #ifdef CONFIG_SCHED_DEBUG
3586 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3587 #endif
3588 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3589 &proc_tid_comm_inode_operations,
3590 &proc_pid_set_comm_operations, {}),
3591 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3592 ONE("syscall", S_IRUSR, proc_pid_syscall),
3593 #endif
3594 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3595 ONE("stat", S_IRUGO, proc_tid_stat),
3596 ONE("statm", S_IRUGO, proc_pid_statm),
3597 REG("maps", S_IRUGO, proc_pid_maps_operations),
3598 #ifdef CONFIG_PROC_CHILDREN
3599 REG("children", S_IRUGO, proc_tid_children_operations),
3600 #endif
3601 #ifdef CONFIG_NUMA
3602 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3603 #endif
3604 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3605 LNK("cwd", proc_cwd_link),
3606 LNK("root", proc_root_link),
3607 LNK("exe", proc_exe_link),
3608 REG("mounts", S_IRUGO, proc_mounts_operations),
3609 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3610 #ifdef CONFIG_PROC_PAGE_MONITOR
3611 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3612 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3613 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3614 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3615 #endif
3616 #ifdef CONFIG_SECURITY
3617 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3618 #endif
3619 #ifdef CONFIG_KALLSYMS
3620 ONE("wchan", S_IRUGO, proc_pid_wchan),
3621 #endif
3622 #ifdef CONFIG_STACKTRACE
3623 ONE("stack", S_IRUSR, proc_pid_stack),
3624 #endif
3625 #ifdef CONFIG_SCHED_INFO
3626 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3627 #endif
3628 #ifdef CONFIG_LATENCYTOP
3629 REG("latency", S_IRUGO, proc_lstats_operations),
3630 #endif
3631 #ifdef CONFIG_PROC_PID_CPUSET
3632 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3633 #endif
3634 #ifdef CONFIG_CGROUPS
3635 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3636 #endif
3637 #ifdef CONFIG_PROC_CPU_RESCTRL
3638 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3639 #endif
3640 ONE("oom_score", S_IRUGO, proc_oom_score),
3641 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3642 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3643 #ifdef CONFIG_AUDIT
3644 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3645 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3646 #endif
3647 #ifdef CONFIG_FAULT_INJECTION
3648 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3649 REG("fail-nth", 0644, proc_fail_nth_operations),
3650 #endif
3651 #ifdef CONFIG_TASK_IO_ACCOUNTING
3652 ONE("io", S_IRUSR, proc_tid_io_accounting),
3653 #endif
3654 #ifdef CONFIG_USER_NS
3655 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3656 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3657 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3658 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3659 #endif
3660 #ifdef CONFIG_LIVEPATCH
3661 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3662 #endif
3663 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3664 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3665 #endif
3666 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3667 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3668 #endif
3669 #ifdef CONFIG_KSM
3670 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3671 #endif
3672 };
3673
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3674 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3675 {
3676 return proc_pident_readdir(file, ctx,
3677 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3678 }
3679
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3680 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3681 {
3682 return proc_pident_lookup(dir, dentry,
3683 tid_base_stuff,
3684 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3685 }
3686
3687 static const struct file_operations proc_tid_base_operations = {
3688 .read = generic_read_dir,
3689 .iterate_shared = proc_tid_base_readdir,
3690 .llseek = generic_file_llseek,
3691 };
3692
3693 static const struct inode_operations proc_tid_base_inode_operations = {
3694 .lookup = proc_tid_base_lookup,
3695 .getattr = pid_getattr,
3696 .setattr = proc_setattr,
3697 };
3698
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3699 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3700 struct task_struct *task, const void *ptr)
3701 {
3702 struct inode *inode;
3703 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3704 S_IFDIR | S_IRUGO | S_IXUGO);
3705 if (!inode)
3706 return ERR_PTR(-ENOENT);
3707
3708 inode->i_op = &proc_tid_base_inode_operations;
3709 inode->i_fop = &proc_tid_base_operations;
3710 inode->i_flags |= S_IMMUTABLE;
3711
3712 set_nlink(inode, nlink_tid);
3713 pid_update_inode(task, inode);
3714
3715 d_set_d_op(dentry, &pid_dentry_operations);
3716 return d_splice_alias(inode, dentry);
3717 }
3718
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3719 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3720 {
3721 struct task_struct *task;
3722 struct task_struct *leader = get_proc_task(dir);
3723 unsigned tid;
3724 struct proc_fs_info *fs_info;
3725 struct pid_namespace *ns;
3726 struct dentry *result = ERR_PTR(-ENOENT);
3727
3728 if (!leader)
3729 goto out_no_task;
3730
3731 tid = name_to_int(&dentry->d_name);
3732 if (tid == ~0U)
3733 goto out;
3734
3735 fs_info = proc_sb_info(dentry->d_sb);
3736 ns = fs_info->pid_ns;
3737 rcu_read_lock();
3738 task = find_task_by_pid_ns(tid, ns);
3739 if (task)
3740 get_task_struct(task);
3741 rcu_read_unlock();
3742 if (!task)
3743 goto out;
3744 if (!same_thread_group(leader, task))
3745 goto out_drop_task;
3746
3747 result = proc_task_instantiate(dentry, task, NULL);
3748 out_drop_task:
3749 put_task_struct(task);
3750 out:
3751 put_task_struct(leader);
3752 out_no_task:
3753 return result;
3754 }
3755
3756 /*
3757 * Find the first tid of a thread group to return to user space.
3758 *
3759 * Usually this is just the thread group leader, but if the users
3760 * buffer was too small or there was a seek into the middle of the
3761 * directory we have more work todo.
3762 *
3763 * In the case of a short read we start with find_task_by_pid.
3764 *
3765 * In the case of a seek we start with the leader and walk nr
3766 * threads past it.
3767 */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3768 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3769 struct pid_namespace *ns)
3770 {
3771 struct task_struct *pos, *task;
3772 unsigned long nr = f_pos;
3773
3774 if (nr != f_pos) /* 32bit overflow? */
3775 return NULL;
3776
3777 rcu_read_lock();
3778 task = pid_task(pid, PIDTYPE_PID);
3779 if (!task)
3780 goto fail;
3781
3782 /* Attempt to start with the tid of a thread */
3783 if (tid && nr) {
3784 pos = find_task_by_pid_ns(tid, ns);
3785 if (pos && same_thread_group(pos, task))
3786 goto found;
3787 }
3788
3789 /* If nr exceeds the number of threads there is nothing todo */
3790 if (nr >= get_nr_threads(task))
3791 goto fail;
3792
3793 /* If we haven't found our starting place yet start
3794 * with the leader and walk nr threads forward.
3795 */
3796 pos = task = task->group_leader;
3797 do {
3798 if (!nr--)
3799 goto found;
3800 } while_each_thread(task, pos);
3801 fail:
3802 pos = NULL;
3803 goto out;
3804 found:
3805 get_task_struct(pos);
3806 out:
3807 rcu_read_unlock();
3808 return pos;
3809 }
3810
3811 /*
3812 * Find the next thread in the thread list.
3813 * Return NULL if there is an error or no next thread.
3814 *
3815 * The reference to the input task_struct is released.
3816 */
next_tid(struct task_struct * start)3817 static struct task_struct *next_tid(struct task_struct *start)
3818 {
3819 struct task_struct *pos = NULL;
3820 rcu_read_lock();
3821 if (pid_alive(start)) {
3822 pos = next_thread(start);
3823 if (thread_group_leader(pos))
3824 pos = NULL;
3825 else
3826 get_task_struct(pos);
3827 }
3828 rcu_read_unlock();
3829 put_task_struct(start);
3830 return pos;
3831 }
3832
3833 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3834 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3835 {
3836 struct inode *inode = file_inode(file);
3837 struct task_struct *task;
3838 struct pid_namespace *ns;
3839 int tid;
3840
3841 if (proc_inode_is_dead(inode))
3842 return -ENOENT;
3843
3844 if (!dir_emit_dots(file, ctx))
3845 return 0;
3846
3847 /* f_version caches the tgid value that the last readdir call couldn't
3848 * return. lseek aka telldir automagically resets f_version to 0.
3849 */
3850 ns = proc_pid_ns(inode->i_sb);
3851 tid = (int)file->f_version;
3852 file->f_version = 0;
3853 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3854 task;
3855 task = next_tid(task), ctx->pos++) {
3856 char name[10 + 1];
3857 unsigned int len;
3858
3859 tid = task_pid_nr_ns(task, ns);
3860 if (!tid)
3861 continue; /* The task has just exited. */
3862 len = snprintf(name, sizeof(name), "%u", tid);
3863 if (!proc_fill_cache(file, ctx, name, len,
3864 proc_task_instantiate, task, NULL)) {
3865 /* returning this tgid failed, save it as the first
3866 * pid for the next readir call */
3867 file->f_version = (u64)tid;
3868 put_task_struct(task);
3869 break;
3870 }
3871 }
3872
3873 return 0;
3874 }
3875
proc_task_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3876 static int proc_task_getattr(struct user_namespace *mnt_userns,
3877 const struct path *path, struct kstat *stat,
3878 u32 request_mask, unsigned int query_flags)
3879 {
3880 struct inode *inode = d_inode(path->dentry);
3881 struct task_struct *p = get_proc_task(inode);
3882 generic_fillattr(&init_user_ns, inode, stat);
3883
3884 if (p) {
3885 stat->nlink += get_nr_threads(p);
3886 put_task_struct(p);
3887 }
3888
3889 return 0;
3890 }
3891
3892 static const struct inode_operations proc_task_inode_operations = {
3893 .lookup = proc_task_lookup,
3894 .getattr = proc_task_getattr,
3895 .setattr = proc_setattr,
3896 .permission = proc_pid_permission,
3897 };
3898
3899 static const struct file_operations proc_task_operations = {
3900 .read = generic_read_dir,
3901 .iterate_shared = proc_task_readdir,
3902 .llseek = generic_file_llseek,
3903 };
3904
set_proc_pid_nlink(void)3905 void __init set_proc_pid_nlink(void)
3906 {
3907 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3908 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3909 }
3910