1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * NILFS segment constructor.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 *
9 */
10
11 #include <linux/pagemap.h>
12 #include <linux/buffer_head.h>
13 #include <linux/writeback.h>
14 #include <linux/bitops.h>
15 #include <linux/bio.h>
16 #include <linux/completion.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <linux/kthread.h>
21 #include <linux/crc32.h>
22 #include <linux/pagevec.h>
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25
26 #include "nilfs.h"
27 #include "btnode.h"
28 #include "page.h"
29 #include "segment.h"
30 #include "sufile.h"
31 #include "cpfile.h"
32 #include "ifile.h"
33 #include "segbuf.h"
34
35
36 /*
37 * Segment constructor
38 */
39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
40
41 #define SC_MAX_SEGDELTA 64 /*
42 * Upper limit of the number of segments
43 * appended in collection retry loop
44 */
45
46 /* Construction mode */
47 enum {
48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */
49 SC_LSEG_DSYNC, /*
50 * Flush data blocks of a given file and make
51 * a logical segment without a super root.
52 */
53 SC_FLUSH_FILE, /*
54 * Flush data files, leads to segment writes without
55 * creating a checkpoint.
56 */
57 SC_FLUSH_DAT, /*
58 * Flush DAT file. This also creates segments
59 * without a checkpoint.
60 */
61 };
62
63 /* Stage numbers of dirty block collection */
64 enum {
65 NILFS_ST_INIT = 0,
66 NILFS_ST_GC, /* Collecting dirty blocks for GC */
67 NILFS_ST_FILE,
68 NILFS_ST_IFILE,
69 NILFS_ST_CPFILE,
70 NILFS_ST_SUFILE,
71 NILFS_ST_DAT,
72 NILFS_ST_SR, /* Super root */
73 NILFS_ST_DSYNC, /* Data sync blocks */
74 NILFS_ST_DONE,
75 };
76
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/nilfs2.h>
79
80 /*
81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
83 * the variable must use them because transition of stage count must involve
84 * trace events (trace_nilfs2_collection_stage_transition).
85 *
86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
87 * produce tracepoint events. It is provided just for making the intention
88 * clear.
89 */
nilfs_sc_cstage_inc(struct nilfs_sc_info * sci)90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
91 {
92 sci->sc_stage.scnt++;
93 trace_nilfs2_collection_stage_transition(sci);
94 }
95
nilfs_sc_cstage_set(struct nilfs_sc_info * sci,int next_scnt)96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
97 {
98 sci->sc_stage.scnt = next_scnt;
99 trace_nilfs2_collection_stage_transition(sci);
100 }
101
nilfs_sc_cstage_get(struct nilfs_sc_info * sci)102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
103 {
104 return sci->sc_stage.scnt;
105 }
106
107 /* State flags of collection */
108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
112
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations {
115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
116 struct inode *);
117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
118 struct inode *);
119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
120 struct inode *);
121 void (*write_data_binfo)(struct nilfs_sc_info *,
122 struct nilfs_segsum_pointer *,
123 union nilfs_binfo *);
124 void (*write_node_binfo)(struct nilfs_sc_info *,
125 struct nilfs_segsum_pointer *,
126 union nilfs_binfo *);
127 };
128
129 /*
130 * Other definitions
131 */
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
136
137 #define nilfs_cnt32_ge(a, b) \
138 (typecheck(__u32, a) && typecheck(__u32, b) && \
139 ((__s32)(a) - (__s32)(b) >= 0))
140
nilfs_prepare_segment_lock(struct super_block * sb,struct nilfs_transaction_info * ti)141 static int nilfs_prepare_segment_lock(struct super_block *sb,
142 struct nilfs_transaction_info *ti)
143 {
144 struct nilfs_transaction_info *cur_ti = current->journal_info;
145 void *save = NULL;
146
147 if (cur_ti) {
148 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
149 return ++cur_ti->ti_count;
150
151 /*
152 * If journal_info field is occupied by other FS,
153 * it is saved and will be restored on
154 * nilfs_transaction_commit().
155 */
156 nilfs_warn(sb, "journal info from a different FS");
157 save = current->journal_info;
158 }
159 if (!ti) {
160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
161 if (!ti)
162 return -ENOMEM;
163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
164 } else {
165 ti->ti_flags = 0;
166 }
167 ti->ti_count = 0;
168 ti->ti_save = save;
169 ti->ti_magic = NILFS_TI_MAGIC;
170 current->journal_info = ti;
171 return 0;
172 }
173
174 /**
175 * nilfs_transaction_begin - start indivisible file operations.
176 * @sb: super block
177 * @ti: nilfs_transaction_info
178 * @vacancy_check: flags for vacancy rate checks
179 *
180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181 * the segment semaphore, to make a segment construction and write tasks
182 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
183 * The region enclosed by these two functions can be nested. To avoid a
184 * deadlock, the semaphore is only acquired or released in the outermost call.
185 *
186 * This function allocates a nilfs_transaction_info struct to keep context
187 * information on it. It is initialized and hooked onto the current task in
188 * the outermost call. If a pre-allocated struct is given to @ti, it is used
189 * instead; otherwise a new struct is assigned from a slab.
190 *
191 * When @vacancy_check flag is set, this function will check the amount of
192 * free space, and will wait for the GC to reclaim disk space if low capacity.
193 *
194 * Return Value: On success, 0 is returned. On error, one of the following
195 * negative error code is returned.
196 *
197 * %-ENOMEM - Insufficient memory available.
198 *
199 * %-ENOSPC - No space left on device
200 */
nilfs_transaction_begin(struct super_block * sb,struct nilfs_transaction_info * ti,int vacancy_check)201 int nilfs_transaction_begin(struct super_block *sb,
202 struct nilfs_transaction_info *ti,
203 int vacancy_check)
204 {
205 struct the_nilfs *nilfs;
206 int ret = nilfs_prepare_segment_lock(sb, ti);
207 struct nilfs_transaction_info *trace_ti;
208
209 if (unlikely(ret < 0))
210 return ret;
211 if (ret > 0) {
212 trace_ti = current->journal_info;
213
214 trace_nilfs2_transaction_transition(sb, trace_ti,
215 trace_ti->ti_count, trace_ti->ti_flags,
216 TRACE_NILFS2_TRANSACTION_BEGIN);
217 return 0;
218 }
219
220 sb_start_intwrite(sb);
221
222 nilfs = sb->s_fs_info;
223 down_read(&nilfs->ns_segctor_sem);
224 if (vacancy_check && nilfs_near_disk_full(nilfs)) {
225 up_read(&nilfs->ns_segctor_sem);
226 ret = -ENOSPC;
227 goto failed;
228 }
229
230 trace_ti = current->journal_info;
231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
232 trace_ti->ti_flags,
233 TRACE_NILFS2_TRANSACTION_BEGIN);
234 return 0;
235
236 failed:
237 ti = current->journal_info;
238 current->journal_info = ti->ti_save;
239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
240 kmem_cache_free(nilfs_transaction_cachep, ti);
241 sb_end_intwrite(sb);
242 return ret;
243 }
244
245 /**
246 * nilfs_transaction_commit - commit indivisible file operations.
247 * @sb: super block
248 *
249 * nilfs_transaction_commit() releases the read semaphore which is
250 * acquired by nilfs_transaction_begin(). This is only performed
251 * in outermost call of this function. If a commit flag is set,
252 * nilfs_transaction_commit() sets a timer to start the segment
253 * constructor. If a sync flag is set, it starts construction
254 * directly.
255 */
nilfs_transaction_commit(struct super_block * sb)256 int nilfs_transaction_commit(struct super_block *sb)
257 {
258 struct nilfs_transaction_info *ti = current->journal_info;
259 struct the_nilfs *nilfs = sb->s_fs_info;
260 int err = 0;
261
262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
263 ti->ti_flags |= NILFS_TI_COMMIT;
264 if (ti->ti_count > 0) {
265 ti->ti_count--;
266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
268 return 0;
269 }
270 if (nilfs->ns_writer) {
271 struct nilfs_sc_info *sci = nilfs->ns_writer;
272
273 if (ti->ti_flags & NILFS_TI_COMMIT)
274 nilfs_segctor_start_timer(sci);
275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
276 nilfs_segctor_do_flush(sci, 0);
277 }
278 up_read(&nilfs->ns_segctor_sem);
279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
281
282 current->journal_info = ti->ti_save;
283
284 if (ti->ti_flags & NILFS_TI_SYNC)
285 err = nilfs_construct_segment(sb);
286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287 kmem_cache_free(nilfs_transaction_cachep, ti);
288 sb_end_intwrite(sb);
289 return err;
290 }
291
nilfs_transaction_abort(struct super_block * sb)292 void nilfs_transaction_abort(struct super_block *sb)
293 {
294 struct nilfs_transaction_info *ti = current->journal_info;
295 struct the_nilfs *nilfs = sb->s_fs_info;
296
297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
298 if (ti->ti_count > 0) {
299 ti->ti_count--;
300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
302 return;
303 }
304 up_read(&nilfs->ns_segctor_sem);
305
306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
308
309 current->journal_info = ti->ti_save;
310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
311 kmem_cache_free(nilfs_transaction_cachep, ti);
312 sb_end_intwrite(sb);
313 }
314
nilfs_relax_pressure_in_lock(struct super_block * sb)315 void nilfs_relax_pressure_in_lock(struct super_block *sb)
316 {
317 struct the_nilfs *nilfs = sb->s_fs_info;
318 struct nilfs_sc_info *sci = nilfs->ns_writer;
319
320 if (!sci || !sci->sc_flush_request)
321 return;
322
323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
324 up_read(&nilfs->ns_segctor_sem);
325
326 down_write(&nilfs->ns_segctor_sem);
327 if (sci->sc_flush_request &&
328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
329 struct nilfs_transaction_info *ti = current->journal_info;
330
331 ti->ti_flags |= NILFS_TI_WRITER;
332 nilfs_segctor_do_immediate_flush(sci);
333 ti->ti_flags &= ~NILFS_TI_WRITER;
334 }
335 downgrade_write(&nilfs->ns_segctor_sem);
336 }
337
nilfs_transaction_lock(struct super_block * sb,struct nilfs_transaction_info * ti,int gcflag)338 static void nilfs_transaction_lock(struct super_block *sb,
339 struct nilfs_transaction_info *ti,
340 int gcflag)
341 {
342 struct nilfs_transaction_info *cur_ti = current->journal_info;
343 struct the_nilfs *nilfs = sb->s_fs_info;
344 struct nilfs_sc_info *sci = nilfs->ns_writer;
345
346 WARN_ON(cur_ti);
347 ti->ti_flags = NILFS_TI_WRITER;
348 ti->ti_count = 0;
349 ti->ti_save = cur_ti;
350 ti->ti_magic = NILFS_TI_MAGIC;
351 current->journal_info = ti;
352
353 for (;;) {
354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
356
357 down_write(&nilfs->ns_segctor_sem);
358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
359 break;
360
361 nilfs_segctor_do_immediate_flush(sci);
362
363 up_write(&nilfs->ns_segctor_sem);
364 cond_resched();
365 }
366 if (gcflag)
367 ti->ti_flags |= NILFS_TI_GC;
368
369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
371 }
372
nilfs_transaction_unlock(struct super_block * sb)373 static void nilfs_transaction_unlock(struct super_block *sb)
374 {
375 struct nilfs_transaction_info *ti = current->journal_info;
376 struct the_nilfs *nilfs = sb->s_fs_info;
377
378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
379 BUG_ON(ti->ti_count > 0);
380
381 up_write(&nilfs->ns_segctor_sem);
382 current->journal_info = ti->ti_save;
383
384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
386 }
387
nilfs_segctor_map_segsum_entry(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,unsigned int bytes)388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
389 struct nilfs_segsum_pointer *ssp,
390 unsigned int bytes)
391 {
392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
393 unsigned int blocksize = sci->sc_super->s_blocksize;
394 void *p;
395
396 if (unlikely(ssp->offset + bytes > blocksize)) {
397 ssp->offset = 0;
398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
399 &segbuf->sb_segsum_buffers));
400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
401 }
402 p = ssp->bh->b_data + ssp->offset;
403 ssp->offset += bytes;
404 return p;
405 }
406
407 /**
408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409 * @sci: nilfs_sc_info
410 */
nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info * sci)411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
412 {
413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
414 struct buffer_head *sumbh;
415 unsigned int sumbytes;
416 unsigned int flags = 0;
417 int err;
418
419 if (nilfs_doing_gc())
420 flags = NILFS_SS_GC;
421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
422 if (unlikely(err))
423 return err;
424
425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
426 sumbytes = segbuf->sb_sum.sumbytes;
427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
430 return 0;
431 }
432
nilfs_segctor_feed_segment(struct nilfs_sc_info * sci)433 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
434 {
435 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
436 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
437 return -E2BIG; /*
438 * The current segment is filled up
439 * (internal code)
440 */
441 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
442 return nilfs_segctor_reset_segment_buffer(sci);
443 }
444
nilfs_segctor_add_super_root(struct nilfs_sc_info * sci)445 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
446 {
447 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
448 int err;
449
450 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
451 err = nilfs_segctor_feed_segment(sci);
452 if (err)
453 return err;
454 segbuf = sci->sc_curseg;
455 }
456 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
457 if (likely(!err))
458 segbuf->sb_sum.flags |= NILFS_SS_SR;
459 return err;
460 }
461
462 /*
463 * Functions for making segment summary and payloads
464 */
nilfs_segctor_segsum_block_required(struct nilfs_sc_info * sci,const struct nilfs_segsum_pointer * ssp,unsigned int binfo_size)465 static int nilfs_segctor_segsum_block_required(
466 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
467 unsigned int binfo_size)
468 {
469 unsigned int blocksize = sci->sc_super->s_blocksize;
470 /* Size of finfo and binfo is enough small against blocksize */
471
472 return ssp->offset + binfo_size +
473 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
474 blocksize;
475 }
476
nilfs_segctor_begin_finfo(struct nilfs_sc_info * sci,struct inode * inode)477 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
478 struct inode *inode)
479 {
480 sci->sc_curseg->sb_sum.nfinfo++;
481 sci->sc_binfo_ptr = sci->sc_finfo_ptr;
482 nilfs_segctor_map_segsum_entry(
483 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
484
485 if (NILFS_I(inode)->i_root &&
486 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
487 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
488 /* skip finfo */
489 }
490
nilfs_segctor_end_finfo(struct nilfs_sc_info * sci,struct inode * inode)491 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
492 struct inode *inode)
493 {
494 struct nilfs_finfo *finfo;
495 struct nilfs_inode_info *ii;
496 struct nilfs_segment_buffer *segbuf;
497 __u64 cno;
498
499 if (sci->sc_blk_cnt == 0)
500 return;
501
502 ii = NILFS_I(inode);
503
504 if (test_bit(NILFS_I_GCINODE, &ii->i_state))
505 cno = ii->i_cno;
506 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
507 cno = 0;
508 else
509 cno = sci->sc_cno;
510
511 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
512 sizeof(*finfo));
513 finfo->fi_ino = cpu_to_le64(inode->i_ino);
514 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
515 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
516 finfo->fi_cno = cpu_to_le64(cno);
517
518 segbuf = sci->sc_curseg;
519 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
520 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
521 sci->sc_finfo_ptr = sci->sc_binfo_ptr;
522 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
523 }
524
nilfs_segctor_add_file_block(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode,unsigned int binfo_size)525 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
526 struct buffer_head *bh,
527 struct inode *inode,
528 unsigned int binfo_size)
529 {
530 struct nilfs_segment_buffer *segbuf;
531 int required, err = 0;
532
533 retry:
534 segbuf = sci->sc_curseg;
535 required = nilfs_segctor_segsum_block_required(
536 sci, &sci->sc_binfo_ptr, binfo_size);
537 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
538 nilfs_segctor_end_finfo(sci, inode);
539 err = nilfs_segctor_feed_segment(sci);
540 if (err)
541 return err;
542 goto retry;
543 }
544 if (unlikely(required)) {
545 err = nilfs_segbuf_extend_segsum(segbuf);
546 if (unlikely(err))
547 goto failed;
548 }
549 if (sci->sc_blk_cnt == 0)
550 nilfs_segctor_begin_finfo(sci, inode);
551
552 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
553 /* Substitution to vblocknr is delayed until update_blocknr() */
554 nilfs_segbuf_add_file_buffer(segbuf, bh);
555 sci->sc_blk_cnt++;
556 failed:
557 return err;
558 }
559
560 /*
561 * Callback functions that enumerate, mark, and collect dirty blocks
562 */
nilfs_collect_file_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)563 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
564 struct buffer_head *bh, struct inode *inode)
565 {
566 int err;
567
568 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
569 if (err < 0)
570 return err;
571
572 err = nilfs_segctor_add_file_block(sci, bh, inode,
573 sizeof(struct nilfs_binfo_v));
574 if (!err)
575 sci->sc_datablk_cnt++;
576 return err;
577 }
578
nilfs_collect_file_node(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)579 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
580 struct buffer_head *bh,
581 struct inode *inode)
582 {
583 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
584 }
585
nilfs_collect_file_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)586 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
587 struct buffer_head *bh,
588 struct inode *inode)
589 {
590 WARN_ON(!buffer_dirty(bh));
591 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
592 }
593
nilfs_write_file_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)594 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
595 struct nilfs_segsum_pointer *ssp,
596 union nilfs_binfo *binfo)
597 {
598 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
599 sci, ssp, sizeof(*binfo_v));
600 *binfo_v = binfo->bi_v;
601 }
602
nilfs_write_file_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)603 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
604 struct nilfs_segsum_pointer *ssp,
605 union nilfs_binfo *binfo)
606 {
607 __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
608 sci, ssp, sizeof(*vblocknr));
609 *vblocknr = binfo->bi_v.bi_vblocknr;
610 }
611
612 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
613 .collect_data = nilfs_collect_file_data,
614 .collect_node = nilfs_collect_file_node,
615 .collect_bmap = nilfs_collect_file_bmap,
616 .write_data_binfo = nilfs_write_file_data_binfo,
617 .write_node_binfo = nilfs_write_file_node_binfo,
618 };
619
nilfs_collect_dat_data(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)620 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
621 struct buffer_head *bh, struct inode *inode)
622 {
623 int err;
624
625 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
626 if (err < 0)
627 return err;
628
629 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
630 if (!err)
631 sci->sc_datablk_cnt++;
632 return err;
633 }
634
nilfs_collect_dat_bmap(struct nilfs_sc_info * sci,struct buffer_head * bh,struct inode * inode)635 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
636 struct buffer_head *bh, struct inode *inode)
637 {
638 WARN_ON(!buffer_dirty(bh));
639 return nilfs_segctor_add_file_block(sci, bh, inode,
640 sizeof(struct nilfs_binfo_dat));
641 }
642
nilfs_write_dat_data_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)643 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
644 struct nilfs_segsum_pointer *ssp,
645 union nilfs_binfo *binfo)
646 {
647 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
648 sizeof(*blkoff));
649 *blkoff = binfo->bi_dat.bi_blkoff;
650 }
651
nilfs_write_dat_node_binfo(struct nilfs_sc_info * sci,struct nilfs_segsum_pointer * ssp,union nilfs_binfo * binfo)652 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
653 struct nilfs_segsum_pointer *ssp,
654 union nilfs_binfo *binfo)
655 {
656 struct nilfs_binfo_dat *binfo_dat =
657 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
658 *binfo_dat = binfo->bi_dat;
659 }
660
661 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
662 .collect_data = nilfs_collect_dat_data,
663 .collect_node = nilfs_collect_file_node,
664 .collect_bmap = nilfs_collect_dat_bmap,
665 .write_data_binfo = nilfs_write_dat_data_binfo,
666 .write_node_binfo = nilfs_write_dat_node_binfo,
667 };
668
669 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
670 .collect_data = nilfs_collect_file_data,
671 .collect_node = NULL,
672 .collect_bmap = NULL,
673 .write_data_binfo = nilfs_write_file_data_binfo,
674 .write_node_binfo = NULL,
675 };
676
nilfs_lookup_dirty_data_buffers(struct inode * inode,struct list_head * listp,size_t nlimit,loff_t start,loff_t end)677 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
678 struct list_head *listp,
679 size_t nlimit,
680 loff_t start, loff_t end)
681 {
682 struct address_space *mapping = inode->i_mapping;
683 struct pagevec pvec;
684 pgoff_t index = 0, last = ULONG_MAX;
685 size_t ndirties = 0;
686 int i;
687
688 if (unlikely(start != 0 || end != LLONG_MAX)) {
689 /*
690 * A valid range is given for sync-ing data pages. The
691 * range is rounded to per-page; extra dirty buffers
692 * may be included if blocksize < pagesize.
693 */
694 index = start >> PAGE_SHIFT;
695 last = end >> PAGE_SHIFT;
696 }
697 pagevec_init(&pvec);
698 repeat:
699 if (unlikely(index > last) ||
700 !pagevec_lookup_range_tag(&pvec, mapping, &index, last,
701 PAGECACHE_TAG_DIRTY))
702 return ndirties;
703
704 for (i = 0; i < pagevec_count(&pvec); i++) {
705 struct buffer_head *bh, *head;
706 struct page *page = pvec.pages[i];
707
708 lock_page(page);
709 if (!page_has_buffers(page))
710 create_empty_buffers(page, i_blocksize(inode), 0);
711 unlock_page(page);
712
713 bh = head = page_buffers(page);
714 do {
715 if (!buffer_dirty(bh) || buffer_async_write(bh))
716 continue;
717 get_bh(bh);
718 list_add_tail(&bh->b_assoc_buffers, listp);
719 ndirties++;
720 if (unlikely(ndirties >= nlimit)) {
721 pagevec_release(&pvec);
722 cond_resched();
723 return ndirties;
724 }
725 } while (bh = bh->b_this_page, bh != head);
726 }
727 pagevec_release(&pvec);
728 cond_resched();
729 goto repeat;
730 }
731
nilfs_lookup_dirty_node_buffers(struct inode * inode,struct list_head * listp)732 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
733 struct list_head *listp)
734 {
735 struct nilfs_inode_info *ii = NILFS_I(inode);
736 struct inode *btnc_inode = ii->i_assoc_inode;
737 struct pagevec pvec;
738 struct buffer_head *bh, *head;
739 unsigned int i;
740 pgoff_t index = 0;
741
742 if (!btnc_inode)
743 return;
744
745 pagevec_init(&pvec);
746
747 while (pagevec_lookup_tag(&pvec, btnc_inode->i_mapping, &index,
748 PAGECACHE_TAG_DIRTY)) {
749 for (i = 0; i < pagevec_count(&pvec); i++) {
750 bh = head = page_buffers(pvec.pages[i]);
751 do {
752 if (buffer_dirty(bh) &&
753 !buffer_async_write(bh)) {
754 get_bh(bh);
755 list_add_tail(&bh->b_assoc_buffers,
756 listp);
757 }
758 bh = bh->b_this_page;
759 } while (bh != head);
760 }
761 pagevec_release(&pvec);
762 cond_resched();
763 }
764 }
765
nilfs_dispose_list(struct the_nilfs * nilfs,struct list_head * head,int force)766 static void nilfs_dispose_list(struct the_nilfs *nilfs,
767 struct list_head *head, int force)
768 {
769 struct nilfs_inode_info *ii, *n;
770 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
771 unsigned int nv = 0;
772
773 while (!list_empty(head)) {
774 spin_lock(&nilfs->ns_inode_lock);
775 list_for_each_entry_safe(ii, n, head, i_dirty) {
776 list_del_init(&ii->i_dirty);
777 if (force) {
778 if (unlikely(ii->i_bh)) {
779 brelse(ii->i_bh);
780 ii->i_bh = NULL;
781 }
782 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
783 set_bit(NILFS_I_QUEUED, &ii->i_state);
784 list_add_tail(&ii->i_dirty,
785 &nilfs->ns_dirty_files);
786 continue;
787 }
788 ivec[nv++] = ii;
789 if (nv == SC_N_INODEVEC)
790 break;
791 }
792 spin_unlock(&nilfs->ns_inode_lock);
793
794 for (pii = ivec; nv > 0; pii++, nv--)
795 iput(&(*pii)->vfs_inode);
796 }
797 }
798
nilfs_iput_work_func(struct work_struct * work)799 static void nilfs_iput_work_func(struct work_struct *work)
800 {
801 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
802 sc_iput_work);
803 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
804
805 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
806 }
807
nilfs_test_metadata_dirty(struct the_nilfs * nilfs,struct nilfs_root * root)808 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
809 struct nilfs_root *root)
810 {
811 int ret = 0;
812
813 if (nilfs_mdt_fetch_dirty(root->ifile))
814 ret++;
815 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
816 ret++;
817 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
818 ret++;
819 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
820 ret++;
821 return ret;
822 }
823
nilfs_segctor_clean(struct nilfs_sc_info * sci)824 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
825 {
826 return list_empty(&sci->sc_dirty_files) &&
827 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
828 sci->sc_nfreesegs == 0 &&
829 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
830 }
831
nilfs_segctor_confirm(struct nilfs_sc_info * sci)832 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
833 {
834 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
835 int ret = 0;
836
837 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
838 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
839
840 spin_lock(&nilfs->ns_inode_lock);
841 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
842 ret++;
843
844 spin_unlock(&nilfs->ns_inode_lock);
845 return ret;
846 }
847
nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info * sci)848 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
849 {
850 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
851
852 nilfs_mdt_clear_dirty(sci->sc_root->ifile);
853 nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
854 nilfs_mdt_clear_dirty(nilfs->ns_sufile);
855 nilfs_mdt_clear_dirty(nilfs->ns_dat);
856 }
857
nilfs_segctor_create_checkpoint(struct nilfs_sc_info * sci)858 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
859 {
860 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
861 struct buffer_head *bh_cp;
862 struct nilfs_checkpoint *raw_cp;
863 int err;
864
865 /* XXX: this interface will be changed */
866 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
867 &raw_cp, &bh_cp);
868 if (likely(!err)) {
869 /*
870 * The following code is duplicated with cpfile. But, it is
871 * needed to collect the checkpoint even if it was not newly
872 * created.
873 */
874 mark_buffer_dirty(bh_cp);
875 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
876 nilfs_cpfile_put_checkpoint(
877 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
878 } else
879 WARN_ON(err == -EINVAL || err == -ENOENT);
880
881 return err;
882 }
883
nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info * sci)884 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
885 {
886 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
887 struct buffer_head *bh_cp;
888 struct nilfs_checkpoint *raw_cp;
889 int err;
890
891 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
892 &raw_cp, &bh_cp);
893 if (unlikely(err)) {
894 WARN_ON(err == -EINVAL || err == -ENOENT);
895 goto failed_ibh;
896 }
897 raw_cp->cp_snapshot_list.ssl_next = 0;
898 raw_cp->cp_snapshot_list.ssl_prev = 0;
899 raw_cp->cp_inodes_count =
900 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
901 raw_cp->cp_blocks_count =
902 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
903 raw_cp->cp_nblk_inc =
904 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
905 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
906 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
907
908 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
909 nilfs_checkpoint_clear_minor(raw_cp);
910 else
911 nilfs_checkpoint_set_minor(raw_cp);
912
913 nilfs_write_inode_common(sci->sc_root->ifile,
914 &raw_cp->cp_ifile_inode, 1);
915 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
916 return 0;
917
918 failed_ibh:
919 return err;
920 }
921
nilfs_fill_in_file_bmap(struct inode * ifile,struct nilfs_inode_info * ii)922 static void nilfs_fill_in_file_bmap(struct inode *ifile,
923 struct nilfs_inode_info *ii)
924
925 {
926 struct buffer_head *ibh;
927 struct nilfs_inode *raw_inode;
928
929 if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
930 ibh = ii->i_bh;
931 BUG_ON(!ibh);
932 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
933 ibh);
934 nilfs_bmap_write(ii->i_bmap, raw_inode);
935 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
936 }
937 }
938
nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info * sci)939 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
940 {
941 struct nilfs_inode_info *ii;
942
943 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
944 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
945 set_bit(NILFS_I_COLLECTED, &ii->i_state);
946 }
947 }
948
nilfs_segctor_fill_in_super_root(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)949 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
950 struct the_nilfs *nilfs)
951 {
952 struct buffer_head *bh_sr;
953 struct nilfs_super_root *raw_sr;
954 unsigned int isz, srsz;
955
956 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
957 raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
958 isz = nilfs->ns_inode_size;
959 srsz = NILFS_SR_BYTES(isz);
960
961 raw_sr->sr_bytes = cpu_to_le16(srsz);
962 raw_sr->sr_nongc_ctime
963 = cpu_to_le64(nilfs_doing_gc() ?
964 nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
965 raw_sr->sr_flags = 0;
966
967 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
968 NILFS_SR_DAT_OFFSET(isz), 1);
969 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
970 NILFS_SR_CPFILE_OFFSET(isz), 1);
971 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
972 NILFS_SR_SUFILE_OFFSET(isz), 1);
973 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
974 }
975
nilfs_redirty_inodes(struct list_head * head)976 static void nilfs_redirty_inodes(struct list_head *head)
977 {
978 struct nilfs_inode_info *ii;
979
980 list_for_each_entry(ii, head, i_dirty) {
981 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
982 clear_bit(NILFS_I_COLLECTED, &ii->i_state);
983 }
984 }
985
nilfs_drop_collected_inodes(struct list_head * head)986 static void nilfs_drop_collected_inodes(struct list_head *head)
987 {
988 struct nilfs_inode_info *ii;
989
990 list_for_each_entry(ii, head, i_dirty) {
991 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
992 continue;
993
994 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
995 set_bit(NILFS_I_UPDATED, &ii->i_state);
996 }
997 }
998
nilfs_segctor_apply_buffers(struct nilfs_sc_info * sci,struct inode * inode,struct list_head * listp,int (* collect)(struct nilfs_sc_info *,struct buffer_head *,struct inode *))999 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1000 struct inode *inode,
1001 struct list_head *listp,
1002 int (*collect)(struct nilfs_sc_info *,
1003 struct buffer_head *,
1004 struct inode *))
1005 {
1006 struct buffer_head *bh, *n;
1007 int err = 0;
1008
1009 if (collect) {
1010 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1011 list_del_init(&bh->b_assoc_buffers);
1012 err = collect(sci, bh, inode);
1013 brelse(bh);
1014 if (unlikely(err))
1015 goto dispose_buffers;
1016 }
1017 return 0;
1018 }
1019
1020 dispose_buffers:
1021 while (!list_empty(listp)) {
1022 bh = list_first_entry(listp, struct buffer_head,
1023 b_assoc_buffers);
1024 list_del_init(&bh->b_assoc_buffers);
1025 brelse(bh);
1026 }
1027 return err;
1028 }
1029
nilfs_segctor_buffer_rest(struct nilfs_sc_info * sci)1030 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1031 {
1032 /* Remaining number of blocks within segment buffer */
1033 return sci->sc_segbuf_nblocks -
1034 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1035 }
1036
nilfs_segctor_scan_file(struct nilfs_sc_info * sci,struct inode * inode,const struct nilfs_sc_operations * sc_ops)1037 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1038 struct inode *inode,
1039 const struct nilfs_sc_operations *sc_ops)
1040 {
1041 LIST_HEAD(data_buffers);
1042 LIST_HEAD(node_buffers);
1043 int err;
1044
1045 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1046 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1047
1048 n = nilfs_lookup_dirty_data_buffers(
1049 inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1050 if (n > rest) {
1051 err = nilfs_segctor_apply_buffers(
1052 sci, inode, &data_buffers,
1053 sc_ops->collect_data);
1054 BUG_ON(!err); /* always receive -E2BIG or true error */
1055 goto break_or_fail;
1056 }
1057 }
1058 nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1059
1060 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1061 err = nilfs_segctor_apply_buffers(
1062 sci, inode, &data_buffers, sc_ops->collect_data);
1063 if (unlikely(err)) {
1064 /* dispose node list */
1065 nilfs_segctor_apply_buffers(
1066 sci, inode, &node_buffers, NULL);
1067 goto break_or_fail;
1068 }
1069 sci->sc_stage.flags |= NILFS_CF_NODE;
1070 }
1071 /* Collect node */
1072 err = nilfs_segctor_apply_buffers(
1073 sci, inode, &node_buffers, sc_ops->collect_node);
1074 if (unlikely(err))
1075 goto break_or_fail;
1076
1077 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1078 err = nilfs_segctor_apply_buffers(
1079 sci, inode, &node_buffers, sc_ops->collect_bmap);
1080 if (unlikely(err))
1081 goto break_or_fail;
1082
1083 nilfs_segctor_end_finfo(sci, inode);
1084 sci->sc_stage.flags &= ~NILFS_CF_NODE;
1085
1086 break_or_fail:
1087 return err;
1088 }
1089
nilfs_segctor_scan_file_dsync(struct nilfs_sc_info * sci,struct inode * inode)1090 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1091 struct inode *inode)
1092 {
1093 LIST_HEAD(data_buffers);
1094 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1095 int err;
1096
1097 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1098 sci->sc_dsync_start,
1099 sci->sc_dsync_end);
1100
1101 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1102 nilfs_collect_file_data);
1103 if (!err) {
1104 nilfs_segctor_end_finfo(sci, inode);
1105 BUG_ON(n > rest);
1106 /* always receive -E2BIG or true error if n > rest */
1107 }
1108 return err;
1109 }
1110
nilfs_segctor_collect_blocks(struct nilfs_sc_info * sci,int mode)1111 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1112 {
1113 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1114 struct list_head *head;
1115 struct nilfs_inode_info *ii;
1116 size_t ndone;
1117 int err = 0;
1118
1119 switch (nilfs_sc_cstage_get(sci)) {
1120 case NILFS_ST_INIT:
1121 /* Pre-processes */
1122 sci->sc_stage.flags = 0;
1123
1124 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1125 sci->sc_nblk_inc = 0;
1126 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1127 if (mode == SC_LSEG_DSYNC) {
1128 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1129 goto dsync_mode;
1130 }
1131 }
1132
1133 sci->sc_stage.dirty_file_ptr = NULL;
1134 sci->sc_stage.gc_inode_ptr = NULL;
1135 if (mode == SC_FLUSH_DAT) {
1136 nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1137 goto dat_stage;
1138 }
1139 nilfs_sc_cstage_inc(sci);
1140 fallthrough;
1141 case NILFS_ST_GC:
1142 if (nilfs_doing_gc()) {
1143 head = &sci->sc_gc_inodes;
1144 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1145 head, i_dirty);
1146 list_for_each_entry_continue(ii, head, i_dirty) {
1147 err = nilfs_segctor_scan_file(
1148 sci, &ii->vfs_inode,
1149 &nilfs_sc_file_ops);
1150 if (unlikely(err)) {
1151 sci->sc_stage.gc_inode_ptr = list_entry(
1152 ii->i_dirty.prev,
1153 struct nilfs_inode_info,
1154 i_dirty);
1155 goto break_or_fail;
1156 }
1157 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1158 }
1159 sci->sc_stage.gc_inode_ptr = NULL;
1160 }
1161 nilfs_sc_cstage_inc(sci);
1162 fallthrough;
1163 case NILFS_ST_FILE:
1164 head = &sci->sc_dirty_files;
1165 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1166 i_dirty);
1167 list_for_each_entry_continue(ii, head, i_dirty) {
1168 clear_bit(NILFS_I_DIRTY, &ii->i_state);
1169
1170 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1171 &nilfs_sc_file_ops);
1172 if (unlikely(err)) {
1173 sci->sc_stage.dirty_file_ptr =
1174 list_entry(ii->i_dirty.prev,
1175 struct nilfs_inode_info,
1176 i_dirty);
1177 goto break_or_fail;
1178 }
1179 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1180 /* XXX: required ? */
1181 }
1182 sci->sc_stage.dirty_file_ptr = NULL;
1183 if (mode == SC_FLUSH_FILE) {
1184 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1185 return 0;
1186 }
1187 nilfs_sc_cstage_inc(sci);
1188 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1189 fallthrough;
1190 case NILFS_ST_IFILE:
1191 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1192 &nilfs_sc_file_ops);
1193 if (unlikely(err))
1194 break;
1195 nilfs_sc_cstage_inc(sci);
1196 /* Creating a checkpoint */
1197 err = nilfs_segctor_create_checkpoint(sci);
1198 if (unlikely(err))
1199 break;
1200 fallthrough;
1201 case NILFS_ST_CPFILE:
1202 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1203 &nilfs_sc_file_ops);
1204 if (unlikely(err))
1205 break;
1206 nilfs_sc_cstage_inc(sci);
1207 fallthrough;
1208 case NILFS_ST_SUFILE:
1209 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1210 sci->sc_nfreesegs, &ndone);
1211 if (unlikely(err)) {
1212 nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1213 sci->sc_freesegs, ndone,
1214 NULL);
1215 break;
1216 }
1217 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1218
1219 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1220 &nilfs_sc_file_ops);
1221 if (unlikely(err))
1222 break;
1223 nilfs_sc_cstage_inc(sci);
1224 fallthrough;
1225 case NILFS_ST_DAT:
1226 dat_stage:
1227 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1228 &nilfs_sc_dat_ops);
1229 if (unlikely(err))
1230 break;
1231 if (mode == SC_FLUSH_DAT) {
1232 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1233 return 0;
1234 }
1235 nilfs_sc_cstage_inc(sci);
1236 fallthrough;
1237 case NILFS_ST_SR:
1238 if (mode == SC_LSEG_SR) {
1239 /* Appending a super root */
1240 err = nilfs_segctor_add_super_root(sci);
1241 if (unlikely(err))
1242 break;
1243 }
1244 /* End of a logical segment */
1245 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1246 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1247 return 0;
1248 case NILFS_ST_DSYNC:
1249 dsync_mode:
1250 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1251 ii = sci->sc_dsync_inode;
1252 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1253 break;
1254
1255 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1256 if (unlikely(err))
1257 break;
1258 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1259 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1260 return 0;
1261 case NILFS_ST_DONE:
1262 return 0;
1263 default:
1264 BUG();
1265 }
1266
1267 break_or_fail:
1268 return err;
1269 }
1270
1271 /**
1272 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1273 * @sci: nilfs_sc_info
1274 * @nilfs: nilfs object
1275 */
nilfs_segctor_begin_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1276 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1277 struct the_nilfs *nilfs)
1278 {
1279 struct nilfs_segment_buffer *segbuf, *prev;
1280 __u64 nextnum;
1281 int err, alloc = 0;
1282
1283 segbuf = nilfs_segbuf_new(sci->sc_super);
1284 if (unlikely(!segbuf))
1285 return -ENOMEM;
1286
1287 if (list_empty(&sci->sc_write_logs)) {
1288 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1289 nilfs->ns_pseg_offset, nilfs);
1290 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1291 nilfs_shift_to_next_segment(nilfs);
1292 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1293 }
1294
1295 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1296 nextnum = nilfs->ns_nextnum;
1297
1298 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1299 /* Start from the head of a new full segment */
1300 alloc++;
1301 } else {
1302 /* Continue logs */
1303 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1304 nilfs_segbuf_map_cont(segbuf, prev);
1305 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1306 nextnum = prev->sb_nextnum;
1307
1308 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1309 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1310 segbuf->sb_sum.seg_seq++;
1311 alloc++;
1312 }
1313 }
1314
1315 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1316 if (err)
1317 goto failed;
1318
1319 if (alloc) {
1320 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1321 if (err)
1322 goto failed;
1323 }
1324 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1325
1326 BUG_ON(!list_empty(&sci->sc_segbufs));
1327 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1328 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1329 return 0;
1330
1331 failed:
1332 nilfs_segbuf_free(segbuf);
1333 return err;
1334 }
1335
nilfs_segctor_extend_segments(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int nadd)1336 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1337 struct the_nilfs *nilfs, int nadd)
1338 {
1339 struct nilfs_segment_buffer *segbuf, *prev;
1340 struct inode *sufile = nilfs->ns_sufile;
1341 __u64 nextnextnum;
1342 LIST_HEAD(list);
1343 int err, ret, i;
1344
1345 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1346 /*
1347 * Since the segment specified with nextnum might be allocated during
1348 * the previous construction, the buffer including its segusage may
1349 * not be dirty. The following call ensures that the buffer is dirty
1350 * and will pin the buffer on memory until the sufile is written.
1351 */
1352 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1353 if (unlikely(err))
1354 return err;
1355
1356 for (i = 0; i < nadd; i++) {
1357 /* extend segment info */
1358 err = -ENOMEM;
1359 segbuf = nilfs_segbuf_new(sci->sc_super);
1360 if (unlikely(!segbuf))
1361 goto failed;
1362
1363 /* map this buffer to region of segment on-disk */
1364 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1365 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1366
1367 /* allocate the next next full segment */
1368 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1369 if (unlikely(err))
1370 goto failed_segbuf;
1371
1372 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1373 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1374
1375 list_add_tail(&segbuf->sb_list, &list);
1376 prev = segbuf;
1377 }
1378 list_splice_tail(&list, &sci->sc_segbufs);
1379 return 0;
1380
1381 failed_segbuf:
1382 nilfs_segbuf_free(segbuf);
1383 failed:
1384 list_for_each_entry(segbuf, &list, sb_list) {
1385 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1386 WARN_ON(ret); /* never fails */
1387 }
1388 nilfs_destroy_logs(&list);
1389 return err;
1390 }
1391
nilfs_free_incomplete_logs(struct list_head * logs,struct the_nilfs * nilfs)1392 static void nilfs_free_incomplete_logs(struct list_head *logs,
1393 struct the_nilfs *nilfs)
1394 {
1395 struct nilfs_segment_buffer *segbuf, *prev;
1396 struct inode *sufile = nilfs->ns_sufile;
1397 int ret;
1398
1399 segbuf = NILFS_FIRST_SEGBUF(logs);
1400 if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1401 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1402 WARN_ON(ret); /* never fails */
1403 }
1404 if (atomic_read(&segbuf->sb_err)) {
1405 /* Case 1: The first segment failed */
1406 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1407 /*
1408 * Case 1a: Partial segment appended into an existing
1409 * segment
1410 */
1411 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1412 segbuf->sb_fseg_end);
1413 else /* Case 1b: New full segment */
1414 set_nilfs_discontinued(nilfs);
1415 }
1416
1417 prev = segbuf;
1418 list_for_each_entry_continue(segbuf, logs, sb_list) {
1419 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1420 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1421 WARN_ON(ret); /* never fails */
1422 }
1423 if (atomic_read(&segbuf->sb_err) &&
1424 segbuf->sb_segnum != nilfs->ns_nextnum)
1425 /* Case 2: extended segment (!= next) failed */
1426 nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1427 prev = segbuf;
1428 }
1429 }
1430
nilfs_segctor_update_segusage(struct nilfs_sc_info * sci,struct inode * sufile)1431 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1432 struct inode *sufile)
1433 {
1434 struct nilfs_segment_buffer *segbuf;
1435 unsigned long live_blocks;
1436 int ret;
1437
1438 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1439 live_blocks = segbuf->sb_sum.nblocks +
1440 (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1441 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1442 live_blocks,
1443 sci->sc_seg_ctime);
1444 WARN_ON(ret); /* always succeed because the segusage is dirty */
1445 }
1446 }
1447
nilfs_cancel_segusage(struct list_head * logs,struct inode * sufile)1448 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1449 {
1450 struct nilfs_segment_buffer *segbuf;
1451 int ret;
1452
1453 segbuf = NILFS_FIRST_SEGBUF(logs);
1454 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1455 segbuf->sb_pseg_start -
1456 segbuf->sb_fseg_start, 0);
1457 WARN_ON(ret); /* always succeed because the segusage is dirty */
1458
1459 list_for_each_entry_continue(segbuf, logs, sb_list) {
1460 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1461 0, 0);
1462 WARN_ON(ret); /* always succeed */
1463 }
1464 }
1465
nilfs_segctor_truncate_segments(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * last,struct inode * sufile)1466 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1467 struct nilfs_segment_buffer *last,
1468 struct inode *sufile)
1469 {
1470 struct nilfs_segment_buffer *segbuf = last;
1471 int ret;
1472
1473 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1474 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1475 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1476 WARN_ON(ret);
1477 }
1478 nilfs_truncate_logs(&sci->sc_segbufs, last);
1479 }
1480
1481
nilfs_segctor_collect(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int mode)1482 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1483 struct the_nilfs *nilfs, int mode)
1484 {
1485 struct nilfs_cstage prev_stage = sci->sc_stage;
1486 int err, nadd = 1;
1487
1488 /* Collection retry loop */
1489 for (;;) {
1490 sci->sc_nblk_this_inc = 0;
1491 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1492
1493 err = nilfs_segctor_reset_segment_buffer(sci);
1494 if (unlikely(err))
1495 goto failed;
1496
1497 err = nilfs_segctor_collect_blocks(sci, mode);
1498 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1499 if (!err)
1500 break;
1501
1502 if (unlikely(err != -E2BIG))
1503 goto failed;
1504
1505 /* The current segment is filled up */
1506 if (mode != SC_LSEG_SR ||
1507 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1508 break;
1509
1510 nilfs_clear_logs(&sci->sc_segbufs);
1511
1512 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1513 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1514 sci->sc_freesegs,
1515 sci->sc_nfreesegs,
1516 NULL);
1517 WARN_ON(err); /* do not happen */
1518 sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1519 }
1520
1521 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1522 if (unlikely(err))
1523 return err;
1524
1525 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1526 sci->sc_stage = prev_stage;
1527 }
1528 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1529 return 0;
1530
1531 failed:
1532 return err;
1533 }
1534
nilfs_list_replace_buffer(struct buffer_head * old_bh,struct buffer_head * new_bh)1535 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1536 struct buffer_head *new_bh)
1537 {
1538 BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1539
1540 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1541 /* The caller must release old_bh */
1542 }
1543
1544 static int
nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info * sci,struct nilfs_segment_buffer * segbuf,int mode)1545 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1546 struct nilfs_segment_buffer *segbuf,
1547 int mode)
1548 {
1549 struct inode *inode = NULL;
1550 sector_t blocknr;
1551 unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1552 unsigned long nblocks = 0, ndatablk = 0;
1553 const struct nilfs_sc_operations *sc_op = NULL;
1554 struct nilfs_segsum_pointer ssp;
1555 struct nilfs_finfo *finfo = NULL;
1556 union nilfs_binfo binfo;
1557 struct buffer_head *bh, *bh_org;
1558 ino_t ino = 0;
1559 int err = 0;
1560
1561 if (!nfinfo)
1562 goto out;
1563
1564 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1565 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1566 ssp.offset = sizeof(struct nilfs_segment_summary);
1567
1568 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1569 if (bh == segbuf->sb_super_root)
1570 break;
1571 if (!finfo) {
1572 finfo = nilfs_segctor_map_segsum_entry(
1573 sci, &ssp, sizeof(*finfo));
1574 ino = le64_to_cpu(finfo->fi_ino);
1575 nblocks = le32_to_cpu(finfo->fi_nblocks);
1576 ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1577
1578 inode = bh->b_page->mapping->host;
1579
1580 if (mode == SC_LSEG_DSYNC)
1581 sc_op = &nilfs_sc_dsync_ops;
1582 else if (ino == NILFS_DAT_INO)
1583 sc_op = &nilfs_sc_dat_ops;
1584 else /* file blocks */
1585 sc_op = &nilfs_sc_file_ops;
1586 }
1587 bh_org = bh;
1588 get_bh(bh_org);
1589 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1590 &binfo);
1591 if (bh != bh_org)
1592 nilfs_list_replace_buffer(bh_org, bh);
1593 brelse(bh_org);
1594 if (unlikely(err))
1595 goto failed_bmap;
1596
1597 if (ndatablk > 0)
1598 sc_op->write_data_binfo(sci, &ssp, &binfo);
1599 else
1600 sc_op->write_node_binfo(sci, &ssp, &binfo);
1601
1602 blocknr++;
1603 if (--nblocks == 0) {
1604 finfo = NULL;
1605 if (--nfinfo == 0)
1606 break;
1607 } else if (ndatablk > 0)
1608 ndatablk--;
1609 }
1610 out:
1611 return 0;
1612
1613 failed_bmap:
1614 return err;
1615 }
1616
nilfs_segctor_assign(struct nilfs_sc_info * sci,int mode)1617 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1618 {
1619 struct nilfs_segment_buffer *segbuf;
1620 int err;
1621
1622 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1623 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1624 if (unlikely(err))
1625 return err;
1626 nilfs_segbuf_fill_in_segsum(segbuf);
1627 }
1628 return 0;
1629 }
1630
nilfs_begin_page_io(struct page * page)1631 static void nilfs_begin_page_io(struct page *page)
1632 {
1633 if (!page || PageWriteback(page))
1634 /*
1635 * For split b-tree node pages, this function may be called
1636 * twice. We ignore the 2nd or later calls by this check.
1637 */
1638 return;
1639
1640 lock_page(page);
1641 clear_page_dirty_for_io(page);
1642 set_page_writeback(page);
1643 unlock_page(page);
1644 }
1645
nilfs_segctor_prepare_write(struct nilfs_sc_info * sci)1646 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1647 {
1648 struct nilfs_segment_buffer *segbuf;
1649 struct page *bd_page = NULL, *fs_page = NULL;
1650
1651 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1652 struct buffer_head *bh;
1653
1654 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1655 b_assoc_buffers) {
1656 if (bh->b_page != bd_page) {
1657 if (bd_page) {
1658 lock_page(bd_page);
1659 clear_page_dirty_for_io(bd_page);
1660 set_page_writeback(bd_page);
1661 unlock_page(bd_page);
1662 }
1663 bd_page = bh->b_page;
1664 }
1665 }
1666
1667 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1668 b_assoc_buffers) {
1669 set_buffer_async_write(bh);
1670 if (bh == segbuf->sb_super_root) {
1671 if (bh->b_page != bd_page) {
1672 lock_page(bd_page);
1673 clear_page_dirty_for_io(bd_page);
1674 set_page_writeback(bd_page);
1675 unlock_page(bd_page);
1676 bd_page = bh->b_page;
1677 }
1678 break;
1679 }
1680 if (bh->b_page != fs_page) {
1681 nilfs_begin_page_io(fs_page);
1682 fs_page = bh->b_page;
1683 }
1684 }
1685 }
1686 if (bd_page) {
1687 lock_page(bd_page);
1688 clear_page_dirty_for_io(bd_page);
1689 set_page_writeback(bd_page);
1690 unlock_page(bd_page);
1691 }
1692 nilfs_begin_page_io(fs_page);
1693 }
1694
nilfs_segctor_write(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1695 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1696 struct the_nilfs *nilfs)
1697 {
1698 int ret;
1699
1700 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1701 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1702 return ret;
1703 }
1704
nilfs_end_page_io(struct page * page,int err)1705 static void nilfs_end_page_io(struct page *page, int err)
1706 {
1707 if (!page)
1708 return;
1709
1710 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1711 /*
1712 * For b-tree node pages, this function may be called twice
1713 * or more because they might be split in a segment.
1714 */
1715 if (PageDirty(page)) {
1716 /*
1717 * For pages holding split b-tree node buffers, dirty
1718 * flag on the buffers may be cleared discretely.
1719 * In that case, the page is once redirtied for
1720 * remaining buffers, and it must be cancelled if
1721 * all the buffers get cleaned later.
1722 */
1723 lock_page(page);
1724 if (nilfs_page_buffers_clean(page))
1725 __nilfs_clear_page_dirty(page);
1726 unlock_page(page);
1727 }
1728 return;
1729 }
1730
1731 if (!err) {
1732 if (!nilfs_page_buffers_clean(page))
1733 __set_page_dirty_nobuffers(page);
1734 ClearPageError(page);
1735 } else {
1736 __set_page_dirty_nobuffers(page);
1737 SetPageError(page);
1738 }
1739
1740 end_page_writeback(page);
1741 }
1742
nilfs_abort_logs(struct list_head * logs,int err)1743 static void nilfs_abort_logs(struct list_head *logs, int err)
1744 {
1745 struct nilfs_segment_buffer *segbuf;
1746 struct page *bd_page = NULL, *fs_page = NULL;
1747 struct buffer_head *bh;
1748
1749 if (list_empty(logs))
1750 return;
1751
1752 list_for_each_entry(segbuf, logs, sb_list) {
1753 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1754 b_assoc_buffers) {
1755 if (bh->b_page != bd_page) {
1756 if (bd_page)
1757 end_page_writeback(bd_page);
1758 bd_page = bh->b_page;
1759 }
1760 }
1761
1762 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1763 b_assoc_buffers) {
1764 clear_buffer_async_write(bh);
1765 if (bh == segbuf->sb_super_root) {
1766 if (bh->b_page != bd_page) {
1767 end_page_writeback(bd_page);
1768 bd_page = bh->b_page;
1769 }
1770 break;
1771 }
1772 if (bh->b_page != fs_page) {
1773 nilfs_end_page_io(fs_page, err);
1774 fs_page = bh->b_page;
1775 }
1776 }
1777 }
1778 if (bd_page)
1779 end_page_writeback(bd_page);
1780
1781 nilfs_end_page_io(fs_page, err);
1782 }
1783
nilfs_segctor_abort_construction(struct nilfs_sc_info * sci,struct the_nilfs * nilfs,int err)1784 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1785 struct the_nilfs *nilfs, int err)
1786 {
1787 LIST_HEAD(logs);
1788 int ret;
1789
1790 list_splice_tail_init(&sci->sc_write_logs, &logs);
1791 ret = nilfs_wait_on_logs(&logs);
1792 nilfs_abort_logs(&logs, ret ? : err);
1793
1794 list_splice_tail_init(&sci->sc_segbufs, &logs);
1795 nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1796 nilfs_free_incomplete_logs(&logs, nilfs);
1797
1798 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1799 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1800 sci->sc_freesegs,
1801 sci->sc_nfreesegs,
1802 NULL);
1803 WARN_ON(ret); /* do not happen */
1804 }
1805
1806 nilfs_destroy_logs(&logs);
1807 }
1808
nilfs_set_next_segment(struct the_nilfs * nilfs,struct nilfs_segment_buffer * segbuf)1809 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1810 struct nilfs_segment_buffer *segbuf)
1811 {
1812 nilfs->ns_segnum = segbuf->sb_segnum;
1813 nilfs->ns_nextnum = segbuf->sb_nextnum;
1814 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1815 + segbuf->sb_sum.nblocks;
1816 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1817 nilfs->ns_ctime = segbuf->sb_sum.ctime;
1818 }
1819
nilfs_segctor_complete_write(struct nilfs_sc_info * sci)1820 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1821 {
1822 struct nilfs_segment_buffer *segbuf;
1823 struct page *bd_page = NULL, *fs_page = NULL;
1824 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1825 int update_sr = false;
1826
1827 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1828 struct buffer_head *bh;
1829
1830 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1831 b_assoc_buffers) {
1832 set_buffer_uptodate(bh);
1833 clear_buffer_dirty(bh);
1834 if (bh->b_page != bd_page) {
1835 if (bd_page)
1836 end_page_writeback(bd_page);
1837 bd_page = bh->b_page;
1838 }
1839 }
1840 /*
1841 * We assume that the buffers which belong to the same page
1842 * continue over the buffer list.
1843 * Under this assumption, the last BHs of pages is
1844 * identifiable by the discontinuity of bh->b_page
1845 * (page != fs_page).
1846 *
1847 * For B-tree node blocks, however, this assumption is not
1848 * guaranteed. The cleanup code of B-tree node pages needs
1849 * special care.
1850 */
1851 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1852 b_assoc_buffers) {
1853 const unsigned long set_bits = BIT(BH_Uptodate);
1854 const unsigned long clear_bits =
1855 (BIT(BH_Dirty) | BIT(BH_Async_Write) |
1856 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1857 BIT(BH_NILFS_Redirected));
1858
1859 set_mask_bits(&bh->b_state, clear_bits, set_bits);
1860 if (bh == segbuf->sb_super_root) {
1861 if (bh->b_page != bd_page) {
1862 end_page_writeback(bd_page);
1863 bd_page = bh->b_page;
1864 }
1865 update_sr = true;
1866 break;
1867 }
1868 if (bh->b_page != fs_page) {
1869 nilfs_end_page_io(fs_page, 0);
1870 fs_page = bh->b_page;
1871 }
1872 }
1873
1874 if (!nilfs_segbuf_simplex(segbuf)) {
1875 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1876 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1877 sci->sc_lseg_stime = jiffies;
1878 }
1879 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1880 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1881 }
1882 }
1883 /*
1884 * Since pages may continue over multiple segment buffers,
1885 * end of the last page must be checked outside of the loop.
1886 */
1887 if (bd_page)
1888 end_page_writeback(bd_page);
1889
1890 nilfs_end_page_io(fs_page, 0);
1891
1892 nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1893
1894 if (nilfs_doing_gc())
1895 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1896 else
1897 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1898
1899 sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1900
1901 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1902 nilfs_set_next_segment(nilfs, segbuf);
1903
1904 if (update_sr) {
1905 nilfs->ns_flushed_device = 0;
1906 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1907 segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1908
1909 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1910 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1911 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1912 nilfs_segctor_clear_metadata_dirty(sci);
1913 } else
1914 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1915 }
1916
nilfs_segctor_wait(struct nilfs_sc_info * sci)1917 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1918 {
1919 int ret;
1920
1921 ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1922 if (!ret) {
1923 nilfs_segctor_complete_write(sci);
1924 nilfs_destroy_logs(&sci->sc_write_logs);
1925 }
1926 return ret;
1927 }
1928
nilfs_segctor_collect_dirty_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1929 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1930 struct the_nilfs *nilfs)
1931 {
1932 struct nilfs_inode_info *ii, *n;
1933 struct inode *ifile = sci->sc_root->ifile;
1934
1935 spin_lock(&nilfs->ns_inode_lock);
1936 retry:
1937 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1938 if (!ii->i_bh) {
1939 struct buffer_head *ibh;
1940 int err;
1941
1942 spin_unlock(&nilfs->ns_inode_lock);
1943 err = nilfs_ifile_get_inode_block(
1944 ifile, ii->vfs_inode.i_ino, &ibh);
1945 if (unlikely(err)) {
1946 nilfs_warn(sci->sc_super,
1947 "log writer: error %d getting inode block (ino=%lu)",
1948 err, ii->vfs_inode.i_ino);
1949 return err;
1950 }
1951 spin_lock(&nilfs->ns_inode_lock);
1952 if (likely(!ii->i_bh))
1953 ii->i_bh = ibh;
1954 else
1955 brelse(ibh);
1956 goto retry;
1957 }
1958
1959 // Always redirty the buffer to avoid race condition
1960 mark_buffer_dirty(ii->i_bh);
1961 nilfs_mdt_mark_dirty(ifile);
1962
1963 clear_bit(NILFS_I_QUEUED, &ii->i_state);
1964 set_bit(NILFS_I_BUSY, &ii->i_state);
1965 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1966 }
1967 spin_unlock(&nilfs->ns_inode_lock);
1968
1969 return 0;
1970 }
1971
nilfs_segctor_drop_written_files(struct nilfs_sc_info * sci,struct the_nilfs * nilfs)1972 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1973 struct the_nilfs *nilfs)
1974 {
1975 struct nilfs_inode_info *ii, *n;
1976 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
1977 int defer_iput = false;
1978
1979 spin_lock(&nilfs->ns_inode_lock);
1980 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1981 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1982 test_bit(NILFS_I_DIRTY, &ii->i_state))
1983 continue;
1984
1985 clear_bit(NILFS_I_BUSY, &ii->i_state);
1986 brelse(ii->i_bh);
1987 ii->i_bh = NULL;
1988 list_del_init(&ii->i_dirty);
1989 if (!ii->vfs_inode.i_nlink || during_mount) {
1990 /*
1991 * Defer calling iput() to avoid deadlocks if
1992 * i_nlink == 0 or mount is not yet finished.
1993 */
1994 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
1995 defer_iput = true;
1996 } else {
1997 spin_unlock(&nilfs->ns_inode_lock);
1998 iput(&ii->vfs_inode);
1999 spin_lock(&nilfs->ns_inode_lock);
2000 }
2001 }
2002 spin_unlock(&nilfs->ns_inode_lock);
2003
2004 if (defer_iput)
2005 schedule_work(&sci->sc_iput_work);
2006 }
2007
2008 /*
2009 * Main procedure of segment constructor
2010 */
nilfs_segctor_do_construct(struct nilfs_sc_info * sci,int mode)2011 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2012 {
2013 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2014 int err;
2015
2016 nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2017 sci->sc_cno = nilfs->ns_cno;
2018
2019 err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2020 if (unlikely(err))
2021 goto out;
2022
2023 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2024 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2025
2026 if (nilfs_segctor_clean(sci))
2027 goto out;
2028
2029 do {
2030 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2031
2032 err = nilfs_segctor_begin_construction(sci, nilfs);
2033 if (unlikely(err))
2034 goto out;
2035
2036 /* Update time stamp */
2037 sci->sc_seg_ctime = ktime_get_real_seconds();
2038
2039 err = nilfs_segctor_collect(sci, nilfs, mode);
2040 if (unlikely(err))
2041 goto failed;
2042
2043 /* Avoid empty segment */
2044 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2045 nilfs_segbuf_empty(sci->sc_curseg)) {
2046 nilfs_segctor_abort_construction(sci, nilfs, 1);
2047 goto out;
2048 }
2049
2050 err = nilfs_segctor_assign(sci, mode);
2051 if (unlikely(err))
2052 goto failed;
2053
2054 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2055 nilfs_segctor_fill_in_file_bmap(sci);
2056
2057 if (mode == SC_LSEG_SR &&
2058 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2059 err = nilfs_segctor_fill_in_checkpoint(sci);
2060 if (unlikely(err))
2061 goto failed_to_write;
2062
2063 nilfs_segctor_fill_in_super_root(sci, nilfs);
2064 }
2065 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2066
2067 /* Write partial segments */
2068 nilfs_segctor_prepare_write(sci);
2069
2070 nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2071 nilfs->ns_crc_seed);
2072
2073 err = nilfs_segctor_write(sci, nilfs);
2074 if (unlikely(err))
2075 goto failed_to_write;
2076
2077 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2078 nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2079 /*
2080 * At this point, we avoid double buffering
2081 * for blocksize < pagesize because page dirty
2082 * flag is turned off during write and dirty
2083 * buffers are not properly collected for
2084 * pages crossing over segments.
2085 */
2086 err = nilfs_segctor_wait(sci);
2087 if (err)
2088 goto failed_to_write;
2089 }
2090 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2091
2092 out:
2093 nilfs_segctor_drop_written_files(sci, nilfs);
2094 return err;
2095
2096 failed_to_write:
2097 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2098 nilfs_redirty_inodes(&sci->sc_dirty_files);
2099
2100 failed:
2101 if (nilfs_doing_gc())
2102 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2103 nilfs_segctor_abort_construction(sci, nilfs, err);
2104 goto out;
2105 }
2106
2107 /**
2108 * nilfs_segctor_start_timer - set timer of background write
2109 * @sci: nilfs_sc_info
2110 *
2111 * If the timer has already been set, it ignores the new request.
2112 * This function MUST be called within a section locking the segment
2113 * semaphore.
2114 */
nilfs_segctor_start_timer(struct nilfs_sc_info * sci)2115 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2116 {
2117 spin_lock(&sci->sc_state_lock);
2118 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2119 sci->sc_timer.expires = jiffies + sci->sc_interval;
2120 add_timer(&sci->sc_timer);
2121 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2122 }
2123 spin_unlock(&sci->sc_state_lock);
2124 }
2125
nilfs_segctor_do_flush(struct nilfs_sc_info * sci,int bn)2126 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2127 {
2128 spin_lock(&sci->sc_state_lock);
2129 if (!(sci->sc_flush_request & BIT(bn))) {
2130 unsigned long prev_req = sci->sc_flush_request;
2131
2132 sci->sc_flush_request |= BIT(bn);
2133 if (!prev_req)
2134 wake_up(&sci->sc_wait_daemon);
2135 }
2136 spin_unlock(&sci->sc_state_lock);
2137 }
2138
2139 /**
2140 * nilfs_flush_segment - trigger a segment construction for resource control
2141 * @sb: super block
2142 * @ino: inode number of the file to be flushed out.
2143 */
nilfs_flush_segment(struct super_block * sb,ino_t ino)2144 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2145 {
2146 struct the_nilfs *nilfs = sb->s_fs_info;
2147 struct nilfs_sc_info *sci = nilfs->ns_writer;
2148
2149 if (!sci || nilfs_doing_construction())
2150 return;
2151 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2152 /* assign bit 0 to data files */
2153 }
2154
2155 struct nilfs_segctor_wait_request {
2156 wait_queue_entry_t wq;
2157 __u32 seq;
2158 int err;
2159 atomic_t done;
2160 };
2161
nilfs_segctor_sync(struct nilfs_sc_info * sci)2162 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2163 {
2164 struct nilfs_segctor_wait_request wait_req;
2165 int err = 0;
2166
2167 spin_lock(&sci->sc_state_lock);
2168 init_wait(&wait_req.wq);
2169 wait_req.err = 0;
2170 atomic_set(&wait_req.done, 0);
2171 wait_req.seq = ++sci->sc_seq_request;
2172 spin_unlock(&sci->sc_state_lock);
2173
2174 init_waitqueue_entry(&wait_req.wq, current);
2175 add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2176 set_current_state(TASK_INTERRUPTIBLE);
2177 wake_up(&sci->sc_wait_daemon);
2178
2179 for (;;) {
2180 if (atomic_read(&wait_req.done)) {
2181 err = wait_req.err;
2182 break;
2183 }
2184 if (!signal_pending(current)) {
2185 schedule();
2186 continue;
2187 }
2188 err = -ERESTARTSYS;
2189 break;
2190 }
2191 finish_wait(&sci->sc_wait_request, &wait_req.wq);
2192 return err;
2193 }
2194
nilfs_segctor_wakeup(struct nilfs_sc_info * sci,int err)2195 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2196 {
2197 struct nilfs_segctor_wait_request *wrq, *n;
2198 unsigned long flags;
2199
2200 spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2201 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2202 if (!atomic_read(&wrq->done) &&
2203 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2204 wrq->err = err;
2205 atomic_set(&wrq->done, 1);
2206 }
2207 if (atomic_read(&wrq->done)) {
2208 wrq->wq.func(&wrq->wq,
2209 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2210 0, NULL);
2211 }
2212 }
2213 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2214 }
2215
2216 /**
2217 * nilfs_construct_segment - construct a logical segment
2218 * @sb: super block
2219 *
2220 * Return Value: On success, 0 is returned. On errors, one of the following
2221 * negative error code is returned.
2222 *
2223 * %-EROFS - Read only filesystem.
2224 *
2225 * %-EIO - I/O error
2226 *
2227 * %-ENOSPC - No space left on device (only in a panic state).
2228 *
2229 * %-ERESTARTSYS - Interrupted.
2230 *
2231 * %-ENOMEM - Insufficient memory available.
2232 */
nilfs_construct_segment(struct super_block * sb)2233 int nilfs_construct_segment(struct super_block *sb)
2234 {
2235 struct the_nilfs *nilfs = sb->s_fs_info;
2236 struct nilfs_sc_info *sci = nilfs->ns_writer;
2237 struct nilfs_transaction_info *ti;
2238 int err;
2239
2240 if (!sci)
2241 return -EROFS;
2242
2243 /* A call inside transactions causes a deadlock. */
2244 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2245
2246 err = nilfs_segctor_sync(sci);
2247 return err;
2248 }
2249
2250 /**
2251 * nilfs_construct_dsync_segment - construct a data-only logical segment
2252 * @sb: super block
2253 * @inode: inode whose data blocks should be written out
2254 * @start: start byte offset
2255 * @end: end byte offset (inclusive)
2256 *
2257 * Return Value: On success, 0 is returned. On errors, one of the following
2258 * negative error code is returned.
2259 *
2260 * %-EROFS - Read only filesystem.
2261 *
2262 * %-EIO - I/O error
2263 *
2264 * %-ENOSPC - No space left on device (only in a panic state).
2265 *
2266 * %-ERESTARTSYS - Interrupted.
2267 *
2268 * %-ENOMEM - Insufficient memory available.
2269 */
nilfs_construct_dsync_segment(struct super_block * sb,struct inode * inode,loff_t start,loff_t end)2270 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2271 loff_t start, loff_t end)
2272 {
2273 struct the_nilfs *nilfs = sb->s_fs_info;
2274 struct nilfs_sc_info *sci = nilfs->ns_writer;
2275 struct nilfs_inode_info *ii;
2276 struct nilfs_transaction_info ti;
2277 int err = 0;
2278
2279 if (!sci)
2280 return -EROFS;
2281
2282 nilfs_transaction_lock(sb, &ti, 0);
2283
2284 ii = NILFS_I(inode);
2285 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2286 nilfs_test_opt(nilfs, STRICT_ORDER) ||
2287 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2288 nilfs_discontinued(nilfs)) {
2289 nilfs_transaction_unlock(sb);
2290 err = nilfs_segctor_sync(sci);
2291 return err;
2292 }
2293
2294 spin_lock(&nilfs->ns_inode_lock);
2295 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2296 !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2297 spin_unlock(&nilfs->ns_inode_lock);
2298 nilfs_transaction_unlock(sb);
2299 return 0;
2300 }
2301 spin_unlock(&nilfs->ns_inode_lock);
2302 sci->sc_dsync_inode = ii;
2303 sci->sc_dsync_start = start;
2304 sci->sc_dsync_end = end;
2305
2306 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2307 if (!err)
2308 nilfs->ns_flushed_device = 0;
2309
2310 nilfs_transaction_unlock(sb);
2311 return err;
2312 }
2313
2314 #define FLUSH_FILE_BIT (0x1) /* data file only */
2315 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
2316
2317 /**
2318 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2319 * @sci: segment constructor object
2320 */
nilfs_segctor_accept(struct nilfs_sc_info * sci)2321 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2322 {
2323 spin_lock(&sci->sc_state_lock);
2324 sci->sc_seq_accepted = sci->sc_seq_request;
2325 spin_unlock(&sci->sc_state_lock);
2326 del_timer_sync(&sci->sc_timer);
2327 }
2328
2329 /**
2330 * nilfs_segctor_notify - notify the result of request to caller threads
2331 * @sci: segment constructor object
2332 * @mode: mode of log forming
2333 * @err: error code to be notified
2334 */
nilfs_segctor_notify(struct nilfs_sc_info * sci,int mode,int err)2335 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2336 {
2337 /* Clear requests (even when the construction failed) */
2338 spin_lock(&sci->sc_state_lock);
2339
2340 if (mode == SC_LSEG_SR) {
2341 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2342 sci->sc_seq_done = sci->sc_seq_accepted;
2343 nilfs_segctor_wakeup(sci, err);
2344 sci->sc_flush_request = 0;
2345 } else {
2346 if (mode == SC_FLUSH_FILE)
2347 sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2348 else if (mode == SC_FLUSH_DAT)
2349 sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2350
2351 /* re-enable timer if checkpoint creation was not done */
2352 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2353 time_before(jiffies, sci->sc_timer.expires))
2354 add_timer(&sci->sc_timer);
2355 }
2356 spin_unlock(&sci->sc_state_lock);
2357 }
2358
2359 /**
2360 * nilfs_segctor_construct - form logs and write them to disk
2361 * @sci: segment constructor object
2362 * @mode: mode of log forming
2363 */
nilfs_segctor_construct(struct nilfs_sc_info * sci,int mode)2364 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2365 {
2366 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2367 struct nilfs_super_block **sbp;
2368 int err = 0;
2369
2370 nilfs_segctor_accept(sci);
2371
2372 if (nilfs_discontinued(nilfs))
2373 mode = SC_LSEG_SR;
2374 if (!nilfs_segctor_confirm(sci))
2375 err = nilfs_segctor_do_construct(sci, mode);
2376
2377 if (likely(!err)) {
2378 if (mode != SC_FLUSH_DAT)
2379 atomic_set(&nilfs->ns_ndirtyblks, 0);
2380 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2381 nilfs_discontinued(nilfs)) {
2382 down_write(&nilfs->ns_sem);
2383 err = -EIO;
2384 sbp = nilfs_prepare_super(sci->sc_super,
2385 nilfs_sb_will_flip(nilfs));
2386 if (likely(sbp)) {
2387 nilfs_set_log_cursor(sbp[0], nilfs);
2388 err = nilfs_commit_super(sci->sc_super,
2389 NILFS_SB_COMMIT);
2390 }
2391 up_write(&nilfs->ns_sem);
2392 }
2393 }
2394
2395 nilfs_segctor_notify(sci, mode, err);
2396 return err;
2397 }
2398
nilfs_construction_timeout(struct timer_list * t)2399 static void nilfs_construction_timeout(struct timer_list *t)
2400 {
2401 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
2402
2403 wake_up_process(sci->sc_timer_task);
2404 }
2405
2406 static void
nilfs_remove_written_gcinodes(struct the_nilfs * nilfs,struct list_head * head)2407 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2408 {
2409 struct nilfs_inode_info *ii, *n;
2410
2411 list_for_each_entry_safe(ii, n, head, i_dirty) {
2412 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2413 continue;
2414 list_del_init(&ii->i_dirty);
2415 truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2416 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
2417 iput(&ii->vfs_inode);
2418 }
2419 }
2420
nilfs_clean_segments(struct super_block * sb,struct nilfs_argv * argv,void ** kbufs)2421 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2422 void **kbufs)
2423 {
2424 struct the_nilfs *nilfs = sb->s_fs_info;
2425 struct nilfs_sc_info *sci = nilfs->ns_writer;
2426 struct nilfs_transaction_info ti;
2427 int err;
2428
2429 if (unlikely(!sci))
2430 return -EROFS;
2431
2432 nilfs_transaction_lock(sb, &ti, 1);
2433
2434 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2435 if (unlikely(err))
2436 goto out_unlock;
2437
2438 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2439 if (unlikely(err)) {
2440 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2441 goto out_unlock;
2442 }
2443
2444 sci->sc_freesegs = kbufs[4];
2445 sci->sc_nfreesegs = argv[4].v_nmembs;
2446 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2447
2448 for (;;) {
2449 err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2450 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2451
2452 if (likely(!err))
2453 break;
2454
2455 nilfs_warn(sb, "error %d cleaning segments", err);
2456 set_current_state(TASK_INTERRUPTIBLE);
2457 schedule_timeout(sci->sc_interval);
2458 }
2459 if (nilfs_test_opt(nilfs, DISCARD)) {
2460 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2461 sci->sc_nfreesegs);
2462 if (ret) {
2463 nilfs_warn(sb,
2464 "error %d on discard request, turning discards off for the device",
2465 ret);
2466 nilfs_clear_opt(nilfs, DISCARD);
2467 }
2468 }
2469
2470 out_unlock:
2471 sci->sc_freesegs = NULL;
2472 sci->sc_nfreesegs = 0;
2473 nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2474 nilfs_transaction_unlock(sb);
2475 return err;
2476 }
2477
nilfs_segctor_thread_construct(struct nilfs_sc_info * sci,int mode)2478 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2479 {
2480 struct nilfs_transaction_info ti;
2481
2482 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2483 nilfs_segctor_construct(sci, mode);
2484
2485 /*
2486 * Unclosed segment should be retried. We do this using sc_timer.
2487 * Timeout of sc_timer will invoke complete construction which leads
2488 * to close the current logical segment.
2489 */
2490 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2491 nilfs_segctor_start_timer(sci);
2492
2493 nilfs_transaction_unlock(sci->sc_super);
2494 }
2495
nilfs_segctor_do_immediate_flush(struct nilfs_sc_info * sci)2496 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2497 {
2498 int mode = 0;
2499
2500 spin_lock(&sci->sc_state_lock);
2501 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2502 SC_FLUSH_DAT : SC_FLUSH_FILE;
2503 spin_unlock(&sci->sc_state_lock);
2504
2505 if (mode) {
2506 nilfs_segctor_do_construct(sci, mode);
2507
2508 spin_lock(&sci->sc_state_lock);
2509 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2510 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2511 spin_unlock(&sci->sc_state_lock);
2512 }
2513 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2514 }
2515
nilfs_segctor_flush_mode(struct nilfs_sc_info * sci)2516 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2517 {
2518 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2519 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2520 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2521 return SC_FLUSH_FILE;
2522 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2523 return SC_FLUSH_DAT;
2524 }
2525 return SC_LSEG_SR;
2526 }
2527
2528 /**
2529 * nilfs_segctor_thread - main loop of the segment constructor thread.
2530 * @arg: pointer to a struct nilfs_sc_info.
2531 *
2532 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2533 * to execute segment constructions.
2534 */
nilfs_segctor_thread(void * arg)2535 static int nilfs_segctor_thread(void *arg)
2536 {
2537 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2538 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2539 int timeout = 0;
2540
2541 sci->sc_timer_task = current;
2542
2543 /* start sync. */
2544 sci->sc_task = current;
2545 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2546 nilfs_info(sci->sc_super,
2547 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2548 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2549
2550 spin_lock(&sci->sc_state_lock);
2551 loop:
2552 for (;;) {
2553 int mode;
2554
2555 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2556 goto end_thread;
2557
2558 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2559 mode = SC_LSEG_SR;
2560 else if (sci->sc_flush_request)
2561 mode = nilfs_segctor_flush_mode(sci);
2562 else
2563 break;
2564
2565 spin_unlock(&sci->sc_state_lock);
2566 nilfs_segctor_thread_construct(sci, mode);
2567 spin_lock(&sci->sc_state_lock);
2568 timeout = 0;
2569 }
2570
2571
2572 if (freezing(current)) {
2573 spin_unlock(&sci->sc_state_lock);
2574 try_to_freeze();
2575 spin_lock(&sci->sc_state_lock);
2576 } else {
2577 DEFINE_WAIT(wait);
2578 int should_sleep = 1;
2579
2580 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2581 TASK_INTERRUPTIBLE);
2582
2583 if (sci->sc_seq_request != sci->sc_seq_done)
2584 should_sleep = 0;
2585 else if (sci->sc_flush_request)
2586 should_sleep = 0;
2587 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2588 should_sleep = time_before(jiffies,
2589 sci->sc_timer.expires);
2590
2591 if (should_sleep) {
2592 spin_unlock(&sci->sc_state_lock);
2593 schedule();
2594 spin_lock(&sci->sc_state_lock);
2595 }
2596 finish_wait(&sci->sc_wait_daemon, &wait);
2597 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2598 time_after_eq(jiffies, sci->sc_timer.expires));
2599
2600 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2601 set_nilfs_discontinued(nilfs);
2602 }
2603 goto loop;
2604
2605 end_thread:
2606 spin_unlock(&sci->sc_state_lock);
2607
2608 /* end sync. */
2609 sci->sc_task = NULL;
2610 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2611 return 0;
2612 }
2613
nilfs_segctor_start_thread(struct nilfs_sc_info * sci)2614 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2615 {
2616 struct task_struct *t;
2617
2618 t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2619 if (IS_ERR(t)) {
2620 int err = PTR_ERR(t);
2621
2622 nilfs_err(sci->sc_super, "error %d creating segctord thread",
2623 err);
2624 return err;
2625 }
2626 wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2627 return 0;
2628 }
2629
nilfs_segctor_kill_thread(struct nilfs_sc_info * sci)2630 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2631 __acquires(&sci->sc_state_lock)
2632 __releases(&sci->sc_state_lock)
2633 {
2634 sci->sc_state |= NILFS_SEGCTOR_QUIT;
2635
2636 while (sci->sc_task) {
2637 wake_up(&sci->sc_wait_daemon);
2638 spin_unlock(&sci->sc_state_lock);
2639 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2640 spin_lock(&sci->sc_state_lock);
2641 }
2642 }
2643
2644 /*
2645 * Setup & clean-up functions
2646 */
nilfs_segctor_new(struct super_block * sb,struct nilfs_root * root)2647 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2648 struct nilfs_root *root)
2649 {
2650 struct the_nilfs *nilfs = sb->s_fs_info;
2651 struct nilfs_sc_info *sci;
2652
2653 sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2654 if (!sci)
2655 return NULL;
2656
2657 sci->sc_super = sb;
2658
2659 nilfs_get_root(root);
2660 sci->sc_root = root;
2661
2662 init_waitqueue_head(&sci->sc_wait_request);
2663 init_waitqueue_head(&sci->sc_wait_daemon);
2664 init_waitqueue_head(&sci->sc_wait_task);
2665 spin_lock_init(&sci->sc_state_lock);
2666 INIT_LIST_HEAD(&sci->sc_dirty_files);
2667 INIT_LIST_HEAD(&sci->sc_segbufs);
2668 INIT_LIST_HEAD(&sci->sc_write_logs);
2669 INIT_LIST_HEAD(&sci->sc_gc_inodes);
2670 INIT_LIST_HEAD(&sci->sc_iput_queue);
2671 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2672 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
2673
2674 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2675 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2676 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2677
2678 if (nilfs->ns_interval)
2679 sci->sc_interval = HZ * nilfs->ns_interval;
2680 if (nilfs->ns_watermark)
2681 sci->sc_watermark = nilfs->ns_watermark;
2682 return sci;
2683 }
2684
nilfs_segctor_write_out(struct nilfs_sc_info * sci)2685 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2686 {
2687 int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2688
2689 /*
2690 * The segctord thread was stopped and its timer was removed.
2691 * But some tasks remain.
2692 */
2693 do {
2694 struct nilfs_transaction_info ti;
2695
2696 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2697 ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2698 nilfs_transaction_unlock(sci->sc_super);
2699
2700 flush_work(&sci->sc_iput_work);
2701
2702 } while (ret && retrycount-- > 0);
2703 }
2704
2705 /**
2706 * nilfs_segctor_destroy - destroy the segment constructor.
2707 * @sci: nilfs_sc_info
2708 *
2709 * nilfs_segctor_destroy() kills the segctord thread and frees
2710 * the nilfs_sc_info struct.
2711 * Caller must hold the segment semaphore.
2712 */
nilfs_segctor_destroy(struct nilfs_sc_info * sci)2713 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2714 {
2715 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2716 int flag;
2717
2718 up_write(&nilfs->ns_segctor_sem);
2719
2720 spin_lock(&sci->sc_state_lock);
2721 nilfs_segctor_kill_thread(sci);
2722 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2723 || sci->sc_seq_request != sci->sc_seq_done);
2724 spin_unlock(&sci->sc_state_lock);
2725
2726 if (flush_work(&sci->sc_iput_work))
2727 flag = true;
2728
2729 if (flag || !nilfs_segctor_confirm(sci))
2730 nilfs_segctor_write_out(sci);
2731
2732 if (!list_empty(&sci->sc_dirty_files)) {
2733 nilfs_warn(sci->sc_super,
2734 "disposed unprocessed dirty file(s) when stopping log writer");
2735 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2736 }
2737
2738 if (!list_empty(&sci->sc_iput_queue)) {
2739 nilfs_warn(sci->sc_super,
2740 "disposed unprocessed inode(s) in iput queue when stopping log writer");
2741 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2742 }
2743
2744 WARN_ON(!list_empty(&sci->sc_segbufs));
2745 WARN_ON(!list_empty(&sci->sc_write_logs));
2746
2747 nilfs_put_root(sci->sc_root);
2748
2749 down_write(&nilfs->ns_segctor_sem);
2750
2751 del_timer_sync(&sci->sc_timer);
2752 kfree(sci);
2753 }
2754
2755 /**
2756 * nilfs_attach_log_writer - attach log writer
2757 * @sb: super block instance
2758 * @root: root object of the current filesystem tree
2759 *
2760 * This allocates a log writer object, initializes it, and starts the
2761 * log writer.
2762 *
2763 * Return Value: On success, 0 is returned. On error, one of the following
2764 * negative error code is returned.
2765 *
2766 * %-ENOMEM - Insufficient memory available.
2767 */
nilfs_attach_log_writer(struct super_block * sb,struct nilfs_root * root)2768 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2769 {
2770 struct the_nilfs *nilfs = sb->s_fs_info;
2771 int err;
2772
2773 if (nilfs->ns_writer) {
2774 /*
2775 * This happens if the filesystem was remounted
2776 * read/write after nilfs_error degenerated it into a
2777 * read-only mount.
2778 */
2779 nilfs_detach_log_writer(sb);
2780 }
2781
2782 nilfs->ns_writer = nilfs_segctor_new(sb, root);
2783 if (!nilfs->ns_writer)
2784 return -ENOMEM;
2785
2786 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL);
2787
2788 err = nilfs_segctor_start_thread(nilfs->ns_writer);
2789 if (err) {
2790 kfree(nilfs->ns_writer);
2791 nilfs->ns_writer = NULL;
2792 }
2793 return err;
2794 }
2795
2796 /**
2797 * nilfs_detach_log_writer - destroy log writer
2798 * @sb: super block instance
2799 *
2800 * This kills log writer daemon, frees the log writer object, and
2801 * destroys list of dirty files.
2802 */
nilfs_detach_log_writer(struct super_block * sb)2803 void nilfs_detach_log_writer(struct super_block *sb)
2804 {
2805 struct the_nilfs *nilfs = sb->s_fs_info;
2806 LIST_HEAD(garbage_list);
2807
2808 down_write(&nilfs->ns_segctor_sem);
2809 if (nilfs->ns_writer) {
2810 nilfs_segctor_destroy(nilfs->ns_writer);
2811 nilfs->ns_writer = NULL;
2812 }
2813
2814 /* Force to free the list of dirty files */
2815 spin_lock(&nilfs->ns_inode_lock);
2816 if (!list_empty(&nilfs->ns_dirty_files)) {
2817 list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2818 nilfs_warn(sb,
2819 "disposed unprocessed dirty file(s) when detaching log writer");
2820 }
2821 spin_unlock(&nilfs->ns_inode_lock);
2822 up_write(&nilfs->ns_segctor_sem);
2823
2824 nilfs_dispose_list(nilfs, &garbage_list, 1);
2825 }
2826