1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/write.c
4 *
5 * Write file data over NFS.
6 *
7 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8 */
9
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/file.h>
15 #include <linux/writeback.h>
16 #include <linux/swap.h>
17 #include <linux/migrate.h>
18
19 #include <linux/sunrpc/clnt.h>
20 #include <linux/nfs_fs.h>
21 #include <linux/nfs_mount.h>
22 #include <linux/nfs_page.h>
23 #include <linux/backing-dev.h>
24 #include <linux/export.h>
25 #include <linux/freezer.h>
26 #include <linux/wait.h>
27 #include <linux/iversion.h>
28
29 #include <linux/uaccess.h>
30 #include <linux/sched/mm.h>
31
32 #include "delegation.h"
33 #include "internal.h"
34 #include "iostat.h"
35 #include "nfs4_fs.h"
36 #include "fscache.h"
37 #include "pnfs.h"
38
39 #include "nfstrace.h"
40
41 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
42
43 #define MIN_POOL_WRITE (32)
44 #define MIN_POOL_COMMIT (4)
45
46 struct nfs_io_completion {
47 void (*complete)(void *data);
48 void *data;
49 struct kref refcount;
50 };
51
52 /*
53 * Local function declarations
54 */
55 static void nfs_redirty_request(struct nfs_page *req);
56 static const struct rpc_call_ops nfs_commit_ops;
57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59 static const struct nfs_rw_ops nfs_rw_write_ops;
60 static void nfs_inode_remove_request(struct nfs_page *req);
61 static void nfs_clear_request_commit(struct nfs_page *req);
62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
63 struct inode *inode);
64 static struct nfs_page *
65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
66 struct page *page);
67
68 static struct kmem_cache *nfs_wdata_cachep;
69 static mempool_t *nfs_wdata_mempool;
70 static struct kmem_cache *nfs_cdata_cachep;
71 static mempool_t *nfs_commit_mempool;
72
nfs_commitdata_alloc(void)73 struct nfs_commit_data *nfs_commitdata_alloc(void)
74 {
75 struct nfs_commit_data *p;
76
77 p = kmem_cache_zalloc(nfs_cdata_cachep, nfs_io_gfp_mask());
78 if (!p) {
79 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
80 if (!p)
81 return NULL;
82 memset(p, 0, sizeof(*p));
83 }
84 INIT_LIST_HEAD(&p->pages);
85 return p;
86 }
87 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
88
nfs_commit_free(struct nfs_commit_data * p)89 void nfs_commit_free(struct nfs_commit_data *p)
90 {
91 mempool_free(p, nfs_commit_mempool);
92 }
93 EXPORT_SYMBOL_GPL(nfs_commit_free);
94
nfs_writehdr_alloc(void)95 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
96 {
97 struct nfs_pgio_header *p;
98
99 p = kmem_cache_zalloc(nfs_wdata_cachep, nfs_io_gfp_mask());
100 if (!p) {
101 p = mempool_alloc(nfs_wdata_mempool, GFP_NOWAIT);
102 if (!p)
103 return NULL;
104 memset(p, 0, sizeof(*p));
105 }
106 p->rw_mode = FMODE_WRITE;
107 return p;
108 }
109
nfs_writehdr_free(struct nfs_pgio_header * hdr)110 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
111 {
112 mempool_free(hdr, nfs_wdata_mempool);
113 }
114
nfs_io_completion_alloc(gfp_t gfp_flags)115 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
116 {
117 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
118 }
119
nfs_io_completion_init(struct nfs_io_completion * ioc,void (* complete)(void *),void * data)120 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
121 void (*complete)(void *), void *data)
122 {
123 ioc->complete = complete;
124 ioc->data = data;
125 kref_init(&ioc->refcount);
126 }
127
nfs_io_completion_release(struct kref * kref)128 static void nfs_io_completion_release(struct kref *kref)
129 {
130 struct nfs_io_completion *ioc = container_of(kref,
131 struct nfs_io_completion, refcount);
132 ioc->complete(ioc->data);
133 kfree(ioc);
134 }
135
nfs_io_completion_get(struct nfs_io_completion * ioc)136 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
137 {
138 if (ioc != NULL)
139 kref_get(&ioc->refcount);
140 }
141
nfs_io_completion_put(struct nfs_io_completion * ioc)142 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
143 {
144 if (ioc != NULL)
145 kref_put(&ioc->refcount, nfs_io_completion_release);
146 }
147
148 static void
nfs_page_set_inode_ref(struct nfs_page * req,struct inode * inode)149 nfs_page_set_inode_ref(struct nfs_page *req, struct inode *inode)
150 {
151 if (!test_and_set_bit(PG_INODE_REF, &req->wb_flags)) {
152 kref_get(&req->wb_kref);
153 atomic_long_inc(&NFS_I(inode)->nrequests);
154 }
155 }
156
157 static int
nfs_cancel_remove_inode(struct nfs_page * req,struct inode * inode)158 nfs_cancel_remove_inode(struct nfs_page *req, struct inode *inode)
159 {
160 int ret;
161
162 if (!test_bit(PG_REMOVE, &req->wb_flags))
163 return 0;
164 ret = nfs_page_group_lock(req);
165 if (ret)
166 return ret;
167 if (test_and_clear_bit(PG_REMOVE, &req->wb_flags))
168 nfs_page_set_inode_ref(req, inode);
169 nfs_page_group_unlock(req);
170 return 0;
171 }
172
173 static struct nfs_page *
nfs_page_private_request(struct page * page)174 nfs_page_private_request(struct page *page)
175 {
176 if (!PagePrivate(page))
177 return NULL;
178 return (struct nfs_page *)page_private(page);
179 }
180
181 /*
182 * nfs_page_find_head_request_locked - find head request associated with @page
183 *
184 * must be called while holding the inode lock.
185 *
186 * returns matching head request with reference held, or NULL if not found.
187 */
188 static struct nfs_page *
nfs_page_find_private_request(struct page * page)189 nfs_page_find_private_request(struct page *page)
190 {
191 struct address_space *mapping = page_file_mapping(page);
192 struct nfs_page *req;
193
194 if (!PagePrivate(page))
195 return NULL;
196 spin_lock(&mapping->private_lock);
197 req = nfs_page_private_request(page);
198 if (req) {
199 WARN_ON_ONCE(req->wb_head != req);
200 kref_get(&req->wb_kref);
201 }
202 spin_unlock(&mapping->private_lock);
203 return req;
204 }
205
206 static struct nfs_page *
nfs_page_find_swap_request(struct page * page)207 nfs_page_find_swap_request(struct page *page)
208 {
209 struct inode *inode = page_file_mapping(page)->host;
210 struct nfs_inode *nfsi = NFS_I(inode);
211 struct nfs_page *req = NULL;
212 if (!PageSwapCache(page))
213 return NULL;
214 mutex_lock(&nfsi->commit_mutex);
215 if (PageSwapCache(page)) {
216 req = nfs_page_search_commits_for_head_request_locked(nfsi,
217 page);
218 if (req) {
219 WARN_ON_ONCE(req->wb_head != req);
220 kref_get(&req->wb_kref);
221 }
222 }
223 mutex_unlock(&nfsi->commit_mutex);
224 return req;
225 }
226
227 /*
228 * nfs_page_find_head_request - find head request associated with @page
229 *
230 * returns matching head request with reference held, or NULL if not found.
231 */
nfs_page_find_head_request(struct page * page)232 static struct nfs_page *nfs_page_find_head_request(struct page *page)
233 {
234 struct nfs_page *req;
235
236 req = nfs_page_find_private_request(page);
237 if (!req)
238 req = nfs_page_find_swap_request(page);
239 return req;
240 }
241
nfs_find_and_lock_page_request(struct page * page)242 static struct nfs_page *nfs_find_and_lock_page_request(struct page *page)
243 {
244 struct inode *inode = page_file_mapping(page)->host;
245 struct nfs_page *req, *head;
246 int ret;
247
248 for (;;) {
249 req = nfs_page_find_head_request(page);
250 if (!req)
251 return req;
252 head = nfs_page_group_lock_head(req);
253 if (head != req)
254 nfs_release_request(req);
255 if (IS_ERR(head))
256 return head;
257 ret = nfs_cancel_remove_inode(head, inode);
258 if (ret < 0) {
259 nfs_unlock_and_release_request(head);
260 return ERR_PTR(ret);
261 }
262 /* Ensure that nobody removed the request before we locked it */
263 if (head == nfs_page_private_request(page))
264 break;
265 if (PageSwapCache(page))
266 break;
267 nfs_unlock_and_release_request(head);
268 }
269 return head;
270 }
271
272 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)273 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
274 {
275 struct inode *inode = page_file_mapping(page)->host;
276 loff_t end, i_size;
277 pgoff_t end_index;
278
279 spin_lock(&inode->i_lock);
280 i_size = i_size_read(inode);
281 end_index = (i_size - 1) >> PAGE_SHIFT;
282 if (i_size > 0 && page_index(page) < end_index)
283 goto out;
284 end = page_file_offset(page) + ((loff_t)offset+count);
285 if (i_size >= end)
286 goto out;
287 trace_nfs_size_grow(inode, end);
288 i_size_write(inode, end);
289 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
290 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
291 out:
292 spin_unlock(&inode->i_lock);
293 nfs_fscache_invalidate(inode, 0);
294 }
295
296 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct address_space * mapping)297 static void nfs_set_pageerror(struct address_space *mapping)
298 {
299 struct inode *inode = mapping->host;
300
301 nfs_zap_mapping(mapping->host, mapping);
302 /* Force file size revalidation */
303 spin_lock(&inode->i_lock);
304 nfs_set_cache_invalid(inode, NFS_INO_REVAL_FORCED |
305 NFS_INO_INVALID_CHANGE |
306 NFS_INO_INVALID_SIZE);
307 spin_unlock(&inode->i_lock);
308 }
309
nfs_mapping_set_error(struct page * page,int error)310 static void nfs_mapping_set_error(struct page *page, int error)
311 {
312 struct address_space *mapping = page_file_mapping(page);
313
314 SetPageError(page);
315 filemap_set_wb_err(mapping, error);
316 if (mapping->host)
317 errseq_set(&mapping->host->i_sb->s_wb_err,
318 error == -ENOSPC ? -ENOSPC : -EIO);
319 nfs_set_pageerror(mapping);
320 }
321
322 /*
323 * nfs_page_group_search_locked
324 * @head - head request of page group
325 * @page_offset - offset into page
326 *
327 * Search page group with head @head to find a request that contains the
328 * page offset @page_offset.
329 *
330 * Returns a pointer to the first matching nfs request, or NULL if no
331 * match is found.
332 *
333 * Must be called with the page group lock held
334 */
335 static struct nfs_page *
nfs_page_group_search_locked(struct nfs_page * head,unsigned int page_offset)336 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
337 {
338 struct nfs_page *req;
339
340 req = head;
341 do {
342 if (page_offset >= req->wb_pgbase &&
343 page_offset < (req->wb_pgbase + req->wb_bytes))
344 return req;
345
346 req = req->wb_this_page;
347 } while (req != head);
348
349 return NULL;
350 }
351
352 /*
353 * nfs_page_group_covers_page
354 * @head - head request of page group
355 *
356 * Return true if the page group with head @head covers the whole page,
357 * returns false otherwise
358 */
nfs_page_group_covers_page(struct nfs_page * req)359 static bool nfs_page_group_covers_page(struct nfs_page *req)
360 {
361 struct nfs_page *tmp;
362 unsigned int pos = 0;
363 unsigned int len = nfs_page_length(req->wb_page);
364
365 nfs_page_group_lock(req);
366
367 for (;;) {
368 tmp = nfs_page_group_search_locked(req->wb_head, pos);
369 if (!tmp)
370 break;
371 pos = tmp->wb_pgbase + tmp->wb_bytes;
372 }
373
374 nfs_page_group_unlock(req);
375 return pos >= len;
376 }
377
378 /* We can set the PG_uptodate flag if we see that a write request
379 * covers the full page.
380 */
nfs_mark_uptodate(struct nfs_page * req)381 static void nfs_mark_uptodate(struct nfs_page *req)
382 {
383 if (PageUptodate(req->wb_page))
384 return;
385 if (!nfs_page_group_covers_page(req))
386 return;
387 SetPageUptodate(req->wb_page);
388 }
389
wb_priority(struct writeback_control * wbc)390 static int wb_priority(struct writeback_control *wbc)
391 {
392 int ret = 0;
393
394 if (wbc->sync_mode == WB_SYNC_ALL)
395 ret = FLUSH_COND_STABLE;
396 return ret;
397 }
398
399 /*
400 * NFS congestion control
401 */
402
403 int nfs_congestion_kb;
404
405 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
406 #define NFS_CONGESTION_OFF_THRESH \
407 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
408
nfs_set_page_writeback(struct page * page)409 static void nfs_set_page_writeback(struct page *page)
410 {
411 struct inode *inode = page_file_mapping(page)->host;
412 struct nfs_server *nfss = NFS_SERVER(inode);
413 int ret = test_set_page_writeback(page);
414
415 WARN_ON_ONCE(ret != 0);
416
417 if (atomic_long_inc_return(&nfss->writeback) >
418 NFS_CONGESTION_ON_THRESH)
419 nfss->write_congested = 1;
420 }
421
nfs_end_page_writeback(struct nfs_page * req)422 static void nfs_end_page_writeback(struct nfs_page *req)
423 {
424 struct inode *inode = page_file_mapping(req->wb_page)->host;
425 struct nfs_server *nfss = NFS_SERVER(inode);
426 bool is_done;
427
428 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
429 nfs_unlock_request(req);
430 if (!is_done)
431 return;
432
433 end_page_writeback(req->wb_page);
434 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
435 nfss->write_congested = 0;
436 }
437
438 /*
439 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
440 *
441 * @destroy_list - request list (using wb_this_page) terminated by @old_head
442 * @old_head - the old head of the list
443 *
444 * All subrequests must be locked and removed from all lists, so at this point
445 * they are only "active" in this function, and possibly in nfs_wait_on_request
446 * with a reference held by some other context.
447 */
448 static void
nfs_destroy_unlinked_subrequests(struct nfs_page * destroy_list,struct nfs_page * old_head,struct inode * inode)449 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
450 struct nfs_page *old_head,
451 struct inode *inode)
452 {
453 while (destroy_list) {
454 struct nfs_page *subreq = destroy_list;
455
456 destroy_list = (subreq->wb_this_page == old_head) ?
457 NULL : subreq->wb_this_page;
458
459 /* Note: lock subreq in order to change subreq->wb_head */
460 nfs_page_set_headlock(subreq);
461 WARN_ON_ONCE(old_head != subreq->wb_head);
462
463 /* make sure old group is not used */
464 subreq->wb_this_page = subreq;
465 subreq->wb_head = subreq;
466
467 clear_bit(PG_REMOVE, &subreq->wb_flags);
468
469 /* Note: races with nfs_page_group_destroy() */
470 if (!kref_read(&subreq->wb_kref)) {
471 /* Check if we raced with nfs_page_group_destroy() */
472 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) {
473 nfs_page_clear_headlock(subreq);
474 nfs_free_request(subreq);
475 } else
476 nfs_page_clear_headlock(subreq);
477 continue;
478 }
479 nfs_page_clear_headlock(subreq);
480
481 nfs_release_request(old_head);
482
483 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
484 nfs_release_request(subreq);
485 atomic_long_dec(&NFS_I(inode)->nrequests);
486 }
487
488 /* subreq is now totally disconnected from page group or any
489 * write / commit lists. last chance to wake any waiters */
490 nfs_unlock_and_release_request(subreq);
491 }
492 }
493
494 /*
495 * nfs_join_page_group - destroy subrequests of the head req
496 * @head: the page used to lookup the "page group" of nfs_page structures
497 * @inode: Inode to which the request belongs.
498 *
499 * This function joins all sub requests to the head request by first
500 * locking all requests in the group, cancelling any pending operations
501 * and finally updating the head request to cover the whole range covered by
502 * the (former) group. All subrequests are removed from any write or commit
503 * lists, unlinked from the group and destroyed.
504 */
505 void
nfs_join_page_group(struct nfs_page * head,struct inode * inode)506 nfs_join_page_group(struct nfs_page *head, struct inode *inode)
507 {
508 struct nfs_page *subreq;
509 struct nfs_page *destroy_list = NULL;
510 unsigned int pgbase, off, bytes;
511
512 pgbase = head->wb_pgbase;
513 bytes = head->wb_bytes;
514 off = head->wb_offset;
515 for (subreq = head->wb_this_page; subreq != head;
516 subreq = subreq->wb_this_page) {
517 /* Subrequests should always form a contiguous range */
518 if (pgbase > subreq->wb_pgbase) {
519 off -= pgbase - subreq->wb_pgbase;
520 bytes += pgbase - subreq->wb_pgbase;
521 pgbase = subreq->wb_pgbase;
522 }
523 bytes = max(subreq->wb_pgbase + subreq->wb_bytes
524 - pgbase, bytes);
525 }
526
527 /* Set the head request's range to cover the former page group */
528 head->wb_pgbase = pgbase;
529 head->wb_bytes = bytes;
530 head->wb_offset = off;
531
532 /* Now that all requests are locked, make sure they aren't on any list.
533 * Commit list removal accounting is done after locks are dropped */
534 subreq = head;
535 do {
536 nfs_clear_request_commit(subreq);
537 subreq = subreq->wb_this_page;
538 } while (subreq != head);
539
540 /* unlink subrequests from head, destroy them later */
541 if (head->wb_this_page != head) {
542 /* destroy list will be terminated by head */
543 destroy_list = head->wb_this_page;
544 head->wb_this_page = head;
545 }
546
547 nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
548 }
549
550 /*
551 * nfs_lock_and_join_requests - join all subreqs to the head req
552 * @page: the page used to lookup the "page group" of nfs_page structures
553 *
554 * This function joins all sub requests to the head request by first
555 * locking all requests in the group, cancelling any pending operations
556 * and finally updating the head request to cover the whole range covered by
557 * the (former) group. All subrequests are removed from any write or commit
558 * lists, unlinked from the group and destroyed.
559 *
560 * Returns a locked, referenced pointer to the head request - which after
561 * this call is guaranteed to be the only request associated with the page.
562 * Returns NULL if no requests are found for @page, or a ERR_PTR if an
563 * error was encountered.
564 */
565 static struct nfs_page *
nfs_lock_and_join_requests(struct page * page)566 nfs_lock_and_join_requests(struct page *page)
567 {
568 struct inode *inode = page_file_mapping(page)->host;
569 struct nfs_page *head;
570 int ret;
571
572 /*
573 * A reference is taken only on the head request which acts as a
574 * reference to the whole page group - the group will not be destroyed
575 * until the head reference is released.
576 */
577 head = nfs_find_and_lock_page_request(page);
578 if (IS_ERR_OR_NULL(head))
579 return head;
580
581 /* lock each request in the page group */
582 ret = nfs_page_group_lock_subrequests(head);
583 if (ret < 0) {
584 nfs_unlock_and_release_request(head);
585 return ERR_PTR(ret);
586 }
587
588 nfs_join_page_group(head, inode);
589
590 return head;
591 }
592
nfs_write_error(struct nfs_page * req,int error)593 static void nfs_write_error(struct nfs_page *req, int error)
594 {
595 trace_nfs_write_error(req, error);
596 nfs_mapping_set_error(req->wb_page, error);
597 nfs_inode_remove_request(req);
598 nfs_end_page_writeback(req);
599 nfs_release_request(req);
600 }
601
602 /*
603 * Find an associated nfs write request, and prepare to flush it out
604 * May return an error if the user signalled nfs_wait_on_request().
605 */
nfs_page_async_flush(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)606 static int nfs_page_async_flush(struct page *page,
607 struct writeback_control *wbc,
608 struct nfs_pageio_descriptor *pgio)
609 {
610 struct nfs_page *req;
611 int ret = 0;
612
613 req = nfs_lock_and_join_requests(page);
614 if (!req)
615 goto out;
616 ret = PTR_ERR(req);
617 if (IS_ERR(req))
618 goto out;
619
620 nfs_set_page_writeback(page);
621 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
622
623 /* If there is a fatal error that covers this write, just exit */
624 ret = pgio->pg_error;
625 if (nfs_error_is_fatal_on_server(ret))
626 goto out_launder;
627
628 ret = 0;
629 if (!nfs_pageio_add_request(pgio, req)) {
630 ret = pgio->pg_error;
631 /*
632 * Remove the problematic req upon fatal errors on the server
633 */
634 if (nfs_error_is_fatal_on_server(ret))
635 goto out_launder;
636 if (wbc->sync_mode == WB_SYNC_NONE)
637 ret = AOP_WRITEPAGE_ACTIVATE;
638 redirty_page_for_writepage(wbc, page);
639 nfs_redirty_request(req);
640 pgio->pg_error = 0;
641 } else
642 nfs_add_stats(page_file_mapping(page)->host,
643 NFSIOS_WRITEPAGES, 1);
644 out:
645 return ret;
646 out_launder:
647 nfs_write_error(req, ret);
648 return 0;
649 }
650
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)651 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
652 struct nfs_pageio_descriptor *pgio)
653 {
654 nfs_pageio_cond_complete(pgio, page_index(page));
655 return nfs_page_async_flush(page, wbc, pgio);
656 }
657
658 /*
659 * Write an mmapped page to the server.
660 */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)661 static int nfs_writepage_locked(struct page *page,
662 struct writeback_control *wbc)
663 {
664 struct nfs_pageio_descriptor pgio;
665 struct inode *inode = page_file_mapping(page)->host;
666 int err;
667
668 if (wbc->sync_mode == WB_SYNC_NONE &&
669 NFS_SERVER(inode)->write_congested)
670 return AOP_WRITEPAGE_ACTIVATE;
671
672 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
673 nfs_pageio_init_write(&pgio, inode, 0,
674 false, &nfs_async_write_completion_ops);
675 err = nfs_do_writepage(page, wbc, &pgio);
676 pgio.pg_error = 0;
677 nfs_pageio_complete(&pgio);
678 return err;
679 }
680
nfs_writepage(struct page * page,struct writeback_control * wbc)681 int nfs_writepage(struct page *page, struct writeback_control *wbc)
682 {
683 int ret;
684
685 ret = nfs_writepage_locked(page, wbc);
686 if (ret != AOP_WRITEPAGE_ACTIVATE)
687 unlock_page(page);
688 return ret;
689 }
690
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)691 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
692 {
693 int ret;
694
695 ret = nfs_do_writepage(page, wbc, data);
696 if (ret != AOP_WRITEPAGE_ACTIVATE)
697 unlock_page(page);
698 return ret;
699 }
700
nfs_io_completion_commit(void * inode)701 static void nfs_io_completion_commit(void *inode)
702 {
703 nfs_commit_inode(inode, 0);
704 }
705
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)706 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
707 {
708 struct inode *inode = mapping->host;
709 struct nfs_pageio_descriptor pgio;
710 struct nfs_io_completion *ioc = NULL;
711 unsigned int mntflags = NFS_SERVER(inode)->flags;
712 int priority = 0;
713 int err;
714
715 if (wbc->sync_mode == WB_SYNC_NONE &&
716 NFS_SERVER(inode)->write_congested)
717 return 0;
718
719 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
720
721 if (!(mntflags & NFS_MOUNT_WRITE_EAGER) || wbc->for_kupdate ||
722 wbc->for_background || wbc->for_sync || wbc->for_reclaim) {
723 ioc = nfs_io_completion_alloc(GFP_KERNEL);
724 if (ioc)
725 nfs_io_completion_init(ioc, nfs_io_completion_commit,
726 inode);
727 priority = wb_priority(wbc);
728 }
729
730 do {
731 nfs_pageio_init_write(&pgio, inode, priority, false,
732 &nfs_async_write_completion_ops);
733 pgio.pg_io_completion = ioc;
734 err = write_cache_pages(mapping, wbc, nfs_writepages_callback,
735 &pgio);
736 pgio.pg_error = 0;
737 nfs_pageio_complete(&pgio);
738 } while (err < 0 && !nfs_error_is_fatal(err));
739 nfs_io_completion_put(ioc);
740
741 if (err < 0)
742 goto out_err;
743 return 0;
744 out_err:
745 return err;
746 }
747
748 /*
749 * Insert a write request into an inode
750 */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)751 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
752 {
753 struct address_space *mapping = page_file_mapping(req->wb_page);
754 struct nfs_inode *nfsi = NFS_I(inode);
755
756 WARN_ON_ONCE(req->wb_this_page != req);
757
758 /* Lock the request! */
759 nfs_lock_request(req);
760
761 /*
762 * Swap-space should not get truncated. Hence no need to plug the race
763 * with invalidate/truncate.
764 */
765 spin_lock(&mapping->private_lock);
766 if (likely(!PageSwapCache(req->wb_page))) {
767 set_bit(PG_MAPPED, &req->wb_flags);
768 SetPagePrivate(req->wb_page);
769 set_page_private(req->wb_page, (unsigned long)req);
770 }
771 spin_unlock(&mapping->private_lock);
772 atomic_long_inc(&nfsi->nrequests);
773 /* this a head request for a page group - mark it as having an
774 * extra reference so sub groups can follow suit.
775 * This flag also informs pgio layer when to bump nrequests when
776 * adding subrequests. */
777 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
778 kref_get(&req->wb_kref);
779 }
780
781 /*
782 * Remove a write request from an inode
783 */
nfs_inode_remove_request(struct nfs_page * req)784 static void nfs_inode_remove_request(struct nfs_page *req)
785 {
786 struct address_space *mapping = page_file_mapping(req->wb_page);
787 struct inode *inode = mapping->host;
788 struct nfs_inode *nfsi = NFS_I(inode);
789 struct nfs_page *head;
790
791 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
792 head = req->wb_head;
793
794 spin_lock(&mapping->private_lock);
795 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
796 set_page_private(head->wb_page, 0);
797 ClearPagePrivate(head->wb_page);
798 clear_bit(PG_MAPPED, &head->wb_flags);
799 }
800 spin_unlock(&mapping->private_lock);
801 }
802
803 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
804 nfs_release_request(req);
805 atomic_long_dec(&nfsi->nrequests);
806 }
807 }
808
809 static void
nfs_mark_request_dirty(struct nfs_page * req)810 nfs_mark_request_dirty(struct nfs_page *req)
811 {
812 if (req->wb_page)
813 __set_page_dirty_nobuffers(req->wb_page);
814 }
815
816 /*
817 * nfs_page_search_commits_for_head_request_locked
818 *
819 * Search through commit lists on @inode for the head request for @page.
820 * Must be called while holding the inode (which is cinfo) lock.
821 *
822 * Returns the head request if found, or NULL if not found.
823 */
824 static struct nfs_page *
nfs_page_search_commits_for_head_request_locked(struct nfs_inode * nfsi,struct page * page)825 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
826 struct page *page)
827 {
828 struct nfs_page *freq, *t;
829 struct nfs_commit_info cinfo;
830 struct inode *inode = &nfsi->vfs_inode;
831
832 nfs_init_cinfo_from_inode(&cinfo, inode);
833
834 /* search through pnfs commit lists */
835 freq = pnfs_search_commit_reqs(inode, &cinfo, page);
836 if (freq)
837 return freq->wb_head;
838
839 /* Linearly search the commit list for the correct request */
840 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
841 if (freq->wb_page == page)
842 return freq->wb_head;
843 }
844
845 return NULL;
846 }
847
848 /**
849 * nfs_request_add_commit_list_locked - add request to a commit list
850 * @req: pointer to a struct nfs_page
851 * @dst: commit list head
852 * @cinfo: holds list lock and accounting info
853 *
854 * This sets the PG_CLEAN bit, updates the cinfo count of
855 * number of outstanding requests requiring a commit as well as
856 * the MM page stats.
857 *
858 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
859 * nfs_page lock.
860 */
861 void
nfs_request_add_commit_list_locked(struct nfs_page * req,struct list_head * dst,struct nfs_commit_info * cinfo)862 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
863 struct nfs_commit_info *cinfo)
864 {
865 set_bit(PG_CLEAN, &req->wb_flags);
866 nfs_list_add_request(req, dst);
867 atomic_long_inc(&cinfo->mds->ncommit);
868 }
869 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
870
871 /**
872 * nfs_request_add_commit_list - add request to a commit list
873 * @req: pointer to a struct nfs_page
874 * @cinfo: holds list lock and accounting info
875 *
876 * This sets the PG_CLEAN bit, updates the cinfo count of
877 * number of outstanding requests requiring a commit as well as
878 * the MM page stats.
879 *
880 * The caller must _not_ hold the cinfo->lock, but must be
881 * holding the nfs_page lock.
882 */
883 void
nfs_request_add_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)884 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
885 {
886 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
887 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
888 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
889 if (req->wb_page)
890 nfs_mark_page_unstable(req->wb_page, cinfo);
891 }
892 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
893
894 /**
895 * nfs_request_remove_commit_list - Remove request from a commit list
896 * @req: pointer to a nfs_page
897 * @cinfo: holds list lock and accounting info
898 *
899 * This clears the PG_CLEAN bit, and updates the cinfo's count of
900 * number of outstanding requests requiring a commit
901 * It does not update the MM page stats.
902 *
903 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
904 */
905 void
nfs_request_remove_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)906 nfs_request_remove_commit_list(struct nfs_page *req,
907 struct nfs_commit_info *cinfo)
908 {
909 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
910 return;
911 nfs_list_remove_request(req);
912 atomic_long_dec(&cinfo->mds->ncommit);
913 }
914 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
915
nfs_init_cinfo_from_inode(struct nfs_commit_info * cinfo,struct inode * inode)916 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
917 struct inode *inode)
918 {
919 cinfo->inode = inode;
920 cinfo->mds = &NFS_I(inode)->commit_info;
921 cinfo->ds = pnfs_get_ds_info(inode);
922 cinfo->dreq = NULL;
923 cinfo->completion_ops = &nfs_commit_completion_ops;
924 }
925
nfs_init_cinfo(struct nfs_commit_info * cinfo,struct inode * inode,struct nfs_direct_req * dreq)926 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
927 struct inode *inode,
928 struct nfs_direct_req *dreq)
929 {
930 if (dreq)
931 nfs_init_cinfo_from_dreq(cinfo, dreq);
932 else
933 nfs_init_cinfo_from_inode(cinfo, inode);
934 }
935 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
936
937 /*
938 * Add a request to the inode's commit list.
939 */
940 void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)941 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
942 struct nfs_commit_info *cinfo, u32 ds_commit_idx)
943 {
944 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
945 return;
946 nfs_request_add_commit_list(req, cinfo);
947 }
948
949 static void
nfs_clear_page_commit(struct page * page)950 nfs_clear_page_commit(struct page *page)
951 {
952 dec_node_page_state(page, NR_WRITEBACK);
953 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
954 WB_WRITEBACK);
955 }
956
957 /* Called holding the request lock on @req */
958 static void
nfs_clear_request_commit(struct nfs_page * req)959 nfs_clear_request_commit(struct nfs_page *req)
960 {
961 if (test_bit(PG_CLEAN, &req->wb_flags)) {
962 struct nfs_open_context *ctx = nfs_req_openctx(req);
963 struct inode *inode = d_inode(ctx->dentry);
964 struct nfs_commit_info cinfo;
965
966 nfs_init_cinfo_from_inode(&cinfo, inode);
967 mutex_lock(&NFS_I(inode)->commit_mutex);
968 if (!pnfs_clear_request_commit(req, &cinfo)) {
969 nfs_request_remove_commit_list(req, &cinfo);
970 }
971 mutex_unlock(&NFS_I(inode)->commit_mutex);
972 nfs_clear_page_commit(req->wb_page);
973 }
974 }
975
nfs_write_need_commit(struct nfs_pgio_header * hdr)976 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
977 {
978 if (hdr->verf.committed == NFS_DATA_SYNC)
979 return hdr->lseg == NULL;
980 return hdr->verf.committed != NFS_FILE_SYNC;
981 }
982
nfs_async_write_init(struct nfs_pgio_header * hdr)983 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
984 {
985 nfs_io_completion_get(hdr->io_completion);
986 }
987
nfs_write_completion(struct nfs_pgio_header * hdr)988 static void nfs_write_completion(struct nfs_pgio_header *hdr)
989 {
990 struct nfs_commit_info cinfo;
991 unsigned long bytes = 0;
992
993 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
994 goto out;
995 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
996 while (!list_empty(&hdr->pages)) {
997 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
998
999 bytes += req->wb_bytes;
1000 nfs_list_remove_request(req);
1001 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1002 (hdr->good_bytes < bytes)) {
1003 trace_nfs_comp_error(req, hdr->error);
1004 nfs_mapping_set_error(req->wb_page, hdr->error);
1005 goto remove_req;
1006 }
1007 if (nfs_write_need_commit(hdr)) {
1008 /* Reset wb_nio, since the write was successful. */
1009 req->wb_nio = 0;
1010 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1011 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1012 hdr->pgio_mirror_idx);
1013 goto next;
1014 }
1015 remove_req:
1016 nfs_inode_remove_request(req);
1017 next:
1018 nfs_end_page_writeback(req);
1019 nfs_release_request(req);
1020 }
1021 out:
1022 nfs_io_completion_put(hdr->io_completion);
1023 hdr->release(hdr);
1024 }
1025
1026 unsigned long
nfs_reqs_to_commit(struct nfs_commit_info * cinfo)1027 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1028 {
1029 return atomic_long_read(&cinfo->mds->ncommit);
1030 }
1031
1032 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1033 int
nfs_scan_commit_list(struct list_head * src,struct list_head * dst,struct nfs_commit_info * cinfo,int max)1034 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1035 struct nfs_commit_info *cinfo, int max)
1036 {
1037 struct nfs_page *req, *tmp;
1038 int ret = 0;
1039
1040 list_for_each_entry_safe(req, tmp, src, wb_list) {
1041 kref_get(&req->wb_kref);
1042 if (!nfs_lock_request(req)) {
1043 nfs_release_request(req);
1044 continue;
1045 }
1046 nfs_request_remove_commit_list(req, cinfo);
1047 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1048 nfs_list_add_request(req, dst);
1049 ret++;
1050 if ((ret == max) && !cinfo->dreq)
1051 break;
1052 cond_resched();
1053 }
1054 return ret;
1055 }
1056 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1057
1058 /*
1059 * nfs_scan_commit - Scan an inode for commit requests
1060 * @inode: NFS inode to scan
1061 * @dst: mds destination list
1062 * @cinfo: mds and ds lists of reqs ready to commit
1063 *
1064 * Moves requests from the inode's 'commit' request list.
1065 * The requests are *not* checked to ensure that they form a contiguous set.
1066 */
1067 int
nfs_scan_commit(struct inode * inode,struct list_head * dst,struct nfs_commit_info * cinfo)1068 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1069 struct nfs_commit_info *cinfo)
1070 {
1071 int ret = 0;
1072
1073 if (!atomic_long_read(&cinfo->mds->ncommit))
1074 return 0;
1075 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1076 if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1077 const int max = INT_MAX;
1078
1079 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1080 cinfo, max);
1081 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1082 }
1083 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1084 return ret;
1085 }
1086
1087 /*
1088 * Search for an existing write request, and attempt to update
1089 * it to reflect a new dirty region on a given page.
1090 *
1091 * If the attempt fails, then the existing request is flushed out
1092 * to disk.
1093 */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)1094 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1095 struct page *page,
1096 unsigned int offset,
1097 unsigned int bytes)
1098 {
1099 struct nfs_page *req;
1100 unsigned int rqend;
1101 unsigned int end;
1102 int error;
1103
1104 end = offset + bytes;
1105
1106 req = nfs_lock_and_join_requests(page);
1107 if (IS_ERR_OR_NULL(req))
1108 return req;
1109
1110 rqend = req->wb_offset + req->wb_bytes;
1111 /*
1112 * Tell the caller to flush out the request if
1113 * the offsets are non-contiguous.
1114 * Note: nfs_flush_incompatible() will already
1115 * have flushed out requests having wrong owners.
1116 */
1117 if (offset > rqend || end < req->wb_offset)
1118 goto out_flushme;
1119
1120 /* Okay, the request matches. Update the region */
1121 if (offset < req->wb_offset) {
1122 req->wb_offset = offset;
1123 req->wb_pgbase = offset;
1124 }
1125 if (end > rqend)
1126 req->wb_bytes = end - req->wb_offset;
1127 else
1128 req->wb_bytes = rqend - req->wb_offset;
1129 req->wb_nio = 0;
1130 return req;
1131 out_flushme:
1132 /*
1133 * Note: we mark the request dirty here because
1134 * nfs_lock_and_join_requests() cannot preserve
1135 * commit flags, so we have to replay the write.
1136 */
1137 nfs_mark_request_dirty(req);
1138 nfs_unlock_and_release_request(req);
1139 error = nfs_wb_page(inode, page);
1140 return (error < 0) ? ERR_PTR(error) : NULL;
1141 }
1142
1143 /*
1144 * Try to update an existing write request, or create one if there is none.
1145 *
1146 * Note: Should always be called with the Page Lock held to prevent races
1147 * if we have to add a new request. Also assumes that the caller has
1148 * already called nfs_flush_incompatible() if necessary.
1149 */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)1150 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1151 struct page *page, unsigned int offset, unsigned int bytes)
1152 {
1153 struct inode *inode = page_file_mapping(page)->host;
1154 struct nfs_page *req;
1155
1156 req = nfs_try_to_update_request(inode, page, offset, bytes);
1157 if (req != NULL)
1158 goto out;
1159 req = nfs_create_request(ctx, page, offset, bytes);
1160 if (IS_ERR(req))
1161 goto out;
1162 nfs_inode_add_request(inode, req);
1163 out:
1164 return req;
1165 }
1166
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)1167 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1168 unsigned int offset, unsigned int count)
1169 {
1170 struct nfs_page *req;
1171
1172 req = nfs_setup_write_request(ctx, page, offset, count);
1173 if (IS_ERR(req))
1174 return PTR_ERR(req);
1175 /* Update file length */
1176 nfs_grow_file(page, offset, count);
1177 nfs_mark_uptodate(req);
1178 nfs_mark_request_dirty(req);
1179 nfs_unlock_and_release_request(req);
1180 return 0;
1181 }
1182
nfs_flush_incompatible(struct file * file,struct page * page)1183 int nfs_flush_incompatible(struct file *file, struct page *page)
1184 {
1185 struct nfs_open_context *ctx = nfs_file_open_context(file);
1186 struct nfs_lock_context *l_ctx;
1187 struct file_lock_context *flctx = file_inode(file)->i_flctx;
1188 struct nfs_page *req;
1189 int do_flush, status;
1190 /*
1191 * Look for a request corresponding to this page. If there
1192 * is one, and it belongs to another file, we flush it out
1193 * before we try to copy anything into the page. Do this
1194 * due to the lack of an ACCESS-type call in NFSv2.
1195 * Also do the same if we find a request from an existing
1196 * dropped page.
1197 */
1198 do {
1199 req = nfs_page_find_head_request(page);
1200 if (req == NULL)
1201 return 0;
1202 l_ctx = req->wb_lock_context;
1203 do_flush = req->wb_page != page ||
1204 !nfs_match_open_context(nfs_req_openctx(req), ctx);
1205 if (l_ctx && flctx &&
1206 !(list_empty_careful(&flctx->flc_posix) &&
1207 list_empty_careful(&flctx->flc_flock))) {
1208 do_flush |= l_ctx->lockowner != current->files;
1209 }
1210 nfs_release_request(req);
1211 if (!do_flush)
1212 return 0;
1213 status = nfs_wb_page(page_file_mapping(page)->host, page);
1214 } while (status == 0);
1215 return status;
1216 }
1217
1218 /*
1219 * Avoid buffered writes when a open context credential's key would
1220 * expire soon.
1221 *
1222 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1223 *
1224 * Return 0 and set a credential flag which triggers the inode to flush
1225 * and performs NFS_FILE_SYNC writes if the key will expired within
1226 * RPC_KEY_EXPIRE_TIMEO.
1227 */
1228 int
nfs_key_timeout_notify(struct file * filp,struct inode * inode)1229 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1230 {
1231 struct nfs_open_context *ctx = nfs_file_open_context(filp);
1232
1233 if (nfs_ctx_key_to_expire(ctx, inode) &&
1234 !rcu_access_pointer(ctx->ll_cred))
1235 /* Already expired! */
1236 return -EACCES;
1237 return 0;
1238 }
1239
1240 /*
1241 * Test if the open context credential key is marked to expire soon.
1242 */
nfs_ctx_key_to_expire(struct nfs_open_context * ctx,struct inode * inode)1243 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1244 {
1245 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1246 struct rpc_cred *cred, *new, *old = NULL;
1247 struct auth_cred acred = {
1248 .cred = ctx->cred,
1249 };
1250 bool ret = false;
1251
1252 rcu_read_lock();
1253 cred = rcu_dereference(ctx->ll_cred);
1254 if (cred && !(cred->cr_ops->crkey_timeout &&
1255 cred->cr_ops->crkey_timeout(cred)))
1256 goto out;
1257 rcu_read_unlock();
1258
1259 new = auth->au_ops->lookup_cred(auth, &acred, 0);
1260 if (new == cred) {
1261 put_rpccred(new);
1262 return true;
1263 }
1264 if (IS_ERR_OR_NULL(new)) {
1265 new = NULL;
1266 ret = true;
1267 } else if (new->cr_ops->crkey_timeout &&
1268 new->cr_ops->crkey_timeout(new))
1269 ret = true;
1270
1271 rcu_read_lock();
1272 old = rcu_dereference_protected(xchg(&ctx->ll_cred,
1273 RCU_INITIALIZER(new)), 1);
1274 out:
1275 rcu_read_unlock();
1276 put_rpccred(old);
1277 return ret;
1278 }
1279
1280 /*
1281 * If the page cache is marked as unsafe or invalid, then we can't rely on
1282 * the PageUptodate() flag. In this case, we will need to turn off
1283 * write optimisations that depend on the page contents being correct.
1284 */
nfs_write_pageuptodate(struct page * page,struct inode * inode,unsigned int pagelen)1285 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode,
1286 unsigned int pagelen)
1287 {
1288 struct nfs_inode *nfsi = NFS_I(inode);
1289
1290 if (nfs_have_delegated_attributes(inode))
1291 goto out;
1292 if (nfsi->cache_validity &
1293 (NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE))
1294 return false;
1295 smp_rmb();
1296 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags) && pagelen != 0)
1297 return false;
1298 out:
1299 if (nfsi->cache_validity & NFS_INO_INVALID_DATA && pagelen != 0)
1300 return false;
1301 return PageUptodate(page) != 0;
1302 }
1303
1304 static bool
is_whole_file_wrlock(struct file_lock * fl)1305 is_whole_file_wrlock(struct file_lock *fl)
1306 {
1307 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1308 fl->fl_type == F_WRLCK;
1309 }
1310
1311 /* If we know the page is up to date, and we're not using byte range locks (or
1312 * if we have the whole file locked for writing), it may be more efficient to
1313 * extend the write to cover the entire page in order to avoid fragmentation
1314 * inefficiencies.
1315 *
1316 * If the file is opened for synchronous writes then we can just skip the rest
1317 * of the checks.
1318 */
nfs_can_extend_write(struct file * file,struct page * page,struct inode * inode,unsigned int pagelen)1319 static int nfs_can_extend_write(struct file *file, struct page *page,
1320 struct inode *inode, unsigned int pagelen)
1321 {
1322 int ret;
1323 struct file_lock_context *flctx = inode->i_flctx;
1324 struct file_lock *fl;
1325
1326 if (file->f_flags & O_DSYNC)
1327 return 0;
1328 if (!nfs_write_pageuptodate(page, inode, pagelen))
1329 return 0;
1330 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1331 return 1;
1332 if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1333 list_empty_careful(&flctx->flc_posix)))
1334 return 1;
1335
1336 /* Check to see if there are whole file write locks */
1337 ret = 0;
1338 spin_lock(&flctx->flc_lock);
1339 if (!list_empty(&flctx->flc_posix)) {
1340 fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1341 fl_list);
1342 if (is_whole_file_wrlock(fl))
1343 ret = 1;
1344 } else if (!list_empty(&flctx->flc_flock)) {
1345 fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1346 fl_list);
1347 if (fl->fl_type == F_WRLCK)
1348 ret = 1;
1349 }
1350 spin_unlock(&flctx->flc_lock);
1351 return ret;
1352 }
1353
1354 /*
1355 * Update and possibly write a cached page of an NFS file.
1356 *
1357 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1358 * things with a page scheduled for an RPC call (e.g. invalidate it).
1359 */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)1360 int nfs_updatepage(struct file *file, struct page *page,
1361 unsigned int offset, unsigned int count)
1362 {
1363 struct nfs_open_context *ctx = nfs_file_open_context(file);
1364 struct address_space *mapping = page_file_mapping(page);
1365 struct inode *inode = mapping->host;
1366 unsigned int pagelen = nfs_page_length(page);
1367 int status = 0;
1368
1369 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1370
1371 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
1372 file, count, (long long)(page_file_offset(page) + offset));
1373
1374 if (!count)
1375 goto out;
1376
1377 if (nfs_can_extend_write(file, page, inode, pagelen)) {
1378 count = max(count + offset, pagelen);
1379 offset = 0;
1380 }
1381
1382 status = nfs_writepage_setup(ctx, page, offset, count);
1383 if (status < 0)
1384 nfs_set_pageerror(mapping);
1385 out:
1386 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
1387 status, (long long)i_size_read(inode));
1388 return status;
1389 }
1390
flush_task_priority(int how)1391 static int flush_task_priority(int how)
1392 {
1393 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1394 case FLUSH_HIGHPRI:
1395 return RPC_PRIORITY_HIGH;
1396 case FLUSH_LOWPRI:
1397 return RPC_PRIORITY_LOW;
1398 }
1399 return RPC_PRIORITY_NORMAL;
1400 }
1401
nfs_initiate_write(struct nfs_pgio_header * hdr,struct rpc_message * msg,const struct nfs_rpc_ops * rpc_ops,struct rpc_task_setup * task_setup_data,int how)1402 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1403 struct rpc_message *msg,
1404 const struct nfs_rpc_ops *rpc_ops,
1405 struct rpc_task_setup *task_setup_data, int how)
1406 {
1407 int priority = flush_task_priority(how);
1408
1409 if (IS_SWAPFILE(hdr->inode))
1410 task_setup_data->flags |= RPC_TASK_SWAPPER;
1411 task_setup_data->priority = priority;
1412 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1413 trace_nfs_initiate_write(hdr);
1414 }
1415
1416 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1417 * call this on each, which will prepare them to be retried on next
1418 * writeback using standard nfs.
1419 */
nfs_redirty_request(struct nfs_page * req)1420 static void nfs_redirty_request(struct nfs_page *req)
1421 {
1422 struct nfs_inode *nfsi = NFS_I(page_file_mapping(req->wb_page)->host);
1423
1424 /* Bump the transmission count */
1425 req->wb_nio++;
1426 nfs_mark_request_dirty(req);
1427 atomic_long_inc(&nfsi->redirtied_pages);
1428 nfs_end_page_writeback(req);
1429 nfs_release_request(req);
1430 }
1431
nfs_async_write_error(struct list_head * head,int error)1432 static void nfs_async_write_error(struct list_head *head, int error)
1433 {
1434 struct nfs_page *req;
1435
1436 while (!list_empty(head)) {
1437 req = nfs_list_entry(head->next);
1438 nfs_list_remove_request(req);
1439 if (nfs_error_is_fatal_on_server(error))
1440 nfs_write_error(req, error);
1441 else
1442 nfs_redirty_request(req);
1443 }
1444 }
1445
nfs_async_write_reschedule_io(struct nfs_pgio_header * hdr)1446 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1447 {
1448 nfs_async_write_error(&hdr->pages, 0);
1449 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1450 hdr->args.offset + hdr->args.count - 1);
1451 }
1452
1453 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1454 .init_hdr = nfs_async_write_init,
1455 .error_cleanup = nfs_async_write_error,
1456 .completion = nfs_write_completion,
1457 .reschedule_io = nfs_async_write_reschedule_io,
1458 };
1459
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags,bool force_mds,const struct nfs_pgio_completion_ops * compl_ops)1460 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1461 struct inode *inode, int ioflags, bool force_mds,
1462 const struct nfs_pgio_completion_ops *compl_ops)
1463 {
1464 struct nfs_server *server = NFS_SERVER(inode);
1465 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1466
1467 #ifdef CONFIG_NFS_V4_1
1468 if (server->pnfs_curr_ld && !force_mds)
1469 pg_ops = server->pnfs_curr_ld->pg_write_ops;
1470 #endif
1471 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1472 server->wsize, ioflags);
1473 }
1474 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1475
nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor * pgio)1476 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1477 {
1478 struct nfs_pgio_mirror *mirror;
1479
1480 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1481 pgio->pg_ops->pg_cleanup(pgio);
1482
1483 pgio->pg_ops = &nfs_pgio_rw_ops;
1484
1485 nfs_pageio_stop_mirroring(pgio);
1486
1487 mirror = &pgio->pg_mirrors[0];
1488 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1489 }
1490 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1491
1492
nfs_commit_prepare(struct rpc_task * task,void * calldata)1493 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1494 {
1495 struct nfs_commit_data *data = calldata;
1496
1497 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1498 }
1499
1500 /*
1501 * Special version of should_remove_suid() that ignores capabilities.
1502 */
nfs_should_remove_suid(const struct inode * inode)1503 static int nfs_should_remove_suid(const struct inode *inode)
1504 {
1505 umode_t mode = inode->i_mode;
1506 int kill = 0;
1507
1508 /* suid always must be killed */
1509 if (unlikely(mode & S_ISUID))
1510 kill = ATTR_KILL_SUID;
1511
1512 /*
1513 * sgid without any exec bits is just a mandatory locking mark; leave
1514 * it alone. If some exec bits are set, it's a real sgid; kill it.
1515 */
1516 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1517 kill |= ATTR_KILL_SGID;
1518
1519 if (unlikely(kill && S_ISREG(mode)))
1520 return kill;
1521
1522 return 0;
1523 }
1524
nfs_writeback_check_extend(struct nfs_pgio_header * hdr,struct nfs_fattr * fattr)1525 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1526 struct nfs_fattr *fattr)
1527 {
1528 struct nfs_pgio_args *argp = &hdr->args;
1529 struct nfs_pgio_res *resp = &hdr->res;
1530 u64 size = argp->offset + resp->count;
1531
1532 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1533 fattr->size = size;
1534 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1535 fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1536 return;
1537 }
1538 if (size != fattr->size)
1539 return;
1540 /* Set attribute barrier */
1541 nfs_fattr_set_barrier(fattr);
1542 /* ...and update size */
1543 fattr->valid |= NFS_ATTR_FATTR_SIZE;
1544 }
1545
nfs_writeback_update_inode(struct nfs_pgio_header * hdr)1546 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1547 {
1548 struct nfs_fattr *fattr = &hdr->fattr;
1549 struct inode *inode = hdr->inode;
1550
1551 spin_lock(&inode->i_lock);
1552 nfs_writeback_check_extend(hdr, fattr);
1553 nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1554 spin_unlock(&inode->i_lock);
1555 }
1556 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1557
1558 /*
1559 * This function is called when the WRITE call is complete.
1560 */
nfs_writeback_done(struct rpc_task * task,struct nfs_pgio_header * hdr,struct inode * inode)1561 static int nfs_writeback_done(struct rpc_task *task,
1562 struct nfs_pgio_header *hdr,
1563 struct inode *inode)
1564 {
1565 int status;
1566
1567 /*
1568 * ->write_done will attempt to use post-op attributes to detect
1569 * conflicting writes by other clients. A strict interpretation
1570 * of close-to-open would allow us to continue caching even if
1571 * another writer had changed the file, but some applications
1572 * depend on tighter cache coherency when writing.
1573 */
1574 status = NFS_PROTO(inode)->write_done(task, hdr);
1575 if (status != 0)
1576 return status;
1577
1578 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1579 trace_nfs_writeback_done(task, hdr);
1580
1581 if (hdr->res.verf->committed < hdr->args.stable &&
1582 task->tk_status >= 0) {
1583 /* We tried a write call, but the server did not
1584 * commit data to stable storage even though we
1585 * requested it.
1586 * Note: There is a known bug in Tru64 < 5.0 in which
1587 * the server reports NFS_DATA_SYNC, but performs
1588 * NFS_FILE_SYNC. We therefore implement this checking
1589 * as a dprintk() in order to avoid filling syslog.
1590 */
1591 static unsigned long complain;
1592
1593 /* Note this will print the MDS for a DS write */
1594 if (time_before(complain, jiffies)) {
1595 dprintk("NFS: faulty NFS server %s:"
1596 " (committed = %d) != (stable = %d)\n",
1597 NFS_SERVER(inode)->nfs_client->cl_hostname,
1598 hdr->res.verf->committed, hdr->args.stable);
1599 complain = jiffies + 300 * HZ;
1600 }
1601 }
1602
1603 /* Deal with the suid/sgid bit corner case */
1604 if (nfs_should_remove_suid(inode)) {
1605 spin_lock(&inode->i_lock);
1606 nfs_set_cache_invalid(inode, NFS_INO_INVALID_MODE);
1607 spin_unlock(&inode->i_lock);
1608 }
1609 return 0;
1610 }
1611
1612 /*
1613 * This function is called when the WRITE call is complete.
1614 */
nfs_writeback_result(struct rpc_task * task,struct nfs_pgio_header * hdr)1615 static void nfs_writeback_result(struct rpc_task *task,
1616 struct nfs_pgio_header *hdr)
1617 {
1618 struct nfs_pgio_args *argp = &hdr->args;
1619 struct nfs_pgio_res *resp = &hdr->res;
1620
1621 if (resp->count < argp->count) {
1622 static unsigned long complain;
1623
1624 /* This a short write! */
1625 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1626
1627 /* Has the server at least made some progress? */
1628 if (resp->count == 0) {
1629 if (time_before(complain, jiffies)) {
1630 printk(KERN_WARNING
1631 "NFS: Server wrote zero bytes, expected %u.\n",
1632 argp->count);
1633 complain = jiffies + 300 * HZ;
1634 }
1635 nfs_set_pgio_error(hdr, -EIO, argp->offset);
1636 task->tk_status = -EIO;
1637 return;
1638 }
1639
1640 /* For non rpc-based layout drivers, retry-through-MDS */
1641 if (!task->tk_ops) {
1642 hdr->pnfs_error = -EAGAIN;
1643 return;
1644 }
1645
1646 /* Was this an NFSv2 write or an NFSv3 stable write? */
1647 if (resp->verf->committed != NFS_UNSTABLE) {
1648 /* Resend from where the server left off */
1649 hdr->mds_offset += resp->count;
1650 argp->offset += resp->count;
1651 argp->pgbase += resp->count;
1652 argp->count -= resp->count;
1653 } else {
1654 /* Resend as a stable write in order to avoid
1655 * headaches in the case of a server crash.
1656 */
1657 argp->stable = NFS_FILE_SYNC;
1658 }
1659 resp->count = 0;
1660 resp->verf->committed = 0;
1661 rpc_restart_call_prepare(task);
1662 }
1663 }
1664
wait_on_commit(struct nfs_mds_commit_info * cinfo)1665 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1666 {
1667 return wait_var_event_killable(&cinfo->rpcs_out,
1668 !atomic_read(&cinfo->rpcs_out));
1669 }
1670
nfs_commit_begin(struct nfs_mds_commit_info * cinfo)1671 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1672 {
1673 atomic_inc(&cinfo->rpcs_out);
1674 }
1675
nfs_commit_end(struct nfs_mds_commit_info * cinfo)1676 bool nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1677 {
1678 if (atomic_dec_and_test(&cinfo->rpcs_out)) {
1679 wake_up_var(&cinfo->rpcs_out);
1680 return true;
1681 }
1682 return false;
1683 }
1684
nfs_commitdata_release(struct nfs_commit_data * data)1685 void nfs_commitdata_release(struct nfs_commit_data *data)
1686 {
1687 put_nfs_open_context(data->context);
1688 nfs_commit_free(data);
1689 }
1690 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1691
nfs_initiate_commit(struct rpc_clnt * clnt,struct nfs_commit_data * data,const struct nfs_rpc_ops * nfs_ops,const struct rpc_call_ops * call_ops,int how,int flags)1692 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1693 const struct nfs_rpc_ops *nfs_ops,
1694 const struct rpc_call_ops *call_ops,
1695 int how, int flags)
1696 {
1697 struct rpc_task *task;
1698 int priority = flush_task_priority(how);
1699 struct rpc_message msg = {
1700 .rpc_argp = &data->args,
1701 .rpc_resp = &data->res,
1702 .rpc_cred = data->cred,
1703 };
1704 struct rpc_task_setup task_setup_data = {
1705 .task = &data->task,
1706 .rpc_client = clnt,
1707 .rpc_message = &msg,
1708 .callback_ops = call_ops,
1709 .callback_data = data,
1710 .workqueue = nfsiod_workqueue,
1711 .flags = RPC_TASK_ASYNC | flags,
1712 .priority = priority,
1713 };
1714
1715 if (nfs_server_capable(data->inode, NFS_CAP_MOVEABLE))
1716 task_setup_data.flags |= RPC_TASK_MOVEABLE;
1717
1718 /* Set up the initial task struct. */
1719 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1720 trace_nfs_initiate_commit(data);
1721
1722 dprintk("NFS: initiated commit call\n");
1723
1724 task = rpc_run_task(&task_setup_data);
1725 if (IS_ERR(task))
1726 return PTR_ERR(task);
1727 if (how & FLUSH_SYNC)
1728 rpc_wait_for_completion_task(task);
1729 rpc_put_task(task);
1730 return 0;
1731 }
1732 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1733
nfs_get_lwb(struct list_head * head)1734 static loff_t nfs_get_lwb(struct list_head *head)
1735 {
1736 loff_t lwb = 0;
1737 struct nfs_page *req;
1738
1739 list_for_each_entry(req, head, wb_list)
1740 if (lwb < (req_offset(req) + req->wb_bytes))
1741 lwb = req_offset(req) + req->wb_bytes;
1742
1743 return lwb;
1744 }
1745
1746 /*
1747 * Set up the argument/result storage required for the RPC call.
1748 */
nfs_init_commit(struct nfs_commit_data * data,struct list_head * head,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo)1749 void nfs_init_commit(struct nfs_commit_data *data,
1750 struct list_head *head,
1751 struct pnfs_layout_segment *lseg,
1752 struct nfs_commit_info *cinfo)
1753 {
1754 struct nfs_page *first;
1755 struct nfs_open_context *ctx;
1756 struct inode *inode;
1757
1758 /* Set up the RPC argument and reply structs
1759 * NB: take care not to mess about with data->commit et al. */
1760
1761 if (head)
1762 list_splice_init(head, &data->pages);
1763
1764 first = nfs_list_entry(data->pages.next);
1765 ctx = nfs_req_openctx(first);
1766 inode = d_inode(ctx->dentry);
1767
1768 data->inode = inode;
1769 data->cred = ctx->cred;
1770 data->lseg = lseg; /* reference transferred */
1771 /* only set lwb for pnfs commit */
1772 if (lseg)
1773 data->lwb = nfs_get_lwb(&data->pages);
1774 data->mds_ops = &nfs_commit_ops;
1775 data->completion_ops = cinfo->completion_ops;
1776 data->dreq = cinfo->dreq;
1777
1778 data->args.fh = NFS_FH(data->inode);
1779 /* Note: we always request a commit of the entire inode */
1780 data->args.offset = 0;
1781 data->args.count = 0;
1782 data->context = get_nfs_open_context(ctx);
1783 data->res.fattr = &data->fattr;
1784 data->res.verf = &data->verf;
1785 nfs_fattr_init(&data->fattr);
1786 nfs_commit_begin(cinfo->mds);
1787 }
1788 EXPORT_SYMBOL_GPL(nfs_init_commit);
1789
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)1790 void nfs_retry_commit(struct list_head *page_list,
1791 struct pnfs_layout_segment *lseg,
1792 struct nfs_commit_info *cinfo,
1793 u32 ds_commit_idx)
1794 {
1795 struct nfs_page *req;
1796
1797 while (!list_empty(page_list)) {
1798 req = nfs_list_entry(page_list->next);
1799 nfs_list_remove_request(req);
1800 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1801 if (!cinfo->dreq)
1802 nfs_clear_page_commit(req->wb_page);
1803 nfs_unlock_and_release_request(req);
1804 }
1805 }
1806 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1807
1808 static void
nfs_commit_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)1809 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1810 struct nfs_page *req)
1811 {
1812 __set_page_dirty_nobuffers(req->wb_page);
1813 }
1814
1815 /*
1816 * Commit dirty pages
1817 */
1818 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1819 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1820 struct nfs_commit_info *cinfo)
1821 {
1822 struct nfs_commit_data *data;
1823 unsigned short task_flags = 0;
1824
1825 /* another commit raced with us */
1826 if (list_empty(head))
1827 return 0;
1828
1829 data = nfs_commitdata_alloc();
1830 if (!data) {
1831 nfs_retry_commit(head, NULL, cinfo, -1);
1832 return -ENOMEM;
1833 }
1834
1835 /* Set up the argument struct */
1836 nfs_init_commit(data, head, NULL, cinfo);
1837 if (NFS_SERVER(inode)->nfs_client->cl_minorversion)
1838 task_flags = RPC_TASK_MOVEABLE;
1839 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1840 data->mds_ops, how,
1841 RPC_TASK_CRED_NOREF | task_flags);
1842 }
1843
1844 /*
1845 * COMMIT call returned
1846 */
nfs_commit_done(struct rpc_task * task,void * calldata)1847 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1848 {
1849 struct nfs_commit_data *data = calldata;
1850
1851 /* Call the NFS version-specific code */
1852 NFS_PROTO(data->inode)->commit_done(task, data);
1853 trace_nfs_commit_done(task, data);
1854 }
1855
nfs_commit_release_pages(struct nfs_commit_data * data)1856 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1857 {
1858 const struct nfs_writeverf *verf = data->res.verf;
1859 struct nfs_page *req;
1860 int status = data->task.tk_status;
1861 struct nfs_commit_info cinfo;
1862 struct nfs_server *nfss;
1863
1864 while (!list_empty(&data->pages)) {
1865 req = nfs_list_entry(data->pages.next);
1866 nfs_list_remove_request(req);
1867 if (req->wb_page)
1868 nfs_clear_page_commit(req->wb_page);
1869
1870 dprintk("NFS: commit (%s/%llu %d@%lld)",
1871 nfs_req_openctx(req)->dentry->d_sb->s_id,
1872 (unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1873 req->wb_bytes,
1874 (long long)req_offset(req));
1875 if (status < 0) {
1876 if (req->wb_page) {
1877 trace_nfs_commit_error(req, status);
1878 nfs_mapping_set_error(req->wb_page, status);
1879 nfs_inode_remove_request(req);
1880 }
1881 dprintk_cont(", error = %d\n", status);
1882 goto next;
1883 }
1884
1885 /* Okay, COMMIT succeeded, apparently. Check the verifier
1886 * returned by the server against all stored verfs. */
1887 if (nfs_write_match_verf(verf, req)) {
1888 /* We have a match */
1889 if (req->wb_page)
1890 nfs_inode_remove_request(req);
1891 dprintk_cont(" OK\n");
1892 goto next;
1893 }
1894 /* We have a mismatch. Write the page again */
1895 dprintk_cont(" mismatch\n");
1896 nfs_mark_request_dirty(req);
1897 atomic_long_inc(&NFS_I(data->inode)->redirtied_pages);
1898 next:
1899 nfs_unlock_and_release_request(req);
1900 /* Latency breaker */
1901 cond_resched();
1902 }
1903 nfss = NFS_SERVER(data->inode);
1904 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1905 nfss->write_congested = 0;
1906
1907 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1908 nfs_commit_end(cinfo.mds);
1909 }
1910
nfs_commit_release(void * calldata)1911 static void nfs_commit_release(void *calldata)
1912 {
1913 struct nfs_commit_data *data = calldata;
1914
1915 data->completion_ops->completion(data);
1916 nfs_commitdata_release(calldata);
1917 }
1918
1919 static const struct rpc_call_ops nfs_commit_ops = {
1920 .rpc_call_prepare = nfs_commit_prepare,
1921 .rpc_call_done = nfs_commit_done,
1922 .rpc_release = nfs_commit_release,
1923 };
1924
1925 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1926 .completion = nfs_commit_release_pages,
1927 .resched_write = nfs_commit_resched_write,
1928 };
1929
nfs_generic_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1930 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1931 int how, struct nfs_commit_info *cinfo)
1932 {
1933 int status;
1934
1935 status = pnfs_commit_list(inode, head, how, cinfo);
1936 if (status == PNFS_NOT_ATTEMPTED)
1937 status = nfs_commit_list(inode, head, how, cinfo);
1938 return status;
1939 }
1940
__nfs_commit_inode(struct inode * inode,int how,struct writeback_control * wbc)1941 static int __nfs_commit_inode(struct inode *inode, int how,
1942 struct writeback_control *wbc)
1943 {
1944 LIST_HEAD(head);
1945 struct nfs_commit_info cinfo;
1946 int may_wait = how & FLUSH_SYNC;
1947 int ret, nscan;
1948
1949 how &= ~FLUSH_SYNC;
1950 nfs_init_cinfo_from_inode(&cinfo, inode);
1951 nfs_commit_begin(cinfo.mds);
1952 for (;;) {
1953 ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1954 if (ret <= 0)
1955 break;
1956 ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1957 if (ret < 0)
1958 break;
1959 ret = 0;
1960 if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1961 if (nscan < wbc->nr_to_write)
1962 wbc->nr_to_write -= nscan;
1963 else
1964 wbc->nr_to_write = 0;
1965 }
1966 if (nscan < INT_MAX)
1967 break;
1968 cond_resched();
1969 }
1970 nfs_commit_end(cinfo.mds);
1971 if (ret || !may_wait)
1972 return ret;
1973 return wait_on_commit(cinfo.mds);
1974 }
1975
nfs_commit_inode(struct inode * inode,int how)1976 int nfs_commit_inode(struct inode *inode, int how)
1977 {
1978 return __nfs_commit_inode(inode, how, NULL);
1979 }
1980 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1981
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1982 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1983 {
1984 struct nfs_inode *nfsi = NFS_I(inode);
1985 int flags = FLUSH_SYNC;
1986 int ret = 0;
1987
1988 if (wbc->sync_mode == WB_SYNC_NONE) {
1989 /* no commits means nothing needs to be done */
1990 if (!atomic_long_read(&nfsi->commit_info.ncommit))
1991 goto check_requests_outstanding;
1992
1993 /* Don't commit yet if this is a non-blocking flush and there
1994 * are a lot of outstanding writes for this mapping.
1995 */
1996 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1997 goto out_mark_dirty;
1998
1999 /* don't wait for the COMMIT response */
2000 flags = 0;
2001 }
2002
2003 ret = __nfs_commit_inode(inode, flags, wbc);
2004 if (!ret) {
2005 if (flags & FLUSH_SYNC)
2006 return 0;
2007 } else if (atomic_long_read(&nfsi->commit_info.ncommit))
2008 goto out_mark_dirty;
2009
2010 check_requests_outstanding:
2011 if (!atomic_read(&nfsi->commit_info.rpcs_out))
2012 return ret;
2013 out_mark_dirty:
2014 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
2015 return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(nfs_write_inode);
2018
2019 /*
2020 * Wrapper for filemap_write_and_wait_range()
2021 *
2022 * Needed for pNFS in order to ensure data becomes visible to the
2023 * client.
2024 */
nfs_filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)2025 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
2026 loff_t lstart, loff_t lend)
2027 {
2028 int ret;
2029
2030 ret = filemap_write_and_wait_range(mapping, lstart, lend);
2031 if (ret == 0)
2032 ret = pnfs_sync_inode(mapping->host, true);
2033 return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2036
2037 /*
2038 * flush the inode to disk.
2039 */
nfs_wb_all(struct inode * inode)2040 int nfs_wb_all(struct inode *inode)
2041 {
2042 int ret;
2043
2044 trace_nfs_writeback_inode_enter(inode);
2045
2046 ret = filemap_write_and_wait(inode->i_mapping);
2047 if (ret)
2048 goto out;
2049 ret = nfs_commit_inode(inode, FLUSH_SYNC);
2050 if (ret < 0)
2051 goto out;
2052 pnfs_sync_inode(inode, true);
2053 ret = 0;
2054
2055 out:
2056 trace_nfs_writeback_inode_exit(inode, ret);
2057 return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(nfs_wb_all);
2060
nfs_wb_folio_cancel(struct inode * inode,struct folio * folio)2061 int nfs_wb_folio_cancel(struct inode *inode, struct folio *folio)
2062 {
2063 struct nfs_page *req;
2064 int ret = 0;
2065
2066 folio_wait_writeback(folio);
2067
2068 /* blocking call to cancel all requests and join to a single (head)
2069 * request */
2070 req = nfs_lock_and_join_requests(&folio->page);
2071
2072 if (IS_ERR(req)) {
2073 ret = PTR_ERR(req);
2074 } else if (req) {
2075 /* all requests from this folio have been cancelled by
2076 * nfs_lock_and_join_requests, so just remove the head
2077 * request from the inode / page_private pointer and
2078 * release it */
2079 nfs_inode_remove_request(req);
2080 nfs_unlock_and_release_request(req);
2081 }
2082
2083 return ret;
2084 }
2085
2086 /*
2087 * Write back all requests on one page - we do this before reading it.
2088 */
nfs_wb_page(struct inode * inode,struct page * page)2089 int nfs_wb_page(struct inode *inode, struct page *page)
2090 {
2091 loff_t range_start = page_file_offset(page);
2092 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2093 struct writeback_control wbc = {
2094 .sync_mode = WB_SYNC_ALL,
2095 .nr_to_write = 0,
2096 .range_start = range_start,
2097 .range_end = range_end,
2098 };
2099 int ret;
2100
2101 trace_nfs_writeback_page_enter(inode);
2102
2103 for (;;) {
2104 wait_on_page_writeback(page);
2105 if (clear_page_dirty_for_io(page)) {
2106 ret = nfs_writepage_locked(page, &wbc);
2107 if (ret < 0)
2108 goto out_error;
2109 continue;
2110 }
2111 ret = 0;
2112 if (!PagePrivate(page))
2113 break;
2114 ret = nfs_commit_inode(inode, FLUSH_SYNC);
2115 if (ret < 0)
2116 goto out_error;
2117 }
2118 out_error:
2119 trace_nfs_writeback_page_exit(inode, ret);
2120 return ret;
2121 }
2122
2123 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2124 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2125 struct page *page, enum migrate_mode mode)
2126 {
2127 /*
2128 * If PagePrivate is set, then the page is currently associated with
2129 * an in-progress read or write request. Don't try to migrate it.
2130 *
2131 * FIXME: we could do this in principle, but we'll need a way to ensure
2132 * that we can safely release the inode reference while holding
2133 * the page lock.
2134 */
2135 if (PagePrivate(page))
2136 return -EBUSY;
2137
2138 if (PageFsCache(page)) {
2139 if (mode == MIGRATE_ASYNC)
2140 return -EBUSY;
2141 wait_on_page_fscache(page);
2142 }
2143
2144 return migrate_page(mapping, newpage, page, mode);
2145 }
2146 #endif
2147
nfs_init_writepagecache(void)2148 int __init nfs_init_writepagecache(void)
2149 {
2150 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2151 sizeof(struct nfs_pgio_header),
2152 0, SLAB_HWCACHE_ALIGN,
2153 NULL);
2154 if (nfs_wdata_cachep == NULL)
2155 return -ENOMEM;
2156
2157 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2158 nfs_wdata_cachep);
2159 if (nfs_wdata_mempool == NULL)
2160 goto out_destroy_write_cache;
2161
2162 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2163 sizeof(struct nfs_commit_data),
2164 0, SLAB_HWCACHE_ALIGN,
2165 NULL);
2166 if (nfs_cdata_cachep == NULL)
2167 goto out_destroy_write_mempool;
2168
2169 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2170 nfs_cdata_cachep);
2171 if (nfs_commit_mempool == NULL)
2172 goto out_destroy_commit_cache;
2173
2174 /*
2175 * NFS congestion size, scale with available memory.
2176 *
2177 * 64MB: 8192k
2178 * 128MB: 11585k
2179 * 256MB: 16384k
2180 * 512MB: 23170k
2181 * 1GB: 32768k
2182 * 2GB: 46340k
2183 * 4GB: 65536k
2184 * 8GB: 92681k
2185 * 16GB: 131072k
2186 *
2187 * This allows larger machines to have larger/more transfers.
2188 * Limit the default to 256M
2189 */
2190 nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2191 if (nfs_congestion_kb > 256*1024)
2192 nfs_congestion_kb = 256*1024;
2193
2194 return 0;
2195
2196 out_destroy_commit_cache:
2197 kmem_cache_destroy(nfs_cdata_cachep);
2198 out_destroy_write_mempool:
2199 mempool_destroy(nfs_wdata_mempool);
2200 out_destroy_write_cache:
2201 kmem_cache_destroy(nfs_wdata_cachep);
2202 return -ENOMEM;
2203 }
2204
nfs_destroy_writepagecache(void)2205 void nfs_destroy_writepagecache(void)
2206 {
2207 mempool_destroy(nfs_commit_mempool);
2208 kmem_cache_destroy(nfs_cdata_cachep);
2209 mempool_destroy(nfs_wdata_mempool);
2210 kmem_cache_destroy(nfs_wdata_cachep);
2211 }
2212
2213 static const struct nfs_rw_ops nfs_rw_write_ops = {
2214 .rw_alloc_header = nfs_writehdr_alloc,
2215 .rw_free_header = nfs_writehdr_free,
2216 .rw_done = nfs_writeback_done,
2217 .rw_result = nfs_writeback_result,
2218 .rw_initiate = nfs_initiate_write,
2219 };
2220