1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/fsnotify.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/ima.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134
135 result = audit_reusename(filename);
136 if (result)
137 return result;
138
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
142
143 /*
144 * First, try to embed the struct filename inside the names_cache
145 * allocation
146 */
147 kname = (char *)result->iname;
148 result->name = kname;
149
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 if (unlikely(len < 0)) {
152 __putname(result);
153 return ERR_PTR(len);
154 }
155
156 /*
157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 * separate struct filename so we can dedicate the entire
159 * names_cache allocation for the pathname, and re-do the copy from
160 * userland.
161 */
162 if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 const size_t size = offsetof(struct filename, iname[1]);
164 kname = (char *)result;
165
166 /*
167 * size is chosen that way we to guarantee that
168 * result->iname[0] is within the same object and that
169 * kname can't be equal to result->iname, no matter what.
170 */
171 result = kzalloc(size, GFP_KERNEL);
172 if (unlikely(!result)) {
173 __putname(kname);
174 return ERR_PTR(-ENOMEM);
175 }
176 result->name = kname;
177 len = strncpy_from_user(kname, filename, PATH_MAX);
178 if (unlikely(len < 0)) {
179 __putname(kname);
180 kfree(result);
181 return ERR_PTR(len);
182 }
183 if (unlikely(len == PATH_MAX)) {
184 __putname(kname);
185 kfree(result);
186 return ERR_PTR(-ENAMETOOLONG);
187 }
188 }
189
190 result->refcnt = 1;
191 /* The empty path is special. */
192 if (unlikely(!len)) {
193 if (empty)
194 *empty = 1;
195 if (!(flags & LOOKUP_EMPTY)) {
196 putname(result);
197 return ERR_PTR(-ENOENT);
198 }
199 }
200
201 result->uptr = filename;
202 result->aname = NULL;
203 audit_getname(result);
204 return result;
205 }
206
207 struct filename *
getname_uflags(const char __user * filename,int uflags)208 getname_uflags(const char __user *filename, int uflags)
209 {
210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211
212 return getname_flags(filename, flags, NULL);
213 }
214
215 struct filename *
getname(const char __user * filename)216 getname(const char __user * filename)
217 {
218 return getname_flags(filename, 0, NULL);
219 }
220
221 struct filename *
getname_kernel(const char * filename)222 getname_kernel(const char * filename)
223 {
224 struct filename *result;
225 int len = strlen(filename) + 1;
226
227 result = __getname();
228 if (unlikely(!result))
229 return ERR_PTR(-ENOMEM);
230
231 if (len <= EMBEDDED_NAME_MAX) {
232 result->name = (char *)result->iname;
233 } else if (len <= PATH_MAX) {
234 const size_t size = offsetof(struct filename, iname[1]);
235 struct filename *tmp;
236
237 tmp = kmalloc(size, GFP_KERNEL);
238 if (unlikely(!tmp)) {
239 __putname(result);
240 return ERR_PTR(-ENOMEM);
241 }
242 tmp->name = (char *)result;
243 result = tmp;
244 } else {
245 __putname(result);
246 return ERR_PTR(-ENAMETOOLONG);
247 }
248 memcpy((char *)result->name, filename, len);
249 result->uptr = NULL;
250 result->aname = NULL;
251 result->refcnt = 1;
252 audit_getname(result);
253
254 return result;
255 }
256
putname(struct filename * name)257 void putname(struct filename *name)
258 {
259 if (IS_ERR(name))
260 return;
261
262 BUG_ON(name->refcnt <= 0);
263
264 if (--name->refcnt > 0)
265 return;
266
267 if (name->name != name->iname) {
268 __putname(name->name);
269 kfree(name);
270 } else
271 __putname(name);
272 }
273
274 /**
275 * check_acl - perform ACL permission checking
276 * @mnt_userns: user namespace of the mount the inode was found from
277 * @inode: inode to check permissions on
278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
279 *
280 * This function performs the ACL permission checking. Since this function
281 * retrieve POSIX acls it needs to know whether it is called from a blocking or
282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
283 *
284 * If the inode has been found through an idmapped mount the user namespace of
285 * the vfsmount must be passed through @mnt_userns. This function will then take
286 * care to map the inode according to @mnt_userns before checking permissions.
287 * On non-idmapped mounts or if permission checking is to be performed on the
288 * raw inode simply passs init_user_ns.
289 */
check_acl(struct user_namespace * mnt_userns,struct inode * inode,int mask)290 static int check_acl(struct user_namespace *mnt_userns,
291 struct inode *inode, int mask)
292 {
293 #ifdef CONFIG_FS_POSIX_ACL
294 struct posix_acl *acl;
295
296 if (mask & MAY_NOT_BLOCK) {
297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
298 if (!acl)
299 return -EAGAIN;
300 /* no ->get_acl() calls in RCU mode... */
301 if (is_uncached_acl(acl))
302 return -ECHILD;
303 return posix_acl_permission(mnt_userns, inode, acl, mask);
304 }
305
306 acl = get_acl(inode, ACL_TYPE_ACCESS);
307 if (IS_ERR(acl))
308 return PTR_ERR(acl);
309 if (acl) {
310 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
311 posix_acl_release(acl);
312 return error;
313 }
314 #endif
315
316 return -EAGAIN;
317 }
318
319 /**
320 * acl_permission_check - perform basic UNIX permission checking
321 * @mnt_userns: user namespace of the mount the inode was found from
322 * @inode: inode to check permissions on
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
324 *
325 * This function performs the basic UNIX permission checking. Since this
326 * function may retrieve POSIX acls it needs to know whether it is called from a
327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
328 *
329 * If the inode has been found through an idmapped mount the user namespace of
330 * the vfsmount must be passed through @mnt_userns. This function will then take
331 * care to map the inode according to @mnt_userns before checking permissions.
332 * On non-idmapped mounts or if permission checking is to be performed on the
333 * raw inode simply passs init_user_ns.
334 */
acl_permission_check(struct user_namespace * mnt_userns,struct inode * inode,int mask)335 static int acl_permission_check(struct user_namespace *mnt_userns,
336 struct inode *inode, int mask)
337 {
338 unsigned int mode = inode->i_mode;
339 kuid_t i_uid;
340
341 /* Are we the owner? If so, ACL's don't matter */
342 i_uid = i_uid_into_mnt(mnt_userns, inode);
343 if (likely(uid_eq(current_fsuid(), i_uid))) {
344 mask &= 7;
345 mode >>= 6;
346 return (mask & ~mode) ? -EACCES : 0;
347 }
348
349 /* Do we have ACL's? */
350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
351 int error = check_acl(mnt_userns, inode, mask);
352 if (error != -EAGAIN)
353 return error;
354 }
355
356 /* Only RWX matters for group/other mode bits */
357 mask &= 7;
358
359 /*
360 * Are the group permissions different from
361 * the other permissions in the bits we care
362 * about? Need to check group ownership if so.
363 */
364 if (mask & (mode ^ (mode >> 3))) {
365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
366 if (in_group_p(kgid))
367 mode >>= 3;
368 }
369
370 /* Bits in 'mode' clear that we require? */
371 return (mask & ~mode) ? -EACCES : 0;
372 }
373
374 /**
375 * generic_permission - check for access rights on a Posix-like filesystem
376 * @mnt_userns: user namespace of the mount the inode was found from
377 * @inode: inode to check access rights for
378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
379 * %MAY_NOT_BLOCK ...)
380 *
381 * Used to check for read/write/execute permissions on a file.
382 * We use "fsuid" for this, letting us set arbitrary permissions
383 * for filesystem access without changing the "normal" uids which
384 * are used for other things.
385 *
386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
387 * request cannot be satisfied (eg. requires blocking or too much complexity).
388 * It would then be called again in ref-walk mode.
389 *
390 * If the inode has been found through an idmapped mount the user namespace of
391 * the vfsmount must be passed through @mnt_userns. This function will then take
392 * care to map the inode according to @mnt_userns before checking permissions.
393 * On non-idmapped mounts or if permission checking is to be performed on the
394 * raw inode simply passs init_user_ns.
395 */
generic_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
397 int mask)
398 {
399 int ret;
400
401 /*
402 * Do the basic permission checks.
403 */
404 ret = acl_permission_check(mnt_userns, inode, mask);
405 if (ret != -EACCES)
406 return ret;
407
408 if (S_ISDIR(inode->i_mode)) {
409 /* DACs are overridable for directories */
410 if (!(mask & MAY_WRITE))
411 if (capable_wrt_inode_uidgid(mnt_userns, inode,
412 CAP_DAC_READ_SEARCH))
413 return 0;
414 if (capable_wrt_inode_uidgid(mnt_userns, inode,
415 CAP_DAC_OVERRIDE))
416 return 0;
417 return -EACCES;
418 }
419
420 /*
421 * Searching includes executable on directories, else just read.
422 */
423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
424 if (mask == MAY_READ)
425 if (capable_wrt_inode_uidgid(mnt_userns, inode,
426 CAP_DAC_READ_SEARCH))
427 return 0;
428 /*
429 * Read/write DACs are always overridable.
430 * Executable DACs are overridable when there is
431 * at least one exec bit set.
432 */
433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
434 if (capable_wrt_inode_uidgid(mnt_userns, inode,
435 CAP_DAC_OVERRIDE))
436 return 0;
437
438 return -EACCES;
439 }
440 EXPORT_SYMBOL(generic_permission);
441
442 /**
443 * do_inode_permission - UNIX permission checking
444 * @mnt_userns: user namespace of the mount the inode was found from
445 * @inode: inode to check permissions on
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
447 *
448 * We _really_ want to just do "generic_permission()" without
449 * even looking at the inode->i_op values. So we keep a cache
450 * flag in inode->i_opflags, that says "this has not special
451 * permission function, use the fast case".
452 */
do_inode_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)453 static inline int do_inode_permission(struct user_namespace *mnt_userns,
454 struct inode *inode, int mask)
455 {
456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
457 if (likely(inode->i_op->permission))
458 return inode->i_op->permission(mnt_userns, inode, mask);
459
460 /* This gets set once for the inode lifetime */
461 spin_lock(&inode->i_lock);
462 inode->i_opflags |= IOP_FASTPERM;
463 spin_unlock(&inode->i_lock);
464 }
465 return generic_permission(mnt_userns, inode, mask);
466 }
467
468 /**
469 * sb_permission - Check superblock-level permissions
470 * @sb: Superblock of inode to check permission on
471 * @inode: Inode to check permission on
472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
473 *
474 * Separate out file-system wide checks from inode-specific permission checks.
475 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
477 {
478 if (unlikely(mask & MAY_WRITE)) {
479 umode_t mode = inode->i_mode;
480
481 /* Nobody gets write access to a read-only fs. */
482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
483 return -EROFS;
484 }
485 return 0;
486 }
487
488 /**
489 * inode_permission - Check for access rights to a given inode
490 * @mnt_userns: User namespace of the mount the inode was found from
491 * @inode: Inode to check permission on
492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
493 *
494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
495 * this, letting us set arbitrary permissions for filesystem access without
496 * changing the "normal" UIDs which are used for other things.
497 *
498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
499 */
inode_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)500 int inode_permission(struct user_namespace *mnt_userns,
501 struct inode *inode, int mask)
502 {
503 int retval;
504
505 retval = sb_permission(inode->i_sb, inode, mask);
506 if (retval)
507 return retval;
508
509 if (unlikely(mask & MAY_WRITE)) {
510 /*
511 * Nobody gets write access to an immutable file.
512 */
513 if (IS_IMMUTABLE(inode))
514 return -EPERM;
515
516 /*
517 * Updating mtime will likely cause i_uid and i_gid to be
518 * written back improperly if their true value is unknown
519 * to the vfs.
520 */
521 if (HAS_UNMAPPED_ID(mnt_userns, inode))
522 return -EACCES;
523 }
524
525 retval = do_inode_permission(mnt_userns, inode, mask);
526 if (retval)
527 return retval;
528
529 retval = devcgroup_inode_permission(inode, mask);
530 if (retval)
531 return retval;
532
533 return security_inode_permission(inode, mask);
534 }
535 EXPORT_SYMBOL(inode_permission);
536
537 /**
538 * path_get - get a reference to a path
539 * @path: path to get the reference to
540 *
541 * Given a path increment the reference count to the dentry and the vfsmount.
542 */
path_get(const struct path * path)543 void path_get(const struct path *path)
544 {
545 mntget(path->mnt);
546 dget(path->dentry);
547 }
548 EXPORT_SYMBOL(path_get);
549
550 /**
551 * path_put - put a reference to a path
552 * @path: path to put the reference to
553 *
554 * Given a path decrement the reference count to the dentry and the vfsmount.
555 */
path_put(const struct path * path)556 void path_put(const struct path *path)
557 {
558 dput(path->dentry);
559 mntput(path->mnt);
560 }
561 EXPORT_SYMBOL(path_put);
562
563 #define EMBEDDED_LEVELS 2
564 struct nameidata {
565 struct path path;
566 struct qstr last;
567 struct path root;
568 struct inode *inode; /* path.dentry.d_inode */
569 unsigned int flags, state;
570 unsigned seq, m_seq, r_seq;
571 int last_type;
572 unsigned depth;
573 int total_link_count;
574 struct saved {
575 struct path link;
576 struct delayed_call done;
577 const char *name;
578 unsigned seq;
579 } *stack, internal[EMBEDDED_LEVELS];
580 struct filename *name;
581 struct nameidata *saved;
582 unsigned root_seq;
583 int dfd;
584 kuid_t dir_uid;
585 umode_t dir_mode;
586 } __randomize_layout;
587
588 #define ND_ROOT_PRESET 1
589 #define ND_ROOT_GRABBED 2
590 #define ND_JUMPED 4
591
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
593 {
594 struct nameidata *old = current->nameidata;
595 p->stack = p->internal;
596 p->depth = 0;
597 p->dfd = dfd;
598 p->name = name;
599 p->path.mnt = NULL;
600 p->path.dentry = NULL;
601 p->total_link_count = old ? old->total_link_count : 0;
602 p->saved = old;
603 current->nameidata = p;
604 }
605
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
607 const struct path *root)
608 {
609 __set_nameidata(p, dfd, name);
610 p->state = 0;
611 if (unlikely(root)) {
612 p->state = ND_ROOT_PRESET;
613 p->root = *root;
614 }
615 }
616
restore_nameidata(void)617 static void restore_nameidata(void)
618 {
619 struct nameidata *now = current->nameidata, *old = now->saved;
620
621 current->nameidata = old;
622 if (old)
623 old->total_link_count = now->total_link_count;
624 if (now->stack != now->internal)
625 kfree(now->stack);
626 }
627
nd_alloc_stack(struct nameidata * nd)628 static bool nd_alloc_stack(struct nameidata *nd)
629 {
630 struct saved *p;
631
632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
634 if (unlikely(!p))
635 return false;
636 memcpy(p, nd->internal, sizeof(nd->internal));
637 nd->stack = p;
638 return true;
639 }
640
641 /**
642 * path_connected - Verify that a dentry is below mnt.mnt_root
643 *
644 * Rename can sometimes move a file or directory outside of a bind
645 * mount, path_connected allows those cases to be detected.
646 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 struct super_block *sb = mnt->mnt_sb;
650
651 /* Bind mounts can have disconnected paths */
652 if (mnt->mnt_root == sb->s_root)
653 return true;
654
655 return is_subdir(dentry, mnt->mnt_root);
656 }
657
drop_links(struct nameidata * nd)658 static void drop_links(struct nameidata *nd)
659 {
660 int i = nd->depth;
661 while (i--) {
662 struct saved *last = nd->stack + i;
663 do_delayed_call(&last->done);
664 clear_delayed_call(&last->done);
665 }
666 }
667
terminate_walk(struct nameidata * nd)668 static void terminate_walk(struct nameidata *nd)
669 {
670 drop_links(nd);
671 if (!(nd->flags & LOOKUP_RCU)) {
672 int i;
673 path_put(&nd->path);
674 for (i = 0; i < nd->depth; i++)
675 path_put(&nd->stack[i].link);
676 if (nd->state & ND_ROOT_GRABBED) {
677 path_put(&nd->root);
678 nd->state &= ~ND_ROOT_GRABBED;
679 }
680 } else {
681 nd->flags &= ~LOOKUP_RCU;
682 rcu_read_unlock();
683 }
684 nd->depth = 0;
685 nd->path.mnt = NULL;
686 nd->path.dentry = NULL;
687 }
688
689 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
691 {
692 int res = __legitimize_mnt(path->mnt, mseq);
693 if (unlikely(res)) {
694 if (res > 0)
695 path->mnt = NULL;
696 path->dentry = NULL;
697 return false;
698 }
699 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
700 path->dentry = NULL;
701 return false;
702 }
703 return !read_seqcount_retry(&path->dentry->d_seq, seq);
704 }
705
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)706 static inline bool legitimize_path(struct nameidata *nd,
707 struct path *path, unsigned seq)
708 {
709 return __legitimize_path(path, seq, nd->m_seq);
710 }
711
legitimize_links(struct nameidata * nd)712 static bool legitimize_links(struct nameidata *nd)
713 {
714 int i;
715 if (unlikely(nd->flags & LOOKUP_CACHED)) {
716 drop_links(nd);
717 nd->depth = 0;
718 return false;
719 }
720 for (i = 0; i < nd->depth; i++) {
721 struct saved *last = nd->stack + i;
722 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
723 drop_links(nd);
724 nd->depth = i + 1;
725 return false;
726 }
727 }
728 return true;
729 }
730
legitimize_root(struct nameidata * nd)731 static bool legitimize_root(struct nameidata *nd)
732 {
733 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
734 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
735 return true;
736 nd->state |= ND_ROOT_GRABBED;
737 return legitimize_path(nd, &nd->root, nd->root_seq);
738 }
739
740 /*
741 * Path walking has 2 modes, rcu-walk and ref-walk (see
742 * Documentation/filesystems/path-lookup.txt). In situations when we can't
743 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
744 * normal reference counts on dentries and vfsmounts to transition to ref-walk
745 * mode. Refcounts are grabbed at the last known good point before rcu-walk
746 * got stuck, so ref-walk may continue from there. If this is not successful
747 * (eg. a seqcount has changed), then failure is returned and it's up to caller
748 * to restart the path walk from the beginning in ref-walk mode.
749 */
750
751 /**
752 * try_to_unlazy - try to switch to ref-walk mode.
753 * @nd: nameidata pathwalk data
754 * Returns: true on success, false on failure
755 *
756 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
757 * for ref-walk mode.
758 * Must be called from rcu-walk context.
759 * Nothing should touch nameidata between try_to_unlazy() failure and
760 * terminate_walk().
761 */
try_to_unlazy(struct nameidata * nd)762 static bool try_to_unlazy(struct nameidata *nd)
763 {
764 struct dentry *parent = nd->path.dentry;
765
766 BUG_ON(!(nd->flags & LOOKUP_RCU));
767
768 nd->flags &= ~LOOKUP_RCU;
769 if (unlikely(!legitimize_links(nd)))
770 goto out1;
771 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
772 goto out;
773 if (unlikely(!legitimize_root(nd)))
774 goto out;
775 rcu_read_unlock();
776 BUG_ON(nd->inode != parent->d_inode);
777 return true;
778
779 out1:
780 nd->path.mnt = NULL;
781 nd->path.dentry = NULL;
782 out:
783 rcu_read_unlock();
784 return false;
785 }
786
787 /**
788 * try_to_unlazy_next - try to switch to ref-walk mode.
789 * @nd: nameidata pathwalk data
790 * @dentry: next dentry to step into
791 * @seq: seq number to check @dentry against
792 * Returns: true on success, false on failure
793 *
794 * Similar to try_to_unlazy(), but here we have the next dentry already
795 * picked by rcu-walk and want to legitimize that in addition to the current
796 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
797 * Nothing should touch nameidata between try_to_unlazy_next() failure and
798 * terminate_walk().
799 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry,unsigned seq)800 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
801 {
802 BUG_ON(!(nd->flags & LOOKUP_RCU));
803
804 nd->flags &= ~LOOKUP_RCU;
805 if (unlikely(!legitimize_links(nd)))
806 goto out2;
807 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
808 goto out2;
809 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
810 goto out1;
811
812 /*
813 * We need to move both the parent and the dentry from the RCU domain
814 * to be properly refcounted. And the sequence number in the dentry
815 * validates *both* dentry counters, since we checked the sequence
816 * number of the parent after we got the child sequence number. So we
817 * know the parent must still be valid if the child sequence number is
818 */
819 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
820 goto out;
821 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
822 goto out_dput;
823 /*
824 * Sequence counts matched. Now make sure that the root is
825 * still valid and get it if required.
826 */
827 if (unlikely(!legitimize_root(nd)))
828 goto out_dput;
829 rcu_read_unlock();
830 return true;
831
832 out2:
833 nd->path.mnt = NULL;
834 out1:
835 nd->path.dentry = NULL;
836 out:
837 rcu_read_unlock();
838 return false;
839 out_dput:
840 rcu_read_unlock();
841 dput(dentry);
842 return false;
843 }
844
d_revalidate(struct dentry * dentry,unsigned int flags)845 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
846 {
847 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
848 return dentry->d_op->d_revalidate(dentry, flags);
849 else
850 return 1;
851 }
852
853 /**
854 * complete_walk - successful completion of path walk
855 * @nd: pointer nameidata
856 *
857 * If we had been in RCU mode, drop out of it and legitimize nd->path.
858 * Revalidate the final result, unless we'd already done that during
859 * the path walk or the filesystem doesn't ask for it. Return 0 on
860 * success, -error on failure. In case of failure caller does not
861 * need to drop nd->path.
862 */
complete_walk(struct nameidata * nd)863 static int complete_walk(struct nameidata *nd)
864 {
865 struct dentry *dentry = nd->path.dentry;
866 int status;
867
868 if (nd->flags & LOOKUP_RCU) {
869 /*
870 * We don't want to zero nd->root for scoped-lookups or
871 * externally-managed nd->root.
872 */
873 if (!(nd->state & ND_ROOT_PRESET))
874 if (!(nd->flags & LOOKUP_IS_SCOPED))
875 nd->root.mnt = NULL;
876 nd->flags &= ~LOOKUP_CACHED;
877 if (!try_to_unlazy(nd))
878 return -ECHILD;
879 }
880
881 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
882 /*
883 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
884 * ever step outside the root during lookup" and should already
885 * be guaranteed by the rest of namei, we want to avoid a namei
886 * BUG resulting in userspace being given a path that was not
887 * scoped within the root at some point during the lookup.
888 *
889 * So, do a final sanity-check to make sure that in the
890 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
891 * we won't silently return an fd completely outside of the
892 * requested root to userspace.
893 *
894 * Userspace could move the path outside the root after this
895 * check, but as discussed elsewhere this is not a concern (the
896 * resolved file was inside the root at some point).
897 */
898 if (!path_is_under(&nd->path, &nd->root))
899 return -EXDEV;
900 }
901
902 if (likely(!(nd->state & ND_JUMPED)))
903 return 0;
904
905 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
906 return 0;
907
908 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
909 if (status > 0)
910 return 0;
911
912 if (!status)
913 status = -ESTALE;
914
915 return status;
916 }
917
set_root(struct nameidata * nd)918 static int set_root(struct nameidata *nd)
919 {
920 struct fs_struct *fs = current->fs;
921
922 /*
923 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
924 * still have to ensure it doesn't happen because it will cause a breakout
925 * from the dirfd.
926 */
927 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
928 return -ENOTRECOVERABLE;
929
930 if (nd->flags & LOOKUP_RCU) {
931 unsigned seq;
932
933 do {
934 seq = read_seqcount_begin(&fs->seq);
935 nd->root = fs->root;
936 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
937 } while (read_seqcount_retry(&fs->seq, seq));
938 } else {
939 get_fs_root(fs, &nd->root);
940 nd->state |= ND_ROOT_GRABBED;
941 }
942 return 0;
943 }
944
nd_jump_root(struct nameidata * nd)945 static int nd_jump_root(struct nameidata *nd)
946 {
947 if (unlikely(nd->flags & LOOKUP_BENEATH))
948 return -EXDEV;
949 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
950 /* Absolute path arguments to path_init() are allowed. */
951 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
952 return -EXDEV;
953 }
954 if (!nd->root.mnt) {
955 int error = set_root(nd);
956 if (error)
957 return error;
958 }
959 if (nd->flags & LOOKUP_RCU) {
960 struct dentry *d;
961 nd->path = nd->root;
962 d = nd->path.dentry;
963 nd->inode = d->d_inode;
964 nd->seq = nd->root_seq;
965 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
966 return -ECHILD;
967 } else {
968 path_put(&nd->path);
969 nd->path = nd->root;
970 path_get(&nd->path);
971 nd->inode = nd->path.dentry->d_inode;
972 }
973 nd->state |= ND_JUMPED;
974 return 0;
975 }
976
977 /*
978 * Helper to directly jump to a known parsed path from ->get_link,
979 * caller must have taken a reference to path beforehand.
980 */
nd_jump_link(struct path * path)981 int nd_jump_link(struct path *path)
982 {
983 int error = -ELOOP;
984 struct nameidata *nd = current->nameidata;
985
986 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
987 goto err;
988
989 error = -EXDEV;
990 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
991 if (nd->path.mnt != path->mnt)
992 goto err;
993 }
994 /* Not currently safe for scoped-lookups. */
995 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
996 goto err;
997
998 path_put(&nd->path);
999 nd->path = *path;
1000 nd->inode = nd->path.dentry->d_inode;
1001 nd->state |= ND_JUMPED;
1002 return 0;
1003
1004 err:
1005 path_put(path);
1006 return error;
1007 }
1008
put_link(struct nameidata * nd)1009 static inline void put_link(struct nameidata *nd)
1010 {
1011 struct saved *last = nd->stack + --nd->depth;
1012 do_delayed_call(&last->done);
1013 if (!(nd->flags & LOOKUP_RCU))
1014 path_put(&last->link);
1015 }
1016
1017 static int sysctl_protected_symlinks __read_mostly;
1018 static int sysctl_protected_hardlinks __read_mostly;
1019 static int sysctl_protected_fifos __read_mostly;
1020 static int sysctl_protected_regular __read_mostly;
1021
1022 #ifdef CONFIG_SYSCTL
1023 static struct ctl_table namei_sysctls[] = {
1024 {
1025 .procname = "protected_symlinks",
1026 .data = &sysctl_protected_symlinks,
1027 .maxlen = sizeof(int),
1028 .mode = 0644,
1029 .proc_handler = proc_dointvec_minmax,
1030 .extra1 = SYSCTL_ZERO,
1031 .extra2 = SYSCTL_ONE,
1032 },
1033 {
1034 .procname = "protected_hardlinks",
1035 .data = &sysctl_protected_hardlinks,
1036 .maxlen = sizeof(int),
1037 .mode = 0644,
1038 .proc_handler = proc_dointvec_minmax,
1039 .extra1 = SYSCTL_ZERO,
1040 .extra2 = SYSCTL_ONE,
1041 },
1042 {
1043 .procname = "protected_fifos",
1044 .data = &sysctl_protected_fifos,
1045 .maxlen = sizeof(int),
1046 .mode = 0644,
1047 .proc_handler = proc_dointvec_minmax,
1048 .extra1 = SYSCTL_ZERO,
1049 .extra2 = SYSCTL_TWO,
1050 },
1051 {
1052 .procname = "protected_regular",
1053 .data = &sysctl_protected_regular,
1054 .maxlen = sizeof(int),
1055 .mode = 0644,
1056 .proc_handler = proc_dointvec_minmax,
1057 .extra1 = SYSCTL_ZERO,
1058 .extra2 = SYSCTL_TWO,
1059 },
1060 { }
1061 };
1062
init_fs_namei_sysctls(void)1063 static int __init init_fs_namei_sysctls(void)
1064 {
1065 register_sysctl_init("fs", namei_sysctls);
1066 return 0;
1067 }
1068 fs_initcall(init_fs_namei_sysctls);
1069
1070 #endif /* CONFIG_SYSCTL */
1071
1072 /**
1073 * may_follow_link - Check symlink following for unsafe situations
1074 * @nd: nameidata pathwalk data
1075 *
1076 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1077 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1078 * in a sticky world-writable directory. This is to protect privileged
1079 * processes from failing races against path names that may change out
1080 * from under them by way of other users creating malicious symlinks.
1081 * It will permit symlinks to be followed only when outside a sticky
1082 * world-writable directory, or when the uid of the symlink and follower
1083 * match, or when the directory owner matches the symlink's owner.
1084 *
1085 * Returns 0 if following the symlink is allowed, -ve on error.
1086 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1087 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1088 {
1089 struct user_namespace *mnt_userns;
1090 kuid_t i_uid;
1091
1092 if (!sysctl_protected_symlinks)
1093 return 0;
1094
1095 mnt_userns = mnt_user_ns(nd->path.mnt);
1096 i_uid = i_uid_into_mnt(mnt_userns, inode);
1097 /* Allowed if owner and follower match. */
1098 if (uid_eq(current_cred()->fsuid, i_uid))
1099 return 0;
1100
1101 /* Allowed if parent directory not sticky and world-writable. */
1102 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1103 return 0;
1104
1105 /* Allowed if parent directory and link owner match. */
1106 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1107 return 0;
1108
1109 if (nd->flags & LOOKUP_RCU)
1110 return -ECHILD;
1111
1112 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1113 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1114 return -EACCES;
1115 }
1116
1117 /**
1118 * safe_hardlink_source - Check for safe hardlink conditions
1119 * @mnt_userns: user namespace of the mount the inode was found from
1120 * @inode: the source inode to hardlink from
1121 *
1122 * Return false if at least one of the following conditions:
1123 * - inode is not a regular file
1124 * - inode is setuid
1125 * - inode is setgid and group-exec
1126 * - access failure for read and write
1127 *
1128 * Otherwise returns true.
1129 */
safe_hardlink_source(struct user_namespace * mnt_userns,struct inode * inode)1130 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1131 struct inode *inode)
1132 {
1133 umode_t mode = inode->i_mode;
1134
1135 /* Special files should not get pinned to the filesystem. */
1136 if (!S_ISREG(mode))
1137 return false;
1138
1139 /* Setuid files should not get pinned to the filesystem. */
1140 if (mode & S_ISUID)
1141 return false;
1142
1143 /* Executable setgid files should not get pinned to the filesystem. */
1144 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1145 return false;
1146
1147 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1148 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1149 return false;
1150
1151 return true;
1152 }
1153
1154 /**
1155 * may_linkat - Check permissions for creating a hardlink
1156 * @mnt_userns: user namespace of the mount the inode was found from
1157 * @link: the source to hardlink from
1158 *
1159 * Block hardlink when all of:
1160 * - sysctl_protected_hardlinks enabled
1161 * - fsuid does not match inode
1162 * - hardlink source is unsafe (see safe_hardlink_source() above)
1163 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1164 *
1165 * If the inode has been found through an idmapped mount the user namespace of
1166 * the vfsmount must be passed through @mnt_userns. This function will then take
1167 * care to map the inode according to @mnt_userns before checking permissions.
1168 * On non-idmapped mounts or if permission checking is to be performed on the
1169 * raw inode simply passs init_user_ns.
1170 *
1171 * Returns 0 if successful, -ve on error.
1172 */
may_linkat(struct user_namespace * mnt_userns,struct path * link)1173 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1174 {
1175 struct inode *inode = link->dentry->d_inode;
1176
1177 /* Inode writeback is not safe when the uid or gid are invalid. */
1178 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1179 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1180 return -EOVERFLOW;
1181
1182 if (!sysctl_protected_hardlinks)
1183 return 0;
1184
1185 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1186 * otherwise, it must be a safe source.
1187 */
1188 if (safe_hardlink_source(mnt_userns, inode) ||
1189 inode_owner_or_capable(mnt_userns, inode))
1190 return 0;
1191
1192 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1193 return -EPERM;
1194 }
1195
1196 /**
1197 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1198 * should be allowed, or not, on files that already
1199 * exist.
1200 * @mnt_userns: user namespace of the mount the inode was found from
1201 * @nd: nameidata pathwalk data
1202 * @inode: the inode of the file to open
1203 *
1204 * Block an O_CREAT open of a FIFO (or a regular file) when:
1205 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1206 * - the file already exists
1207 * - we are in a sticky directory
1208 * - we don't own the file
1209 * - the owner of the directory doesn't own the file
1210 * - the directory is world writable
1211 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1212 * the directory doesn't have to be world writable: being group writable will
1213 * be enough.
1214 *
1215 * If the inode has been found through an idmapped mount the user namespace of
1216 * the vfsmount must be passed through @mnt_userns. This function will then take
1217 * care to map the inode according to @mnt_userns before checking permissions.
1218 * On non-idmapped mounts or if permission checking is to be performed on the
1219 * raw inode simply passs init_user_ns.
1220 *
1221 * Returns 0 if the open is allowed, -ve on error.
1222 */
may_create_in_sticky(struct user_namespace * mnt_userns,struct nameidata * nd,struct inode * const inode)1223 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1224 struct nameidata *nd, struct inode *const inode)
1225 {
1226 umode_t dir_mode = nd->dir_mode;
1227 kuid_t dir_uid = nd->dir_uid;
1228
1229 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1230 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1231 likely(!(dir_mode & S_ISVTX)) ||
1232 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1233 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1234 return 0;
1235
1236 if (likely(dir_mode & 0002) ||
1237 (dir_mode & 0020 &&
1238 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1239 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1240 const char *operation = S_ISFIFO(inode->i_mode) ?
1241 "sticky_create_fifo" :
1242 "sticky_create_regular";
1243 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1244 return -EACCES;
1245 }
1246 return 0;
1247 }
1248
1249 /*
1250 * follow_up - Find the mountpoint of path's vfsmount
1251 *
1252 * Given a path, find the mountpoint of its source file system.
1253 * Replace @path with the path of the mountpoint in the parent mount.
1254 * Up is towards /.
1255 *
1256 * Return 1 if we went up a level and 0 if we were already at the
1257 * root.
1258 */
follow_up(struct path * path)1259 int follow_up(struct path *path)
1260 {
1261 struct mount *mnt = real_mount(path->mnt);
1262 struct mount *parent;
1263 struct dentry *mountpoint;
1264
1265 read_seqlock_excl(&mount_lock);
1266 parent = mnt->mnt_parent;
1267 if (parent == mnt) {
1268 read_sequnlock_excl(&mount_lock);
1269 return 0;
1270 }
1271 mntget(&parent->mnt);
1272 mountpoint = dget(mnt->mnt_mountpoint);
1273 read_sequnlock_excl(&mount_lock);
1274 dput(path->dentry);
1275 path->dentry = mountpoint;
1276 mntput(path->mnt);
1277 path->mnt = &parent->mnt;
1278 return 1;
1279 }
1280 EXPORT_SYMBOL(follow_up);
1281
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1282 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1283 struct path *path, unsigned *seqp)
1284 {
1285 while (mnt_has_parent(m)) {
1286 struct dentry *mountpoint = m->mnt_mountpoint;
1287
1288 m = m->mnt_parent;
1289 if (unlikely(root->dentry == mountpoint &&
1290 root->mnt == &m->mnt))
1291 break;
1292 if (mountpoint != m->mnt.mnt_root) {
1293 path->mnt = &m->mnt;
1294 path->dentry = mountpoint;
1295 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1296 return true;
1297 }
1298 }
1299 return false;
1300 }
1301
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1302 static bool choose_mountpoint(struct mount *m, const struct path *root,
1303 struct path *path)
1304 {
1305 bool found;
1306
1307 rcu_read_lock();
1308 while (1) {
1309 unsigned seq, mseq = read_seqbegin(&mount_lock);
1310
1311 found = choose_mountpoint_rcu(m, root, path, &seq);
1312 if (unlikely(!found)) {
1313 if (!read_seqretry(&mount_lock, mseq))
1314 break;
1315 } else {
1316 if (likely(__legitimize_path(path, seq, mseq)))
1317 break;
1318 rcu_read_unlock();
1319 path_put(path);
1320 rcu_read_lock();
1321 }
1322 }
1323 rcu_read_unlock();
1324 return found;
1325 }
1326
1327 /*
1328 * Perform an automount
1329 * - return -EISDIR to tell follow_managed() to stop and return the path we
1330 * were called with.
1331 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1332 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1333 {
1334 struct dentry *dentry = path->dentry;
1335
1336 /* We don't want to mount if someone's just doing a stat -
1337 * unless they're stat'ing a directory and appended a '/' to
1338 * the name.
1339 *
1340 * We do, however, want to mount if someone wants to open or
1341 * create a file of any type under the mountpoint, wants to
1342 * traverse through the mountpoint or wants to open the
1343 * mounted directory. Also, autofs may mark negative dentries
1344 * as being automount points. These will need the attentions
1345 * of the daemon to instantiate them before they can be used.
1346 */
1347 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1348 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1349 dentry->d_inode)
1350 return -EISDIR;
1351
1352 if (count && (*count)++ >= MAXSYMLINKS)
1353 return -ELOOP;
1354
1355 return finish_automount(dentry->d_op->d_automount(path), path);
1356 }
1357
1358 /*
1359 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1360 * dentries are pinned but not locked here, so negative dentry can go
1361 * positive right under us. Use of smp_load_acquire() provides a barrier
1362 * sufficient for ->d_inode and ->d_flags consistency.
1363 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1364 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1365 int *count, unsigned lookup_flags)
1366 {
1367 struct vfsmount *mnt = path->mnt;
1368 bool need_mntput = false;
1369 int ret = 0;
1370
1371 while (flags & DCACHE_MANAGED_DENTRY) {
1372 /* Allow the filesystem to manage the transit without i_mutex
1373 * being held. */
1374 if (flags & DCACHE_MANAGE_TRANSIT) {
1375 ret = path->dentry->d_op->d_manage(path, false);
1376 flags = smp_load_acquire(&path->dentry->d_flags);
1377 if (ret < 0)
1378 break;
1379 }
1380
1381 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1382 struct vfsmount *mounted = lookup_mnt(path);
1383 if (mounted) { // ... in our namespace
1384 dput(path->dentry);
1385 if (need_mntput)
1386 mntput(path->mnt);
1387 path->mnt = mounted;
1388 path->dentry = dget(mounted->mnt_root);
1389 // here we know it's positive
1390 flags = path->dentry->d_flags;
1391 need_mntput = true;
1392 continue;
1393 }
1394 }
1395
1396 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1397 break;
1398
1399 // uncovered automount point
1400 ret = follow_automount(path, count, lookup_flags);
1401 flags = smp_load_acquire(&path->dentry->d_flags);
1402 if (ret < 0)
1403 break;
1404 }
1405
1406 if (ret == -EISDIR)
1407 ret = 0;
1408 // possible if you race with several mount --move
1409 if (need_mntput && path->mnt == mnt)
1410 mntput(path->mnt);
1411 if (!ret && unlikely(d_flags_negative(flags)))
1412 ret = -ENOENT;
1413 *jumped = need_mntput;
1414 return ret;
1415 }
1416
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1417 static inline int traverse_mounts(struct path *path, bool *jumped,
1418 int *count, unsigned lookup_flags)
1419 {
1420 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1421
1422 /* fastpath */
1423 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1424 *jumped = false;
1425 if (unlikely(d_flags_negative(flags)))
1426 return -ENOENT;
1427 return 0;
1428 }
1429 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1430 }
1431
follow_down_one(struct path * path)1432 int follow_down_one(struct path *path)
1433 {
1434 struct vfsmount *mounted;
1435
1436 mounted = lookup_mnt(path);
1437 if (mounted) {
1438 dput(path->dentry);
1439 mntput(path->mnt);
1440 path->mnt = mounted;
1441 path->dentry = dget(mounted->mnt_root);
1442 return 1;
1443 }
1444 return 0;
1445 }
1446 EXPORT_SYMBOL(follow_down_one);
1447
1448 /*
1449 * Follow down to the covering mount currently visible to userspace. At each
1450 * point, the filesystem owning that dentry may be queried as to whether the
1451 * caller is permitted to proceed or not.
1452 */
follow_down(struct path * path)1453 int follow_down(struct path *path)
1454 {
1455 struct vfsmount *mnt = path->mnt;
1456 bool jumped;
1457 int ret = traverse_mounts(path, &jumped, NULL, 0);
1458
1459 if (path->mnt != mnt)
1460 mntput(mnt);
1461 return ret;
1462 }
1463 EXPORT_SYMBOL(follow_down);
1464
1465 /*
1466 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1467 * we meet a managed dentry that would need blocking.
1468 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1469 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1470 struct inode **inode, unsigned *seqp)
1471 {
1472 struct dentry *dentry = path->dentry;
1473 unsigned int flags = dentry->d_flags;
1474
1475 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1476 return true;
1477
1478 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1479 return false;
1480
1481 for (;;) {
1482 /*
1483 * Don't forget we might have a non-mountpoint managed dentry
1484 * that wants to block transit.
1485 */
1486 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1487 int res = dentry->d_op->d_manage(path, true);
1488 if (res)
1489 return res == -EISDIR;
1490 flags = dentry->d_flags;
1491 }
1492
1493 if (flags & DCACHE_MOUNTED) {
1494 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1495 if (mounted) {
1496 path->mnt = &mounted->mnt;
1497 dentry = path->dentry = mounted->mnt.mnt_root;
1498 nd->state |= ND_JUMPED;
1499 *seqp = read_seqcount_begin(&dentry->d_seq);
1500 *inode = dentry->d_inode;
1501 /*
1502 * We don't need to re-check ->d_seq after this
1503 * ->d_inode read - there will be an RCU delay
1504 * between mount hash removal and ->mnt_root
1505 * becoming unpinned.
1506 */
1507 flags = dentry->d_flags;
1508 if (read_seqretry(&mount_lock, nd->m_seq))
1509 return false;
1510 continue;
1511 }
1512 if (read_seqretry(&mount_lock, nd->m_seq))
1513 return false;
1514 }
1515 return !(flags & DCACHE_NEED_AUTOMOUNT);
1516 }
1517 }
1518
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path,struct inode ** inode,unsigned int * seqp)1519 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1520 struct path *path, struct inode **inode,
1521 unsigned int *seqp)
1522 {
1523 bool jumped;
1524 int ret;
1525
1526 path->mnt = nd->path.mnt;
1527 path->dentry = dentry;
1528 if (nd->flags & LOOKUP_RCU) {
1529 unsigned int seq = *seqp;
1530 if (unlikely(!*inode))
1531 return -ENOENT;
1532 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1533 return 0;
1534 if (!try_to_unlazy_next(nd, dentry, seq))
1535 return -ECHILD;
1536 // *path might've been clobbered by __follow_mount_rcu()
1537 path->mnt = nd->path.mnt;
1538 path->dentry = dentry;
1539 }
1540 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1541 if (jumped) {
1542 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1543 ret = -EXDEV;
1544 else
1545 nd->state |= ND_JUMPED;
1546 }
1547 if (unlikely(ret)) {
1548 dput(path->dentry);
1549 if (path->mnt != nd->path.mnt)
1550 mntput(path->mnt);
1551 } else {
1552 *inode = d_backing_inode(path->dentry);
1553 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1554 }
1555 return ret;
1556 }
1557
1558 /*
1559 * This looks up the name in dcache and possibly revalidates the found dentry.
1560 * NULL is returned if the dentry does not exist in the cache.
1561 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1562 static struct dentry *lookup_dcache(const struct qstr *name,
1563 struct dentry *dir,
1564 unsigned int flags)
1565 {
1566 struct dentry *dentry = d_lookup(dir, name);
1567 if (dentry) {
1568 int error = d_revalidate(dentry, flags);
1569 if (unlikely(error <= 0)) {
1570 if (!error)
1571 d_invalidate(dentry);
1572 dput(dentry);
1573 return ERR_PTR(error);
1574 }
1575 }
1576 return dentry;
1577 }
1578
1579 /*
1580 * Parent directory has inode locked exclusive. This is one
1581 * and only case when ->lookup() gets called on non in-lookup
1582 * dentries - as the matter of fact, this only gets called
1583 * when directory is guaranteed to have no in-lookup children
1584 * at all.
1585 */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1586 static struct dentry *__lookup_hash(const struct qstr *name,
1587 struct dentry *base, unsigned int flags)
1588 {
1589 struct dentry *dentry = lookup_dcache(name, base, flags);
1590 struct dentry *old;
1591 struct inode *dir = base->d_inode;
1592
1593 if (dentry)
1594 return dentry;
1595
1596 /* Don't create child dentry for a dead directory. */
1597 if (unlikely(IS_DEADDIR(dir)))
1598 return ERR_PTR(-ENOENT);
1599
1600 dentry = d_alloc(base, name);
1601 if (unlikely(!dentry))
1602 return ERR_PTR(-ENOMEM);
1603
1604 old = dir->i_op->lookup(dir, dentry, flags);
1605 if (unlikely(old)) {
1606 dput(dentry);
1607 dentry = old;
1608 }
1609 return dentry;
1610 }
1611
lookup_fast(struct nameidata * nd,struct inode ** inode,unsigned * seqp)1612 static struct dentry *lookup_fast(struct nameidata *nd,
1613 struct inode **inode,
1614 unsigned *seqp)
1615 {
1616 struct dentry *dentry, *parent = nd->path.dentry;
1617 int status = 1;
1618
1619 /*
1620 * Rename seqlock is not required here because in the off chance
1621 * of a false negative due to a concurrent rename, the caller is
1622 * going to fall back to non-racy lookup.
1623 */
1624 if (nd->flags & LOOKUP_RCU) {
1625 unsigned seq;
1626 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1627 if (unlikely(!dentry)) {
1628 if (!try_to_unlazy(nd))
1629 return ERR_PTR(-ECHILD);
1630 return NULL;
1631 }
1632
1633 /*
1634 * This sequence count validates that the inode matches
1635 * the dentry name information from lookup.
1636 */
1637 *inode = d_backing_inode(dentry);
1638 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1639 return ERR_PTR(-ECHILD);
1640
1641 /*
1642 * This sequence count validates that the parent had no
1643 * changes while we did the lookup of the dentry above.
1644 *
1645 * The memory barrier in read_seqcount_begin of child is
1646 * enough, we can use __read_seqcount_retry here.
1647 */
1648 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1649 return ERR_PTR(-ECHILD);
1650
1651 *seqp = seq;
1652 status = d_revalidate(dentry, nd->flags);
1653 if (likely(status > 0))
1654 return dentry;
1655 if (!try_to_unlazy_next(nd, dentry, seq))
1656 return ERR_PTR(-ECHILD);
1657 if (status == -ECHILD)
1658 /* we'd been told to redo it in non-rcu mode */
1659 status = d_revalidate(dentry, nd->flags);
1660 } else {
1661 dentry = __d_lookup(parent, &nd->last);
1662 if (unlikely(!dentry))
1663 return NULL;
1664 status = d_revalidate(dentry, nd->flags);
1665 }
1666 if (unlikely(status <= 0)) {
1667 if (!status)
1668 d_invalidate(dentry);
1669 dput(dentry);
1670 return ERR_PTR(status);
1671 }
1672 return dentry;
1673 }
1674
1675 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1676 static struct dentry *__lookup_slow(const struct qstr *name,
1677 struct dentry *dir,
1678 unsigned int flags)
1679 {
1680 struct dentry *dentry, *old;
1681 struct inode *inode = dir->d_inode;
1682 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1683
1684 /* Don't go there if it's already dead */
1685 if (unlikely(IS_DEADDIR(inode)))
1686 return ERR_PTR(-ENOENT);
1687 again:
1688 dentry = d_alloc_parallel(dir, name, &wq);
1689 if (IS_ERR(dentry))
1690 return dentry;
1691 if (unlikely(!d_in_lookup(dentry))) {
1692 int error = d_revalidate(dentry, flags);
1693 if (unlikely(error <= 0)) {
1694 if (!error) {
1695 d_invalidate(dentry);
1696 dput(dentry);
1697 goto again;
1698 }
1699 dput(dentry);
1700 dentry = ERR_PTR(error);
1701 }
1702 } else {
1703 old = inode->i_op->lookup(inode, dentry, flags);
1704 d_lookup_done(dentry);
1705 if (unlikely(old)) {
1706 dput(dentry);
1707 dentry = old;
1708 }
1709 }
1710 return dentry;
1711 }
1712
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1713 static struct dentry *lookup_slow(const struct qstr *name,
1714 struct dentry *dir,
1715 unsigned int flags)
1716 {
1717 struct inode *inode = dir->d_inode;
1718 struct dentry *res;
1719 inode_lock_shared(inode);
1720 res = __lookup_slow(name, dir, flags);
1721 inode_unlock_shared(inode);
1722 return res;
1723 }
1724
may_lookup(struct user_namespace * mnt_userns,struct nameidata * nd)1725 static inline int may_lookup(struct user_namespace *mnt_userns,
1726 struct nameidata *nd)
1727 {
1728 if (nd->flags & LOOKUP_RCU) {
1729 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1730 if (err != -ECHILD || !try_to_unlazy(nd))
1731 return err;
1732 }
1733 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1734 }
1735
reserve_stack(struct nameidata * nd,struct path * link,unsigned seq)1736 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1737 {
1738 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1739 return -ELOOP;
1740
1741 if (likely(nd->depth != EMBEDDED_LEVELS))
1742 return 0;
1743 if (likely(nd->stack != nd->internal))
1744 return 0;
1745 if (likely(nd_alloc_stack(nd)))
1746 return 0;
1747
1748 if (nd->flags & LOOKUP_RCU) {
1749 // we need to grab link before we do unlazy. And we can't skip
1750 // unlazy even if we fail to grab the link - cleanup needs it
1751 bool grabbed_link = legitimize_path(nd, link, seq);
1752
1753 if (!try_to_unlazy(nd) || !grabbed_link)
1754 return -ECHILD;
1755
1756 if (nd_alloc_stack(nd))
1757 return 0;
1758 }
1759 return -ENOMEM;
1760 }
1761
1762 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1763
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq,int flags)1764 static const char *pick_link(struct nameidata *nd, struct path *link,
1765 struct inode *inode, unsigned seq, int flags)
1766 {
1767 struct saved *last;
1768 const char *res;
1769 int error = reserve_stack(nd, link, seq);
1770
1771 if (unlikely(error)) {
1772 if (!(nd->flags & LOOKUP_RCU))
1773 path_put(link);
1774 return ERR_PTR(error);
1775 }
1776 last = nd->stack + nd->depth++;
1777 last->link = *link;
1778 clear_delayed_call(&last->done);
1779 last->seq = seq;
1780
1781 if (flags & WALK_TRAILING) {
1782 error = may_follow_link(nd, inode);
1783 if (unlikely(error))
1784 return ERR_PTR(error);
1785 }
1786
1787 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1788 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1789 return ERR_PTR(-ELOOP);
1790
1791 if (!(nd->flags & LOOKUP_RCU)) {
1792 touch_atime(&last->link);
1793 cond_resched();
1794 } else if (atime_needs_update(&last->link, inode)) {
1795 if (!try_to_unlazy(nd))
1796 return ERR_PTR(-ECHILD);
1797 touch_atime(&last->link);
1798 }
1799
1800 error = security_inode_follow_link(link->dentry, inode,
1801 nd->flags & LOOKUP_RCU);
1802 if (unlikely(error))
1803 return ERR_PTR(error);
1804
1805 res = READ_ONCE(inode->i_link);
1806 if (!res) {
1807 const char * (*get)(struct dentry *, struct inode *,
1808 struct delayed_call *);
1809 get = inode->i_op->get_link;
1810 if (nd->flags & LOOKUP_RCU) {
1811 res = get(NULL, inode, &last->done);
1812 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1813 res = get(link->dentry, inode, &last->done);
1814 } else {
1815 res = get(link->dentry, inode, &last->done);
1816 }
1817 if (!res)
1818 goto all_done;
1819 if (IS_ERR(res))
1820 return res;
1821 }
1822 if (*res == '/') {
1823 error = nd_jump_root(nd);
1824 if (unlikely(error))
1825 return ERR_PTR(error);
1826 while (unlikely(*++res == '/'))
1827 ;
1828 }
1829 if (*res)
1830 return res;
1831 all_done: // pure jump
1832 put_link(nd);
1833 return NULL;
1834 }
1835
1836 /*
1837 * Do we need to follow links? We _really_ want to be able
1838 * to do this check without having to look at inode->i_op,
1839 * so we keep a cache of "no, this doesn't need follow_link"
1840 * for the common case.
1841 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry,struct inode * inode,unsigned seq)1842 static const char *step_into(struct nameidata *nd, int flags,
1843 struct dentry *dentry, struct inode *inode, unsigned seq)
1844 {
1845 struct path path;
1846 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1847
1848 if (err < 0)
1849 return ERR_PTR(err);
1850 if (likely(!d_is_symlink(path.dentry)) ||
1851 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1852 (flags & WALK_NOFOLLOW)) {
1853 /* not a symlink or should not follow */
1854 if (!(nd->flags & LOOKUP_RCU)) {
1855 dput(nd->path.dentry);
1856 if (nd->path.mnt != path.mnt)
1857 mntput(nd->path.mnt);
1858 }
1859 nd->path = path;
1860 nd->inode = inode;
1861 nd->seq = seq;
1862 return NULL;
1863 }
1864 if (nd->flags & LOOKUP_RCU) {
1865 /* make sure that d_is_symlink above matches inode */
1866 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1867 return ERR_PTR(-ECHILD);
1868 } else {
1869 if (path.mnt == nd->path.mnt)
1870 mntget(path.mnt);
1871 }
1872 return pick_link(nd, &path, inode, seq, flags);
1873 }
1874
follow_dotdot_rcu(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1875 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1876 struct inode **inodep,
1877 unsigned *seqp)
1878 {
1879 struct dentry *parent, *old;
1880
1881 if (path_equal(&nd->path, &nd->root))
1882 goto in_root;
1883 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1884 struct path path;
1885 unsigned seq;
1886 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1887 &nd->root, &path, &seq))
1888 goto in_root;
1889 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1890 return ERR_PTR(-ECHILD);
1891 nd->path = path;
1892 nd->inode = path.dentry->d_inode;
1893 nd->seq = seq;
1894 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1895 return ERR_PTR(-ECHILD);
1896 /* we know that mountpoint was pinned */
1897 }
1898 old = nd->path.dentry;
1899 parent = old->d_parent;
1900 *inodep = parent->d_inode;
1901 *seqp = read_seqcount_begin(&parent->d_seq);
1902 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1903 return ERR_PTR(-ECHILD);
1904 if (unlikely(!path_connected(nd->path.mnt, parent)))
1905 return ERR_PTR(-ECHILD);
1906 return parent;
1907 in_root:
1908 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1909 return ERR_PTR(-ECHILD);
1910 if (unlikely(nd->flags & LOOKUP_BENEATH))
1911 return ERR_PTR(-ECHILD);
1912 return NULL;
1913 }
1914
follow_dotdot(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1915 static struct dentry *follow_dotdot(struct nameidata *nd,
1916 struct inode **inodep,
1917 unsigned *seqp)
1918 {
1919 struct dentry *parent;
1920
1921 if (path_equal(&nd->path, &nd->root))
1922 goto in_root;
1923 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1924 struct path path;
1925
1926 if (!choose_mountpoint(real_mount(nd->path.mnt),
1927 &nd->root, &path))
1928 goto in_root;
1929 path_put(&nd->path);
1930 nd->path = path;
1931 nd->inode = path.dentry->d_inode;
1932 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1933 return ERR_PTR(-EXDEV);
1934 }
1935 /* rare case of legitimate dget_parent()... */
1936 parent = dget_parent(nd->path.dentry);
1937 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1938 dput(parent);
1939 return ERR_PTR(-ENOENT);
1940 }
1941 *seqp = 0;
1942 *inodep = parent->d_inode;
1943 return parent;
1944
1945 in_root:
1946 if (unlikely(nd->flags & LOOKUP_BENEATH))
1947 return ERR_PTR(-EXDEV);
1948 dget(nd->path.dentry);
1949 return NULL;
1950 }
1951
handle_dots(struct nameidata * nd,int type)1952 static const char *handle_dots(struct nameidata *nd, int type)
1953 {
1954 if (type == LAST_DOTDOT) {
1955 const char *error = NULL;
1956 struct dentry *parent;
1957 struct inode *inode;
1958 unsigned seq;
1959
1960 if (!nd->root.mnt) {
1961 error = ERR_PTR(set_root(nd));
1962 if (error)
1963 return error;
1964 }
1965 if (nd->flags & LOOKUP_RCU)
1966 parent = follow_dotdot_rcu(nd, &inode, &seq);
1967 else
1968 parent = follow_dotdot(nd, &inode, &seq);
1969 if (IS_ERR(parent))
1970 return ERR_CAST(parent);
1971 if (unlikely(!parent))
1972 error = step_into(nd, WALK_NOFOLLOW,
1973 nd->path.dentry, nd->inode, nd->seq);
1974 else
1975 error = step_into(nd, WALK_NOFOLLOW,
1976 parent, inode, seq);
1977 if (unlikely(error))
1978 return error;
1979
1980 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1981 /*
1982 * If there was a racing rename or mount along our
1983 * path, then we can't be sure that ".." hasn't jumped
1984 * above nd->root (and so userspace should retry or use
1985 * some fallback).
1986 */
1987 smp_rmb();
1988 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1989 return ERR_PTR(-EAGAIN);
1990 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1991 return ERR_PTR(-EAGAIN);
1992 }
1993 }
1994 return NULL;
1995 }
1996
walk_component(struct nameidata * nd,int flags)1997 static const char *walk_component(struct nameidata *nd, int flags)
1998 {
1999 struct dentry *dentry;
2000 struct inode *inode;
2001 unsigned seq;
2002 /*
2003 * "." and ".." are special - ".." especially so because it has
2004 * to be able to know about the current root directory and
2005 * parent relationships.
2006 */
2007 if (unlikely(nd->last_type != LAST_NORM)) {
2008 if (!(flags & WALK_MORE) && nd->depth)
2009 put_link(nd);
2010 return handle_dots(nd, nd->last_type);
2011 }
2012 dentry = lookup_fast(nd, &inode, &seq);
2013 if (IS_ERR(dentry))
2014 return ERR_CAST(dentry);
2015 if (unlikely(!dentry)) {
2016 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2017 if (IS_ERR(dentry))
2018 return ERR_CAST(dentry);
2019 }
2020 if (!(flags & WALK_MORE) && nd->depth)
2021 put_link(nd);
2022 return step_into(nd, flags, dentry, inode, seq);
2023 }
2024
2025 /*
2026 * We can do the critical dentry name comparison and hashing
2027 * operations one word at a time, but we are limited to:
2028 *
2029 * - Architectures with fast unaligned word accesses. We could
2030 * do a "get_unaligned()" if this helps and is sufficiently
2031 * fast.
2032 *
2033 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2034 * do not trap on the (extremely unlikely) case of a page
2035 * crossing operation.
2036 *
2037 * - Furthermore, we need an efficient 64-bit compile for the
2038 * 64-bit case in order to generate the "number of bytes in
2039 * the final mask". Again, that could be replaced with a
2040 * efficient population count instruction or similar.
2041 */
2042 #ifdef CONFIG_DCACHE_WORD_ACCESS
2043
2044 #include <asm/word-at-a-time.h>
2045
2046 #ifdef HASH_MIX
2047
2048 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2049
2050 #elif defined(CONFIG_64BIT)
2051 /*
2052 * Register pressure in the mixing function is an issue, particularly
2053 * on 32-bit x86, but almost any function requires one state value and
2054 * one temporary. Instead, use a function designed for two state values
2055 * and no temporaries.
2056 *
2057 * This function cannot create a collision in only two iterations, so
2058 * we have two iterations to achieve avalanche. In those two iterations,
2059 * we have six layers of mixing, which is enough to spread one bit's
2060 * influence out to 2^6 = 64 state bits.
2061 *
2062 * Rotate constants are scored by considering either 64 one-bit input
2063 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2064 * probability of that delta causing a change to each of the 128 output
2065 * bits, using a sample of random initial states.
2066 *
2067 * The Shannon entropy of the computed probabilities is then summed
2068 * to produce a score. Ideally, any input change has a 50% chance of
2069 * toggling any given output bit.
2070 *
2071 * Mixing scores (in bits) for (12,45):
2072 * Input delta: 1-bit 2-bit
2073 * 1 round: 713.3 42542.6
2074 * 2 rounds: 2753.7 140389.8
2075 * 3 rounds: 5954.1 233458.2
2076 * 4 rounds: 7862.6 256672.2
2077 * Perfect: 8192 258048
2078 * (64*128) (64*63/2 * 128)
2079 */
2080 #define HASH_MIX(x, y, a) \
2081 ( x ^= (a), \
2082 y ^= x, x = rol64(x,12),\
2083 x += y, y = rol64(y,45),\
2084 y *= 9 )
2085
2086 /*
2087 * Fold two longs into one 32-bit hash value. This must be fast, but
2088 * latency isn't quite as critical, as there is a fair bit of additional
2089 * work done before the hash value is used.
2090 */
fold_hash(unsigned long x,unsigned long y)2091 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2092 {
2093 y ^= x * GOLDEN_RATIO_64;
2094 y *= GOLDEN_RATIO_64;
2095 return y >> 32;
2096 }
2097
2098 #else /* 32-bit case */
2099
2100 /*
2101 * Mixing scores (in bits) for (7,20):
2102 * Input delta: 1-bit 2-bit
2103 * 1 round: 330.3 9201.6
2104 * 2 rounds: 1246.4 25475.4
2105 * 3 rounds: 1907.1 31295.1
2106 * 4 rounds: 2042.3 31718.6
2107 * Perfect: 2048 31744
2108 * (32*64) (32*31/2 * 64)
2109 */
2110 #define HASH_MIX(x, y, a) \
2111 ( x ^= (a), \
2112 y ^= x, x = rol32(x, 7),\
2113 x += y, y = rol32(y,20),\
2114 y *= 9 )
2115
fold_hash(unsigned long x,unsigned long y)2116 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2117 {
2118 /* Use arch-optimized multiply if one exists */
2119 return __hash_32(y ^ __hash_32(x));
2120 }
2121
2122 #endif
2123
2124 /*
2125 * Return the hash of a string of known length. This is carfully
2126 * designed to match hash_name(), which is the more critical function.
2127 * In particular, we must end by hashing a final word containing 0..7
2128 * payload bytes, to match the way that hash_name() iterates until it
2129 * finds the delimiter after the name.
2130 */
full_name_hash(const void * salt,const char * name,unsigned int len)2131 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2132 {
2133 unsigned long a, x = 0, y = (unsigned long)salt;
2134
2135 for (;;) {
2136 if (!len)
2137 goto done;
2138 a = load_unaligned_zeropad(name);
2139 if (len < sizeof(unsigned long))
2140 break;
2141 HASH_MIX(x, y, a);
2142 name += sizeof(unsigned long);
2143 len -= sizeof(unsigned long);
2144 }
2145 x ^= a & bytemask_from_count(len);
2146 done:
2147 return fold_hash(x, y);
2148 }
2149 EXPORT_SYMBOL(full_name_hash);
2150
2151 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2152 u64 hashlen_string(const void *salt, const char *name)
2153 {
2154 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2155 unsigned long adata, mask, len;
2156 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2157
2158 len = 0;
2159 goto inside;
2160
2161 do {
2162 HASH_MIX(x, y, a);
2163 len += sizeof(unsigned long);
2164 inside:
2165 a = load_unaligned_zeropad(name+len);
2166 } while (!has_zero(a, &adata, &constants));
2167
2168 adata = prep_zero_mask(a, adata, &constants);
2169 mask = create_zero_mask(adata);
2170 x ^= a & zero_bytemask(mask);
2171
2172 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2173 }
2174 EXPORT_SYMBOL(hashlen_string);
2175
2176 /*
2177 * Calculate the length and hash of the path component, and
2178 * return the "hash_len" as the result.
2179 */
hash_name(const void * salt,const char * name)2180 static inline u64 hash_name(const void *salt, const char *name)
2181 {
2182 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2183 unsigned long adata, bdata, mask, len;
2184 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2185
2186 len = 0;
2187 goto inside;
2188
2189 do {
2190 HASH_MIX(x, y, a);
2191 len += sizeof(unsigned long);
2192 inside:
2193 a = load_unaligned_zeropad(name+len);
2194 b = a ^ REPEAT_BYTE('/');
2195 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2196
2197 adata = prep_zero_mask(a, adata, &constants);
2198 bdata = prep_zero_mask(b, bdata, &constants);
2199 mask = create_zero_mask(adata | bdata);
2200 x ^= a & zero_bytemask(mask);
2201
2202 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2203 }
2204
2205 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2206
2207 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2208 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2209 {
2210 unsigned long hash = init_name_hash(salt);
2211 while (len--)
2212 hash = partial_name_hash((unsigned char)*name++, hash);
2213 return end_name_hash(hash);
2214 }
2215 EXPORT_SYMBOL(full_name_hash);
2216
2217 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2218 u64 hashlen_string(const void *salt, const char *name)
2219 {
2220 unsigned long hash = init_name_hash(salt);
2221 unsigned long len = 0, c;
2222
2223 c = (unsigned char)*name;
2224 while (c) {
2225 len++;
2226 hash = partial_name_hash(c, hash);
2227 c = (unsigned char)name[len];
2228 }
2229 return hashlen_create(end_name_hash(hash), len);
2230 }
2231 EXPORT_SYMBOL(hashlen_string);
2232
2233 /*
2234 * We know there's a real path component here of at least
2235 * one character.
2236 */
hash_name(const void * salt,const char * name)2237 static inline u64 hash_name(const void *salt, const char *name)
2238 {
2239 unsigned long hash = init_name_hash(salt);
2240 unsigned long len = 0, c;
2241
2242 c = (unsigned char)*name;
2243 do {
2244 len++;
2245 hash = partial_name_hash(c, hash);
2246 c = (unsigned char)name[len];
2247 } while (c && c != '/');
2248 return hashlen_create(end_name_hash(hash), len);
2249 }
2250
2251 #endif
2252
2253 /*
2254 * Name resolution.
2255 * This is the basic name resolution function, turning a pathname into
2256 * the final dentry. We expect 'base' to be positive and a directory.
2257 *
2258 * Returns 0 and nd will have valid dentry and mnt on success.
2259 * Returns error and drops reference to input namei data on failure.
2260 */
link_path_walk(const char * name,struct nameidata * nd)2261 static int link_path_walk(const char *name, struct nameidata *nd)
2262 {
2263 int depth = 0; // depth <= nd->depth
2264 int err;
2265
2266 nd->last_type = LAST_ROOT;
2267 nd->flags |= LOOKUP_PARENT;
2268 if (IS_ERR(name))
2269 return PTR_ERR(name);
2270 while (*name=='/')
2271 name++;
2272 if (!*name) {
2273 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2274 return 0;
2275 }
2276
2277 /* At this point we know we have a real path component. */
2278 for(;;) {
2279 struct user_namespace *mnt_userns;
2280 const char *link;
2281 u64 hash_len;
2282 int type;
2283
2284 mnt_userns = mnt_user_ns(nd->path.mnt);
2285 err = may_lookup(mnt_userns, nd);
2286 if (err)
2287 return err;
2288
2289 hash_len = hash_name(nd->path.dentry, name);
2290
2291 type = LAST_NORM;
2292 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2293 case 2:
2294 if (name[1] == '.') {
2295 type = LAST_DOTDOT;
2296 nd->state |= ND_JUMPED;
2297 }
2298 break;
2299 case 1:
2300 type = LAST_DOT;
2301 }
2302 if (likely(type == LAST_NORM)) {
2303 struct dentry *parent = nd->path.dentry;
2304 nd->state &= ~ND_JUMPED;
2305 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2306 struct qstr this = { { .hash_len = hash_len }, .name = name };
2307 err = parent->d_op->d_hash(parent, &this);
2308 if (err < 0)
2309 return err;
2310 hash_len = this.hash_len;
2311 name = this.name;
2312 }
2313 }
2314
2315 nd->last.hash_len = hash_len;
2316 nd->last.name = name;
2317 nd->last_type = type;
2318
2319 name += hashlen_len(hash_len);
2320 if (!*name)
2321 goto OK;
2322 /*
2323 * If it wasn't NUL, we know it was '/'. Skip that
2324 * slash, and continue until no more slashes.
2325 */
2326 do {
2327 name++;
2328 } while (unlikely(*name == '/'));
2329 if (unlikely(!*name)) {
2330 OK:
2331 /* pathname or trailing symlink, done */
2332 if (!depth) {
2333 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2334 nd->dir_mode = nd->inode->i_mode;
2335 nd->flags &= ~LOOKUP_PARENT;
2336 return 0;
2337 }
2338 /* last component of nested symlink */
2339 name = nd->stack[--depth].name;
2340 link = walk_component(nd, 0);
2341 } else {
2342 /* not the last component */
2343 link = walk_component(nd, WALK_MORE);
2344 }
2345 if (unlikely(link)) {
2346 if (IS_ERR(link))
2347 return PTR_ERR(link);
2348 /* a symlink to follow */
2349 nd->stack[depth++].name = name;
2350 name = link;
2351 continue;
2352 }
2353 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2354 if (nd->flags & LOOKUP_RCU) {
2355 if (!try_to_unlazy(nd))
2356 return -ECHILD;
2357 }
2358 return -ENOTDIR;
2359 }
2360 }
2361 }
2362
2363 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2364 static const char *path_init(struct nameidata *nd, unsigned flags)
2365 {
2366 int error;
2367 const char *s = nd->name->name;
2368
2369 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2370 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2371 return ERR_PTR(-EAGAIN);
2372
2373 if (!*s)
2374 flags &= ~LOOKUP_RCU;
2375 if (flags & LOOKUP_RCU)
2376 rcu_read_lock();
2377
2378 nd->flags = flags;
2379 nd->state |= ND_JUMPED;
2380
2381 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2382 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2383 smp_rmb();
2384
2385 if (nd->state & ND_ROOT_PRESET) {
2386 struct dentry *root = nd->root.dentry;
2387 struct inode *inode = root->d_inode;
2388 if (*s && unlikely(!d_can_lookup(root)))
2389 return ERR_PTR(-ENOTDIR);
2390 nd->path = nd->root;
2391 nd->inode = inode;
2392 if (flags & LOOKUP_RCU) {
2393 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2394 nd->root_seq = nd->seq;
2395 } else {
2396 path_get(&nd->path);
2397 }
2398 return s;
2399 }
2400
2401 nd->root.mnt = NULL;
2402
2403 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2404 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2405 error = nd_jump_root(nd);
2406 if (unlikely(error))
2407 return ERR_PTR(error);
2408 return s;
2409 }
2410
2411 /* Relative pathname -- get the starting-point it is relative to. */
2412 if (nd->dfd == AT_FDCWD) {
2413 if (flags & LOOKUP_RCU) {
2414 struct fs_struct *fs = current->fs;
2415 unsigned seq;
2416
2417 do {
2418 seq = read_seqcount_begin(&fs->seq);
2419 nd->path = fs->pwd;
2420 nd->inode = nd->path.dentry->d_inode;
2421 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2422 } while (read_seqcount_retry(&fs->seq, seq));
2423 } else {
2424 get_fs_pwd(current->fs, &nd->path);
2425 nd->inode = nd->path.dentry->d_inode;
2426 }
2427 } else {
2428 /* Caller must check execute permissions on the starting path component */
2429 struct fd f = fdget_raw(nd->dfd);
2430 struct dentry *dentry;
2431
2432 if (!f.file)
2433 return ERR_PTR(-EBADF);
2434
2435 dentry = f.file->f_path.dentry;
2436
2437 if (*s && unlikely(!d_can_lookup(dentry))) {
2438 fdput(f);
2439 return ERR_PTR(-ENOTDIR);
2440 }
2441
2442 nd->path = f.file->f_path;
2443 if (flags & LOOKUP_RCU) {
2444 nd->inode = nd->path.dentry->d_inode;
2445 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2446 } else {
2447 path_get(&nd->path);
2448 nd->inode = nd->path.dentry->d_inode;
2449 }
2450 fdput(f);
2451 }
2452
2453 /* For scoped-lookups we need to set the root to the dirfd as well. */
2454 if (flags & LOOKUP_IS_SCOPED) {
2455 nd->root = nd->path;
2456 if (flags & LOOKUP_RCU) {
2457 nd->root_seq = nd->seq;
2458 } else {
2459 path_get(&nd->root);
2460 nd->state |= ND_ROOT_GRABBED;
2461 }
2462 }
2463 return s;
2464 }
2465
lookup_last(struct nameidata * nd)2466 static inline const char *lookup_last(struct nameidata *nd)
2467 {
2468 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2469 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2470
2471 return walk_component(nd, WALK_TRAILING);
2472 }
2473
handle_lookup_down(struct nameidata * nd)2474 static int handle_lookup_down(struct nameidata *nd)
2475 {
2476 if (!(nd->flags & LOOKUP_RCU))
2477 dget(nd->path.dentry);
2478 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2479 nd->path.dentry, nd->inode, nd->seq));
2480 }
2481
2482 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2483 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2484 {
2485 const char *s = path_init(nd, flags);
2486 int err;
2487
2488 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2489 err = handle_lookup_down(nd);
2490 if (unlikely(err < 0))
2491 s = ERR_PTR(err);
2492 }
2493
2494 while (!(err = link_path_walk(s, nd)) &&
2495 (s = lookup_last(nd)) != NULL)
2496 ;
2497 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2498 err = handle_lookup_down(nd);
2499 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2500 }
2501 if (!err)
2502 err = complete_walk(nd);
2503
2504 if (!err && nd->flags & LOOKUP_DIRECTORY)
2505 if (!d_can_lookup(nd->path.dentry))
2506 err = -ENOTDIR;
2507 if (!err) {
2508 *path = nd->path;
2509 nd->path.mnt = NULL;
2510 nd->path.dentry = NULL;
2511 }
2512 terminate_walk(nd);
2513 return err;
2514 }
2515
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2516 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2517 struct path *path, struct path *root)
2518 {
2519 int retval;
2520 struct nameidata nd;
2521 if (IS_ERR(name))
2522 return PTR_ERR(name);
2523 set_nameidata(&nd, dfd, name, root);
2524 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2525 if (unlikely(retval == -ECHILD))
2526 retval = path_lookupat(&nd, flags, path);
2527 if (unlikely(retval == -ESTALE))
2528 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2529
2530 if (likely(!retval))
2531 audit_inode(name, path->dentry,
2532 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2533 restore_nameidata();
2534 return retval;
2535 }
2536
2537 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2538 static int path_parentat(struct nameidata *nd, unsigned flags,
2539 struct path *parent)
2540 {
2541 const char *s = path_init(nd, flags);
2542 int err = link_path_walk(s, nd);
2543 if (!err)
2544 err = complete_walk(nd);
2545 if (!err) {
2546 *parent = nd->path;
2547 nd->path.mnt = NULL;
2548 nd->path.dentry = NULL;
2549 }
2550 terminate_walk(nd);
2551 return err;
2552 }
2553
2554 /* Note: this does not consume "name" */
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2555 static int filename_parentat(int dfd, struct filename *name,
2556 unsigned int flags, struct path *parent,
2557 struct qstr *last, int *type)
2558 {
2559 int retval;
2560 struct nameidata nd;
2561
2562 if (IS_ERR(name))
2563 return PTR_ERR(name);
2564 set_nameidata(&nd, dfd, name, NULL);
2565 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2566 if (unlikely(retval == -ECHILD))
2567 retval = path_parentat(&nd, flags, parent);
2568 if (unlikely(retval == -ESTALE))
2569 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2570 if (likely(!retval)) {
2571 *last = nd.last;
2572 *type = nd.last_type;
2573 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2574 }
2575 restore_nameidata();
2576 return retval;
2577 }
2578
2579 /* does lookup, returns the object with parent locked */
__kern_path_locked(struct filename * name,struct path * path)2580 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2581 {
2582 struct dentry *d;
2583 struct qstr last;
2584 int type, error;
2585
2586 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2587 if (error)
2588 return ERR_PTR(error);
2589 if (unlikely(type != LAST_NORM)) {
2590 path_put(path);
2591 return ERR_PTR(-EINVAL);
2592 }
2593 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2594 d = __lookup_hash(&last, path->dentry, 0);
2595 if (IS_ERR(d)) {
2596 inode_unlock(path->dentry->d_inode);
2597 path_put(path);
2598 }
2599 return d;
2600 }
2601
kern_path_locked(const char * name,struct path * path)2602 struct dentry *kern_path_locked(const char *name, struct path *path)
2603 {
2604 struct filename *filename = getname_kernel(name);
2605 struct dentry *res = __kern_path_locked(filename, path);
2606
2607 putname(filename);
2608 return res;
2609 }
2610
kern_path(const char * name,unsigned int flags,struct path * path)2611 int kern_path(const char *name, unsigned int flags, struct path *path)
2612 {
2613 struct filename *filename = getname_kernel(name);
2614 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2615
2616 putname(filename);
2617 return ret;
2618
2619 }
2620 EXPORT_SYMBOL(kern_path);
2621
2622 /**
2623 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2624 * @dentry: pointer to dentry of the base directory
2625 * @mnt: pointer to vfs mount of the base directory
2626 * @name: pointer to file name
2627 * @flags: lookup flags
2628 * @path: pointer to struct path to fill
2629 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2630 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2631 const char *name, unsigned int flags,
2632 struct path *path)
2633 {
2634 struct filename *filename;
2635 struct path root = {.mnt = mnt, .dentry = dentry};
2636 int ret;
2637
2638 filename = getname_kernel(name);
2639 /* the first argument of filename_lookup() is ignored with root */
2640 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2641 putname(filename);
2642 return ret;
2643 }
2644 EXPORT_SYMBOL(vfs_path_lookup);
2645
lookup_one_common(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len,struct qstr * this)2646 static int lookup_one_common(struct user_namespace *mnt_userns,
2647 const char *name, struct dentry *base, int len,
2648 struct qstr *this)
2649 {
2650 this->name = name;
2651 this->len = len;
2652 this->hash = full_name_hash(base, name, len);
2653 if (!len)
2654 return -EACCES;
2655
2656 if (unlikely(name[0] == '.')) {
2657 if (len < 2 || (len == 2 && name[1] == '.'))
2658 return -EACCES;
2659 }
2660
2661 while (len--) {
2662 unsigned int c = *(const unsigned char *)name++;
2663 if (c == '/' || c == '\0')
2664 return -EACCES;
2665 }
2666 /*
2667 * See if the low-level filesystem might want
2668 * to use its own hash..
2669 */
2670 if (base->d_flags & DCACHE_OP_HASH) {
2671 int err = base->d_op->d_hash(base, this);
2672 if (err < 0)
2673 return err;
2674 }
2675
2676 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2677 }
2678
2679 /**
2680 * try_lookup_one_len - filesystem helper to lookup single pathname component
2681 * @name: pathname component to lookup
2682 * @base: base directory to lookup from
2683 * @len: maximum length @len should be interpreted to
2684 *
2685 * Look up a dentry by name in the dcache, returning NULL if it does not
2686 * currently exist. The function does not try to create a dentry.
2687 *
2688 * Note that this routine is purely a helper for filesystem usage and should
2689 * not be called by generic code.
2690 *
2691 * The caller must hold base->i_mutex.
2692 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2693 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2694 {
2695 struct qstr this;
2696 int err;
2697
2698 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2699
2700 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2701 if (err)
2702 return ERR_PTR(err);
2703
2704 return lookup_dcache(&this, base, 0);
2705 }
2706 EXPORT_SYMBOL(try_lookup_one_len);
2707
2708 /**
2709 * lookup_one_len - filesystem helper to lookup single pathname component
2710 * @name: pathname component to lookup
2711 * @base: base directory to lookup from
2712 * @len: maximum length @len should be interpreted to
2713 *
2714 * Note that this routine is purely a helper for filesystem usage and should
2715 * not be called by generic code.
2716 *
2717 * The caller must hold base->i_mutex.
2718 */
lookup_one_len(const char * name,struct dentry * base,int len)2719 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2720 {
2721 struct dentry *dentry;
2722 struct qstr this;
2723 int err;
2724
2725 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2726
2727 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2728 if (err)
2729 return ERR_PTR(err);
2730
2731 dentry = lookup_dcache(&this, base, 0);
2732 return dentry ? dentry : __lookup_slow(&this, base, 0);
2733 }
2734 EXPORT_SYMBOL(lookup_one_len);
2735
2736 /**
2737 * lookup_one - filesystem helper to lookup single pathname component
2738 * @mnt_userns: user namespace of the mount the lookup is performed from
2739 * @name: pathname component to lookup
2740 * @base: base directory to lookup from
2741 * @len: maximum length @len should be interpreted to
2742 *
2743 * Note that this routine is purely a helper for filesystem usage and should
2744 * not be called by generic code.
2745 *
2746 * The caller must hold base->i_mutex.
2747 */
lookup_one(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2748 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2749 struct dentry *base, int len)
2750 {
2751 struct dentry *dentry;
2752 struct qstr this;
2753 int err;
2754
2755 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2756
2757 err = lookup_one_common(mnt_userns, name, base, len, &this);
2758 if (err)
2759 return ERR_PTR(err);
2760
2761 dentry = lookup_dcache(&this, base, 0);
2762 return dentry ? dentry : __lookup_slow(&this, base, 0);
2763 }
2764 EXPORT_SYMBOL(lookup_one);
2765
2766 /**
2767 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2768 * @mnt_userns: idmapping of the mount the lookup is performed from
2769 * @name: pathname component to lookup
2770 * @base: base directory to lookup from
2771 * @len: maximum length @len should be interpreted to
2772 *
2773 * Note that this routine is purely a helper for filesystem usage and should
2774 * not be called by generic code.
2775 *
2776 * Unlike lookup_one_len, it should be called without the parent
2777 * i_mutex held, and will take the i_mutex itself if necessary.
2778 */
lookup_one_unlocked(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2779 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2780 const char *name, struct dentry *base,
2781 int len)
2782 {
2783 struct qstr this;
2784 int err;
2785 struct dentry *ret;
2786
2787 err = lookup_one_common(mnt_userns, name, base, len, &this);
2788 if (err)
2789 return ERR_PTR(err);
2790
2791 ret = lookup_dcache(&this, base, 0);
2792 if (!ret)
2793 ret = lookup_slow(&this, base, 0);
2794 return ret;
2795 }
2796 EXPORT_SYMBOL(lookup_one_unlocked);
2797
2798 /**
2799 * lookup_one_positive_unlocked - filesystem helper to lookup single
2800 * pathname component
2801 * @mnt_userns: idmapping of the mount the lookup is performed from
2802 * @name: pathname component to lookup
2803 * @base: base directory to lookup from
2804 * @len: maximum length @len should be interpreted to
2805 *
2806 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2807 * known positive or ERR_PTR(). This is what most of the users want.
2808 *
2809 * Note that pinned negative with unlocked parent _can_ become positive at any
2810 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2811 * positives have >d_inode stable, so this one avoids such problems.
2812 *
2813 * Note that this routine is purely a helper for filesystem usage and should
2814 * not be called by generic code.
2815 *
2816 * The helper should be called without i_mutex held.
2817 */
lookup_one_positive_unlocked(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2818 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2819 const char *name,
2820 struct dentry *base, int len)
2821 {
2822 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2823
2824 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2825 dput(ret);
2826 ret = ERR_PTR(-ENOENT);
2827 }
2828 return ret;
2829 }
2830 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2831
2832 /**
2833 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2834 * @name: pathname component to lookup
2835 * @base: base directory to lookup from
2836 * @len: maximum length @len should be interpreted to
2837 *
2838 * Note that this routine is purely a helper for filesystem usage and should
2839 * not be called by generic code.
2840 *
2841 * Unlike lookup_one_len, it should be called without the parent
2842 * i_mutex held, and will take the i_mutex itself if necessary.
2843 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2844 struct dentry *lookup_one_len_unlocked(const char *name,
2845 struct dentry *base, int len)
2846 {
2847 return lookup_one_unlocked(&init_user_ns, name, base, len);
2848 }
2849 EXPORT_SYMBOL(lookup_one_len_unlocked);
2850
2851 /*
2852 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2853 * on negatives. Returns known positive or ERR_PTR(); that's what
2854 * most of the users want. Note that pinned negative with unlocked parent
2855 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2856 * need to be very careful; pinned positives have ->d_inode stable, so
2857 * this one avoids such problems.
2858 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2859 struct dentry *lookup_positive_unlocked(const char *name,
2860 struct dentry *base, int len)
2861 {
2862 return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2863 }
2864 EXPORT_SYMBOL(lookup_positive_unlocked);
2865
2866 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2867 int path_pts(struct path *path)
2868 {
2869 /* Find something mounted on "pts" in the same directory as
2870 * the input path.
2871 */
2872 struct dentry *parent = dget_parent(path->dentry);
2873 struct dentry *child;
2874 struct qstr this = QSTR_INIT("pts", 3);
2875
2876 if (unlikely(!path_connected(path->mnt, parent))) {
2877 dput(parent);
2878 return -ENOENT;
2879 }
2880 dput(path->dentry);
2881 path->dentry = parent;
2882 child = d_hash_and_lookup(parent, &this);
2883 if (!child)
2884 return -ENOENT;
2885
2886 path->dentry = child;
2887 dput(parent);
2888 follow_down(path);
2889 return 0;
2890 }
2891 #endif
2892
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2893 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2894 struct path *path, int *empty)
2895 {
2896 struct filename *filename = getname_flags(name, flags, empty);
2897 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2898
2899 putname(filename);
2900 return ret;
2901 }
2902 EXPORT_SYMBOL(user_path_at_empty);
2903
__check_sticky(struct user_namespace * mnt_userns,struct inode * dir,struct inode * inode)2904 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2905 struct inode *inode)
2906 {
2907 kuid_t fsuid = current_fsuid();
2908
2909 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2910 return 0;
2911 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2912 return 0;
2913 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2914 }
2915 EXPORT_SYMBOL(__check_sticky);
2916
2917 /*
2918 * Check whether we can remove a link victim from directory dir, check
2919 * whether the type of victim is right.
2920 * 1. We can't do it if dir is read-only (done in permission())
2921 * 2. We should have write and exec permissions on dir
2922 * 3. We can't remove anything from append-only dir
2923 * 4. We can't do anything with immutable dir (done in permission())
2924 * 5. If the sticky bit on dir is set we should either
2925 * a. be owner of dir, or
2926 * b. be owner of victim, or
2927 * c. have CAP_FOWNER capability
2928 * 6. If the victim is append-only or immutable we can't do antyhing with
2929 * links pointing to it.
2930 * 7. If the victim has an unknown uid or gid we can't change the inode.
2931 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2932 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2933 * 10. We can't remove a root or mountpoint.
2934 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2935 * nfs_async_unlink().
2936 */
may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,bool isdir)2937 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2938 struct dentry *victim, bool isdir)
2939 {
2940 struct inode *inode = d_backing_inode(victim);
2941 int error;
2942
2943 if (d_is_negative(victim))
2944 return -ENOENT;
2945 BUG_ON(!inode);
2946
2947 BUG_ON(victim->d_parent->d_inode != dir);
2948
2949 /* Inode writeback is not safe when the uid or gid are invalid. */
2950 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2951 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2952 return -EOVERFLOW;
2953
2954 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2955
2956 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2957 if (error)
2958 return error;
2959 if (IS_APPEND(dir))
2960 return -EPERM;
2961
2962 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2963 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2964 HAS_UNMAPPED_ID(mnt_userns, inode))
2965 return -EPERM;
2966 if (isdir) {
2967 if (!d_is_dir(victim))
2968 return -ENOTDIR;
2969 if (IS_ROOT(victim))
2970 return -EBUSY;
2971 } else if (d_is_dir(victim))
2972 return -EISDIR;
2973 if (IS_DEADDIR(dir))
2974 return -ENOENT;
2975 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2976 return -EBUSY;
2977 return 0;
2978 }
2979
2980 /* Check whether we can create an object with dentry child in directory
2981 * dir.
2982 * 1. We can't do it if child already exists (open has special treatment for
2983 * this case, but since we are inlined it's OK)
2984 * 2. We can't do it if dir is read-only (done in permission())
2985 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2986 * 4. We should have write and exec permissions on dir
2987 * 5. We can't do it if dir is immutable (done in permission())
2988 */
may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)2989 static inline int may_create(struct user_namespace *mnt_userns,
2990 struct inode *dir, struct dentry *child)
2991 {
2992 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2993 if (child->d_inode)
2994 return -EEXIST;
2995 if (IS_DEADDIR(dir))
2996 return -ENOENT;
2997 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2998 return -EOVERFLOW;
2999
3000 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3001 }
3002
3003 /*
3004 * p1 and p2 should be directories on the same fs.
3005 */
lock_rename(struct dentry * p1,struct dentry * p2)3006 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3007 {
3008 struct dentry *p;
3009
3010 if (p1 == p2) {
3011 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3012 return NULL;
3013 }
3014
3015 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3016
3017 p = d_ancestor(p2, p1);
3018 if (p) {
3019 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3020 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3021 return p;
3022 }
3023
3024 p = d_ancestor(p1, p2);
3025 if (p) {
3026 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3027 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3028 return p;
3029 }
3030
3031 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3032 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3033 return NULL;
3034 }
3035 EXPORT_SYMBOL(lock_rename);
3036
unlock_rename(struct dentry * p1,struct dentry * p2)3037 void unlock_rename(struct dentry *p1, struct dentry *p2)
3038 {
3039 inode_unlock(p1->d_inode);
3040 if (p1 != p2) {
3041 inode_unlock(p2->d_inode);
3042 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3043 }
3044 }
3045 EXPORT_SYMBOL(unlock_rename);
3046
3047 /**
3048 * vfs_create - create new file
3049 * @mnt_userns: user namespace of the mount the inode was found from
3050 * @dir: inode of @dentry
3051 * @dentry: pointer to dentry of the base directory
3052 * @mode: mode of the new file
3053 * @want_excl: whether the file must not yet exist
3054 *
3055 * Create a new file.
3056 *
3057 * If the inode has been found through an idmapped mount the user namespace of
3058 * the vfsmount must be passed through @mnt_userns. This function will then take
3059 * care to map the inode according to @mnt_userns before checking permissions.
3060 * On non-idmapped mounts or if permission checking is to be performed on the
3061 * raw inode simply passs init_user_ns.
3062 */
vfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3063 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3064 struct dentry *dentry, umode_t mode, bool want_excl)
3065 {
3066 int error = may_create(mnt_userns, dir, dentry);
3067 if (error)
3068 return error;
3069
3070 if (!dir->i_op->create)
3071 return -EACCES; /* shouldn't it be ENOSYS? */
3072 mode &= S_IALLUGO;
3073 mode |= S_IFREG;
3074 error = security_inode_create(dir, dentry, mode);
3075 if (error)
3076 return error;
3077 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3078 if (!error)
3079 fsnotify_create(dir, dentry);
3080 return error;
3081 }
3082 EXPORT_SYMBOL(vfs_create);
3083
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3084 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3085 int (*f)(struct dentry *, umode_t, void *),
3086 void *arg)
3087 {
3088 struct inode *dir = dentry->d_parent->d_inode;
3089 int error = may_create(&init_user_ns, dir, dentry);
3090 if (error)
3091 return error;
3092
3093 mode &= S_IALLUGO;
3094 mode |= S_IFREG;
3095 error = security_inode_create(dir, dentry, mode);
3096 if (error)
3097 return error;
3098 error = f(dentry, mode, arg);
3099 if (!error)
3100 fsnotify_create(dir, dentry);
3101 return error;
3102 }
3103 EXPORT_SYMBOL(vfs_mkobj);
3104
may_open_dev(const struct path * path)3105 bool may_open_dev(const struct path *path)
3106 {
3107 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3108 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3109 }
3110
may_open(struct user_namespace * mnt_userns,const struct path * path,int acc_mode,int flag)3111 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3112 int acc_mode, int flag)
3113 {
3114 struct dentry *dentry = path->dentry;
3115 struct inode *inode = dentry->d_inode;
3116 int error;
3117
3118 if (!inode)
3119 return -ENOENT;
3120
3121 switch (inode->i_mode & S_IFMT) {
3122 case S_IFLNK:
3123 return -ELOOP;
3124 case S_IFDIR:
3125 if (acc_mode & MAY_WRITE)
3126 return -EISDIR;
3127 if (acc_mode & MAY_EXEC)
3128 return -EACCES;
3129 break;
3130 case S_IFBLK:
3131 case S_IFCHR:
3132 if (!may_open_dev(path))
3133 return -EACCES;
3134 fallthrough;
3135 case S_IFIFO:
3136 case S_IFSOCK:
3137 if (acc_mode & MAY_EXEC)
3138 return -EACCES;
3139 flag &= ~O_TRUNC;
3140 break;
3141 case S_IFREG:
3142 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3143 return -EACCES;
3144 break;
3145 }
3146
3147 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3148 if (error)
3149 return error;
3150
3151 /*
3152 * An append-only file must be opened in append mode for writing.
3153 */
3154 if (IS_APPEND(inode)) {
3155 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3156 return -EPERM;
3157 if (flag & O_TRUNC)
3158 return -EPERM;
3159 }
3160
3161 /* O_NOATIME can only be set by the owner or superuser */
3162 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3163 return -EPERM;
3164
3165 return 0;
3166 }
3167
handle_truncate(struct user_namespace * mnt_userns,struct file * filp)3168 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3169 {
3170 const struct path *path = &filp->f_path;
3171 struct inode *inode = path->dentry->d_inode;
3172 int error = get_write_access(inode);
3173 if (error)
3174 return error;
3175
3176 error = security_path_truncate(path);
3177 if (!error) {
3178 error = do_truncate(mnt_userns, path->dentry, 0,
3179 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3180 filp);
3181 }
3182 put_write_access(inode);
3183 return error;
3184 }
3185
open_to_namei_flags(int flag)3186 static inline int open_to_namei_flags(int flag)
3187 {
3188 if ((flag & O_ACCMODE) == 3)
3189 flag--;
3190 return flag;
3191 }
3192
may_o_create(struct user_namespace * mnt_userns,const struct path * dir,struct dentry * dentry,umode_t mode)3193 static int may_o_create(struct user_namespace *mnt_userns,
3194 const struct path *dir, struct dentry *dentry,
3195 umode_t mode)
3196 {
3197 int error = security_path_mknod(dir, dentry, mode, 0);
3198 if (error)
3199 return error;
3200
3201 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3202 return -EOVERFLOW;
3203
3204 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3205 MAY_WRITE | MAY_EXEC);
3206 if (error)
3207 return error;
3208
3209 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3210 }
3211
3212 /*
3213 * Attempt to atomically look up, create and open a file from a negative
3214 * dentry.
3215 *
3216 * Returns 0 if successful. The file will have been created and attached to
3217 * @file by the filesystem calling finish_open().
3218 *
3219 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3220 * be set. The caller will need to perform the open themselves. @path will
3221 * have been updated to point to the new dentry. This may be negative.
3222 *
3223 * Returns an error code otherwise.
3224 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3225 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3226 struct file *file,
3227 int open_flag, umode_t mode)
3228 {
3229 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3230 struct inode *dir = nd->path.dentry->d_inode;
3231 int error;
3232
3233 if (nd->flags & LOOKUP_DIRECTORY)
3234 open_flag |= O_DIRECTORY;
3235
3236 file->f_path.dentry = DENTRY_NOT_SET;
3237 file->f_path.mnt = nd->path.mnt;
3238 error = dir->i_op->atomic_open(dir, dentry, file,
3239 open_to_namei_flags(open_flag), mode);
3240 d_lookup_done(dentry);
3241 if (!error) {
3242 if (file->f_mode & FMODE_OPENED) {
3243 if (unlikely(dentry != file->f_path.dentry)) {
3244 dput(dentry);
3245 dentry = dget(file->f_path.dentry);
3246 }
3247 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3248 error = -EIO;
3249 } else {
3250 if (file->f_path.dentry) {
3251 dput(dentry);
3252 dentry = file->f_path.dentry;
3253 }
3254 if (unlikely(d_is_negative(dentry)))
3255 error = -ENOENT;
3256 }
3257 }
3258 if (error) {
3259 dput(dentry);
3260 dentry = ERR_PTR(error);
3261 }
3262 return dentry;
3263 }
3264
3265 /*
3266 * Look up and maybe create and open the last component.
3267 *
3268 * Must be called with parent locked (exclusive in O_CREAT case).
3269 *
3270 * Returns 0 on success, that is, if
3271 * the file was successfully atomically created (if necessary) and opened, or
3272 * the file was not completely opened at this time, though lookups and
3273 * creations were performed.
3274 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3275 * In the latter case dentry returned in @path might be negative if O_CREAT
3276 * hadn't been specified.
3277 *
3278 * An error code is returned on failure.
3279 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3280 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3281 const struct open_flags *op,
3282 bool got_write)
3283 {
3284 struct user_namespace *mnt_userns;
3285 struct dentry *dir = nd->path.dentry;
3286 struct inode *dir_inode = dir->d_inode;
3287 int open_flag = op->open_flag;
3288 struct dentry *dentry;
3289 int error, create_error = 0;
3290 umode_t mode = op->mode;
3291 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3292
3293 if (unlikely(IS_DEADDIR(dir_inode)))
3294 return ERR_PTR(-ENOENT);
3295
3296 file->f_mode &= ~FMODE_CREATED;
3297 dentry = d_lookup(dir, &nd->last);
3298 for (;;) {
3299 if (!dentry) {
3300 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3301 if (IS_ERR(dentry))
3302 return dentry;
3303 }
3304 if (d_in_lookup(dentry))
3305 break;
3306
3307 error = d_revalidate(dentry, nd->flags);
3308 if (likely(error > 0))
3309 break;
3310 if (error)
3311 goto out_dput;
3312 d_invalidate(dentry);
3313 dput(dentry);
3314 dentry = NULL;
3315 }
3316 if (dentry->d_inode) {
3317 /* Cached positive dentry: will open in f_op->open */
3318 return dentry;
3319 }
3320
3321 /*
3322 * Checking write permission is tricky, bacuse we don't know if we are
3323 * going to actually need it: O_CREAT opens should work as long as the
3324 * file exists. But checking existence breaks atomicity. The trick is
3325 * to check access and if not granted clear O_CREAT from the flags.
3326 *
3327 * Another problem is returing the "right" error value (e.g. for an
3328 * O_EXCL open we want to return EEXIST not EROFS).
3329 */
3330 if (unlikely(!got_write))
3331 open_flag &= ~O_TRUNC;
3332 mnt_userns = mnt_user_ns(nd->path.mnt);
3333 if (open_flag & O_CREAT) {
3334 if (open_flag & O_EXCL)
3335 open_flag &= ~O_TRUNC;
3336 if (!IS_POSIXACL(dir->d_inode))
3337 mode &= ~current_umask();
3338 if (likely(got_write))
3339 create_error = may_o_create(mnt_userns, &nd->path,
3340 dentry, mode);
3341 else
3342 create_error = -EROFS;
3343 }
3344 if (create_error)
3345 open_flag &= ~O_CREAT;
3346 if (dir_inode->i_op->atomic_open) {
3347 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3348 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3349 dentry = ERR_PTR(create_error);
3350 return dentry;
3351 }
3352
3353 if (d_in_lookup(dentry)) {
3354 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3355 nd->flags);
3356 d_lookup_done(dentry);
3357 if (unlikely(res)) {
3358 if (IS_ERR(res)) {
3359 error = PTR_ERR(res);
3360 goto out_dput;
3361 }
3362 dput(dentry);
3363 dentry = res;
3364 }
3365 }
3366
3367 /* Negative dentry, just create the file */
3368 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3369 file->f_mode |= FMODE_CREATED;
3370 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3371 if (!dir_inode->i_op->create) {
3372 error = -EACCES;
3373 goto out_dput;
3374 }
3375
3376 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3377 mode, open_flag & O_EXCL);
3378 if (error)
3379 goto out_dput;
3380 }
3381 if (unlikely(create_error) && !dentry->d_inode) {
3382 error = create_error;
3383 goto out_dput;
3384 }
3385 return dentry;
3386
3387 out_dput:
3388 dput(dentry);
3389 return ERR_PTR(error);
3390 }
3391
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3392 static const char *open_last_lookups(struct nameidata *nd,
3393 struct file *file, const struct open_flags *op)
3394 {
3395 struct dentry *dir = nd->path.dentry;
3396 int open_flag = op->open_flag;
3397 bool got_write = false;
3398 unsigned seq;
3399 struct inode *inode;
3400 struct dentry *dentry;
3401 const char *res;
3402
3403 nd->flags |= op->intent;
3404
3405 if (nd->last_type != LAST_NORM) {
3406 if (nd->depth)
3407 put_link(nd);
3408 return handle_dots(nd, nd->last_type);
3409 }
3410
3411 if (!(open_flag & O_CREAT)) {
3412 if (nd->last.name[nd->last.len])
3413 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3414 /* we _can_ be in RCU mode here */
3415 dentry = lookup_fast(nd, &inode, &seq);
3416 if (IS_ERR(dentry))
3417 return ERR_CAST(dentry);
3418 if (likely(dentry))
3419 goto finish_lookup;
3420
3421 BUG_ON(nd->flags & LOOKUP_RCU);
3422 } else {
3423 /* create side of things */
3424 if (nd->flags & LOOKUP_RCU) {
3425 if (!try_to_unlazy(nd))
3426 return ERR_PTR(-ECHILD);
3427 }
3428 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3429 /* trailing slashes? */
3430 if (unlikely(nd->last.name[nd->last.len]))
3431 return ERR_PTR(-EISDIR);
3432 }
3433
3434 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3435 got_write = !mnt_want_write(nd->path.mnt);
3436 /*
3437 * do _not_ fail yet - we might not need that or fail with
3438 * a different error; let lookup_open() decide; we'll be
3439 * dropping this one anyway.
3440 */
3441 }
3442 if (open_flag & O_CREAT)
3443 inode_lock(dir->d_inode);
3444 else
3445 inode_lock_shared(dir->d_inode);
3446 dentry = lookup_open(nd, file, op, got_write);
3447 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3448 fsnotify_create(dir->d_inode, dentry);
3449 if (open_flag & O_CREAT)
3450 inode_unlock(dir->d_inode);
3451 else
3452 inode_unlock_shared(dir->d_inode);
3453
3454 if (got_write)
3455 mnt_drop_write(nd->path.mnt);
3456
3457 if (IS_ERR(dentry))
3458 return ERR_CAST(dentry);
3459
3460 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3461 dput(nd->path.dentry);
3462 nd->path.dentry = dentry;
3463 return NULL;
3464 }
3465
3466 finish_lookup:
3467 if (nd->depth)
3468 put_link(nd);
3469 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3470 if (unlikely(res))
3471 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3472 return res;
3473 }
3474
3475 /*
3476 * Handle the last step of open()
3477 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3478 static int do_open(struct nameidata *nd,
3479 struct file *file, const struct open_flags *op)
3480 {
3481 struct user_namespace *mnt_userns;
3482 int open_flag = op->open_flag;
3483 bool do_truncate;
3484 int acc_mode;
3485 int error;
3486
3487 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3488 error = complete_walk(nd);
3489 if (error)
3490 return error;
3491 }
3492 if (!(file->f_mode & FMODE_CREATED))
3493 audit_inode(nd->name, nd->path.dentry, 0);
3494 mnt_userns = mnt_user_ns(nd->path.mnt);
3495 if (open_flag & O_CREAT) {
3496 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3497 return -EEXIST;
3498 if (d_is_dir(nd->path.dentry))
3499 return -EISDIR;
3500 error = may_create_in_sticky(mnt_userns, nd,
3501 d_backing_inode(nd->path.dentry));
3502 if (unlikely(error))
3503 return error;
3504 }
3505 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3506 return -ENOTDIR;
3507
3508 do_truncate = false;
3509 acc_mode = op->acc_mode;
3510 if (file->f_mode & FMODE_CREATED) {
3511 /* Don't check for write permission, don't truncate */
3512 open_flag &= ~O_TRUNC;
3513 acc_mode = 0;
3514 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3515 error = mnt_want_write(nd->path.mnt);
3516 if (error)
3517 return error;
3518 do_truncate = true;
3519 }
3520 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3521 if (!error && !(file->f_mode & FMODE_OPENED))
3522 error = vfs_open(&nd->path, file);
3523 if (!error)
3524 error = ima_file_check(file, op->acc_mode);
3525 if (!error && do_truncate)
3526 error = handle_truncate(mnt_userns, file);
3527 if (unlikely(error > 0)) {
3528 WARN_ON(1);
3529 error = -EINVAL;
3530 }
3531 if (do_truncate)
3532 mnt_drop_write(nd->path.mnt);
3533 return error;
3534 }
3535
3536 /**
3537 * vfs_tmpfile - create tmpfile
3538 * @mnt_userns: user namespace of the mount the inode was found from
3539 * @dentry: pointer to dentry of the base directory
3540 * @mode: mode of the new tmpfile
3541 * @open_flag: flags
3542 *
3543 * Create a temporary file.
3544 *
3545 * If the inode has been found through an idmapped mount the user namespace of
3546 * the vfsmount must be passed through @mnt_userns. This function will then take
3547 * care to map the inode according to @mnt_userns before checking permissions.
3548 * On non-idmapped mounts or if permission checking is to be performed on the
3549 * raw inode simply passs init_user_ns.
3550 */
vfs_tmpfile(struct user_namespace * mnt_userns,struct dentry * dentry,umode_t mode,int open_flag)3551 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3552 struct dentry *dentry, umode_t mode, int open_flag)
3553 {
3554 struct dentry *child = NULL;
3555 struct inode *dir = dentry->d_inode;
3556 struct inode *inode;
3557 int error;
3558
3559 /* we want directory to be writable */
3560 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3561 if (error)
3562 goto out_err;
3563 error = -EOPNOTSUPP;
3564 if (!dir->i_op->tmpfile)
3565 goto out_err;
3566 error = -ENOMEM;
3567 child = d_alloc(dentry, &slash_name);
3568 if (unlikely(!child))
3569 goto out_err;
3570 if (!IS_POSIXACL(dir))
3571 mode &= ~current_umask();
3572 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3573 if (error)
3574 goto out_err;
3575 error = -ENOENT;
3576 inode = child->d_inode;
3577 if (unlikely(!inode))
3578 goto out_err;
3579 if (!(open_flag & O_EXCL)) {
3580 spin_lock(&inode->i_lock);
3581 inode->i_state |= I_LINKABLE;
3582 spin_unlock(&inode->i_lock);
3583 }
3584 ima_post_create_tmpfile(mnt_userns, inode);
3585 return child;
3586
3587 out_err:
3588 dput(child);
3589 return ERR_PTR(error);
3590 }
3591 EXPORT_SYMBOL(vfs_tmpfile);
3592
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3593 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3594 const struct open_flags *op,
3595 struct file *file)
3596 {
3597 struct user_namespace *mnt_userns;
3598 struct dentry *child;
3599 struct path path;
3600 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3601 if (unlikely(error))
3602 return error;
3603 error = mnt_want_write(path.mnt);
3604 if (unlikely(error))
3605 goto out;
3606 mnt_userns = mnt_user_ns(path.mnt);
3607 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3608 error = PTR_ERR(child);
3609 if (IS_ERR(child))
3610 goto out2;
3611 dput(path.dentry);
3612 path.dentry = child;
3613 audit_inode(nd->name, child, 0);
3614 /* Don't check for other permissions, the inode was just created */
3615 error = may_open(mnt_userns, &path, 0, op->open_flag);
3616 if (!error)
3617 error = vfs_open(&path, file);
3618 out2:
3619 mnt_drop_write(path.mnt);
3620 out:
3621 path_put(&path);
3622 return error;
3623 }
3624
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3625 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3626 {
3627 struct path path;
3628 int error = path_lookupat(nd, flags, &path);
3629 if (!error) {
3630 audit_inode(nd->name, path.dentry, 0);
3631 error = vfs_open(&path, file);
3632 path_put(&path);
3633 }
3634 return error;
3635 }
3636
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3637 static struct file *path_openat(struct nameidata *nd,
3638 const struct open_flags *op, unsigned flags)
3639 {
3640 struct file *file;
3641 int error;
3642
3643 file = alloc_empty_file(op->open_flag, current_cred());
3644 if (IS_ERR(file))
3645 return file;
3646
3647 if (unlikely(file->f_flags & __O_TMPFILE)) {
3648 error = do_tmpfile(nd, flags, op, file);
3649 } else if (unlikely(file->f_flags & O_PATH)) {
3650 error = do_o_path(nd, flags, file);
3651 } else {
3652 const char *s = path_init(nd, flags);
3653 while (!(error = link_path_walk(s, nd)) &&
3654 (s = open_last_lookups(nd, file, op)) != NULL)
3655 ;
3656 if (!error)
3657 error = do_open(nd, file, op);
3658 terminate_walk(nd);
3659 }
3660 if (likely(!error)) {
3661 if (likely(file->f_mode & FMODE_OPENED))
3662 return file;
3663 WARN_ON(1);
3664 error = -EINVAL;
3665 }
3666 fput(file);
3667 if (error == -EOPENSTALE) {
3668 if (flags & LOOKUP_RCU)
3669 error = -ECHILD;
3670 else
3671 error = -ESTALE;
3672 }
3673 return ERR_PTR(error);
3674 }
3675
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3676 struct file *do_filp_open(int dfd, struct filename *pathname,
3677 const struct open_flags *op)
3678 {
3679 struct nameidata nd;
3680 int flags = op->lookup_flags;
3681 struct file *filp;
3682
3683 set_nameidata(&nd, dfd, pathname, NULL);
3684 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3685 if (unlikely(filp == ERR_PTR(-ECHILD)))
3686 filp = path_openat(&nd, op, flags);
3687 if (unlikely(filp == ERR_PTR(-ESTALE)))
3688 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3689 restore_nameidata();
3690 return filp;
3691 }
3692
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)3693 struct file *do_file_open_root(const struct path *root,
3694 const char *name, const struct open_flags *op)
3695 {
3696 struct nameidata nd;
3697 struct file *file;
3698 struct filename *filename;
3699 int flags = op->lookup_flags;
3700
3701 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3702 return ERR_PTR(-ELOOP);
3703
3704 filename = getname_kernel(name);
3705 if (IS_ERR(filename))
3706 return ERR_CAST(filename);
3707
3708 set_nameidata(&nd, -1, filename, root);
3709 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3710 if (unlikely(file == ERR_PTR(-ECHILD)))
3711 file = path_openat(&nd, op, flags);
3712 if (unlikely(file == ERR_PTR(-ESTALE)))
3713 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3714 restore_nameidata();
3715 putname(filename);
3716 return file;
3717 }
3718
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3719 static struct dentry *filename_create(int dfd, struct filename *name,
3720 struct path *path, unsigned int lookup_flags)
3721 {
3722 struct dentry *dentry = ERR_PTR(-EEXIST);
3723 struct qstr last;
3724 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3725 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3726 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3727 int type;
3728 int err2;
3729 int error;
3730
3731 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3732 if (error)
3733 return ERR_PTR(error);
3734
3735 /*
3736 * Yucky last component or no last component at all?
3737 * (foo/., foo/.., /////)
3738 */
3739 if (unlikely(type != LAST_NORM))
3740 goto out;
3741
3742 /* don't fail immediately if it's r/o, at least try to report other errors */
3743 err2 = mnt_want_write(path->mnt);
3744 /*
3745 * Do the final lookup. Suppress 'create' if there is a trailing
3746 * '/', and a directory wasn't requested.
3747 */
3748 if (last.name[last.len] && !want_dir)
3749 create_flags = 0;
3750 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3751 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3752 if (IS_ERR(dentry))
3753 goto unlock;
3754
3755 error = -EEXIST;
3756 if (d_is_positive(dentry))
3757 goto fail;
3758
3759 /*
3760 * Special case - lookup gave negative, but... we had foo/bar/
3761 * From the vfs_mknod() POV we just have a negative dentry -
3762 * all is fine. Let's be bastards - you had / on the end, you've
3763 * been asking for (non-existent) directory. -ENOENT for you.
3764 */
3765 if (unlikely(!create_flags)) {
3766 error = -ENOENT;
3767 goto fail;
3768 }
3769 if (unlikely(err2)) {
3770 error = err2;
3771 goto fail;
3772 }
3773 return dentry;
3774 fail:
3775 dput(dentry);
3776 dentry = ERR_PTR(error);
3777 unlock:
3778 inode_unlock(path->dentry->d_inode);
3779 if (!err2)
3780 mnt_drop_write(path->mnt);
3781 out:
3782 path_put(path);
3783 return dentry;
3784 }
3785
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3786 struct dentry *kern_path_create(int dfd, const char *pathname,
3787 struct path *path, unsigned int lookup_flags)
3788 {
3789 struct filename *filename = getname_kernel(pathname);
3790 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3791
3792 putname(filename);
3793 return res;
3794 }
3795 EXPORT_SYMBOL(kern_path_create);
3796
done_path_create(struct path * path,struct dentry * dentry)3797 void done_path_create(struct path *path, struct dentry *dentry)
3798 {
3799 dput(dentry);
3800 inode_unlock(path->dentry->d_inode);
3801 mnt_drop_write(path->mnt);
3802 path_put(path);
3803 }
3804 EXPORT_SYMBOL(done_path_create);
3805
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3806 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3807 struct path *path, unsigned int lookup_flags)
3808 {
3809 struct filename *filename = getname(pathname);
3810 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3811
3812 putname(filename);
3813 return res;
3814 }
3815 EXPORT_SYMBOL(user_path_create);
3816
3817 /**
3818 * vfs_mknod - create device node or file
3819 * @mnt_userns: user namespace of the mount the inode was found from
3820 * @dir: inode of @dentry
3821 * @dentry: pointer to dentry of the base directory
3822 * @mode: mode of the new device node or file
3823 * @dev: device number of device to create
3824 *
3825 * Create a device node or file.
3826 *
3827 * If the inode has been found through an idmapped mount the user namespace of
3828 * the vfsmount must be passed through @mnt_userns. This function will then take
3829 * care to map the inode according to @mnt_userns before checking permissions.
3830 * On non-idmapped mounts or if permission checking is to be performed on the
3831 * raw inode simply passs init_user_ns.
3832 */
vfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3833 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3834 struct dentry *dentry, umode_t mode, dev_t dev)
3835 {
3836 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3837 int error = may_create(mnt_userns, dir, dentry);
3838
3839 if (error)
3840 return error;
3841
3842 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3843 !capable(CAP_MKNOD))
3844 return -EPERM;
3845
3846 if (!dir->i_op->mknod)
3847 return -EPERM;
3848
3849 error = devcgroup_inode_mknod(mode, dev);
3850 if (error)
3851 return error;
3852
3853 error = security_inode_mknod(dir, dentry, mode, dev);
3854 if (error)
3855 return error;
3856
3857 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3858 if (!error)
3859 fsnotify_create(dir, dentry);
3860 return error;
3861 }
3862 EXPORT_SYMBOL(vfs_mknod);
3863
may_mknod(umode_t mode)3864 static int may_mknod(umode_t mode)
3865 {
3866 switch (mode & S_IFMT) {
3867 case S_IFREG:
3868 case S_IFCHR:
3869 case S_IFBLK:
3870 case S_IFIFO:
3871 case S_IFSOCK:
3872 case 0: /* zero mode translates to S_IFREG */
3873 return 0;
3874 case S_IFDIR:
3875 return -EPERM;
3876 default:
3877 return -EINVAL;
3878 }
3879 }
3880
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)3881 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3882 unsigned int dev)
3883 {
3884 struct user_namespace *mnt_userns;
3885 struct dentry *dentry;
3886 struct path path;
3887 int error;
3888 unsigned int lookup_flags = 0;
3889
3890 error = may_mknod(mode);
3891 if (error)
3892 goto out1;
3893 retry:
3894 dentry = filename_create(dfd, name, &path, lookup_flags);
3895 error = PTR_ERR(dentry);
3896 if (IS_ERR(dentry))
3897 goto out1;
3898
3899 if (!IS_POSIXACL(path.dentry->d_inode))
3900 mode &= ~current_umask();
3901 error = security_path_mknod(&path, dentry, mode, dev);
3902 if (error)
3903 goto out2;
3904
3905 mnt_userns = mnt_user_ns(path.mnt);
3906 switch (mode & S_IFMT) {
3907 case 0: case S_IFREG:
3908 error = vfs_create(mnt_userns, path.dentry->d_inode,
3909 dentry, mode, true);
3910 if (!error)
3911 ima_post_path_mknod(mnt_userns, dentry);
3912 break;
3913 case S_IFCHR: case S_IFBLK:
3914 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3915 dentry, mode, new_decode_dev(dev));
3916 break;
3917 case S_IFIFO: case S_IFSOCK:
3918 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3919 dentry, mode, 0);
3920 break;
3921 }
3922 out2:
3923 done_path_create(&path, dentry);
3924 if (retry_estale(error, lookup_flags)) {
3925 lookup_flags |= LOOKUP_REVAL;
3926 goto retry;
3927 }
3928 out1:
3929 putname(name);
3930 return error;
3931 }
3932
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3933 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3934 unsigned int, dev)
3935 {
3936 return do_mknodat(dfd, getname(filename), mode, dev);
3937 }
3938
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3939 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3940 {
3941 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3942 }
3943
3944 /**
3945 * vfs_mkdir - create directory
3946 * @mnt_userns: user namespace of the mount the inode was found from
3947 * @dir: inode of @dentry
3948 * @dentry: pointer to dentry of the base directory
3949 * @mode: mode of the new directory
3950 *
3951 * Create a directory.
3952 *
3953 * If the inode has been found through an idmapped mount the user namespace of
3954 * the vfsmount must be passed through @mnt_userns. This function will then take
3955 * care to map the inode according to @mnt_userns before checking permissions.
3956 * On non-idmapped mounts or if permission checking is to be performed on the
3957 * raw inode simply passs init_user_ns.
3958 */
vfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)3959 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3960 struct dentry *dentry, umode_t mode)
3961 {
3962 int error = may_create(mnt_userns, dir, dentry);
3963 unsigned max_links = dir->i_sb->s_max_links;
3964
3965 if (error)
3966 return error;
3967
3968 if (!dir->i_op->mkdir)
3969 return -EPERM;
3970
3971 mode &= (S_IRWXUGO|S_ISVTX);
3972 error = security_inode_mkdir(dir, dentry, mode);
3973 if (error)
3974 return error;
3975
3976 if (max_links && dir->i_nlink >= max_links)
3977 return -EMLINK;
3978
3979 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3980 if (!error)
3981 fsnotify_mkdir(dir, dentry);
3982 return error;
3983 }
3984 EXPORT_SYMBOL(vfs_mkdir);
3985
do_mkdirat(int dfd,struct filename * name,umode_t mode)3986 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
3987 {
3988 struct dentry *dentry;
3989 struct path path;
3990 int error;
3991 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3992
3993 retry:
3994 dentry = filename_create(dfd, name, &path, lookup_flags);
3995 error = PTR_ERR(dentry);
3996 if (IS_ERR(dentry))
3997 goto out_putname;
3998
3999 if (!IS_POSIXACL(path.dentry->d_inode))
4000 mode &= ~current_umask();
4001 error = security_path_mkdir(&path, dentry, mode);
4002 if (!error) {
4003 struct user_namespace *mnt_userns;
4004 mnt_userns = mnt_user_ns(path.mnt);
4005 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4006 mode);
4007 }
4008 done_path_create(&path, dentry);
4009 if (retry_estale(error, lookup_flags)) {
4010 lookup_flags |= LOOKUP_REVAL;
4011 goto retry;
4012 }
4013 out_putname:
4014 putname(name);
4015 return error;
4016 }
4017
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4018 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4019 {
4020 return do_mkdirat(dfd, getname(pathname), mode);
4021 }
4022
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4023 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4024 {
4025 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4026 }
4027
4028 /**
4029 * vfs_rmdir - remove directory
4030 * @mnt_userns: user namespace of the mount the inode was found from
4031 * @dir: inode of @dentry
4032 * @dentry: pointer to dentry of the base directory
4033 *
4034 * Remove a directory.
4035 *
4036 * If the inode has been found through an idmapped mount the user namespace of
4037 * the vfsmount must be passed through @mnt_userns. This function will then take
4038 * care to map the inode according to @mnt_userns before checking permissions.
4039 * On non-idmapped mounts or if permission checking is to be performed on the
4040 * raw inode simply passs init_user_ns.
4041 */
vfs_rmdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry)4042 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4043 struct dentry *dentry)
4044 {
4045 int error = may_delete(mnt_userns, dir, dentry, 1);
4046
4047 if (error)
4048 return error;
4049
4050 if (!dir->i_op->rmdir)
4051 return -EPERM;
4052
4053 dget(dentry);
4054 inode_lock(dentry->d_inode);
4055
4056 error = -EBUSY;
4057 if (is_local_mountpoint(dentry) ||
4058 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4059 goto out;
4060
4061 error = security_inode_rmdir(dir, dentry);
4062 if (error)
4063 goto out;
4064
4065 error = dir->i_op->rmdir(dir, dentry);
4066 if (error)
4067 goto out;
4068
4069 shrink_dcache_parent(dentry);
4070 dentry->d_inode->i_flags |= S_DEAD;
4071 dont_mount(dentry);
4072 detach_mounts(dentry);
4073
4074 out:
4075 inode_unlock(dentry->d_inode);
4076 dput(dentry);
4077 if (!error)
4078 d_delete_notify(dir, dentry);
4079 return error;
4080 }
4081 EXPORT_SYMBOL(vfs_rmdir);
4082
do_rmdir(int dfd,struct filename * name)4083 int do_rmdir(int dfd, struct filename *name)
4084 {
4085 struct user_namespace *mnt_userns;
4086 int error;
4087 struct dentry *dentry;
4088 struct path path;
4089 struct qstr last;
4090 int type;
4091 unsigned int lookup_flags = 0;
4092 retry:
4093 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4094 if (error)
4095 goto exit1;
4096
4097 switch (type) {
4098 case LAST_DOTDOT:
4099 error = -ENOTEMPTY;
4100 goto exit2;
4101 case LAST_DOT:
4102 error = -EINVAL;
4103 goto exit2;
4104 case LAST_ROOT:
4105 error = -EBUSY;
4106 goto exit2;
4107 }
4108
4109 error = mnt_want_write(path.mnt);
4110 if (error)
4111 goto exit2;
4112
4113 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4114 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4115 error = PTR_ERR(dentry);
4116 if (IS_ERR(dentry))
4117 goto exit3;
4118 if (!dentry->d_inode) {
4119 error = -ENOENT;
4120 goto exit4;
4121 }
4122 error = security_path_rmdir(&path, dentry);
4123 if (error)
4124 goto exit4;
4125 mnt_userns = mnt_user_ns(path.mnt);
4126 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4127 exit4:
4128 dput(dentry);
4129 exit3:
4130 inode_unlock(path.dentry->d_inode);
4131 mnt_drop_write(path.mnt);
4132 exit2:
4133 path_put(&path);
4134 if (retry_estale(error, lookup_flags)) {
4135 lookup_flags |= LOOKUP_REVAL;
4136 goto retry;
4137 }
4138 exit1:
4139 putname(name);
4140 return error;
4141 }
4142
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4143 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4144 {
4145 return do_rmdir(AT_FDCWD, getname(pathname));
4146 }
4147
4148 /**
4149 * vfs_unlink - unlink a filesystem object
4150 * @mnt_userns: user namespace of the mount the inode was found from
4151 * @dir: parent directory
4152 * @dentry: victim
4153 * @delegated_inode: returns victim inode, if the inode is delegated.
4154 *
4155 * The caller must hold dir->i_mutex.
4156 *
4157 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4158 * return a reference to the inode in delegated_inode. The caller
4159 * should then break the delegation on that inode and retry. Because
4160 * breaking a delegation may take a long time, the caller should drop
4161 * dir->i_mutex before doing so.
4162 *
4163 * Alternatively, a caller may pass NULL for delegated_inode. This may
4164 * be appropriate for callers that expect the underlying filesystem not
4165 * to be NFS exported.
4166 *
4167 * If the inode has been found through an idmapped mount the user namespace of
4168 * the vfsmount must be passed through @mnt_userns. This function will then take
4169 * care to map the inode according to @mnt_userns before checking permissions.
4170 * On non-idmapped mounts or if permission checking is to be performed on the
4171 * raw inode simply passs init_user_ns.
4172 */
vfs_unlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4173 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4174 struct dentry *dentry, struct inode **delegated_inode)
4175 {
4176 struct inode *target = dentry->d_inode;
4177 int error = may_delete(mnt_userns, dir, dentry, 0);
4178
4179 if (error)
4180 return error;
4181
4182 if (!dir->i_op->unlink)
4183 return -EPERM;
4184
4185 inode_lock(target);
4186 if (IS_SWAPFILE(target))
4187 error = -EPERM;
4188 else if (is_local_mountpoint(dentry))
4189 error = -EBUSY;
4190 else {
4191 error = security_inode_unlink(dir, dentry);
4192 if (!error) {
4193 error = try_break_deleg(target, delegated_inode);
4194 if (error)
4195 goto out;
4196 error = dir->i_op->unlink(dir, dentry);
4197 if (!error) {
4198 dont_mount(dentry);
4199 detach_mounts(dentry);
4200 }
4201 }
4202 }
4203 out:
4204 inode_unlock(target);
4205
4206 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4207 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4208 fsnotify_unlink(dir, dentry);
4209 } else if (!error) {
4210 fsnotify_link_count(target);
4211 d_delete_notify(dir, dentry);
4212 }
4213
4214 return error;
4215 }
4216 EXPORT_SYMBOL(vfs_unlink);
4217
4218 /*
4219 * Make sure that the actual truncation of the file will occur outside its
4220 * directory's i_mutex. Truncate can take a long time if there is a lot of
4221 * writeout happening, and we don't want to prevent access to the directory
4222 * while waiting on the I/O.
4223 */
do_unlinkat(int dfd,struct filename * name)4224 int do_unlinkat(int dfd, struct filename *name)
4225 {
4226 int error;
4227 struct dentry *dentry;
4228 struct path path;
4229 struct qstr last;
4230 int type;
4231 struct inode *inode = NULL;
4232 struct inode *delegated_inode = NULL;
4233 unsigned int lookup_flags = 0;
4234 retry:
4235 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4236 if (error)
4237 goto exit1;
4238
4239 error = -EISDIR;
4240 if (type != LAST_NORM)
4241 goto exit2;
4242
4243 error = mnt_want_write(path.mnt);
4244 if (error)
4245 goto exit2;
4246 retry_deleg:
4247 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4248 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4249 error = PTR_ERR(dentry);
4250 if (!IS_ERR(dentry)) {
4251 struct user_namespace *mnt_userns;
4252
4253 /* Why not before? Because we want correct error value */
4254 if (last.name[last.len])
4255 goto slashes;
4256 inode = dentry->d_inode;
4257 if (d_is_negative(dentry))
4258 goto slashes;
4259 ihold(inode);
4260 error = security_path_unlink(&path, dentry);
4261 if (error)
4262 goto exit3;
4263 mnt_userns = mnt_user_ns(path.mnt);
4264 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4265 &delegated_inode);
4266 exit3:
4267 dput(dentry);
4268 }
4269 inode_unlock(path.dentry->d_inode);
4270 if (inode)
4271 iput(inode); /* truncate the inode here */
4272 inode = NULL;
4273 if (delegated_inode) {
4274 error = break_deleg_wait(&delegated_inode);
4275 if (!error)
4276 goto retry_deleg;
4277 }
4278 mnt_drop_write(path.mnt);
4279 exit2:
4280 path_put(&path);
4281 if (retry_estale(error, lookup_flags)) {
4282 lookup_flags |= LOOKUP_REVAL;
4283 inode = NULL;
4284 goto retry;
4285 }
4286 exit1:
4287 putname(name);
4288 return error;
4289
4290 slashes:
4291 if (d_is_negative(dentry))
4292 error = -ENOENT;
4293 else if (d_is_dir(dentry))
4294 error = -EISDIR;
4295 else
4296 error = -ENOTDIR;
4297 goto exit3;
4298 }
4299
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4300 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4301 {
4302 if ((flag & ~AT_REMOVEDIR) != 0)
4303 return -EINVAL;
4304
4305 if (flag & AT_REMOVEDIR)
4306 return do_rmdir(dfd, getname(pathname));
4307 return do_unlinkat(dfd, getname(pathname));
4308 }
4309
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4310 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4311 {
4312 return do_unlinkat(AT_FDCWD, getname(pathname));
4313 }
4314
4315 /**
4316 * vfs_symlink - create symlink
4317 * @mnt_userns: user namespace of the mount the inode was found from
4318 * @dir: inode of @dentry
4319 * @dentry: pointer to dentry of the base directory
4320 * @oldname: name of the file to link to
4321 *
4322 * Create a symlink.
4323 *
4324 * If the inode has been found through an idmapped mount the user namespace of
4325 * the vfsmount must be passed through @mnt_userns. This function will then take
4326 * care to map the inode according to @mnt_userns before checking permissions.
4327 * On non-idmapped mounts or if permission checking is to be performed on the
4328 * raw inode simply passs init_user_ns.
4329 */
vfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * oldname)4330 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4331 struct dentry *dentry, const char *oldname)
4332 {
4333 int error = may_create(mnt_userns, dir, dentry);
4334
4335 if (error)
4336 return error;
4337
4338 if (!dir->i_op->symlink)
4339 return -EPERM;
4340
4341 error = security_inode_symlink(dir, dentry, oldname);
4342 if (error)
4343 return error;
4344
4345 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4346 if (!error)
4347 fsnotify_create(dir, dentry);
4348 return error;
4349 }
4350 EXPORT_SYMBOL(vfs_symlink);
4351
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4352 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4353 {
4354 int error;
4355 struct dentry *dentry;
4356 struct path path;
4357 unsigned int lookup_flags = 0;
4358
4359 if (IS_ERR(from)) {
4360 error = PTR_ERR(from);
4361 goto out_putnames;
4362 }
4363 retry:
4364 dentry = filename_create(newdfd, to, &path, lookup_flags);
4365 error = PTR_ERR(dentry);
4366 if (IS_ERR(dentry))
4367 goto out_putnames;
4368
4369 error = security_path_symlink(&path, dentry, from->name);
4370 if (!error) {
4371 struct user_namespace *mnt_userns;
4372
4373 mnt_userns = mnt_user_ns(path.mnt);
4374 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4375 from->name);
4376 }
4377 done_path_create(&path, dentry);
4378 if (retry_estale(error, lookup_flags)) {
4379 lookup_flags |= LOOKUP_REVAL;
4380 goto retry;
4381 }
4382 out_putnames:
4383 putname(to);
4384 putname(from);
4385 return error;
4386 }
4387
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4388 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4389 int, newdfd, const char __user *, newname)
4390 {
4391 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4392 }
4393
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4394 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4395 {
4396 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4397 }
4398
4399 /**
4400 * vfs_link - create a new link
4401 * @old_dentry: object to be linked
4402 * @mnt_userns: the user namespace of the mount
4403 * @dir: new parent
4404 * @new_dentry: where to create the new link
4405 * @delegated_inode: returns inode needing a delegation break
4406 *
4407 * The caller must hold dir->i_mutex
4408 *
4409 * If vfs_link discovers a delegation on the to-be-linked file in need
4410 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4411 * inode in delegated_inode. The caller should then break the delegation
4412 * and retry. Because breaking a delegation may take a long time, the
4413 * caller should drop the i_mutex before doing so.
4414 *
4415 * Alternatively, a caller may pass NULL for delegated_inode. This may
4416 * be appropriate for callers that expect the underlying filesystem not
4417 * to be NFS exported.
4418 *
4419 * If the inode has been found through an idmapped mount the user namespace of
4420 * the vfsmount must be passed through @mnt_userns. This function will then take
4421 * care to map the inode according to @mnt_userns before checking permissions.
4422 * On non-idmapped mounts or if permission checking is to be performed on the
4423 * raw inode simply passs init_user_ns.
4424 */
vfs_link(struct dentry * old_dentry,struct user_namespace * mnt_userns,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4425 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4426 struct inode *dir, struct dentry *new_dentry,
4427 struct inode **delegated_inode)
4428 {
4429 struct inode *inode = old_dentry->d_inode;
4430 unsigned max_links = dir->i_sb->s_max_links;
4431 int error;
4432
4433 if (!inode)
4434 return -ENOENT;
4435
4436 error = may_create(mnt_userns, dir, new_dentry);
4437 if (error)
4438 return error;
4439
4440 if (dir->i_sb != inode->i_sb)
4441 return -EXDEV;
4442
4443 /*
4444 * A link to an append-only or immutable file cannot be created.
4445 */
4446 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4447 return -EPERM;
4448 /*
4449 * Updating the link count will likely cause i_uid and i_gid to
4450 * be writen back improperly if their true value is unknown to
4451 * the vfs.
4452 */
4453 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4454 return -EPERM;
4455 if (!dir->i_op->link)
4456 return -EPERM;
4457 if (S_ISDIR(inode->i_mode))
4458 return -EPERM;
4459
4460 error = security_inode_link(old_dentry, dir, new_dentry);
4461 if (error)
4462 return error;
4463
4464 inode_lock(inode);
4465 /* Make sure we don't allow creating hardlink to an unlinked file */
4466 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4467 error = -ENOENT;
4468 else if (max_links && inode->i_nlink >= max_links)
4469 error = -EMLINK;
4470 else {
4471 error = try_break_deleg(inode, delegated_inode);
4472 if (!error)
4473 error = dir->i_op->link(old_dentry, dir, new_dentry);
4474 }
4475
4476 if (!error && (inode->i_state & I_LINKABLE)) {
4477 spin_lock(&inode->i_lock);
4478 inode->i_state &= ~I_LINKABLE;
4479 spin_unlock(&inode->i_lock);
4480 }
4481 inode_unlock(inode);
4482 if (!error)
4483 fsnotify_link(dir, inode, new_dentry);
4484 return error;
4485 }
4486 EXPORT_SYMBOL(vfs_link);
4487
4488 /*
4489 * Hardlinks are often used in delicate situations. We avoid
4490 * security-related surprises by not following symlinks on the
4491 * newname. --KAB
4492 *
4493 * We don't follow them on the oldname either to be compatible
4494 * with linux 2.0, and to avoid hard-linking to directories
4495 * and other special files. --ADM
4496 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4497 int do_linkat(int olddfd, struct filename *old, int newdfd,
4498 struct filename *new, int flags)
4499 {
4500 struct user_namespace *mnt_userns;
4501 struct dentry *new_dentry;
4502 struct path old_path, new_path;
4503 struct inode *delegated_inode = NULL;
4504 int how = 0;
4505 int error;
4506
4507 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4508 error = -EINVAL;
4509 goto out_putnames;
4510 }
4511 /*
4512 * To use null names we require CAP_DAC_READ_SEARCH
4513 * This ensures that not everyone will be able to create
4514 * handlink using the passed filedescriptor.
4515 */
4516 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4517 error = -ENOENT;
4518 goto out_putnames;
4519 }
4520
4521 if (flags & AT_SYMLINK_FOLLOW)
4522 how |= LOOKUP_FOLLOW;
4523 retry:
4524 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4525 if (error)
4526 goto out_putnames;
4527
4528 new_dentry = filename_create(newdfd, new, &new_path,
4529 (how & LOOKUP_REVAL));
4530 error = PTR_ERR(new_dentry);
4531 if (IS_ERR(new_dentry))
4532 goto out_putpath;
4533
4534 error = -EXDEV;
4535 if (old_path.mnt != new_path.mnt)
4536 goto out_dput;
4537 mnt_userns = mnt_user_ns(new_path.mnt);
4538 error = may_linkat(mnt_userns, &old_path);
4539 if (unlikely(error))
4540 goto out_dput;
4541 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4542 if (error)
4543 goto out_dput;
4544 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4545 new_dentry, &delegated_inode);
4546 out_dput:
4547 done_path_create(&new_path, new_dentry);
4548 if (delegated_inode) {
4549 error = break_deleg_wait(&delegated_inode);
4550 if (!error) {
4551 path_put(&old_path);
4552 goto retry;
4553 }
4554 }
4555 if (retry_estale(error, how)) {
4556 path_put(&old_path);
4557 how |= LOOKUP_REVAL;
4558 goto retry;
4559 }
4560 out_putpath:
4561 path_put(&old_path);
4562 out_putnames:
4563 putname(old);
4564 putname(new);
4565
4566 return error;
4567 }
4568
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4569 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4570 int, newdfd, const char __user *, newname, int, flags)
4571 {
4572 return do_linkat(olddfd, getname_uflags(oldname, flags),
4573 newdfd, getname(newname), flags);
4574 }
4575
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4576 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4577 {
4578 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4579 }
4580
4581 /**
4582 * vfs_rename - rename a filesystem object
4583 * @rd: pointer to &struct renamedata info
4584 *
4585 * The caller must hold multiple mutexes--see lock_rename()).
4586 *
4587 * If vfs_rename discovers a delegation in need of breaking at either
4588 * the source or destination, it will return -EWOULDBLOCK and return a
4589 * reference to the inode in delegated_inode. The caller should then
4590 * break the delegation and retry. Because breaking a delegation may
4591 * take a long time, the caller should drop all locks before doing
4592 * so.
4593 *
4594 * Alternatively, a caller may pass NULL for delegated_inode. This may
4595 * be appropriate for callers that expect the underlying filesystem not
4596 * to be NFS exported.
4597 *
4598 * The worst of all namespace operations - renaming directory. "Perverted"
4599 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4600 * Problems:
4601 *
4602 * a) we can get into loop creation.
4603 * b) race potential - two innocent renames can create a loop together.
4604 * That's where 4.4 screws up. Current fix: serialization on
4605 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4606 * story.
4607 * c) we have to lock _four_ objects - parents and victim (if it exists),
4608 * and source (if it is not a directory).
4609 * And that - after we got ->i_mutex on parents (until then we don't know
4610 * whether the target exists). Solution: try to be smart with locking
4611 * order for inodes. We rely on the fact that tree topology may change
4612 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4613 * move will be locked. Thus we can rank directories by the tree
4614 * (ancestors first) and rank all non-directories after them.
4615 * That works since everybody except rename does "lock parent, lookup,
4616 * lock child" and rename is under ->s_vfs_rename_mutex.
4617 * HOWEVER, it relies on the assumption that any object with ->lookup()
4618 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4619 * we'd better make sure that there's no link(2) for them.
4620 * d) conversion from fhandle to dentry may come in the wrong moment - when
4621 * we are removing the target. Solution: we will have to grab ->i_mutex
4622 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4623 * ->i_mutex on parents, which works but leads to some truly excessive
4624 * locking].
4625 */
vfs_rename(struct renamedata * rd)4626 int vfs_rename(struct renamedata *rd)
4627 {
4628 int error;
4629 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4630 struct dentry *old_dentry = rd->old_dentry;
4631 struct dentry *new_dentry = rd->new_dentry;
4632 struct inode **delegated_inode = rd->delegated_inode;
4633 unsigned int flags = rd->flags;
4634 bool is_dir = d_is_dir(old_dentry);
4635 struct inode *source = old_dentry->d_inode;
4636 struct inode *target = new_dentry->d_inode;
4637 bool new_is_dir = false;
4638 unsigned max_links = new_dir->i_sb->s_max_links;
4639 struct name_snapshot old_name;
4640
4641 if (source == target)
4642 return 0;
4643
4644 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4645 if (error)
4646 return error;
4647
4648 if (!target) {
4649 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4650 } else {
4651 new_is_dir = d_is_dir(new_dentry);
4652
4653 if (!(flags & RENAME_EXCHANGE))
4654 error = may_delete(rd->new_mnt_userns, new_dir,
4655 new_dentry, is_dir);
4656 else
4657 error = may_delete(rd->new_mnt_userns, new_dir,
4658 new_dentry, new_is_dir);
4659 }
4660 if (error)
4661 return error;
4662
4663 if (!old_dir->i_op->rename)
4664 return -EPERM;
4665
4666 /*
4667 * If we are going to change the parent - check write permissions,
4668 * we'll need to flip '..'.
4669 */
4670 if (new_dir != old_dir) {
4671 if (is_dir) {
4672 error = inode_permission(rd->old_mnt_userns, source,
4673 MAY_WRITE);
4674 if (error)
4675 return error;
4676 }
4677 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4678 error = inode_permission(rd->new_mnt_userns, target,
4679 MAY_WRITE);
4680 if (error)
4681 return error;
4682 }
4683 }
4684
4685 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4686 flags);
4687 if (error)
4688 return error;
4689
4690 take_dentry_name_snapshot(&old_name, old_dentry);
4691 dget(new_dentry);
4692 if (!is_dir || (flags & RENAME_EXCHANGE))
4693 lock_two_nondirectories(source, target);
4694 else if (target)
4695 inode_lock(target);
4696
4697 error = -EPERM;
4698 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4699 goto out;
4700
4701 error = -EBUSY;
4702 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4703 goto out;
4704
4705 if (max_links && new_dir != old_dir) {
4706 error = -EMLINK;
4707 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4708 goto out;
4709 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4710 old_dir->i_nlink >= max_links)
4711 goto out;
4712 }
4713 if (!is_dir) {
4714 error = try_break_deleg(source, delegated_inode);
4715 if (error)
4716 goto out;
4717 }
4718 if (target && !new_is_dir) {
4719 error = try_break_deleg(target, delegated_inode);
4720 if (error)
4721 goto out;
4722 }
4723 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4724 new_dir, new_dentry, flags);
4725 if (error)
4726 goto out;
4727
4728 if (!(flags & RENAME_EXCHANGE) && target) {
4729 if (is_dir) {
4730 shrink_dcache_parent(new_dentry);
4731 target->i_flags |= S_DEAD;
4732 }
4733 dont_mount(new_dentry);
4734 detach_mounts(new_dentry);
4735 }
4736 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4737 if (!(flags & RENAME_EXCHANGE))
4738 d_move(old_dentry, new_dentry);
4739 else
4740 d_exchange(old_dentry, new_dentry);
4741 }
4742 out:
4743 if (!is_dir || (flags & RENAME_EXCHANGE))
4744 unlock_two_nondirectories(source, target);
4745 else if (target)
4746 inode_unlock(target);
4747 dput(new_dentry);
4748 if (!error) {
4749 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4750 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4751 if (flags & RENAME_EXCHANGE) {
4752 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4753 new_is_dir, NULL, new_dentry);
4754 }
4755 }
4756 release_dentry_name_snapshot(&old_name);
4757
4758 return error;
4759 }
4760 EXPORT_SYMBOL(vfs_rename);
4761
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)4762 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4763 struct filename *to, unsigned int flags)
4764 {
4765 struct renamedata rd;
4766 struct dentry *old_dentry, *new_dentry;
4767 struct dentry *trap;
4768 struct path old_path, new_path;
4769 struct qstr old_last, new_last;
4770 int old_type, new_type;
4771 struct inode *delegated_inode = NULL;
4772 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4773 bool should_retry = false;
4774 int error = -EINVAL;
4775
4776 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4777 goto put_names;
4778
4779 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4780 (flags & RENAME_EXCHANGE))
4781 goto put_names;
4782
4783 if (flags & RENAME_EXCHANGE)
4784 target_flags = 0;
4785
4786 retry:
4787 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4788 &old_last, &old_type);
4789 if (error)
4790 goto put_names;
4791
4792 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4793 &new_type);
4794 if (error)
4795 goto exit1;
4796
4797 error = -EXDEV;
4798 if (old_path.mnt != new_path.mnt)
4799 goto exit2;
4800
4801 error = -EBUSY;
4802 if (old_type != LAST_NORM)
4803 goto exit2;
4804
4805 if (flags & RENAME_NOREPLACE)
4806 error = -EEXIST;
4807 if (new_type != LAST_NORM)
4808 goto exit2;
4809
4810 error = mnt_want_write(old_path.mnt);
4811 if (error)
4812 goto exit2;
4813
4814 retry_deleg:
4815 trap = lock_rename(new_path.dentry, old_path.dentry);
4816
4817 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4818 error = PTR_ERR(old_dentry);
4819 if (IS_ERR(old_dentry))
4820 goto exit3;
4821 /* source must exist */
4822 error = -ENOENT;
4823 if (d_is_negative(old_dentry))
4824 goto exit4;
4825 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4826 error = PTR_ERR(new_dentry);
4827 if (IS_ERR(new_dentry))
4828 goto exit4;
4829 error = -EEXIST;
4830 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4831 goto exit5;
4832 if (flags & RENAME_EXCHANGE) {
4833 error = -ENOENT;
4834 if (d_is_negative(new_dentry))
4835 goto exit5;
4836
4837 if (!d_is_dir(new_dentry)) {
4838 error = -ENOTDIR;
4839 if (new_last.name[new_last.len])
4840 goto exit5;
4841 }
4842 }
4843 /* unless the source is a directory trailing slashes give -ENOTDIR */
4844 if (!d_is_dir(old_dentry)) {
4845 error = -ENOTDIR;
4846 if (old_last.name[old_last.len])
4847 goto exit5;
4848 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4849 goto exit5;
4850 }
4851 /* source should not be ancestor of target */
4852 error = -EINVAL;
4853 if (old_dentry == trap)
4854 goto exit5;
4855 /* target should not be an ancestor of source */
4856 if (!(flags & RENAME_EXCHANGE))
4857 error = -ENOTEMPTY;
4858 if (new_dentry == trap)
4859 goto exit5;
4860
4861 error = security_path_rename(&old_path, old_dentry,
4862 &new_path, new_dentry, flags);
4863 if (error)
4864 goto exit5;
4865
4866 rd.old_dir = old_path.dentry->d_inode;
4867 rd.old_dentry = old_dentry;
4868 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4869 rd.new_dir = new_path.dentry->d_inode;
4870 rd.new_dentry = new_dentry;
4871 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4872 rd.delegated_inode = &delegated_inode;
4873 rd.flags = flags;
4874 error = vfs_rename(&rd);
4875 exit5:
4876 dput(new_dentry);
4877 exit4:
4878 dput(old_dentry);
4879 exit3:
4880 unlock_rename(new_path.dentry, old_path.dentry);
4881 if (delegated_inode) {
4882 error = break_deleg_wait(&delegated_inode);
4883 if (!error)
4884 goto retry_deleg;
4885 }
4886 mnt_drop_write(old_path.mnt);
4887 exit2:
4888 if (retry_estale(error, lookup_flags))
4889 should_retry = true;
4890 path_put(&new_path);
4891 exit1:
4892 path_put(&old_path);
4893 if (should_retry) {
4894 should_retry = false;
4895 lookup_flags |= LOOKUP_REVAL;
4896 goto retry;
4897 }
4898 put_names:
4899 putname(from);
4900 putname(to);
4901 return error;
4902 }
4903
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4904 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4905 int, newdfd, const char __user *, newname, unsigned int, flags)
4906 {
4907 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4908 flags);
4909 }
4910
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4911 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4912 int, newdfd, const char __user *, newname)
4913 {
4914 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4915 0);
4916 }
4917
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4918 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4919 {
4920 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4921 getname(newname), 0);
4922 }
4923
readlink_copy(char __user * buffer,int buflen,const char * link)4924 int readlink_copy(char __user *buffer, int buflen, const char *link)
4925 {
4926 int len = PTR_ERR(link);
4927 if (IS_ERR(link))
4928 goto out;
4929
4930 len = strlen(link);
4931 if (len > (unsigned) buflen)
4932 len = buflen;
4933 if (copy_to_user(buffer, link, len))
4934 len = -EFAULT;
4935 out:
4936 return len;
4937 }
4938
4939 /**
4940 * vfs_readlink - copy symlink body into userspace buffer
4941 * @dentry: dentry on which to get symbolic link
4942 * @buffer: user memory pointer
4943 * @buflen: size of buffer
4944 *
4945 * Does not touch atime. That's up to the caller if necessary
4946 *
4947 * Does not call security hook.
4948 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4949 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4950 {
4951 struct inode *inode = d_inode(dentry);
4952 DEFINE_DELAYED_CALL(done);
4953 const char *link;
4954 int res;
4955
4956 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4957 if (unlikely(inode->i_op->readlink))
4958 return inode->i_op->readlink(dentry, buffer, buflen);
4959
4960 if (!d_is_symlink(dentry))
4961 return -EINVAL;
4962
4963 spin_lock(&inode->i_lock);
4964 inode->i_opflags |= IOP_DEFAULT_READLINK;
4965 spin_unlock(&inode->i_lock);
4966 }
4967
4968 link = READ_ONCE(inode->i_link);
4969 if (!link) {
4970 link = inode->i_op->get_link(dentry, inode, &done);
4971 if (IS_ERR(link))
4972 return PTR_ERR(link);
4973 }
4974 res = readlink_copy(buffer, buflen, link);
4975 do_delayed_call(&done);
4976 return res;
4977 }
4978 EXPORT_SYMBOL(vfs_readlink);
4979
4980 /**
4981 * vfs_get_link - get symlink body
4982 * @dentry: dentry on which to get symbolic link
4983 * @done: caller needs to free returned data with this
4984 *
4985 * Calls security hook and i_op->get_link() on the supplied inode.
4986 *
4987 * It does not touch atime. That's up to the caller if necessary.
4988 *
4989 * Does not work on "special" symlinks like /proc/$$/fd/N
4990 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4991 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4992 {
4993 const char *res = ERR_PTR(-EINVAL);
4994 struct inode *inode = d_inode(dentry);
4995
4996 if (d_is_symlink(dentry)) {
4997 res = ERR_PTR(security_inode_readlink(dentry));
4998 if (!res)
4999 res = inode->i_op->get_link(dentry, inode, done);
5000 }
5001 return res;
5002 }
5003 EXPORT_SYMBOL(vfs_get_link);
5004
5005 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5006 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5007 struct delayed_call *callback)
5008 {
5009 char *kaddr;
5010 struct page *page;
5011 struct address_space *mapping = inode->i_mapping;
5012
5013 if (!dentry) {
5014 page = find_get_page(mapping, 0);
5015 if (!page)
5016 return ERR_PTR(-ECHILD);
5017 if (!PageUptodate(page)) {
5018 put_page(page);
5019 return ERR_PTR(-ECHILD);
5020 }
5021 } else {
5022 page = read_mapping_page(mapping, 0, NULL);
5023 if (IS_ERR(page))
5024 return (char*)page;
5025 }
5026 set_delayed_call(callback, page_put_link, page);
5027 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5028 kaddr = page_address(page);
5029 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5030 return kaddr;
5031 }
5032
5033 EXPORT_SYMBOL(page_get_link);
5034
page_put_link(void * arg)5035 void page_put_link(void *arg)
5036 {
5037 put_page(arg);
5038 }
5039 EXPORT_SYMBOL(page_put_link);
5040
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5041 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5042 {
5043 DEFINE_DELAYED_CALL(done);
5044 int res = readlink_copy(buffer, buflen,
5045 page_get_link(dentry, d_inode(dentry),
5046 &done));
5047 do_delayed_call(&done);
5048 return res;
5049 }
5050 EXPORT_SYMBOL(page_readlink);
5051
page_symlink(struct inode * inode,const char * symname,int len)5052 int page_symlink(struct inode *inode, const char *symname, int len)
5053 {
5054 struct address_space *mapping = inode->i_mapping;
5055 const struct address_space_operations *aops = mapping->a_ops;
5056 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5057 struct page *page;
5058 void *fsdata;
5059 int err;
5060 unsigned int flags;
5061
5062 retry:
5063 if (nofs)
5064 flags = memalloc_nofs_save();
5065 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5066 if (nofs)
5067 memalloc_nofs_restore(flags);
5068 if (err)
5069 goto fail;
5070
5071 memcpy(page_address(page), symname, len-1);
5072
5073 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5074 page, fsdata);
5075 if (err < 0)
5076 goto fail;
5077 if (err < len-1)
5078 goto retry;
5079
5080 mark_inode_dirty(inode);
5081 return 0;
5082 fail:
5083 return err;
5084 }
5085 EXPORT_SYMBOL(page_symlink);
5086
5087 const struct inode_operations page_symlink_inode_operations = {
5088 .get_link = page_get_link,
5089 };
5090 EXPORT_SYMBOL(page_symlink_inode_operations);
5091