1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
28 #include <linux/fileattr.h>
29
30 #include "gfs2.h"
31 #include "incore.h"
32 #include "bmap.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "glock.h"
36 #include "glops.h"
37 #include "inode.h"
38 #include "log.h"
39 #include "meta_io.h"
40 #include "quota.h"
41 #include "rgrp.h"
42 #include "trans.h"
43 #include "util.h"
44
45 /**
46 * gfs2_llseek - seek to a location in a file
47 * @file: the file
48 * @offset: the offset
49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
50 *
51 * SEEK_END requires the glock for the file because it references the
52 * file's size.
53 *
54 * Returns: The new offset, or errno
55 */
56
gfs2_llseek(struct file * file,loff_t offset,int whence)57 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
58 {
59 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
60 struct gfs2_holder i_gh;
61 loff_t error;
62
63 switch (whence) {
64 case SEEK_END:
65 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
66 &i_gh);
67 if (!error) {
68 error = generic_file_llseek(file, offset, whence);
69 gfs2_glock_dq_uninit(&i_gh);
70 }
71 break;
72
73 case SEEK_DATA:
74 error = gfs2_seek_data(file, offset);
75 break;
76
77 case SEEK_HOLE:
78 error = gfs2_seek_hole(file, offset);
79 break;
80
81 case SEEK_CUR:
82 case SEEK_SET:
83 /*
84 * These don't reference inode->i_size and don't depend on the
85 * block mapping, so we don't need the glock.
86 */
87 error = generic_file_llseek(file, offset, whence);
88 break;
89 default:
90 error = -EINVAL;
91 }
92
93 return error;
94 }
95
96 /**
97 * gfs2_readdir - Iterator for a directory
98 * @file: The directory to read from
99 * @ctx: What to feed directory entries to
100 *
101 * Returns: errno
102 */
103
gfs2_readdir(struct file * file,struct dir_context * ctx)104 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
105 {
106 struct inode *dir = file->f_mapping->host;
107 struct gfs2_inode *dip = GFS2_I(dir);
108 struct gfs2_holder d_gh;
109 int error;
110
111 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
112 if (error)
113 return error;
114
115 error = gfs2_dir_read(dir, ctx, &file->f_ra);
116
117 gfs2_glock_dq_uninit(&d_gh);
118
119 return error;
120 }
121
122 /*
123 * struct fsflag_gfs2flag
124 *
125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
126 * and to GFS2_DIF_JDATA for non-directories.
127 */
128 static struct {
129 u32 fsflag;
130 u32 gfsflag;
131 } fsflag_gfs2flag[] = {
132 {FS_SYNC_FL, GFS2_DIF_SYNC},
133 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
134 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
135 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
136 {FS_INDEX_FL, GFS2_DIF_EXHASH},
137 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
138 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
139 };
140
gfs2_gfsflags_to_fsflags(struct inode * inode,u32 gfsflags)141 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
142 {
143 int i;
144 u32 fsflags = 0;
145
146 if (S_ISDIR(inode->i_mode))
147 gfsflags &= ~GFS2_DIF_JDATA;
148 else
149 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
150
151 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
152 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
153 fsflags |= fsflag_gfs2flag[i].fsflag;
154 return fsflags;
155 }
156
gfs2_fileattr_get(struct dentry * dentry,struct fileattr * fa)157 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
158 {
159 struct inode *inode = d_inode(dentry);
160 struct gfs2_inode *ip = GFS2_I(inode);
161 struct gfs2_holder gh;
162 int error;
163 u32 fsflags;
164
165 if (d_is_special(dentry))
166 return -ENOTTY;
167
168 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
169 error = gfs2_glock_nq(&gh);
170 if (error)
171 goto out_uninit;
172
173 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
174
175 fileattr_fill_flags(fa, fsflags);
176
177 gfs2_glock_dq(&gh);
178 out_uninit:
179 gfs2_holder_uninit(&gh);
180 return error;
181 }
182
gfs2_set_inode_flags(struct inode * inode)183 void gfs2_set_inode_flags(struct inode *inode)
184 {
185 struct gfs2_inode *ip = GFS2_I(inode);
186 unsigned int flags = inode->i_flags;
187
188 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
189 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
190 flags |= S_NOSEC;
191 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
192 flags |= S_IMMUTABLE;
193 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
194 flags |= S_APPEND;
195 if (ip->i_diskflags & GFS2_DIF_NOATIME)
196 flags |= S_NOATIME;
197 if (ip->i_diskflags & GFS2_DIF_SYNC)
198 flags |= S_SYNC;
199 inode->i_flags = flags;
200 }
201
202 /* Flags that can be set by user space */
203 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
204 GFS2_DIF_IMMUTABLE| \
205 GFS2_DIF_APPENDONLY| \
206 GFS2_DIF_NOATIME| \
207 GFS2_DIF_SYNC| \
208 GFS2_DIF_TOPDIR| \
209 GFS2_DIF_INHERIT_JDATA)
210
211 /**
212 * do_gfs2_set_flags - set flags on an inode
213 * @inode: The inode
214 * @reqflags: The flags to set
215 * @mask: Indicates which flags are valid
216 *
217 */
do_gfs2_set_flags(struct inode * inode,u32 reqflags,u32 mask)218 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
219 {
220 struct gfs2_inode *ip = GFS2_I(inode);
221 struct gfs2_sbd *sdp = GFS2_SB(inode);
222 struct buffer_head *bh;
223 struct gfs2_holder gh;
224 int error;
225 u32 new_flags, flags;
226
227 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
228 if (error)
229 return error;
230
231 error = 0;
232 flags = ip->i_diskflags;
233 new_flags = (flags & ~mask) | (reqflags & mask);
234 if ((new_flags ^ flags) == 0)
235 goto out;
236
237 if (!IS_IMMUTABLE(inode)) {
238 error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
239 if (error)
240 goto out;
241 }
242 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
243 if (new_flags & GFS2_DIF_JDATA)
244 gfs2_log_flush(sdp, ip->i_gl,
245 GFS2_LOG_HEAD_FLUSH_NORMAL |
246 GFS2_LFC_SET_FLAGS);
247 error = filemap_fdatawrite(inode->i_mapping);
248 if (error)
249 goto out;
250 error = filemap_fdatawait(inode->i_mapping);
251 if (error)
252 goto out;
253 if (new_flags & GFS2_DIF_JDATA)
254 gfs2_ordered_del_inode(ip);
255 }
256 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
257 if (error)
258 goto out;
259 error = gfs2_meta_inode_buffer(ip, &bh);
260 if (error)
261 goto out_trans_end;
262 inode->i_ctime = current_time(inode);
263 gfs2_trans_add_meta(ip->i_gl, bh);
264 ip->i_diskflags = new_flags;
265 gfs2_dinode_out(ip, bh->b_data);
266 brelse(bh);
267 gfs2_set_inode_flags(inode);
268 gfs2_set_aops(inode);
269 out_trans_end:
270 gfs2_trans_end(sdp);
271 out:
272 gfs2_glock_dq_uninit(&gh);
273 return error;
274 }
275
gfs2_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)276 int gfs2_fileattr_set(struct user_namespace *mnt_userns,
277 struct dentry *dentry, struct fileattr *fa)
278 {
279 struct inode *inode = d_inode(dentry);
280 u32 fsflags = fa->flags, gfsflags = 0;
281 u32 mask;
282 int i;
283
284 if (d_is_special(dentry))
285 return -ENOTTY;
286
287 if (fileattr_has_fsx(fa))
288 return -EOPNOTSUPP;
289
290 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
291 if (fsflags & fsflag_gfs2flag[i].fsflag) {
292 fsflags &= ~fsflag_gfs2flag[i].fsflag;
293 gfsflags |= fsflag_gfs2flag[i].gfsflag;
294 }
295 }
296 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
297 return -EINVAL;
298
299 mask = GFS2_FLAGS_USER_SET;
300 if (S_ISDIR(inode->i_mode)) {
301 mask &= ~GFS2_DIF_JDATA;
302 } else {
303 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
304 if (gfsflags & GFS2_DIF_TOPDIR)
305 return -EINVAL;
306 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
307 }
308
309 return do_gfs2_set_flags(inode, gfsflags, mask);
310 }
311
gfs2_getlabel(struct file * filp,char __user * label)312 static int gfs2_getlabel(struct file *filp, char __user *label)
313 {
314 struct inode *inode = file_inode(filp);
315 struct gfs2_sbd *sdp = GFS2_SB(inode);
316
317 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
318 return -EFAULT;
319
320 return 0;
321 }
322
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)323 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
324 {
325 switch(cmd) {
326 case FITRIM:
327 return gfs2_fitrim(filp, (void __user *)arg);
328 case FS_IOC_GETFSLABEL:
329 return gfs2_getlabel(filp, (char __user *)arg);
330 }
331
332 return -ENOTTY;
333 }
334
335 #ifdef CONFIG_COMPAT
gfs2_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)336 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
337 {
338 switch(cmd) {
339 /* Keep this list in sync with gfs2_ioctl */
340 case FITRIM:
341 case FS_IOC_GETFSLABEL:
342 break;
343 default:
344 return -ENOIOCTLCMD;
345 }
346
347 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
348 }
349 #else
350 #define gfs2_compat_ioctl NULL
351 #endif
352
353 /**
354 * gfs2_size_hint - Give a hint to the size of a write request
355 * @filep: The struct file
356 * @offset: The file offset of the write
357 * @size: The length of the write
358 *
359 * When we are about to do a write, this function records the total
360 * write size in order to provide a suitable hint to the lower layers
361 * about how many blocks will be required.
362 *
363 */
364
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)365 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
366 {
367 struct inode *inode = file_inode(filep);
368 struct gfs2_sbd *sdp = GFS2_SB(inode);
369 struct gfs2_inode *ip = GFS2_I(inode);
370 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
371 int hint = min_t(size_t, INT_MAX, blks);
372
373 if (hint > atomic_read(&ip->i_sizehint))
374 atomic_set(&ip->i_sizehint, hint);
375 }
376
377 /**
378 * gfs2_allocate_page_backing - Allocate blocks for a write fault
379 * @page: The (locked) page to allocate backing for
380 * @length: Size of the allocation
381 *
382 * We try to allocate all the blocks required for the page in one go. This
383 * might fail for various reasons, so we keep trying until all the blocks to
384 * back this page are allocated. If some of the blocks are already allocated,
385 * that is ok too.
386 */
gfs2_allocate_page_backing(struct page * page,unsigned int length)387 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
388 {
389 u64 pos = page_offset(page);
390
391 do {
392 struct iomap iomap = { };
393
394 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
395 return -EIO;
396
397 if (length < iomap.length)
398 iomap.length = length;
399 length -= iomap.length;
400 pos += iomap.length;
401 } while (length > 0);
402
403 return 0;
404 }
405
406 /**
407 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
408 * @vmf: The virtual memory fault containing the page to become writable
409 *
410 * When the page becomes writable, we need to ensure that we have
411 * blocks allocated on disk to back that page.
412 */
413
gfs2_page_mkwrite(struct vm_fault * vmf)414 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
415 {
416 struct page *page = vmf->page;
417 struct inode *inode = file_inode(vmf->vma->vm_file);
418 struct gfs2_inode *ip = GFS2_I(inode);
419 struct gfs2_sbd *sdp = GFS2_SB(inode);
420 struct gfs2_alloc_parms ap = { .aflags = 0, };
421 u64 offset = page_offset(page);
422 unsigned int data_blocks, ind_blocks, rblocks;
423 vm_fault_t ret = VM_FAULT_LOCKED;
424 struct gfs2_holder gh;
425 unsigned int length;
426 loff_t size;
427 int err;
428
429 sb_start_pagefault(inode->i_sb);
430
431 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
432 err = gfs2_glock_nq(&gh);
433 if (err) {
434 ret = block_page_mkwrite_return(err);
435 goto out_uninit;
436 }
437
438 /* Check page index against inode size */
439 size = i_size_read(inode);
440 if (offset >= size) {
441 ret = VM_FAULT_SIGBUS;
442 goto out_unlock;
443 }
444
445 /* Update file times before taking page lock */
446 file_update_time(vmf->vma->vm_file);
447
448 /* page is wholly or partially inside EOF */
449 if (size - offset < PAGE_SIZE)
450 length = size - offset;
451 else
452 length = PAGE_SIZE;
453
454 gfs2_size_hint(vmf->vma->vm_file, offset, length);
455
456 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
457 set_bit(GIF_SW_PAGED, &ip->i_flags);
458
459 /*
460 * iomap_writepage / iomap_writepages currently don't support inline
461 * files, so always unstuff here.
462 */
463
464 if (!gfs2_is_stuffed(ip) &&
465 !gfs2_write_alloc_required(ip, offset, length)) {
466 lock_page(page);
467 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
468 ret = VM_FAULT_NOPAGE;
469 unlock_page(page);
470 }
471 goto out_unlock;
472 }
473
474 err = gfs2_rindex_update(sdp);
475 if (err) {
476 ret = block_page_mkwrite_return(err);
477 goto out_unlock;
478 }
479
480 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
481 ap.target = data_blocks + ind_blocks;
482 err = gfs2_quota_lock_check(ip, &ap);
483 if (err) {
484 ret = block_page_mkwrite_return(err);
485 goto out_unlock;
486 }
487 err = gfs2_inplace_reserve(ip, &ap);
488 if (err) {
489 ret = block_page_mkwrite_return(err);
490 goto out_quota_unlock;
491 }
492
493 rblocks = RES_DINODE + ind_blocks;
494 if (gfs2_is_jdata(ip))
495 rblocks += data_blocks ? data_blocks : 1;
496 if (ind_blocks || data_blocks) {
497 rblocks += RES_STATFS + RES_QUOTA;
498 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
499 }
500 err = gfs2_trans_begin(sdp, rblocks, 0);
501 if (err) {
502 ret = block_page_mkwrite_return(err);
503 goto out_trans_fail;
504 }
505
506 /* Unstuff, if required, and allocate backing blocks for page */
507 if (gfs2_is_stuffed(ip)) {
508 err = gfs2_unstuff_dinode(ip);
509 if (err) {
510 ret = block_page_mkwrite_return(err);
511 goto out_trans_end;
512 }
513 }
514
515 lock_page(page);
516 /* If truncated, we must retry the operation, we may have raced
517 * with the glock demotion code.
518 */
519 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
520 ret = VM_FAULT_NOPAGE;
521 goto out_page_locked;
522 }
523
524 err = gfs2_allocate_page_backing(page, length);
525 if (err)
526 ret = block_page_mkwrite_return(err);
527
528 out_page_locked:
529 if (ret != VM_FAULT_LOCKED)
530 unlock_page(page);
531 out_trans_end:
532 gfs2_trans_end(sdp);
533 out_trans_fail:
534 gfs2_inplace_release(ip);
535 out_quota_unlock:
536 gfs2_quota_unlock(ip);
537 out_unlock:
538 gfs2_glock_dq(&gh);
539 out_uninit:
540 gfs2_holder_uninit(&gh);
541 if (ret == VM_FAULT_LOCKED) {
542 set_page_dirty(page);
543 wait_for_stable_page(page);
544 }
545 sb_end_pagefault(inode->i_sb);
546 return ret;
547 }
548
gfs2_fault(struct vm_fault * vmf)549 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
550 {
551 struct inode *inode = file_inode(vmf->vma->vm_file);
552 struct gfs2_inode *ip = GFS2_I(inode);
553 struct gfs2_holder gh;
554 vm_fault_t ret;
555 int err;
556
557 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
558 err = gfs2_glock_nq(&gh);
559 if (err) {
560 ret = block_page_mkwrite_return(err);
561 goto out_uninit;
562 }
563 ret = filemap_fault(vmf);
564 gfs2_glock_dq(&gh);
565 out_uninit:
566 gfs2_holder_uninit(&gh);
567 return ret;
568 }
569
570 static const struct vm_operations_struct gfs2_vm_ops = {
571 .fault = gfs2_fault,
572 .map_pages = filemap_map_pages,
573 .page_mkwrite = gfs2_page_mkwrite,
574 };
575
576 /**
577 * gfs2_mmap
578 * @file: The file to map
579 * @vma: The VMA which described the mapping
580 *
581 * There is no need to get a lock here unless we should be updating
582 * atime. We ignore any locking errors since the only consequence is
583 * a missed atime update (which will just be deferred until later).
584 *
585 * Returns: 0
586 */
587
gfs2_mmap(struct file * file,struct vm_area_struct * vma)588 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
589 {
590 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
591
592 if (!(file->f_flags & O_NOATIME) &&
593 !IS_NOATIME(&ip->i_inode)) {
594 struct gfs2_holder i_gh;
595 int error;
596
597 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
598 &i_gh);
599 if (error)
600 return error;
601 /* grab lock to update inode */
602 gfs2_glock_dq_uninit(&i_gh);
603 file_accessed(file);
604 }
605 vma->vm_ops = &gfs2_vm_ops;
606
607 return 0;
608 }
609
610 /**
611 * gfs2_open_common - This is common to open and atomic_open
612 * @inode: The inode being opened
613 * @file: The file being opened
614 *
615 * This maybe called under a glock or not depending upon how it has
616 * been called. We must always be called under a glock for regular
617 * files, however. For other file types, it does not matter whether
618 * we hold the glock or not.
619 *
620 * Returns: Error code or 0 for success
621 */
622
gfs2_open_common(struct inode * inode,struct file * file)623 int gfs2_open_common(struct inode *inode, struct file *file)
624 {
625 struct gfs2_file *fp;
626 int ret;
627
628 if (S_ISREG(inode->i_mode)) {
629 ret = generic_file_open(inode, file);
630 if (ret)
631 return ret;
632 }
633
634 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
635 if (!fp)
636 return -ENOMEM;
637
638 mutex_init(&fp->f_fl_mutex);
639
640 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
641 file->private_data = fp;
642 if (file->f_mode & FMODE_WRITE) {
643 ret = gfs2_qa_get(GFS2_I(inode));
644 if (ret)
645 goto fail;
646 }
647 return 0;
648
649 fail:
650 kfree(file->private_data);
651 file->private_data = NULL;
652 return ret;
653 }
654
655 /**
656 * gfs2_open - open a file
657 * @inode: the inode to open
658 * @file: the struct file for this opening
659 *
660 * After atomic_open, this function is only used for opening files
661 * which are already cached. We must still get the glock for regular
662 * files to ensure that we have the file size uptodate for the large
663 * file check which is in the common code. That is only an issue for
664 * regular files though.
665 *
666 * Returns: errno
667 */
668
gfs2_open(struct inode * inode,struct file * file)669 static int gfs2_open(struct inode *inode, struct file *file)
670 {
671 struct gfs2_inode *ip = GFS2_I(inode);
672 struct gfs2_holder i_gh;
673 int error;
674 bool need_unlock = false;
675
676 if (S_ISREG(ip->i_inode.i_mode)) {
677 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
678 &i_gh);
679 if (error)
680 return error;
681 need_unlock = true;
682 }
683
684 error = gfs2_open_common(inode, file);
685
686 if (need_unlock)
687 gfs2_glock_dq_uninit(&i_gh);
688
689 return error;
690 }
691
692 /**
693 * gfs2_release - called to close a struct file
694 * @inode: the inode the struct file belongs to
695 * @file: the struct file being closed
696 *
697 * Returns: errno
698 */
699
gfs2_release(struct inode * inode,struct file * file)700 static int gfs2_release(struct inode *inode, struct file *file)
701 {
702 struct gfs2_inode *ip = GFS2_I(inode);
703
704 kfree(file->private_data);
705 file->private_data = NULL;
706
707 if (file->f_mode & FMODE_WRITE) {
708 if (gfs2_rs_active(&ip->i_res))
709 gfs2_rs_delete(ip);
710 gfs2_qa_put(ip);
711 }
712 return 0;
713 }
714
715 /**
716 * gfs2_fsync - sync the dirty data for a file (across the cluster)
717 * @file: the file that points to the dentry
718 * @start: the start position in the file to sync
719 * @end: the end position in the file to sync
720 * @datasync: set if we can ignore timestamp changes
721 *
722 * We split the data flushing here so that we don't wait for the data
723 * until after we've also sent the metadata to disk. Note that for
724 * data=ordered, we will write & wait for the data at the log flush
725 * stage anyway, so this is unlikely to make much of a difference
726 * except in the data=writeback case.
727 *
728 * If the fdatawrite fails due to any reason except -EIO, we will
729 * continue the remainder of the fsync, although we'll still report
730 * the error at the end. This is to match filemap_write_and_wait_range()
731 * behaviour.
732 *
733 * Returns: errno
734 */
735
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)736 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
737 int datasync)
738 {
739 struct address_space *mapping = file->f_mapping;
740 struct inode *inode = mapping->host;
741 int sync_state = inode->i_state & I_DIRTY;
742 struct gfs2_inode *ip = GFS2_I(inode);
743 int ret = 0, ret1 = 0;
744
745 if (mapping->nrpages) {
746 ret1 = filemap_fdatawrite_range(mapping, start, end);
747 if (ret1 == -EIO)
748 return ret1;
749 }
750
751 if (!gfs2_is_jdata(ip))
752 sync_state &= ~I_DIRTY_PAGES;
753 if (datasync)
754 sync_state &= ~I_DIRTY_SYNC;
755
756 if (sync_state) {
757 ret = sync_inode_metadata(inode, 1);
758 if (ret)
759 return ret;
760 if (gfs2_is_jdata(ip))
761 ret = file_write_and_wait(file);
762 if (ret)
763 return ret;
764 gfs2_ail_flush(ip->i_gl, 1);
765 }
766
767 if (mapping->nrpages)
768 ret = file_fdatawait_range(file, start, end);
769
770 return ret ? ret : ret1;
771 }
772
should_fault_in_pages(struct iov_iter * i,struct kiocb * iocb,size_t * prev_count,size_t * window_size)773 static inline bool should_fault_in_pages(struct iov_iter *i,
774 struct kiocb *iocb,
775 size_t *prev_count,
776 size_t *window_size)
777 {
778 size_t count = iov_iter_count(i);
779 size_t size, offs;
780
781 if (!count)
782 return false;
783 if (!iter_is_iovec(i))
784 return false;
785
786 size = PAGE_SIZE;
787 offs = offset_in_page(iocb->ki_pos);
788 if (*prev_count != count || !*window_size) {
789 size_t nr_dirtied;
790
791 nr_dirtied = max(current->nr_dirtied_pause -
792 current->nr_dirtied, 8);
793 size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
794 }
795
796 *prev_count = count;
797 *window_size = size - offs;
798 return true;
799 }
800
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to,struct gfs2_holder * gh)801 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
802 struct gfs2_holder *gh)
803 {
804 struct file *file = iocb->ki_filp;
805 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
806 size_t prev_count = 0, window_size = 0;
807 size_t read = 0;
808 ssize_t ret;
809
810 /*
811 * In this function, we disable page faults when we're holding the
812 * inode glock while doing I/O. If a page fault occurs, we indicate
813 * that the inode glock may be dropped, fault in the pages manually,
814 * and retry.
815 *
816 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
817 * physical as well as manual page faults, and we need to disable both
818 * kinds.
819 *
820 * For direct I/O, gfs2 takes the inode glock in deferred mode. This
821 * locking mode is compatible with other deferred holders, so multiple
822 * processes and nodes can do direct I/O to a file at the same time.
823 * There's no guarantee that reads or writes will be atomic. Any
824 * coordination among readers and writers needs to happen externally.
825 */
826
827 if (!iov_iter_count(to))
828 return 0; /* skip atime */
829
830 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
831 retry:
832 ret = gfs2_glock_nq(gh);
833 if (ret)
834 goto out_uninit;
835 pagefault_disable();
836 to->nofault = true;
837 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
838 IOMAP_DIO_PARTIAL, NULL, read);
839 to->nofault = false;
840 pagefault_enable();
841 if (ret <= 0 && ret != -EFAULT)
842 goto out_unlock;
843 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
844 if (ret > 0)
845 read = ret;
846
847 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
848 gfs2_glock_dq(gh);
849 window_size -= fault_in_iov_iter_writeable(to, window_size);
850 if (window_size)
851 goto retry;
852 }
853 out_unlock:
854 if (gfs2_holder_queued(gh))
855 gfs2_glock_dq(gh);
856 out_uninit:
857 gfs2_holder_uninit(gh);
858 /* User space doesn't expect partial success. */
859 if (ret < 0)
860 return ret;
861 return read;
862 }
863
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)864 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
865 struct gfs2_holder *gh)
866 {
867 struct file *file = iocb->ki_filp;
868 struct inode *inode = file->f_mapping->host;
869 struct gfs2_inode *ip = GFS2_I(inode);
870 size_t prev_count = 0, window_size = 0;
871 size_t written = 0;
872 ssize_t ret;
873
874 /*
875 * In this function, we disable page faults when we're holding the
876 * inode glock while doing I/O. If a page fault occurs, we indicate
877 * that the inode glock may be dropped, fault in the pages manually,
878 * and retry.
879 *
880 * For writes, iomap_dio_rw only triggers manual page faults, so we
881 * don't need to disable physical ones.
882 */
883
884 /*
885 * Deferred lock, even if its a write, since we do no allocation on
886 * this path. All we need to change is the atime, and this lock mode
887 * ensures that other nodes have flushed their buffered read caches
888 * (i.e. their page cache entries for this inode). We do not,
889 * unfortunately, have the option of only flushing a range like the
890 * VFS does.
891 */
892 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
893 retry:
894 ret = gfs2_glock_nq(gh);
895 if (ret)
896 goto out_uninit;
897 /* Silently fall back to buffered I/O when writing beyond EOF */
898 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
899 goto out_unlock;
900
901 from->nofault = true;
902 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
903 IOMAP_DIO_PARTIAL, NULL, written);
904 from->nofault = false;
905 if (ret <= 0) {
906 if (ret == -ENOTBLK)
907 ret = 0;
908 if (ret != -EFAULT)
909 goto out_unlock;
910 }
911 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
912 if (ret > 0)
913 written = ret;
914
915 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
916 gfs2_glock_dq(gh);
917 window_size -= fault_in_iov_iter_readable(from, window_size);
918 if (window_size)
919 goto retry;
920 }
921 out_unlock:
922 if (gfs2_holder_queued(gh))
923 gfs2_glock_dq(gh);
924 out_uninit:
925 gfs2_holder_uninit(gh);
926 /* User space doesn't expect partial success. */
927 if (ret < 0)
928 return ret;
929 return written;
930 }
931
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)932 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
933 {
934 struct gfs2_inode *ip;
935 struct gfs2_holder gh;
936 size_t prev_count = 0, window_size = 0;
937 size_t read = 0;
938 ssize_t ret;
939
940 /*
941 * In this function, we disable page faults when we're holding the
942 * inode glock while doing I/O. If a page fault occurs, we indicate
943 * that the inode glock may be dropped, fault in the pages manually,
944 * and retry.
945 */
946
947 if (iocb->ki_flags & IOCB_DIRECT)
948 return gfs2_file_direct_read(iocb, to, &gh);
949
950 pagefault_disable();
951 iocb->ki_flags |= IOCB_NOIO;
952 ret = generic_file_read_iter(iocb, to);
953 iocb->ki_flags &= ~IOCB_NOIO;
954 pagefault_enable();
955 if (ret >= 0) {
956 if (!iov_iter_count(to))
957 return ret;
958 read = ret;
959 } else if (ret != -EFAULT) {
960 if (ret != -EAGAIN)
961 return ret;
962 if (iocb->ki_flags & IOCB_NOWAIT)
963 return ret;
964 }
965 ip = GFS2_I(iocb->ki_filp->f_mapping->host);
966 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
967 retry:
968 ret = gfs2_glock_nq(&gh);
969 if (ret)
970 goto out_uninit;
971 pagefault_disable();
972 ret = generic_file_read_iter(iocb, to);
973 pagefault_enable();
974 if (ret <= 0 && ret != -EFAULT)
975 goto out_unlock;
976 if (ret > 0)
977 read += ret;
978
979 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
980 gfs2_glock_dq(&gh);
981 window_size -= fault_in_iov_iter_writeable(to, window_size);
982 if (window_size)
983 goto retry;
984 }
985 out_unlock:
986 if (gfs2_holder_queued(&gh))
987 gfs2_glock_dq(&gh);
988 out_uninit:
989 gfs2_holder_uninit(&gh);
990 return read ? read : ret;
991 }
992
gfs2_file_buffered_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)993 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
994 struct iov_iter *from,
995 struct gfs2_holder *gh)
996 {
997 struct file *file = iocb->ki_filp;
998 struct inode *inode = file_inode(file);
999 struct gfs2_inode *ip = GFS2_I(inode);
1000 struct gfs2_sbd *sdp = GFS2_SB(inode);
1001 struct gfs2_holder *statfs_gh = NULL;
1002 size_t prev_count = 0, window_size = 0;
1003 size_t orig_count = iov_iter_count(from);
1004 size_t written = 0;
1005 ssize_t ret;
1006
1007 /*
1008 * In this function, we disable page faults when we're holding the
1009 * inode glock while doing I/O. If a page fault occurs, we indicate
1010 * that the inode glock may be dropped, fault in the pages manually,
1011 * and retry.
1012 */
1013
1014 if (inode == sdp->sd_rindex) {
1015 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1016 if (!statfs_gh)
1017 return -ENOMEM;
1018 }
1019
1020 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1021 retry:
1022 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1023 window_size -= fault_in_iov_iter_readable(from, window_size);
1024 if (!window_size) {
1025 ret = -EFAULT;
1026 goto out_uninit;
1027 }
1028 from->count = min(from->count, window_size);
1029 }
1030 ret = gfs2_glock_nq(gh);
1031 if (ret)
1032 goto out_uninit;
1033
1034 if (inode == sdp->sd_rindex) {
1035 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1036
1037 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1038 GL_NOCACHE, statfs_gh);
1039 if (ret)
1040 goto out_unlock;
1041 }
1042
1043 current->backing_dev_info = inode_to_bdi(inode);
1044 pagefault_disable();
1045 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
1046 pagefault_enable();
1047 current->backing_dev_info = NULL;
1048 if (ret > 0) {
1049 iocb->ki_pos += ret;
1050 written += ret;
1051 }
1052
1053 if (inode == sdp->sd_rindex)
1054 gfs2_glock_dq_uninit(statfs_gh);
1055
1056 if (ret <= 0 && ret != -EFAULT)
1057 goto out_unlock;
1058
1059 from->count = orig_count - written;
1060 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1061 gfs2_glock_dq(gh);
1062 goto retry;
1063 }
1064 out_unlock:
1065 if (gfs2_holder_queued(gh))
1066 gfs2_glock_dq(gh);
1067 out_uninit:
1068 gfs2_holder_uninit(gh);
1069 if (statfs_gh)
1070 kfree(statfs_gh);
1071 from->count = orig_count - written;
1072 return written ? written : ret;
1073 }
1074
1075 /**
1076 * gfs2_file_write_iter - Perform a write to a file
1077 * @iocb: The io context
1078 * @from: The data to write
1079 *
1080 * We have to do a lock/unlock here to refresh the inode size for
1081 * O_APPEND writes, otherwise we can land up writing at the wrong
1082 * offset. There is still a race, but provided the app is using its
1083 * own file locking, this will make O_APPEND work as expected.
1084 *
1085 */
1086
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1087 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1088 {
1089 struct file *file = iocb->ki_filp;
1090 struct inode *inode = file_inode(file);
1091 struct gfs2_inode *ip = GFS2_I(inode);
1092 struct gfs2_holder gh;
1093 ssize_t ret;
1094
1095 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1096
1097 if (iocb->ki_flags & IOCB_APPEND) {
1098 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1099 if (ret)
1100 return ret;
1101 gfs2_glock_dq_uninit(&gh);
1102 }
1103
1104 inode_lock(inode);
1105 ret = generic_write_checks(iocb, from);
1106 if (ret <= 0)
1107 goto out_unlock;
1108
1109 ret = file_remove_privs(file);
1110 if (ret)
1111 goto out_unlock;
1112
1113 ret = file_update_time(file);
1114 if (ret)
1115 goto out_unlock;
1116
1117 if (iocb->ki_flags & IOCB_DIRECT) {
1118 struct address_space *mapping = file->f_mapping;
1119 ssize_t buffered, ret2;
1120
1121 ret = gfs2_file_direct_write(iocb, from, &gh);
1122 if (ret < 0 || !iov_iter_count(from))
1123 goto out_unlock;
1124
1125 iocb->ki_flags |= IOCB_DSYNC;
1126 buffered = gfs2_file_buffered_write(iocb, from, &gh);
1127 if (unlikely(buffered <= 0)) {
1128 if (!ret)
1129 ret = buffered;
1130 goto out_unlock;
1131 }
1132
1133 /*
1134 * We need to ensure that the page cache pages are written to
1135 * disk and invalidated to preserve the expected O_DIRECT
1136 * semantics. If the writeback or invalidate fails, only report
1137 * the direct I/O range as we don't know if the buffered pages
1138 * made it to disk.
1139 */
1140 ret2 = generic_write_sync(iocb, buffered);
1141 invalidate_mapping_pages(mapping,
1142 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
1143 (iocb->ki_pos - 1) >> PAGE_SHIFT);
1144 if (!ret || ret2 > 0)
1145 ret += ret2;
1146 } else {
1147 ret = gfs2_file_buffered_write(iocb, from, &gh);
1148 if (likely(ret > 0))
1149 ret = generic_write_sync(iocb, ret);
1150 }
1151
1152 out_unlock:
1153 inode_unlock(inode);
1154 return ret;
1155 }
1156
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)1157 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1158 int mode)
1159 {
1160 struct super_block *sb = inode->i_sb;
1161 struct gfs2_inode *ip = GFS2_I(inode);
1162 loff_t end = offset + len;
1163 struct buffer_head *dibh;
1164 int error;
1165
1166 error = gfs2_meta_inode_buffer(ip, &dibh);
1167 if (unlikely(error))
1168 return error;
1169
1170 gfs2_trans_add_meta(ip->i_gl, dibh);
1171
1172 if (gfs2_is_stuffed(ip)) {
1173 error = gfs2_unstuff_dinode(ip);
1174 if (unlikely(error))
1175 goto out;
1176 }
1177
1178 while (offset < end) {
1179 struct iomap iomap = { };
1180
1181 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1182 if (error)
1183 goto out;
1184 offset = iomap.offset + iomap.length;
1185 if (!(iomap.flags & IOMAP_F_NEW))
1186 continue;
1187 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1188 iomap.length >> inode->i_blkbits,
1189 GFP_NOFS);
1190 if (error) {
1191 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1192 goto out;
1193 }
1194 }
1195 out:
1196 brelse(dibh);
1197 return error;
1198 }
1199
1200 /**
1201 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1202 * blocks, determine how many bytes can be written.
1203 * @ip: The inode in question.
1204 * @len: Max cap of bytes. What we return in *len must be <= this.
1205 * @data_blocks: Compute and return the number of data blocks needed
1206 * @ind_blocks: Compute and return the number of indirect blocks needed
1207 * @max_blocks: The total blocks available to work with.
1208 *
1209 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1210 */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)1211 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1212 unsigned int *data_blocks, unsigned int *ind_blocks,
1213 unsigned int max_blocks)
1214 {
1215 loff_t max = *len;
1216 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1217 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1218
1219 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1220 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1221 max_data -= tmp;
1222 }
1223
1224 *data_blocks = max_data;
1225 *ind_blocks = max_blocks - max_data;
1226 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1227 if (*len > max) {
1228 *len = max;
1229 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1230 }
1231 }
1232
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1233 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1234 {
1235 struct inode *inode = file_inode(file);
1236 struct gfs2_sbd *sdp = GFS2_SB(inode);
1237 struct gfs2_inode *ip = GFS2_I(inode);
1238 struct gfs2_alloc_parms ap = { .aflags = 0, };
1239 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1240 loff_t bytes, max_bytes, max_blks;
1241 int error;
1242 const loff_t pos = offset;
1243 const loff_t count = len;
1244 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1245 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1246 loff_t max_chunk_size = UINT_MAX & bsize_mask;
1247
1248 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1249
1250 offset &= bsize_mask;
1251
1252 len = next - offset;
1253 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1254 if (!bytes)
1255 bytes = UINT_MAX;
1256 bytes &= bsize_mask;
1257 if (bytes == 0)
1258 bytes = sdp->sd_sb.sb_bsize;
1259
1260 gfs2_size_hint(file, offset, len);
1261
1262 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1263 ap.min_target = data_blocks + ind_blocks;
1264
1265 while (len > 0) {
1266 if (len < bytes)
1267 bytes = len;
1268 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1269 len -= bytes;
1270 offset += bytes;
1271 continue;
1272 }
1273
1274 /* We need to determine how many bytes we can actually
1275 * fallocate without exceeding quota or going over the
1276 * end of the fs. We start off optimistically by assuming
1277 * we can write max_bytes */
1278 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1279
1280 /* Since max_bytes is most likely a theoretical max, we
1281 * calculate a more realistic 'bytes' to serve as a good
1282 * starting point for the number of bytes we may be able
1283 * to write */
1284 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1285 ap.target = data_blocks + ind_blocks;
1286
1287 error = gfs2_quota_lock_check(ip, &ap);
1288 if (error)
1289 return error;
1290 /* ap.allowed tells us how many blocks quota will allow
1291 * us to write. Check if this reduces max_blks */
1292 max_blks = UINT_MAX;
1293 if (ap.allowed)
1294 max_blks = ap.allowed;
1295
1296 error = gfs2_inplace_reserve(ip, &ap);
1297 if (error)
1298 goto out_qunlock;
1299
1300 /* check if the selected rgrp limits our max_blks further */
1301 if (ip->i_res.rs_reserved < max_blks)
1302 max_blks = ip->i_res.rs_reserved;
1303
1304 /* Almost done. Calculate bytes that can be written using
1305 * max_blks. We also recompute max_bytes, data_blocks and
1306 * ind_blocks */
1307 calc_max_reserv(ip, &max_bytes, &data_blocks,
1308 &ind_blocks, max_blks);
1309
1310 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1311 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1312 if (gfs2_is_jdata(ip))
1313 rblocks += data_blocks ? data_blocks : 1;
1314
1315 error = gfs2_trans_begin(sdp, rblocks,
1316 PAGE_SIZE >> inode->i_blkbits);
1317 if (error)
1318 goto out_trans_fail;
1319
1320 error = fallocate_chunk(inode, offset, max_bytes, mode);
1321 gfs2_trans_end(sdp);
1322
1323 if (error)
1324 goto out_trans_fail;
1325
1326 len -= max_bytes;
1327 offset += max_bytes;
1328 gfs2_inplace_release(ip);
1329 gfs2_quota_unlock(ip);
1330 }
1331
1332 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1333 i_size_write(inode, pos + count);
1334 file_update_time(file);
1335 mark_inode_dirty(inode);
1336
1337 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1338 return vfs_fsync_range(file, pos, pos + count - 1,
1339 (file->f_flags & __O_SYNC) ? 0 : 1);
1340 return 0;
1341
1342 out_trans_fail:
1343 gfs2_inplace_release(ip);
1344 out_qunlock:
1345 gfs2_quota_unlock(ip);
1346 return error;
1347 }
1348
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1349 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1350 {
1351 struct inode *inode = file_inode(file);
1352 struct gfs2_sbd *sdp = GFS2_SB(inode);
1353 struct gfs2_inode *ip = GFS2_I(inode);
1354 struct gfs2_holder gh;
1355 int ret;
1356
1357 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1358 return -EOPNOTSUPP;
1359 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1360 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1361 return -EOPNOTSUPP;
1362
1363 inode_lock(inode);
1364
1365 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1366 ret = gfs2_glock_nq(&gh);
1367 if (ret)
1368 goto out_uninit;
1369
1370 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1371 (offset + len) > inode->i_size) {
1372 ret = inode_newsize_ok(inode, offset + len);
1373 if (ret)
1374 goto out_unlock;
1375 }
1376
1377 ret = get_write_access(inode);
1378 if (ret)
1379 goto out_unlock;
1380
1381 if (mode & FALLOC_FL_PUNCH_HOLE) {
1382 ret = __gfs2_punch_hole(file, offset, len);
1383 } else {
1384 ret = __gfs2_fallocate(file, mode, offset, len);
1385 if (ret)
1386 gfs2_rs_deltree(&ip->i_res);
1387 }
1388
1389 put_write_access(inode);
1390 out_unlock:
1391 gfs2_glock_dq(&gh);
1392 out_uninit:
1393 gfs2_holder_uninit(&gh);
1394 inode_unlock(inode);
1395 return ret;
1396 }
1397
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1398 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1399 struct file *out, loff_t *ppos,
1400 size_t len, unsigned int flags)
1401 {
1402 ssize_t ret;
1403
1404 gfs2_size_hint(out, *ppos, len);
1405
1406 ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1407 return ret;
1408 }
1409
1410 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1411
1412 /**
1413 * gfs2_lock - acquire/release a posix lock on a file
1414 * @file: the file pointer
1415 * @cmd: either modify or retrieve lock state, possibly wait
1416 * @fl: type and range of lock
1417 *
1418 * Returns: errno
1419 */
1420
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1421 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1422 {
1423 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1424 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1425 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1426
1427 if (!(fl->fl_flags & FL_POSIX))
1428 return -ENOLCK;
1429 if (cmd == F_CANCELLK) {
1430 /* Hack: */
1431 cmd = F_SETLK;
1432 fl->fl_type = F_UNLCK;
1433 }
1434 if (unlikely(gfs2_withdrawn(sdp))) {
1435 if (fl->fl_type == F_UNLCK)
1436 locks_lock_file_wait(file, fl);
1437 return -EIO;
1438 }
1439 if (IS_GETLK(cmd))
1440 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1441 else if (fl->fl_type == F_UNLCK)
1442 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1443 else
1444 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1445 }
1446
do_flock(struct file * file,int cmd,struct file_lock * fl)1447 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1448 {
1449 struct gfs2_file *fp = file->private_data;
1450 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1451 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1452 struct gfs2_glock *gl;
1453 unsigned int state;
1454 u16 flags;
1455 int error = 0;
1456 int sleeptime;
1457
1458 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1459 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1460
1461 mutex_lock(&fp->f_fl_mutex);
1462
1463 if (gfs2_holder_initialized(fl_gh)) {
1464 struct file_lock request;
1465 if (fl_gh->gh_state == state)
1466 goto out;
1467 locks_init_lock(&request);
1468 request.fl_type = F_UNLCK;
1469 request.fl_flags = FL_FLOCK;
1470 locks_lock_file_wait(file, &request);
1471 gfs2_glock_dq(fl_gh);
1472 gfs2_holder_reinit(state, flags, fl_gh);
1473 } else {
1474 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1475 &gfs2_flock_glops, CREATE, &gl);
1476 if (error)
1477 goto out;
1478 gfs2_holder_init(gl, state, flags, fl_gh);
1479 gfs2_glock_put(gl);
1480 }
1481 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1482 error = gfs2_glock_nq(fl_gh);
1483 if (error != GLR_TRYFAILED)
1484 break;
1485 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1486 msleep(sleeptime);
1487 }
1488 if (error) {
1489 gfs2_holder_uninit(fl_gh);
1490 if (error == GLR_TRYFAILED)
1491 error = -EAGAIN;
1492 } else {
1493 error = locks_lock_file_wait(file, fl);
1494 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1495 }
1496
1497 out:
1498 mutex_unlock(&fp->f_fl_mutex);
1499 return error;
1500 }
1501
do_unflock(struct file * file,struct file_lock * fl)1502 static void do_unflock(struct file *file, struct file_lock *fl)
1503 {
1504 struct gfs2_file *fp = file->private_data;
1505 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1506
1507 mutex_lock(&fp->f_fl_mutex);
1508 locks_lock_file_wait(file, fl);
1509 if (gfs2_holder_initialized(fl_gh)) {
1510 gfs2_glock_dq(fl_gh);
1511 gfs2_holder_uninit(fl_gh);
1512 }
1513 mutex_unlock(&fp->f_fl_mutex);
1514 }
1515
1516 /**
1517 * gfs2_flock - acquire/release a flock lock on a file
1518 * @file: the file pointer
1519 * @cmd: either modify or retrieve lock state, possibly wait
1520 * @fl: type and range of lock
1521 *
1522 * Returns: errno
1523 */
1524
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1525 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1526 {
1527 if (!(fl->fl_flags & FL_FLOCK))
1528 return -ENOLCK;
1529
1530 if (fl->fl_type == F_UNLCK) {
1531 do_unflock(file, fl);
1532 return 0;
1533 } else {
1534 return do_flock(file, cmd, fl);
1535 }
1536 }
1537
1538 const struct file_operations gfs2_file_fops = {
1539 .llseek = gfs2_llseek,
1540 .read_iter = gfs2_file_read_iter,
1541 .write_iter = gfs2_file_write_iter,
1542 .iopoll = iocb_bio_iopoll,
1543 .unlocked_ioctl = gfs2_ioctl,
1544 .compat_ioctl = gfs2_compat_ioctl,
1545 .mmap = gfs2_mmap,
1546 .open = gfs2_open,
1547 .release = gfs2_release,
1548 .fsync = gfs2_fsync,
1549 .lock = gfs2_lock,
1550 .flock = gfs2_flock,
1551 .splice_read = generic_file_splice_read,
1552 .splice_write = gfs2_file_splice_write,
1553 .setlease = simple_nosetlease,
1554 .fallocate = gfs2_fallocate,
1555 };
1556
1557 const struct file_operations gfs2_dir_fops = {
1558 .iterate_shared = gfs2_readdir,
1559 .unlocked_ioctl = gfs2_ioctl,
1560 .compat_ioctl = gfs2_compat_ioctl,
1561 .open = gfs2_open,
1562 .release = gfs2_release,
1563 .fsync = gfs2_fsync,
1564 .lock = gfs2_lock,
1565 .flock = gfs2_flock,
1566 .llseek = default_llseek,
1567 };
1568
1569 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1570
1571 const struct file_operations gfs2_file_fops_nolock = {
1572 .llseek = gfs2_llseek,
1573 .read_iter = gfs2_file_read_iter,
1574 .write_iter = gfs2_file_write_iter,
1575 .iopoll = iocb_bio_iopoll,
1576 .unlocked_ioctl = gfs2_ioctl,
1577 .compat_ioctl = gfs2_compat_ioctl,
1578 .mmap = gfs2_mmap,
1579 .open = gfs2_open,
1580 .release = gfs2_release,
1581 .fsync = gfs2_fsync,
1582 .splice_read = generic_file_splice_read,
1583 .splice_write = gfs2_file_splice_write,
1584 .setlease = generic_setlease,
1585 .fallocate = gfs2_fallocate,
1586 };
1587
1588 const struct file_operations gfs2_dir_fops_nolock = {
1589 .iterate_shared = gfs2_readdir,
1590 .unlocked_ioctl = gfs2_ioctl,
1591 .compat_ioctl = gfs2_compat_ioctl,
1592 .open = gfs2_open,
1593 .release = gfs2_release,
1594 .fsync = gfs2_fsync,
1595 .llseek = default_llseek,
1596 };
1597
1598