1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct inode * inode,int nr)26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 unsigned int size = sizeof(struct page *) * nr;
30
31 if (likely(size <= sbi->page_array_slab_size))
32 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
page_array_free(struct inode * inode,void * pages,int nr)37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 unsigned int size = sizeof(struct page *) * nr;
41
42 if (!pages)
43 return;
44
45 if (likely(size <= sbi->page_array_slab_size))
46 kmem_cache_free(sbi->page_array_slab, pages);
47 else
48 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52 int (*init_compress_ctx)(struct compress_ctx *cc);
53 void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 int (*compress_pages)(struct compress_ctx *cc);
55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 return index & (cc->cluster_size - 1);
63 }
64
cluster_idx(struct compress_ctx * cc,pgoff_t index)65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 return index >> cc->log_cluster_size;
68 }
69
start_idx_of_cluster(struct compress_ctx * cc)70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 return cc->cluster_idx << cc->log_cluster_size;
73 }
74
f2fs_is_compressed_page(struct page * page)75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 if (!PagePrivate(page))
78 return false;
79 if (!page_private(page))
80 return false;
81 if (page_private_nonpointer(page))
82 return false;
83
84 f2fs_bug_on(F2FS_M_SB(page->mapping),
85 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 return true;
87 }
88
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)89 static void f2fs_set_compressed_page(struct page *page,
90 struct inode *inode, pgoff_t index, void *data)
91 {
92 attach_page_private(page, (void *)data);
93
94 /* i_crypto_info and iv index */
95 page->index = index;
96 page->mapping = inode->i_mapping;
97 }
98
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 int i;
102
103 for (i = 0; i < len; i++) {
104 if (!cc->rpages[i])
105 continue;
106 if (unlock)
107 unlock_page(cc->rpages[i]);
108 else
109 put_page(cc->rpages[i]);
110 }
111 }
112
f2fs_put_rpages(struct compress_ctx * cc)113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117
f2fs_unlock_rpages(struct compress_ctx * cc,int len)118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 f2fs_drop_rpages(cc, len, true);
121 }
122
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 unsigned int i;
127
128 for (i = 0; i < cc->cluster_size; i++) {
129 if (!cc->rpages[i])
130 continue;
131 if (redirty)
132 redirty_page_for_writepage(wbc, cc->rpages[i]);
133 f2fs_put_page(cc->rpages[i], unlock);
134 }
135 }
136
f2fs_compress_control_page(struct page * page)137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141
f2fs_init_compress_ctx(struct compress_ctx * cc)142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 if (cc->rpages)
145 return 0;
146
147 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 return cc->rpages ? 0 : -ENOMEM;
149 }
150
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 cc->rpages = NULL;
155 cc->nr_rpages = 0;
156 cc->nr_cpages = 0;
157 cc->valid_nr_cpages = 0;
158 if (!reuse)
159 cc->cluster_idx = NULL_CLUSTER;
160 }
161
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164 unsigned int cluster_ofs;
165
166 if (!f2fs_cluster_can_merge_page(cc, page->index))
167 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168
169 cluster_ofs = offset_in_cluster(cc, page->index);
170 cc->rpages[cluster_ofs] = page;
171 cc->nr_rpages++;
172 cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174
175 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179 LZO1X_MEM_COMPRESS, GFP_NOFS);
180 if (!cc->private)
181 return -ENOMEM;
182
183 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184 return 0;
185 }
186
lzo_destroy_compress_ctx(struct compress_ctx * cc)187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189 kvfree(cc->private);
190 cc->private = NULL;
191 }
192
lzo_compress_pages(struct compress_ctx * cc)193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195 int ret;
196
197 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198 &cc->clen, cc->private);
199 if (ret != LZO_E_OK) {
200 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202 return -EIO;
203 }
204 return 0;
205 }
206
lzo_decompress_pages(struct decompress_io_ctx * dic)207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209 int ret;
210
211 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212 dic->rbuf, &dic->rlen);
213 if (ret != LZO_E_OK) {
214 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216 return -EIO;
217 }
218
219 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221 "expected:%lu\n", KERN_ERR,
222 F2FS_I_SB(dic->inode)->sb->s_id,
223 dic->rlen,
224 PAGE_SIZE << dic->log_cluster_size);
225 return -EIO;
226 }
227 return 0;
228 }
229
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231 .init_compress_ctx = lzo_init_compress_ctx,
232 .destroy_compress_ctx = lzo_destroy_compress_ctx,
233 .compress_pages = lzo_compress_pages,
234 .decompress_pages = lzo_decompress_pages,
235 };
236 #endif
237
238 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241 unsigned int size = LZ4_MEM_COMPRESS;
242
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245 size = LZ4HC_MEM_COMPRESS;
246 #endif
247
248 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249 if (!cc->private)
250 return -ENOMEM;
251
252 /*
253 * we do not change cc->clen to LZ4_compressBound(inputsize) to
254 * adapt worst compress case, because lz4 compressor can handle
255 * output budget properly.
256 */
257 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258 return 0;
259 }
260
lz4_destroy_compress_ctx(struct compress_ctx * cc)261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263 kvfree(cc->private);
264 cc->private = NULL;
265 }
266
267 #ifdef CONFIG_F2FS_FS_LZ4HC
lz4hc_compress_pages(struct compress_ctx * cc)268 static int lz4hc_compress_pages(struct compress_ctx *cc)
269 {
270 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271 COMPRESS_LEVEL_OFFSET;
272 int len;
273
274 if (level)
275 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276 cc->clen, level, cc->private);
277 else
278 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 cc->clen, cc->private);
280 if (!len)
281 return -EAGAIN;
282
283 cc->clen = len;
284 return 0;
285 }
286 #endif
287
lz4_compress_pages(struct compress_ctx * cc)288 static int lz4_compress_pages(struct compress_ctx *cc)
289 {
290 int len;
291
292 #ifdef CONFIG_F2FS_FS_LZ4HC
293 return lz4hc_compress_pages(cc);
294 #endif
295 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296 cc->clen, cc->private);
297 if (!len)
298 return -EAGAIN;
299
300 cc->clen = len;
301 return 0;
302 }
303
lz4_decompress_pages(struct decompress_io_ctx * dic)304 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305 {
306 int ret;
307
308 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309 dic->clen, dic->rlen);
310 if (ret < 0) {
311 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313 return -EIO;
314 }
315
316 if (ret != PAGE_SIZE << dic->log_cluster_size) {
317 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
318 "expected:%lu\n", KERN_ERR,
319 F2FS_I_SB(dic->inode)->sb->s_id, ret,
320 PAGE_SIZE << dic->log_cluster_size);
321 return -EIO;
322 }
323 return 0;
324 }
325
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327 .init_compress_ctx = lz4_init_compress_ctx,
328 .destroy_compress_ctx = lz4_destroy_compress_ctx,
329 .compress_pages = lz4_compress_pages,
330 .decompress_pages = lz4_decompress_pages,
331 };
332 #endif
333
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
336
zstd_init_compress_ctx(struct compress_ctx * cc)337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339 zstd_parameters params;
340 zstd_cstream *stream;
341 void *workspace;
342 unsigned int workspace_size;
343 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344 COMPRESS_LEVEL_OFFSET;
345
346 if (!level)
347 level = F2FS_ZSTD_DEFAULT_CLEVEL;
348
349 params = zstd_get_params(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen);
350 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
351
352 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353 workspace_size, GFP_NOFS);
354 if (!workspace)
355 return -ENOMEM;
356
357 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
358 if (!stream) {
359 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361 __func__);
362 kvfree(workspace);
363 return -EIO;
364 }
365
366 cc->private = workspace;
367 cc->private2 = stream;
368
369 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 return 0;
371 }
372
zstd_destroy_compress_ctx(struct compress_ctx * cc)373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375 kvfree(cc->private);
376 cc->private = NULL;
377 cc->private2 = NULL;
378 }
379
zstd_compress_pages(struct compress_ctx * cc)380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382 zstd_cstream *stream = cc->private2;
383 zstd_in_buffer inbuf;
384 zstd_out_buffer outbuf;
385 int src_size = cc->rlen;
386 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387 int ret;
388
389 inbuf.pos = 0;
390 inbuf.src = cc->rbuf;
391 inbuf.size = src_size;
392
393 outbuf.pos = 0;
394 outbuf.dst = cc->cbuf->cdata;
395 outbuf.size = dst_size;
396
397 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398 if (zstd_is_error(ret)) {
399 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401 __func__, zstd_get_error_code(ret));
402 return -EIO;
403 }
404
405 ret = zstd_end_stream(stream, &outbuf);
406 if (zstd_is_error(ret)) {
407 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409 __func__, zstd_get_error_code(ret));
410 return -EIO;
411 }
412
413 /*
414 * there is compressed data remained in intermediate buffer due to
415 * no more space in cbuf.cdata
416 */
417 if (ret)
418 return -EAGAIN;
419
420 cc->clen = outbuf.pos;
421 return 0;
422 }
423
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426 zstd_dstream *stream;
427 void *workspace;
428 unsigned int workspace_size;
429 unsigned int max_window_size =
430 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431
432 workspace_size = zstd_dstream_workspace_bound(max_window_size);
433
434 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435 workspace_size, GFP_NOFS);
436 if (!workspace)
437 return -ENOMEM;
438
439 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440 if (!stream) {
441 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443 __func__);
444 kvfree(workspace);
445 return -EIO;
446 }
447
448 dic->private = workspace;
449 dic->private2 = stream;
450
451 return 0;
452 }
453
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456 kvfree(dic->private);
457 dic->private = NULL;
458 dic->private2 = NULL;
459 }
460
zstd_decompress_pages(struct decompress_io_ctx * dic)461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463 zstd_dstream *stream = dic->private2;
464 zstd_in_buffer inbuf;
465 zstd_out_buffer outbuf;
466 int ret;
467
468 inbuf.pos = 0;
469 inbuf.src = dic->cbuf->cdata;
470 inbuf.size = dic->clen;
471
472 outbuf.pos = 0;
473 outbuf.dst = dic->rbuf;
474 outbuf.size = dic->rlen;
475
476 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477 if (zstd_is_error(ret)) {
478 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480 __func__, zstd_get_error_code(ret));
481 return -EIO;
482 }
483
484 if (dic->rlen != outbuf.pos) {
485 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486 "expected:%lu\n", KERN_ERR,
487 F2FS_I_SB(dic->inode)->sb->s_id,
488 __func__, dic->rlen,
489 PAGE_SIZE << dic->log_cluster_size);
490 return -EIO;
491 }
492
493 return 0;
494 }
495
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497 .init_compress_ctx = zstd_init_compress_ctx,
498 .destroy_compress_ctx = zstd_destroy_compress_ctx,
499 .compress_pages = zstd_compress_pages,
500 .init_decompress_ctx = zstd_init_decompress_ctx,
501 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
502 .decompress_pages = zstd_decompress_pages,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 int ret;
511
512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 &cc->clen, cc->private);
514 if (ret != LZO_E_OK) {
515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 return -EIO;
518 }
519 return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 .init_compress_ctx = lzo_init_compress_ctx,
524 .destroy_compress_ctx = lzo_destroy_compress_ctx,
525 .compress_pages = lzorle_compress_pages,
526 .decompress_pages = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 &f2fs_lzo_ops,
534 #else
535 NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 &f2fs_lz4_ops,
539 #else
540 NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 &f2fs_zstd_ops,
544 #else
545 NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 &f2fs_lzorle_ops,
549 #else
550 NULL,
551 #endif
552 };
553
f2fs_is_compress_backend_ready(struct inode * inode)554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 if (!f2fs_compressed_file(inode))
557 return true;
558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565 "Number of intermediate compress pages to preallocate");
566
f2fs_init_compress_mempool(void)567 int f2fs_init_compress_mempool(void)
568 {
569 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570 if (!compress_page_pool)
571 return -ENOMEM;
572
573 return 0;
574 }
575
f2fs_destroy_compress_mempool(void)576 void f2fs_destroy_compress_mempool(void)
577 {
578 mempool_destroy(compress_page_pool);
579 }
580
f2fs_compress_alloc_page(void)581 static struct page *f2fs_compress_alloc_page(void)
582 {
583 struct page *page;
584
585 page = mempool_alloc(compress_page_pool, GFP_NOFS);
586 lock_page(page);
587
588 return page;
589 }
590
f2fs_compress_free_page(struct page * page)591 static void f2fs_compress_free_page(struct page *page)
592 {
593 if (!page)
594 return;
595 detach_page_private(page);
596 page->mapping = NULL;
597 unlock_page(page);
598 mempool_free(page, compress_page_pool);
599 }
600
601 #define MAX_VMAP_RETRIES 3
602
f2fs_vmap(struct page ** pages,unsigned int count)603 static void *f2fs_vmap(struct page **pages, unsigned int count)
604 {
605 int i;
606 void *buf = NULL;
607
608 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
609 buf = vm_map_ram(pages, count, -1);
610 if (buf)
611 break;
612 vm_unmap_aliases();
613 }
614 return buf;
615 }
616
f2fs_compress_pages(struct compress_ctx * cc)617 static int f2fs_compress_pages(struct compress_ctx *cc)
618 {
619 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
620 const struct f2fs_compress_ops *cops =
621 f2fs_cops[fi->i_compress_algorithm];
622 unsigned int max_len, new_nr_cpages;
623 u32 chksum = 0;
624 int i, ret;
625
626 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
627 cc->cluster_size, fi->i_compress_algorithm);
628
629 if (cops->init_compress_ctx) {
630 ret = cops->init_compress_ctx(cc);
631 if (ret)
632 goto out;
633 }
634
635 max_len = COMPRESS_HEADER_SIZE + cc->clen;
636 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
637 cc->valid_nr_cpages = cc->nr_cpages;
638
639 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
640 if (!cc->cpages) {
641 ret = -ENOMEM;
642 goto destroy_compress_ctx;
643 }
644
645 for (i = 0; i < cc->nr_cpages; i++) {
646 cc->cpages[i] = f2fs_compress_alloc_page();
647 if (!cc->cpages[i]) {
648 ret = -ENOMEM;
649 goto out_free_cpages;
650 }
651 }
652
653 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
654 if (!cc->rbuf) {
655 ret = -ENOMEM;
656 goto out_free_cpages;
657 }
658
659 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
660 if (!cc->cbuf) {
661 ret = -ENOMEM;
662 goto out_vunmap_rbuf;
663 }
664
665 ret = cops->compress_pages(cc);
666 if (ret)
667 goto out_vunmap_cbuf;
668
669 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
670
671 if (cc->clen > max_len) {
672 ret = -EAGAIN;
673 goto out_vunmap_cbuf;
674 }
675
676 cc->cbuf->clen = cpu_to_le32(cc->clen);
677
678 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
679 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
680 cc->cbuf->cdata, cc->clen);
681 cc->cbuf->chksum = cpu_to_le32(chksum);
682
683 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
684 cc->cbuf->reserved[i] = cpu_to_le32(0);
685
686 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
687
688 /* zero out any unused part of the last page */
689 memset(&cc->cbuf->cdata[cc->clen], 0,
690 (new_nr_cpages * PAGE_SIZE) -
691 (cc->clen + COMPRESS_HEADER_SIZE));
692
693 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
694 vm_unmap_ram(cc->rbuf, cc->cluster_size);
695
696 for (i = 0; i < cc->nr_cpages; i++) {
697 if (i < new_nr_cpages)
698 continue;
699 f2fs_compress_free_page(cc->cpages[i]);
700 cc->cpages[i] = NULL;
701 }
702
703 if (cops->destroy_compress_ctx)
704 cops->destroy_compress_ctx(cc);
705
706 cc->valid_nr_cpages = new_nr_cpages;
707
708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709 cc->clen, ret);
710 return 0;
711
712 out_vunmap_cbuf:
713 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715 vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717 for (i = 0; i < cc->nr_cpages; i++) {
718 if (cc->cpages[i])
719 f2fs_compress_free_page(cc->cpages[i]);
720 }
721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722 cc->cpages = NULL;
723 destroy_compress_ctx:
724 if (cops->destroy_compress_ctx)
725 cops->destroy_compress_ctx(cc);
726 out:
727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728 cc->clen, ret);
729 return ret;
730 }
731
f2fs_decompress_cluster(struct decompress_io_ctx * dic)732 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
733 {
734 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
735 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
736 const struct f2fs_compress_ops *cops =
737 f2fs_cops[fi->i_compress_algorithm];
738 int ret;
739 int i;
740
741 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
742 dic->cluster_size, fi->i_compress_algorithm);
743
744 if (dic->failed) {
745 ret = -EIO;
746 goto out_end_io;
747 }
748
749 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
750 if (!dic->tpages) {
751 ret = -ENOMEM;
752 goto out_end_io;
753 }
754
755 for (i = 0; i < dic->cluster_size; i++) {
756 if (dic->rpages[i]) {
757 dic->tpages[i] = dic->rpages[i];
758 continue;
759 }
760
761 dic->tpages[i] = f2fs_compress_alloc_page();
762 if (!dic->tpages[i]) {
763 ret = -ENOMEM;
764 goto out_end_io;
765 }
766 }
767
768 if (cops->init_decompress_ctx) {
769 ret = cops->init_decompress_ctx(dic);
770 if (ret)
771 goto out_end_io;
772 }
773
774 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
775 if (!dic->rbuf) {
776 ret = -ENOMEM;
777 goto out_destroy_decompress_ctx;
778 }
779
780 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
781 if (!dic->cbuf) {
782 ret = -ENOMEM;
783 goto out_vunmap_rbuf;
784 }
785
786 dic->clen = le32_to_cpu(dic->cbuf->clen);
787 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
788
789 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
790 ret = -EFSCORRUPTED;
791 goto out_vunmap_cbuf;
792 }
793
794 ret = cops->decompress_pages(dic);
795
796 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
797 u32 provided = le32_to_cpu(dic->cbuf->chksum);
798 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
799
800 if (provided != calculated) {
801 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
802 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
803 printk_ratelimited(
804 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
805 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
806 provided, calculated);
807 }
808 set_sbi_flag(sbi, SBI_NEED_FSCK);
809 }
810 }
811
812 out_vunmap_cbuf:
813 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
814 out_vunmap_rbuf:
815 vm_unmap_ram(dic->rbuf, dic->cluster_size);
816 out_destroy_decompress_ctx:
817 if (cops->destroy_decompress_ctx)
818 cops->destroy_decompress_ctx(dic);
819 out_end_io:
820 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
821 dic->clen, ret);
822 f2fs_decompress_end_io(dic, ret);
823 }
824
825 /*
826 * This is called when a page of a compressed cluster has been read from disk
827 * (or failed to be read from disk). It checks whether this page was the last
828 * page being waited on in the cluster, and if so, it decompresses the cluster
829 * (or in the case of a failure, cleans up without actually decompressing).
830 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr)831 void f2fs_end_read_compressed_page(struct page *page, bool failed,
832 block_t blkaddr)
833 {
834 struct decompress_io_ctx *dic =
835 (struct decompress_io_ctx *)page_private(page);
836 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
837
838 dec_page_count(sbi, F2FS_RD_DATA);
839
840 if (failed)
841 WRITE_ONCE(dic->failed, true);
842 else if (blkaddr)
843 f2fs_cache_compressed_page(sbi, page,
844 dic->inode->i_ino, blkaddr);
845
846 if (atomic_dec_and_test(&dic->remaining_pages))
847 f2fs_decompress_cluster(dic);
848 }
849
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)850 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
851 {
852 if (cc->cluster_idx == NULL_CLUSTER)
853 return true;
854 return cc->cluster_idx == cluster_idx(cc, index);
855 }
856
f2fs_cluster_is_empty(struct compress_ctx * cc)857 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
858 {
859 return cc->nr_rpages == 0;
860 }
861
f2fs_cluster_is_full(struct compress_ctx * cc)862 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
863 {
864 return cc->cluster_size == cc->nr_rpages;
865 }
866
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)867 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
868 {
869 if (f2fs_cluster_is_empty(cc))
870 return true;
871 return is_page_in_cluster(cc, index);
872 }
873
f2fs_all_cluster_page_loaded(struct compress_ctx * cc,struct pagevec * pvec,int index,int nr_pages)874 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
875 int index, int nr_pages)
876 {
877 unsigned long pgidx;
878 int i;
879
880 if (nr_pages - index < cc->cluster_size)
881 return false;
882
883 pgidx = pvec->pages[index]->index;
884
885 for (i = 1; i < cc->cluster_size; i++) {
886 if (pvec->pages[index + i]->index != pgidx + i)
887 return false;
888 }
889
890 return true;
891 }
892
cluster_has_invalid_data(struct compress_ctx * cc)893 static bool cluster_has_invalid_data(struct compress_ctx *cc)
894 {
895 loff_t i_size = i_size_read(cc->inode);
896 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
897 int i;
898
899 for (i = 0; i < cc->cluster_size; i++) {
900 struct page *page = cc->rpages[i];
901
902 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
903
904 /* beyond EOF */
905 if (page->index >= nr_pages)
906 return true;
907 }
908 return false;
909 }
910
f2fs_sanity_check_cluster(struct dnode_of_data * dn)911 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
912 {
913 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
914 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
915 bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
916 int cluster_end = 0;
917 int i;
918 char *reason = "";
919
920 if (!compressed)
921 return false;
922
923 /* [..., COMPR_ADDR, ...] */
924 if (dn->ofs_in_node % cluster_size) {
925 reason = "[*|C|*|*]";
926 goto out;
927 }
928
929 for (i = 1; i < cluster_size; i++) {
930 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
931 dn->ofs_in_node + i);
932
933 /* [COMPR_ADDR, ..., COMPR_ADDR] */
934 if (blkaddr == COMPRESS_ADDR) {
935 reason = "[C|*|C|*]";
936 goto out;
937 }
938 if (compressed) {
939 if (!__is_valid_data_blkaddr(blkaddr)) {
940 if (!cluster_end)
941 cluster_end = i;
942 continue;
943 }
944 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
945 if (cluster_end) {
946 reason = "[C|N|N|V]";
947 goto out;
948 }
949 }
950 }
951 return false;
952 out:
953 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
954 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
955 set_sbi_flag(sbi, SBI_NEED_FSCK);
956 return true;
957 }
958
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)959 static int __f2fs_cluster_blocks(struct inode *inode,
960 unsigned int cluster_idx, bool compr)
961 {
962 struct dnode_of_data dn;
963 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
964 unsigned int start_idx = cluster_idx <<
965 F2FS_I(inode)->i_log_cluster_size;
966 int ret;
967
968 set_new_dnode(&dn, inode, NULL, NULL, 0);
969 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
970 if (ret) {
971 if (ret == -ENOENT)
972 ret = 0;
973 goto fail;
974 }
975
976 if (f2fs_sanity_check_cluster(&dn)) {
977 ret = -EFSCORRUPTED;
978 goto fail;
979 }
980
981 if (dn.data_blkaddr == COMPRESS_ADDR) {
982 int i;
983
984 ret = 1;
985 for (i = 1; i < cluster_size; i++) {
986 block_t blkaddr;
987
988 blkaddr = data_blkaddr(dn.inode,
989 dn.node_page, dn.ofs_in_node + i);
990 if (compr) {
991 if (__is_valid_data_blkaddr(blkaddr))
992 ret++;
993 } else {
994 if (blkaddr != NULL_ADDR)
995 ret++;
996 }
997 }
998
999 f2fs_bug_on(F2FS_I_SB(inode),
1000 !compr && ret != cluster_size &&
1001 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
1002 }
1003 fail:
1004 f2fs_put_dnode(&dn);
1005 return ret;
1006 }
1007
1008 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)1009 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1010 {
1011 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1012 }
1013
1014 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)1015 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1016 {
1017 return __f2fs_cluster_blocks(inode,
1018 index >> F2FS_I(inode)->i_log_cluster_size,
1019 false);
1020 }
1021
cluster_may_compress(struct compress_ctx * cc)1022 static bool cluster_may_compress(struct compress_ctx *cc)
1023 {
1024 if (!f2fs_need_compress_data(cc->inode))
1025 return false;
1026 if (f2fs_is_atomic_file(cc->inode))
1027 return false;
1028 if (!f2fs_cluster_is_full(cc))
1029 return false;
1030 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1031 return false;
1032 return !cluster_has_invalid_data(cc);
1033 }
1034
set_cluster_writeback(struct compress_ctx * cc)1035 static void set_cluster_writeback(struct compress_ctx *cc)
1036 {
1037 int i;
1038
1039 for (i = 0; i < cc->cluster_size; i++) {
1040 if (cc->rpages[i])
1041 set_page_writeback(cc->rpages[i]);
1042 }
1043 }
1044
set_cluster_dirty(struct compress_ctx * cc)1045 static void set_cluster_dirty(struct compress_ctx *cc)
1046 {
1047 int i;
1048
1049 for (i = 0; i < cc->cluster_size; i++)
1050 if (cc->rpages[i])
1051 set_page_dirty(cc->rpages[i]);
1052 }
1053
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1054 static int prepare_compress_overwrite(struct compress_ctx *cc,
1055 struct page **pagep, pgoff_t index, void **fsdata)
1056 {
1057 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1058 struct address_space *mapping = cc->inode->i_mapping;
1059 struct page *page;
1060 sector_t last_block_in_bio;
1061 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1062 pgoff_t start_idx = start_idx_of_cluster(cc);
1063 int i, ret;
1064
1065 retry:
1066 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1067 if (ret <= 0)
1068 return ret;
1069
1070 ret = f2fs_init_compress_ctx(cc);
1071 if (ret)
1072 return ret;
1073
1074 /* keep page reference to avoid page reclaim */
1075 for (i = 0; i < cc->cluster_size; i++) {
1076 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1077 fgp_flag, GFP_NOFS);
1078 if (!page) {
1079 ret = -ENOMEM;
1080 goto unlock_pages;
1081 }
1082
1083 if (PageUptodate(page))
1084 f2fs_put_page(page, 1);
1085 else
1086 f2fs_compress_ctx_add_page(cc, page);
1087 }
1088
1089 if (!f2fs_cluster_is_empty(cc)) {
1090 struct bio *bio = NULL;
1091
1092 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1093 &last_block_in_bio, false, true);
1094 f2fs_put_rpages(cc);
1095 f2fs_destroy_compress_ctx(cc, true);
1096 if (ret)
1097 goto out;
1098 if (bio)
1099 f2fs_submit_bio(sbi, bio, DATA);
1100
1101 ret = f2fs_init_compress_ctx(cc);
1102 if (ret)
1103 goto out;
1104 }
1105
1106 for (i = 0; i < cc->cluster_size; i++) {
1107 f2fs_bug_on(sbi, cc->rpages[i]);
1108
1109 page = find_lock_page(mapping, start_idx + i);
1110 if (!page) {
1111 /* page can be truncated */
1112 goto release_and_retry;
1113 }
1114
1115 f2fs_wait_on_page_writeback(page, DATA, true, true);
1116 f2fs_compress_ctx_add_page(cc, page);
1117
1118 if (!PageUptodate(page)) {
1119 release_and_retry:
1120 f2fs_put_rpages(cc);
1121 f2fs_unlock_rpages(cc, i + 1);
1122 f2fs_destroy_compress_ctx(cc, true);
1123 goto retry;
1124 }
1125 }
1126
1127 if (likely(!ret)) {
1128 *fsdata = cc->rpages;
1129 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1130 return cc->cluster_size;
1131 }
1132
1133 unlock_pages:
1134 f2fs_put_rpages(cc);
1135 f2fs_unlock_rpages(cc, i);
1136 f2fs_destroy_compress_ctx(cc, true);
1137 out:
1138 return ret;
1139 }
1140
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1141 int f2fs_prepare_compress_overwrite(struct inode *inode,
1142 struct page **pagep, pgoff_t index, void **fsdata)
1143 {
1144 struct compress_ctx cc = {
1145 .inode = inode,
1146 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1147 .cluster_size = F2FS_I(inode)->i_cluster_size,
1148 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1149 .rpages = NULL,
1150 .nr_rpages = 0,
1151 };
1152
1153 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1154 }
1155
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1156 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1157 pgoff_t index, unsigned copied)
1158
1159 {
1160 struct compress_ctx cc = {
1161 .inode = inode,
1162 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1163 .cluster_size = F2FS_I(inode)->i_cluster_size,
1164 .rpages = fsdata,
1165 };
1166 bool first_index = (index == cc.rpages[0]->index);
1167
1168 if (copied)
1169 set_cluster_dirty(&cc);
1170
1171 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1172 f2fs_destroy_compress_ctx(&cc, false);
1173
1174 return first_index;
1175 }
1176
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1177 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1178 {
1179 void *fsdata = NULL;
1180 struct page *pagep;
1181 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1182 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1183 log_cluster_size;
1184 int err;
1185
1186 err = f2fs_is_compressed_cluster(inode, start_idx);
1187 if (err < 0)
1188 return err;
1189
1190 /* truncate normal cluster */
1191 if (!err)
1192 return f2fs_do_truncate_blocks(inode, from, lock);
1193
1194 /* truncate compressed cluster */
1195 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1196 start_idx, &fsdata);
1197
1198 /* should not be a normal cluster */
1199 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1200
1201 if (err <= 0)
1202 return err;
1203
1204 if (err > 0) {
1205 struct page **rpages = fsdata;
1206 int cluster_size = F2FS_I(inode)->i_cluster_size;
1207 int i;
1208
1209 for (i = cluster_size - 1; i >= 0; i--) {
1210 loff_t start = rpages[i]->index << PAGE_SHIFT;
1211
1212 if (from <= start) {
1213 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1214 } else {
1215 zero_user_segment(rpages[i], from - start,
1216 PAGE_SIZE);
1217 break;
1218 }
1219 }
1220
1221 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1222 }
1223 return 0;
1224 }
1225
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1226 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1227 int *submitted,
1228 struct writeback_control *wbc,
1229 enum iostat_type io_type)
1230 {
1231 struct inode *inode = cc->inode;
1232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1233 struct f2fs_inode_info *fi = F2FS_I(inode);
1234 struct f2fs_io_info fio = {
1235 .sbi = sbi,
1236 .ino = cc->inode->i_ino,
1237 .type = DATA,
1238 .op = REQ_OP_WRITE,
1239 .op_flags = wbc_to_write_flags(wbc),
1240 .old_blkaddr = NEW_ADDR,
1241 .page = NULL,
1242 .encrypted_page = NULL,
1243 .compressed_page = NULL,
1244 .submitted = false,
1245 .io_type = io_type,
1246 .io_wbc = wbc,
1247 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1248 };
1249 struct dnode_of_data dn;
1250 struct node_info ni;
1251 struct compress_io_ctx *cic;
1252 pgoff_t start_idx = start_idx_of_cluster(cc);
1253 unsigned int last_index = cc->cluster_size - 1;
1254 loff_t psize;
1255 int i, err;
1256
1257 /* we should bypass data pages to proceed the kworkder jobs */
1258 if (unlikely(f2fs_cp_error(sbi))) {
1259 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1260 goto out_free;
1261 }
1262
1263 if (IS_NOQUOTA(inode)) {
1264 /*
1265 * We need to wait for node_write to avoid block allocation during
1266 * checkpoint. This can only happen to quota writes which can cause
1267 * the below discard race condition.
1268 */
1269 f2fs_down_read(&sbi->node_write);
1270 } else if (!f2fs_trylock_op(sbi)) {
1271 goto out_free;
1272 }
1273
1274 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1275
1276 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1277 if (err)
1278 goto out_unlock_op;
1279
1280 for (i = 0; i < cc->cluster_size; i++) {
1281 if (data_blkaddr(dn.inode, dn.node_page,
1282 dn.ofs_in_node + i) == NULL_ADDR)
1283 goto out_put_dnode;
1284 }
1285
1286 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1287
1288 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1289 if (err)
1290 goto out_put_dnode;
1291
1292 fio.version = ni.version;
1293
1294 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1295 if (!cic)
1296 goto out_put_dnode;
1297
1298 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1299 cic->inode = inode;
1300 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1301 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1302 if (!cic->rpages)
1303 goto out_put_cic;
1304
1305 cic->nr_rpages = cc->cluster_size;
1306
1307 for (i = 0; i < cc->valid_nr_cpages; i++) {
1308 f2fs_set_compressed_page(cc->cpages[i], inode,
1309 cc->rpages[i + 1]->index, cic);
1310 fio.compressed_page = cc->cpages[i];
1311
1312 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1313 dn.ofs_in_node + i + 1);
1314
1315 /* wait for GCed page writeback via META_MAPPING */
1316 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1317
1318 if (fio.encrypted) {
1319 fio.page = cc->rpages[i + 1];
1320 err = f2fs_encrypt_one_page(&fio);
1321 if (err)
1322 goto out_destroy_crypt;
1323 cc->cpages[i] = fio.encrypted_page;
1324 }
1325 }
1326
1327 set_cluster_writeback(cc);
1328
1329 for (i = 0; i < cc->cluster_size; i++)
1330 cic->rpages[i] = cc->rpages[i];
1331
1332 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1333 block_t blkaddr;
1334
1335 blkaddr = f2fs_data_blkaddr(&dn);
1336 fio.page = cc->rpages[i];
1337 fio.old_blkaddr = blkaddr;
1338
1339 /* cluster header */
1340 if (i == 0) {
1341 if (blkaddr == COMPRESS_ADDR)
1342 fio.compr_blocks++;
1343 if (__is_valid_data_blkaddr(blkaddr))
1344 f2fs_invalidate_blocks(sbi, blkaddr);
1345 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1346 goto unlock_continue;
1347 }
1348
1349 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1350 fio.compr_blocks++;
1351
1352 if (i > cc->valid_nr_cpages) {
1353 if (__is_valid_data_blkaddr(blkaddr)) {
1354 f2fs_invalidate_blocks(sbi, blkaddr);
1355 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1356 }
1357 goto unlock_continue;
1358 }
1359
1360 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1361
1362 if (fio.encrypted)
1363 fio.encrypted_page = cc->cpages[i - 1];
1364 else
1365 fio.compressed_page = cc->cpages[i - 1];
1366
1367 cc->cpages[i - 1] = NULL;
1368 f2fs_outplace_write_data(&dn, &fio);
1369 (*submitted)++;
1370 unlock_continue:
1371 inode_dec_dirty_pages(cc->inode);
1372 unlock_page(fio.page);
1373 }
1374
1375 if (fio.compr_blocks)
1376 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1377 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1378 add_compr_block_stat(inode, cc->valid_nr_cpages);
1379
1380 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1381 if (cc->cluster_idx == 0)
1382 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1383
1384 f2fs_put_dnode(&dn);
1385 if (IS_NOQUOTA(inode))
1386 f2fs_up_read(&sbi->node_write);
1387 else
1388 f2fs_unlock_op(sbi);
1389
1390 spin_lock(&fi->i_size_lock);
1391 if (fi->last_disk_size < psize)
1392 fi->last_disk_size = psize;
1393 spin_unlock(&fi->i_size_lock);
1394
1395 f2fs_put_rpages(cc);
1396 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1397 cc->cpages = NULL;
1398 f2fs_destroy_compress_ctx(cc, false);
1399 return 0;
1400
1401 out_destroy_crypt:
1402 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1403
1404 for (--i; i >= 0; i--)
1405 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1406 out_put_cic:
1407 kmem_cache_free(cic_entry_slab, cic);
1408 out_put_dnode:
1409 f2fs_put_dnode(&dn);
1410 out_unlock_op:
1411 if (IS_NOQUOTA(inode))
1412 f2fs_up_read(&sbi->node_write);
1413 else
1414 f2fs_unlock_op(sbi);
1415 out_free:
1416 for (i = 0; i < cc->valid_nr_cpages; i++) {
1417 f2fs_compress_free_page(cc->cpages[i]);
1418 cc->cpages[i] = NULL;
1419 }
1420 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1421 cc->cpages = NULL;
1422 return -EAGAIN;
1423 }
1424
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1425 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1426 {
1427 struct f2fs_sb_info *sbi = bio->bi_private;
1428 struct compress_io_ctx *cic =
1429 (struct compress_io_ctx *)page_private(page);
1430 int i;
1431
1432 if (unlikely(bio->bi_status))
1433 mapping_set_error(cic->inode->i_mapping, -EIO);
1434
1435 f2fs_compress_free_page(page);
1436
1437 dec_page_count(sbi, F2FS_WB_DATA);
1438
1439 if (atomic_dec_return(&cic->pending_pages))
1440 return;
1441
1442 for (i = 0; i < cic->nr_rpages; i++) {
1443 WARN_ON(!cic->rpages[i]);
1444 clear_page_private_gcing(cic->rpages[i]);
1445 end_page_writeback(cic->rpages[i]);
1446 }
1447
1448 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1449 kmem_cache_free(cic_entry_slab, cic);
1450 }
1451
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1452 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1453 int *submitted,
1454 struct writeback_control *wbc,
1455 enum iostat_type io_type)
1456 {
1457 struct address_space *mapping = cc->inode->i_mapping;
1458 int _submitted, compr_blocks, ret, i;
1459
1460 compr_blocks = f2fs_compressed_blocks(cc);
1461
1462 for (i = 0; i < cc->cluster_size; i++) {
1463 if (!cc->rpages[i])
1464 continue;
1465
1466 redirty_page_for_writepage(wbc, cc->rpages[i]);
1467 unlock_page(cc->rpages[i]);
1468 }
1469
1470 if (compr_blocks < 0)
1471 return compr_blocks;
1472
1473 for (i = 0; i < cc->cluster_size; i++) {
1474 if (!cc->rpages[i])
1475 continue;
1476 retry_write:
1477 lock_page(cc->rpages[i]);
1478
1479 if (cc->rpages[i]->mapping != mapping) {
1480 continue_unlock:
1481 unlock_page(cc->rpages[i]);
1482 continue;
1483 }
1484
1485 if (!PageDirty(cc->rpages[i]))
1486 goto continue_unlock;
1487
1488 if (!clear_page_dirty_for_io(cc->rpages[i]))
1489 goto continue_unlock;
1490
1491 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1492 NULL, NULL, wbc, io_type,
1493 compr_blocks, false);
1494 if (ret) {
1495 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1496 unlock_page(cc->rpages[i]);
1497 ret = 0;
1498 } else if (ret == -EAGAIN) {
1499 /*
1500 * for quota file, just redirty left pages to
1501 * avoid deadlock caused by cluster update race
1502 * from foreground operation.
1503 */
1504 if (IS_NOQUOTA(cc->inode))
1505 return 0;
1506 ret = 0;
1507 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1508 goto retry_write;
1509 }
1510 return ret;
1511 }
1512
1513 *submitted += _submitted;
1514 }
1515
1516 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1517
1518 return 0;
1519 }
1520
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1521 int f2fs_write_multi_pages(struct compress_ctx *cc,
1522 int *submitted,
1523 struct writeback_control *wbc,
1524 enum iostat_type io_type)
1525 {
1526 int err;
1527
1528 *submitted = 0;
1529 if (cluster_may_compress(cc)) {
1530 err = f2fs_compress_pages(cc);
1531 if (err == -EAGAIN) {
1532 add_compr_block_stat(cc->inode, cc->cluster_size);
1533 goto write;
1534 } else if (err) {
1535 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1536 goto destroy_out;
1537 }
1538
1539 err = f2fs_write_compressed_pages(cc, submitted,
1540 wbc, io_type);
1541 if (!err)
1542 return 0;
1543 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1544 }
1545 write:
1546 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1547
1548 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1549 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1550 destroy_out:
1551 f2fs_destroy_compress_ctx(cc, false);
1552 return err;
1553 }
1554
1555 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1556
f2fs_alloc_dic(struct compress_ctx * cc)1557 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1558 {
1559 struct decompress_io_ctx *dic;
1560 pgoff_t start_idx = start_idx_of_cluster(cc);
1561 int i;
1562
1563 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO,
1564 false, F2FS_I_SB(cc->inode));
1565 if (!dic)
1566 return ERR_PTR(-ENOMEM);
1567
1568 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1569 if (!dic->rpages) {
1570 kmem_cache_free(dic_entry_slab, dic);
1571 return ERR_PTR(-ENOMEM);
1572 }
1573
1574 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1575 dic->inode = cc->inode;
1576 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1577 dic->cluster_idx = cc->cluster_idx;
1578 dic->cluster_size = cc->cluster_size;
1579 dic->log_cluster_size = cc->log_cluster_size;
1580 dic->nr_cpages = cc->nr_cpages;
1581 refcount_set(&dic->refcnt, 1);
1582 dic->failed = false;
1583 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1584
1585 for (i = 0; i < dic->cluster_size; i++)
1586 dic->rpages[i] = cc->rpages[i];
1587 dic->nr_rpages = cc->cluster_size;
1588
1589 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1590 if (!dic->cpages)
1591 goto out_free;
1592
1593 for (i = 0; i < dic->nr_cpages; i++) {
1594 struct page *page;
1595
1596 page = f2fs_compress_alloc_page();
1597 if (!page)
1598 goto out_free;
1599
1600 f2fs_set_compressed_page(page, cc->inode,
1601 start_idx + i + 1, dic);
1602 dic->cpages[i] = page;
1603 }
1604
1605 return dic;
1606
1607 out_free:
1608 f2fs_free_dic(dic);
1609 return ERR_PTR(-ENOMEM);
1610 }
1611
f2fs_free_dic(struct decompress_io_ctx * dic)1612 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1613 {
1614 int i;
1615
1616 if (dic->tpages) {
1617 for (i = 0; i < dic->cluster_size; i++) {
1618 if (dic->rpages[i])
1619 continue;
1620 if (!dic->tpages[i])
1621 continue;
1622 f2fs_compress_free_page(dic->tpages[i]);
1623 }
1624 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1625 }
1626
1627 if (dic->cpages) {
1628 for (i = 0; i < dic->nr_cpages; i++) {
1629 if (!dic->cpages[i])
1630 continue;
1631 f2fs_compress_free_page(dic->cpages[i]);
1632 }
1633 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1634 }
1635
1636 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1637 kmem_cache_free(dic_entry_slab, dic);
1638 }
1639
f2fs_put_dic(struct decompress_io_ctx * dic)1640 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1641 {
1642 if (refcount_dec_and_test(&dic->refcnt))
1643 f2fs_free_dic(dic);
1644 }
1645
1646 /*
1647 * Update and unlock the cluster's pagecache pages, and release the reference to
1648 * the decompress_io_ctx that was being held for I/O completion.
1649 */
__f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed)1650 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1651 {
1652 int i;
1653
1654 for (i = 0; i < dic->cluster_size; i++) {
1655 struct page *rpage = dic->rpages[i];
1656
1657 if (!rpage)
1658 continue;
1659
1660 /* PG_error was set if verity failed. */
1661 if (failed || PageError(rpage)) {
1662 ClearPageUptodate(rpage);
1663 /* will re-read again later */
1664 ClearPageError(rpage);
1665 } else {
1666 SetPageUptodate(rpage);
1667 }
1668 unlock_page(rpage);
1669 }
1670
1671 f2fs_put_dic(dic);
1672 }
1673
f2fs_verify_cluster(struct work_struct * work)1674 static void f2fs_verify_cluster(struct work_struct *work)
1675 {
1676 struct decompress_io_ctx *dic =
1677 container_of(work, struct decompress_io_ctx, verity_work);
1678 int i;
1679
1680 /* Verify the cluster's decompressed pages with fs-verity. */
1681 for (i = 0; i < dic->cluster_size; i++) {
1682 struct page *rpage = dic->rpages[i];
1683
1684 if (rpage && !fsverity_verify_page(rpage))
1685 SetPageError(rpage);
1686 }
1687
1688 __f2fs_decompress_end_io(dic, false);
1689 }
1690
1691 /*
1692 * This is called when a compressed cluster has been decompressed
1693 * (or failed to be read and/or decompressed).
1694 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed)1695 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1696 {
1697 if (!failed && dic->need_verity) {
1698 /*
1699 * Note that to avoid deadlocks, the verity work can't be done
1700 * on the decompression workqueue. This is because verifying
1701 * the data pages can involve reading metadata pages from the
1702 * file, and these metadata pages may be compressed.
1703 */
1704 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1705 fsverity_enqueue_verify_work(&dic->verity_work);
1706 } else {
1707 __f2fs_decompress_end_io(dic, failed);
1708 }
1709 }
1710
1711 /*
1712 * Put a reference to a compressed page's decompress_io_ctx.
1713 *
1714 * This is called when the page is no longer needed and can be freed.
1715 */
f2fs_put_page_dic(struct page * page)1716 void f2fs_put_page_dic(struct page *page)
1717 {
1718 struct decompress_io_ctx *dic =
1719 (struct decompress_io_ctx *)page_private(page);
1720
1721 f2fs_put_dic(dic);
1722 }
1723
1724 /*
1725 * check whether cluster blocks are contiguous, and add extent cache entry
1726 * only if cluster blocks are logically and physically contiguous.
1727 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1728 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1729 {
1730 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1731 int i = compressed ? 1 : 0;
1732 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1733 dn->ofs_in_node + i);
1734
1735 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1736 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1737 dn->ofs_in_node + i);
1738
1739 if (!__is_valid_data_blkaddr(blkaddr))
1740 break;
1741 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1742 return 0;
1743 }
1744
1745 return compressed ? i - 1 : i;
1746 }
1747
1748 const struct address_space_operations f2fs_compress_aops = {
1749 .release_folio = f2fs_release_folio,
1750 .invalidate_folio = f2fs_invalidate_folio,
1751 };
1752
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1753 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1754 {
1755 return sbi->compress_inode->i_mapping;
1756 }
1757
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1758 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1759 {
1760 if (!sbi->compress_inode)
1761 return;
1762 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1763 }
1764
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1765 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1766 nid_t ino, block_t blkaddr)
1767 {
1768 struct page *cpage;
1769 int ret;
1770
1771 if (!test_opt(sbi, COMPRESS_CACHE))
1772 return;
1773
1774 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1775 return;
1776
1777 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1778 return;
1779
1780 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1781 if (cpage) {
1782 f2fs_put_page(cpage, 0);
1783 return;
1784 }
1785
1786 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1787 if (!cpage)
1788 return;
1789
1790 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1791 blkaddr, GFP_NOFS);
1792 if (ret) {
1793 f2fs_put_page(cpage, 0);
1794 return;
1795 }
1796
1797 set_page_private_data(cpage, ino);
1798
1799 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1800 goto out;
1801
1802 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1803 SetPageUptodate(cpage);
1804 out:
1805 f2fs_put_page(cpage, 1);
1806 }
1807
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1808 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1809 block_t blkaddr)
1810 {
1811 struct page *cpage;
1812 bool hitted = false;
1813
1814 if (!test_opt(sbi, COMPRESS_CACHE))
1815 return false;
1816
1817 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1818 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1819 if (cpage) {
1820 if (PageUptodate(cpage)) {
1821 atomic_inc(&sbi->compress_page_hit);
1822 memcpy(page_address(page),
1823 page_address(cpage), PAGE_SIZE);
1824 hitted = true;
1825 }
1826 f2fs_put_page(cpage, 1);
1827 }
1828
1829 return hitted;
1830 }
1831
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1832 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1833 {
1834 struct address_space *mapping = sbi->compress_inode->i_mapping;
1835 struct pagevec pvec;
1836 pgoff_t index = 0;
1837 pgoff_t end = MAX_BLKADDR(sbi);
1838
1839 if (!mapping->nrpages)
1840 return;
1841
1842 pagevec_init(&pvec);
1843
1844 do {
1845 unsigned int nr_pages;
1846 int i;
1847
1848 nr_pages = pagevec_lookup_range(&pvec, mapping,
1849 &index, end - 1);
1850 if (!nr_pages)
1851 break;
1852
1853 for (i = 0; i < nr_pages; i++) {
1854 struct page *page = pvec.pages[i];
1855
1856 if (page->index > end)
1857 break;
1858
1859 lock_page(page);
1860 if (page->mapping != mapping) {
1861 unlock_page(page);
1862 continue;
1863 }
1864
1865 if (ino != get_page_private_data(page)) {
1866 unlock_page(page);
1867 continue;
1868 }
1869
1870 generic_error_remove_page(mapping, page);
1871 unlock_page(page);
1872 }
1873 pagevec_release(&pvec);
1874 cond_resched();
1875 } while (index < end);
1876 }
1877
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1878 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1879 {
1880 struct inode *inode;
1881
1882 if (!test_opt(sbi, COMPRESS_CACHE))
1883 return 0;
1884
1885 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1886 if (IS_ERR(inode))
1887 return PTR_ERR(inode);
1888 sbi->compress_inode = inode;
1889
1890 sbi->compress_percent = COMPRESS_PERCENT;
1891 sbi->compress_watermark = COMPRESS_WATERMARK;
1892
1893 atomic_set(&sbi->compress_page_hit, 0);
1894
1895 return 0;
1896 }
1897
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1898 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1899 {
1900 if (!sbi->compress_inode)
1901 return;
1902 iput(sbi->compress_inode);
1903 sbi->compress_inode = NULL;
1904 }
1905
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1906 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1907 {
1908 dev_t dev = sbi->sb->s_bdev->bd_dev;
1909 char slab_name[32];
1910
1911 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1912
1913 sbi->page_array_slab_size = sizeof(struct page *) <<
1914 F2FS_OPTION(sbi).compress_log_size;
1915
1916 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1917 sbi->page_array_slab_size);
1918 if (!sbi->page_array_slab)
1919 return -ENOMEM;
1920 return 0;
1921 }
1922
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1923 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1924 {
1925 kmem_cache_destroy(sbi->page_array_slab);
1926 }
1927
f2fs_init_cic_cache(void)1928 static int __init f2fs_init_cic_cache(void)
1929 {
1930 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1931 sizeof(struct compress_io_ctx));
1932 if (!cic_entry_slab)
1933 return -ENOMEM;
1934 return 0;
1935 }
1936
f2fs_destroy_cic_cache(void)1937 static void f2fs_destroy_cic_cache(void)
1938 {
1939 kmem_cache_destroy(cic_entry_slab);
1940 }
1941
f2fs_init_dic_cache(void)1942 static int __init f2fs_init_dic_cache(void)
1943 {
1944 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1945 sizeof(struct decompress_io_ctx));
1946 if (!dic_entry_slab)
1947 return -ENOMEM;
1948 return 0;
1949 }
1950
f2fs_destroy_dic_cache(void)1951 static void f2fs_destroy_dic_cache(void)
1952 {
1953 kmem_cache_destroy(dic_entry_slab);
1954 }
1955
f2fs_init_compress_cache(void)1956 int __init f2fs_init_compress_cache(void)
1957 {
1958 int err;
1959
1960 err = f2fs_init_cic_cache();
1961 if (err)
1962 goto out;
1963 err = f2fs_init_dic_cache();
1964 if (err)
1965 goto free_cic;
1966 return 0;
1967 free_cic:
1968 f2fs_destroy_cic_cache();
1969 out:
1970 return -ENOMEM;
1971 }
1972
f2fs_destroy_compress_cache(void)1973 void f2fs_destroy_compress_cache(void)
1974 {
1975 f2fs_destroy_dic_cache();
1976 f2fs_destroy_cic_cache();
1977 }
1978