1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015-2021, Linaro Limited
4 * Copyright (c) 2016, EPAM Systems
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/arm-smccc.h>
10 #include <linux/errno.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irqdomain.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/tee_drv.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include "optee_private.h"
27 #include "optee_smc.h"
28 #include "optee_rpc_cmd.h"
29 #include <linux/kmemleak.h>
30 #define CREATE_TRACE_POINTS
31 #include "optee_trace.h"
32
33 /*
34 * This file implement the SMC ABI used when communicating with secure world
35 * OP-TEE OS via raw SMCs.
36 * This file is divided into the following sections:
37 * 1. Convert between struct tee_param and struct optee_msg_param
38 * 2. Low level support functions to register shared memory in secure world
39 * 3. Dynamic shared memory pool based on alloc_pages()
40 * 4. Do a normal scheduled call into secure world
41 * 5. Asynchronous notification
42 * 6. Driver initialization.
43 */
44
45 /*
46 * A typical OP-TEE private shm allocation is 224 bytes (argument struct
47 * with 6 parameters, needed for open session). So with an alignment of 512
48 * we'll waste a bit more than 50%. However, it's only expected that we'll
49 * have a handful of these structs allocated at a time. Most memory will
50 * be allocated aligned to the page size, So all in all this should scale
51 * up and down quite well.
52 */
53 #define OPTEE_MIN_STATIC_POOL_ALIGN 9 /* 512 bytes aligned */
54
55 /*
56 * 1. Convert between struct tee_param and struct optee_msg_param
57 *
58 * optee_from_msg_param() and optee_to_msg_param() are the main
59 * functions.
60 */
61
from_msg_param_tmp_mem(struct tee_param * p,u32 attr,const struct optee_msg_param * mp)62 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
63 const struct optee_msg_param *mp)
64 {
65 struct tee_shm *shm;
66 phys_addr_t pa;
67 int rc;
68
69 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
70 attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
71 p->u.memref.size = mp->u.tmem.size;
72 shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
73 if (!shm) {
74 p->u.memref.shm_offs = 0;
75 p->u.memref.shm = NULL;
76 return 0;
77 }
78
79 rc = tee_shm_get_pa(shm, 0, &pa);
80 if (rc)
81 return rc;
82
83 p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
84 p->u.memref.shm = shm;
85
86 return 0;
87 }
88
from_msg_param_reg_mem(struct tee_param * p,u32 attr,const struct optee_msg_param * mp)89 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
90 const struct optee_msg_param *mp)
91 {
92 struct tee_shm *shm;
93
94 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
95 attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
96 p->u.memref.size = mp->u.rmem.size;
97 shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
98
99 if (shm) {
100 p->u.memref.shm_offs = mp->u.rmem.offs;
101 p->u.memref.shm = shm;
102 } else {
103 p->u.memref.shm_offs = 0;
104 p->u.memref.shm = NULL;
105 }
106 }
107
108 /**
109 * optee_from_msg_param() - convert from OPTEE_MSG parameters to
110 * struct tee_param
111 * @optee: main service struct
112 * @params: subsystem internal parameter representation
113 * @num_params: number of elements in the parameter arrays
114 * @msg_params: OPTEE_MSG parameters
115 * Returns 0 on success or <0 on failure
116 */
optee_from_msg_param(struct optee * optee,struct tee_param * params,size_t num_params,const struct optee_msg_param * msg_params)117 static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
118 size_t num_params,
119 const struct optee_msg_param *msg_params)
120 {
121 int rc;
122 size_t n;
123
124 for (n = 0; n < num_params; n++) {
125 struct tee_param *p = params + n;
126 const struct optee_msg_param *mp = msg_params + n;
127 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
128
129 switch (attr) {
130 case OPTEE_MSG_ATTR_TYPE_NONE:
131 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
132 memset(&p->u, 0, sizeof(p->u));
133 break;
134 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
135 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
136 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
137 optee_from_msg_param_value(p, attr, mp);
138 break;
139 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
140 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
141 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
142 rc = from_msg_param_tmp_mem(p, attr, mp);
143 if (rc)
144 return rc;
145 break;
146 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
147 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
148 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
149 from_msg_param_reg_mem(p, attr, mp);
150 break;
151
152 default:
153 return -EINVAL;
154 }
155 }
156 return 0;
157 }
158
to_msg_param_tmp_mem(struct optee_msg_param * mp,const struct tee_param * p)159 static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
160 const struct tee_param *p)
161 {
162 int rc;
163 phys_addr_t pa;
164
165 mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
166 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
167
168 mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
169 mp->u.tmem.size = p->u.memref.size;
170
171 if (!p->u.memref.shm) {
172 mp->u.tmem.buf_ptr = 0;
173 return 0;
174 }
175
176 rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
177 if (rc)
178 return rc;
179
180 mp->u.tmem.buf_ptr = pa;
181 mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
182 OPTEE_MSG_ATTR_CACHE_SHIFT;
183
184 return 0;
185 }
186
to_msg_param_reg_mem(struct optee_msg_param * mp,const struct tee_param * p)187 static int to_msg_param_reg_mem(struct optee_msg_param *mp,
188 const struct tee_param *p)
189 {
190 mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
191 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
192
193 mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
194 mp->u.rmem.size = p->u.memref.size;
195 mp->u.rmem.offs = p->u.memref.shm_offs;
196 return 0;
197 }
198
199 /**
200 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
201 * @optee: main service struct
202 * @msg_params: OPTEE_MSG parameters
203 * @num_params: number of elements in the parameter arrays
204 * @params: subsystem itnernal parameter representation
205 * Returns 0 on success or <0 on failure
206 */
optee_to_msg_param(struct optee * optee,struct optee_msg_param * msg_params,size_t num_params,const struct tee_param * params)207 static int optee_to_msg_param(struct optee *optee,
208 struct optee_msg_param *msg_params,
209 size_t num_params, const struct tee_param *params)
210 {
211 int rc;
212 size_t n;
213
214 for (n = 0; n < num_params; n++) {
215 const struct tee_param *p = params + n;
216 struct optee_msg_param *mp = msg_params + n;
217
218 switch (p->attr) {
219 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
220 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
221 memset(&mp->u, 0, sizeof(mp->u));
222 break;
223 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
224 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
225 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
226 optee_to_msg_param_value(mp, p);
227 break;
228 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
229 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
230 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
231 if (tee_shm_is_dynamic(p->u.memref.shm))
232 rc = to_msg_param_reg_mem(mp, p);
233 else
234 rc = to_msg_param_tmp_mem(mp, p);
235 if (rc)
236 return rc;
237 break;
238 default:
239 return -EINVAL;
240 }
241 }
242 return 0;
243 }
244
245 /*
246 * 2. Low level support functions to register shared memory in secure world
247 *
248 * Functions to enable/disable shared memory caching in secure world, that
249 * is, lazy freeing of previously allocated shared memory. Freeing is
250 * performed when a request has been compled.
251 *
252 * Functions to register and unregister shared memory both for normal
253 * clients and for tee-supplicant.
254 */
255
256 /**
257 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
258 * in OP-TEE
259 * @optee: main service struct
260 */
optee_enable_shm_cache(struct optee * optee)261 static void optee_enable_shm_cache(struct optee *optee)
262 {
263 struct optee_call_waiter w;
264
265 /* We need to retry until secure world isn't busy. */
266 optee_cq_wait_init(&optee->call_queue, &w);
267 while (true) {
268 struct arm_smccc_res res;
269
270 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
271 0, 0, 0, 0, 0, 0, 0, &res);
272 if (res.a0 == OPTEE_SMC_RETURN_OK)
273 break;
274 optee_cq_wait_for_completion(&optee->call_queue, &w);
275 }
276 optee_cq_wait_final(&optee->call_queue, &w);
277 }
278
279 /**
280 * __optee_disable_shm_cache() - Disables caching of some shared memory
281 * allocation in OP-TEE
282 * @optee: main service struct
283 * @is_mapped: true if the cached shared memory addresses were mapped by this
284 * kernel, are safe to dereference, and should be freed
285 */
__optee_disable_shm_cache(struct optee * optee,bool is_mapped)286 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
287 {
288 struct optee_call_waiter w;
289
290 /* We need to retry until secure world isn't busy. */
291 optee_cq_wait_init(&optee->call_queue, &w);
292 while (true) {
293 union {
294 struct arm_smccc_res smccc;
295 struct optee_smc_disable_shm_cache_result result;
296 } res;
297
298 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
299 0, 0, 0, 0, 0, 0, 0, &res.smccc);
300 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
301 break; /* All shm's freed */
302 if (res.result.status == OPTEE_SMC_RETURN_OK) {
303 struct tee_shm *shm;
304
305 /*
306 * Shared memory references that were not mapped by
307 * this kernel must be ignored to prevent a crash.
308 */
309 if (!is_mapped)
310 continue;
311
312 shm = reg_pair_to_ptr(res.result.shm_upper32,
313 res.result.shm_lower32);
314 tee_shm_free(shm);
315 } else {
316 optee_cq_wait_for_completion(&optee->call_queue, &w);
317 }
318 }
319 optee_cq_wait_final(&optee->call_queue, &w);
320 }
321
322 /**
323 * optee_disable_shm_cache() - Disables caching of mapped shared memory
324 * allocations in OP-TEE
325 * @optee: main service struct
326 */
optee_disable_shm_cache(struct optee * optee)327 static void optee_disable_shm_cache(struct optee *optee)
328 {
329 return __optee_disable_shm_cache(optee, true);
330 }
331
332 /**
333 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
334 * allocations in OP-TEE which are not
335 * currently mapped
336 * @optee: main service struct
337 */
optee_disable_unmapped_shm_cache(struct optee * optee)338 static void optee_disable_unmapped_shm_cache(struct optee *optee)
339 {
340 return __optee_disable_shm_cache(optee, false);
341 }
342
343 #define PAGELIST_ENTRIES_PER_PAGE \
344 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
345
346 /*
347 * The final entry in each pagelist page is a pointer to the next
348 * pagelist page.
349 */
get_pages_list_size(size_t num_entries)350 static size_t get_pages_list_size(size_t num_entries)
351 {
352 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
353
354 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
355 }
356
optee_allocate_pages_list(size_t num_entries)357 static u64 *optee_allocate_pages_list(size_t num_entries)
358 {
359 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
360 }
361
optee_free_pages_list(void * list,size_t num_entries)362 static void optee_free_pages_list(void *list, size_t num_entries)
363 {
364 free_pages_exact(list, get_pages_list_size(num_entries));
365 }
366
367 /**
368 * optee_fill_pages_list() - write list of user pages to given shared
369 * buffer.
370 *
371 * @dst: page-aligned buffer where list of pages will be stored
372 * @pages: array of pages that represents shared buffer
373 * @num_pages: number of entries in @pages
374 * @page_offset: offset of user buffer from page start
375 *
376 * @dst should be big enough to hold list of user page addresses and
377 * links to the next pages of buffer
378 */
optee_fill_pages_list(u64 * dst,struct page ** pages,int num_pages,size_t page_offset)379 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
380 size_t page_offset)
381 {
382 int n = 0;
383 phys_addr_t optee_page;
384 /*
385 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
386 * for details.
387 */
388 struct {
389 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
390 u64 next_page_data;
391 } *pages_data;
392
393 /*
394 * Currently OP-TEE uses 4k page size and it does not looks
395 * like this will change in the future. On other hand, there are
396 * no know ARM architectures with page size < 4k.
397 * Thus the next built assert looks redundant. But the following
398 * code heavily relies on this assumption, so it is better be
399 * safe than sorry.
400 */
401 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
402
403 pages_data = (void *)dst;
404 /*
405 * If linux page is bigger than 4k, and user buffer offset is
406 * larger than 4k/8k/12k/etc this will skip first 4k pages,
407 * because they bear no value data for OP-TEE.
408 */
409 optee_page = page_to_phys(*pages) +
410 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
411
412 while (true) {
413 pages_data->pages_list[n++] = optee_page;
414
415 if (n == PAGELIST_ENTRIES_PER_PAGE) {
416 pages_data->next_page_data =
417 virt_to_phys(pages_data + 1);
418 pages_data++;
419 n = 0;
420 }
421
422 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
423 if (!(optee_page & ~PAGE_MASK)) {
424 if (!--num_pages)
425 break;
426 pages++;
427 optee_page = page_to_phys(*pages);
428 }
429 }
430 }
431
optee_shm_register(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)432 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
433 struct page **pages, size_t num_pages,
434 unsigned long start)
435 {
436 struct optee *optee = tee_get_drvdata(ctx->teedev);
437 struct optee_msg_arg *msg_arg;
438 struct tee_shm *shm_arg;
439 u64 *pages_list;
440 size_t sz;
441 int rc;
442
443 if (!num_pages)
444 return -EINVAL;
445
446 rc = optee_check_mem_type(start, num_pages);
447 if (rc)
448 return rc;
449
450 pages_list = optee_allocate_pages_list(num_pages);
451 if (!pages_list)
452 return -ENOMEM;
453
454 /*
455 * We're about to register shared memory we can't register shared
456 * memory for this request or there's a catch-22.
457 *
458 * So in this we'll have to do the good old temporary private
459 * allocation instead of using optee_get_msg_arg().
460 */
461 sz = optee_msg_arg_size(optee->rpc_param_count);
462 shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
463 if (IS_ERR(shm_arg)) {
464 rc = PTR_ERR(shm_arg);
465 goto out;
466 }
467 msg_arg = tee_shm_get_va(shm_arg, 0);
468 if (IS_ERR(msg_arg)) {
469 rc = PTR_ERR(msg_arg);
470 goto out;
471 }
472
473 optee_fill_pages_list(pages_list, pages, num_pages,
474 tee_shm_get_page_offset(shm));
475
476 memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
477 msg_arg->num_params = 1;
478 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
479 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
480 OPTEE_MSG_ATTR_NONCONTIG;
481 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
482 msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
483 /*
484 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
485 * store buffer offset from 4k page, as described in OP-TEE ABI.
486 */
487 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
488 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
489
490 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
491 msg_arg->ret != TEEC_SUCCESS)
492 rc = -EINVAL;
493
494 tee_shm_free(shm_arg);
495 out:
496 optee_free_pages_list(pages_list, num_pages);
497 return rc;
498 }
499
optee_shm_unregister(struct tee_context * ctx,struct tee_shm * shm)500 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
501 {
502 struct optee *optee = tee_get_drvdata(ctx->teedev);
503 struct optee_msg_arg *msg_arg;
504 struct tee_shm *shm_arg;
505 int rc = 0;
506 size_t sz;
507
508 /*
509 * We're about to unregister shared memory and we may not be able
510 * register shared memory for this request in case we're called
511 * from optee_shm_arg_cache_uninit().
512 *
513 * So in order to keep things simple in this function just as in
514 * optee_shm_register() we'll use temporary private allocation
515 * instead of using optee_get_msg_arg().
516 */
517 sz = optee_msg_arg_size(optee->rpc_param_count);
518 shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
519 if (IS_ERR(shm_arg))
520 return PTR_ERR(shm_arg);
521 msg_arg = tee_shm_get_va(shm_arg, 0);
522 if (IS_ERR(msg_arg)) {
523 rc = PTR_ERR(msg_arg);
524 goto out;
525 }
526
527 memset(msg_arg, 0, sz);
528 msg_arg->num_params = 1;
529 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
530 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
531 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
532
533 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
534 msg_arg->ret != TEEC_SUCCESS)
535 rc = -EINVAL;
536 out:
537 tee_shm_free(shm_arg);
538 return rc;
539 }
540
optee_shm_register_supp(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)541 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
542 struct page **pages, size_t num_pages,
543 unsigned long start)
544 {
545 /*
546 * We don't want to register supplicant memory in OP-TEE.
547 * Instead information about it will be passed in RPC code.
548 */
549 return optee_check_mem_type(start, num_pages);
550 }
551
optee_shm_unregister_supp(struct tee_context * ctx,struct tee_shm * shm)552 static int optee_shm_unregister_supp(struct tee_context *ctx,
553 struct tee_shm *shm)
554 {
555 return 0;
556 }
557
558 /*
559 * 3. Dynamic shared memory pool based on alloc_pages()
560 *
561 * Implements an OP-TEE specific shared memory pool which is used
562 * when dynamic shared memory is supported by secure world.
563 *
564 * The main function is optee_shm_pool_alloc_pages().
565 */
566
pool_op_alloc(struct tee_shm_pool * pool,struct tee_shm * shm,size_t size,size_t align)567 static int pool_op_alloc(struct tee_shm_pool *pool,
568 struct tee_shm *shm, size_t size, size_t align)
569 {
570 /*
571 * Shared memory private to the OP-TEE driver doesn't need
572 * to be registered with OP-TEE.
573 */
574 if (shm->flags & TEE_SHM_PRIV)
575 return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
576
577 return optee_pool_op_alloc_helper(pool, shm, size, align,
578 optee_shm_register);
579 }
580
pool_op_free(struct tee_shm_pool * pool,struct tee_shm * shm)581 static void pool_op_free(struct tee_shm_pool *pool,
582 struct tee_shm *shm)
583 {
584 if (!(shm->flags & TEE_SHM_PRIV))
585 optee_pool_op_free_helper(pool, shm, optee_shm_unregister);
586 else
587 optee_pool_op_free_helper(pool, shm, NULL);
588 }
589
pool_op_destroy_pool(struct tee_shm_pool * pool)590 static void pool_op_destroy_pool(struct tee_shm_pool *pool)
591 {
592 kfree(pool);
593 }
594
595 static const struct tee_shm_pool_ops pool_ops = {
596 .alloc = pool_op_alloc,
597 .free = pool_op_free,
598 .destroy_pool = pool_op_destroy_pool,
599 };
600
601 /**
602 * optee_shm_pool_alloc_pages() - create page-based allocator pool
603 *
604 * This pool is used when OP-TEE supports dymanic SHM. In this case
605 * command buffers and such are allocated from kernel's own memory.
606 */
optee_shm_pool_alloc_pages(void)607 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
608 {
609 struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
610
611 if (!pool)
612 return ERR_PTR(-ENOMEM);
613
614 pool->ops = &pool_ops;
615
616 return pool;
617 }
618
619 /*
620 * 4. Do a normal scheduled call into secure world
621 *
622 * The function optee_smc_do_call_with_arg() performs a normal scheduled
623 * call into secure world. During this call may normal world request help
624 * from normal world using RPCs, Remote Procedure Calls. This includes
625 * delivery of non-secure interrupts to for instance allow rescheduling of
626 * the current task.
627 */
628
handle_rpc_func_cmd_shm_free(struct tee_context * ctx,struct optee_msg_arg * arg)629 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
630 struct optee_msg_arg *arg)
631 {
632 struct tee_shm *shm;
633
634 arg->ret_origin = TEEC_ORIGIN_COMMS;
635
636 if (arg->num_params != 1 ||
637 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
638 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
639 return;
640 }
641
642 shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
643 switch (arg->params[0].u.value.a) {
644 case OPTEE_RPC_SHM_TYPE_APPL:
645 optee_rpc_cmd_free_suppl(ctx, shm);
646 break;
647 case OPTEE_RPC_SHM_TYPE_KERNEL:
648 tee_shm_free(shm);
649 break;
650 default:
651 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
652 }
653 arg->ret = TEEC_SUCCESS;
654 }
655
handle_rpc_func_cmd_shm_alloc(struct tee_context * ctx,struct optee * optee,struct optee_msg_arg * arg,struct optee_call_ctx * call_ctx)656 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
657 struct optee *optee,
658 struct optee_msg_arg *arg,
659 struct optee_call_ctx *call_ctx)
660 {
661 phys_addr_t pa;
662 struct tee_shm *shm;
663 size_t sz;
664 size_t n;
665
666 arg->ret_origin = TEEC_ORIGIN_COMMS;
667
668 if (!arg->num_params ||
669 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
670 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
671 return;
672 }
673
674 for (n = 1; n < arg->num_params; n++) {
675 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
676 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
677 return;
678 }
679 }
680
681 sz = arg->params[0].u.value.b;
682 switch (arg->params[0].u.value.a) {
683 case OPTEE_RPC_SHM_TYPE_APPL:
684 shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
685 break;
686 case OPTEE_RPC_SHM_TYPE_KERNEL:
687 shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
688 break;
689 default:
690 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
691 return;
692 }
693
694 if (IS_ERR(shm)) {
695 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
696 return;
697 }
698
699 if (tee_shm_get_pa(shm, 0, &pa)) {
700 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
701 goto bad;
702 }
703
704 sz = tee_shm_get_size(shm);
705
706 if (tee_shm_is_dynamic(shm)) {
707 struct page **pages;
708 u64 *pages_list;
709 size_t page_num;
710
711 pages = tee_shm_get_pages(shm, &page_num);
712 if (!pages || !page_num) {
713 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
714 goto bad;
715 }
716
717 pages_list = optee_allocate_pages_list(page_num);
718 if (!pages_list) {
719 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
720 goto bad;
721 }
722
723 call_ctx->pages_list = pages_list;
724 call_ctx->num_entries = page_num;
725
726 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
727 OPTEE_MSG_ATTR_NONCONTIG;
728 /*
729 * In the least bits of u.tmem.buf_ptr we store buffer offset
730 * from 4k page, as described in OP-TEE ABI.
731 */
732 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
733 (tee_shm_get_page_offset(shm) &
734 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
735 arg->params[0].u.tmem.size = tee_shm_get_size(shm);
736 arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
737
738 optee_fill_pages_list(pages_list, pages, page_num,
739 tee_shm_get_page_offset(shm));
740 } else {
741 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
742 arg->params[0].u.tmem.buf_ptr = pa;
743 arg->params[0].u.tmem.size = sz;
744 arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
745 }
746
747 arg->ret = TEEC_SUCCESS;
748 return;
749 bad:
750 tee_shm_free(shm);
751 }
752
free_pages_list(struct optee_call_ctx * call_ctx)753 static void free_pages_list(struct optee_call_ctx *call_ctx)
754 {
755 if (call_ctx->pages_list) {
756 optee_free_pages_list(call_ctx->pages_list,
757 call_ctx->num_entries);
758 call_ctx->pages_list = NULL;
759 call_ctx->num_entries = 0;
760 }
761 }
762
optee_rpc_finalize_call(struct optee_call_ctx * call_ctx)763 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
764 {
765 free_pages_list(call_ctx);
766 }
767
handle_rpc_func_cmd(struct tee_context * ctx,struct optee * optee,struct optee_msg_arg * arg,struct optee_call_ctx * call_ctx)768 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
769 struct optee_msg_arg *arg,
770 struct optee_call_ctx *call_ctx)
771 {
772
773 switch (arg->cmd) {
774 case OPTEE_RPC_CMD_SHM_ALLOC:
775 free_pages_list(call_ctx);
776 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
777 break;
778 case OPTEE_RPC_CMD_SHM_FREE:
779 handle_rpc_func_cmd_shm_free(ctx, arg);
780 break;
781 default:
782 optee_rpc_cmd(ctx, optee, arg);
783 }
784 }
785
786 /**
787 * optee_handle_rpc() - handle RPC from secure world
788 * @ctx: context doing the RPC
789 * @param: value of registers for the RPC
790 * @call_ctx: call context. Preserved during one OP-TEE invocation
791 *
792 * Result of RPC is written back into @param.
793 */
optee_handle_rpc(struct tee_context * ctx,struct optee_msg_arg * rpc_arg,struct optee_rpc_param * param,struct optee_call_ctx * call_ctx)794 static void optee_handle_rpc(struct tee_context *ctx,
795 struct optee_msg_arg *rpc_arg,
796 struct optee_rpc_param *param,
797 struct optee_call_ctx *call_ctx)
798 {
799 struct tee_device *teedev = ctx->teedev;
800 struct optee *optee = tee_get_drvdata(teedev);
801 struct optee_msg_arg *arg;
802 struct tee_shm *shm;
803 phys_addr_t pa;
804
805 switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
806 case OPTEE_SMC_RPC_FUNC_ALLOC:
807 shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
808 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
809 reg_pair_from_64(¶m->a1, ¶m->a2, pa);
810 reg_pair_from_64(¶m->a4, ¶m->a5,
811 (unsigned long)shm);
812 } else {
813 param->a1 = 0;
814 param->a2 = 0;
815 param->a4 = 0;
816 param->a5 = 0;
817 }
818 kmemleak_not_leak(shm);
819 break;
820 case OPTEE_SMC_RPC_FUNC_FREE:
821 shm = reg_pair_to_ptr(param->a1, param->a2);
822 tee_shm_free(shm);
823 break;
824 case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
825 /*
826 * A foreign interrupt was raised while secure world was
827 * executing, since they are handled in Linux a dummy RPC is
828 * performed to let Linux take the interrupt through the normal
829 * vector.
830 */
831 break;
832 case OPTEE_SMC_RPC_FUNC_CMD:
833 if (rpc_arg) {
834 arg = rpc_arg;
835 } else {
836 shm = reg_pair_to_ptr(param->a1, param->a2);
837 arg = tee_shm_get_va(shm, 0);
838 if (IS_ERR(arg)) {
839 pr_err("%s: tee_shm_get_va %p failed\n",
840 __func__, shm);
841 break;
842 }
843 }
844
845 handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
846 break;
847 default:
848 pr_warn("Unknown RPC func 0x%x\n",
849 (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
850 break;
851 }
852
853 param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
854 }
855
856 /**
857 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
858 * @ctx: calling context
859 * @shm: shared memory holding the message to pass to secure world
860 * @offs: offset of the message in @shm
861 *
862 * Does and SMC to OP-TEE in secure world and handles eventual resulting
863 * Remote Procedure Calls (RPC) from OP-TEE.
864 *
865 * Returns return code from secure world, 0 is OK
866 */
optee_smc_do_call_with_arg(struct tee_context * ctx,struct tee_shm * shm,u_int offs)867 static int optee_smc_do_call_with_arg(struct tee_context *ctx,
868 struct tee_shm *shm, u_int offs)
869 {
870 struct optee *optee = tee_get_drvdata(ctx->teedev);
871 struct optee_call_waiter w;
872 struct optee_rpc_param param = { };
873 struct optee_call_ctx call_ctx = { };
874 struct optee_msg_arg *rpc_arg = NULL;
875 int rc;
876
877 if (optee->rpc_param_count) {
878 struct optee_msg_arg *arg;
879 unsigned int rpc_arg_offs;
880
881 arg = tee_shm_get_va(shm, offs);
882 if (IS_ERR(arg))
883 return PTR_ERR(arg);
884
885 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
886 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
887 if (IS_ERR(rpc_arg))
888 return PTR_ERR(rpc_arg);
889 }
890
891 if (rpc_arg && tee_shm_is_dynamic(shm)) {
892 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
893 reg_pair_from_64(¶m.a1, ¶m.a2, (u_long)shm);
894 param.a3 = offs;
895 } else {
896 phys_addr_t parg;
897
898 rc = tee_shm_get_pa(shm, offs, &parg);
899 if (rc)
900 return rc;
901
902 if (rpc_arg)
903 param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
904 else
905 param.a0 = OPTEE_SMC_CALL_WITH_ARG;
906 reg_pair_from_64(¶m.a1, ¶m.a2, parg);
907 }
908 /* Initialize waiter */
909 optee_cq_wait_init(&optee->call_queue, &w);
910 while (true) {
911 struct arm_smccc_res res;
912
913 trace_optee_invoke_fn_begin(¶m);
914 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
915 param.a4, param.a5, param.a6, param.a7,
916 &res);
917 trace_optee_invoke_fn_end(¶m, &res);
918
919 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
920 /*
921 * Out of threads in secure world, wait for a thread
922 * become available.
923 */
924 optee_cq_wait_for_completion(&optee->call_queue, &w);
925 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
926 cond_resched();
927 param.a0 = res.a0;
928 param.a1 = res.a1;
929 param.a2 = res.a2;
930 param.a3 = res.a3;
931 optee_handle_rpc(ctx, rpc_arg, ¶m, &call_ctx);
932 } else {
933 rc = res.a0;
934 break;
935 }
936 }
937
938 optee_rpc_finalize_call(&call_ctx);
939 /*
940 * We're done with our thread in secure world, if there's any
941 * thread waiters wake up one.
942 */
943 optee_cq_wait_final(&optee->call_queue, &w);
944
945 return rc;
946 }
947
simple_call_with_arg(struct tee_context * ctx,u32 cmd)948 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
949 {
950 struct optee_shm_arg_entry *entry;
951 struct optee_msg_arg *msg_arg;
952 struct tee_shm *shm;
953 u_int offs;
954
955 msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
956 if (IS_ERR(msg_arg))
957 return PTR_ERR(msg_arg);
958
959 msg_arg->cmd = cmd;
960 optee_smc_do_call_with_arg(ctx, shm, offs);
961
962 optee_free_msg_arg(ctx, entry, offs);
963 return 0;
964 }
965
optee_smc_do_bottom_half(struct tee_context * ctx)966 static int optee_smc_do_bottom_half(struct tee_context *ctx)
967 {
968 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
969 }
970
optee_smc_stop_async_notif(struct tee_context * ctx)971 static int optee_smc_stop_async_notif(struct tee_context *ctx)
972 {
973 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
974 }
975
976 /*
977 * 5. Asynchronous notification
978 */
979
get_async_notif_value(optee_invoke_fn * invoke_fn,bool * value_valid,bool * value_pending)980 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
981 bool *value_pending)
982 {
983 struct arm_smccc_res res;
984
985 invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
986
987 if (res.a0)
988 return 0;
989 *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
990 *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
991 return res.a1;
992 }
993
notif_irq_handler(int irq,void * dev_id)994 static irqreturn_t notif_irq_handler(int irq, void *dev_id)
995 {
996 struct optee *optee = dev_id;
997 bool do_bottom_half = false;
998 bool value_valid;
999 bool value_pending;
1000 u32 value;
1001
1002 do {
1003 value = get_async_notif_value(optee->smc.invoke_fn,
1004 &value_valid, &value_pending);
1005 if (!value_valid)
1006 break;
1007
1008 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
1009 do_bottom_half = true;
1010 else
1011 optee_notif_send(optee, value);
1012 } while (value_pending);
1013
1014 if (do_bottom_half)
1015 return IRQ_WAKE_THREAD;
1016 return IRQ_HANDLED;
1017 }
1018
notif_irq_thread_fn(int irq,void * dev_id)1019 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
1020 {
1021 struct optee *optee = dev_id;
1022
1023 optee_smc_do_bottom_half(optee->ctx);
1024
1025 return IRQ_HANDLED;
1026 }
1027
optee_smc_notif_init_irq(struct optee * optee,u_int irq)1028 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
1029 {
1030 int rc;
1031
1032 rc = request_threaded_irq(irq, notif_irq_handler,
1033 notif_irq_thread_fn,
1034 0, "optee_notification", optee);
1035 if (rc)
1036 return rc;
1037
1038 optee->smc.notif_irq = irq;
1039
1040 return 0;
1041 }
1042
optee_smc_notif_uninit_irq(struct optee * optee)1043 static void optee_smc_notif_uninit_irq(struct optee *optee)
1044 {
1045 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1046 optee_smc_stop_async_notif(optee->ctx);
1047 if (optee->smc.notif_irq) {
1048 free_irq(optee->smc.notif_irq, optee);
1049 irq_dispose_mapping(optee->smc.notif_irq);
1050 }
1051 }
1052 }
1053
1054 /*
1055 * 6. Driver initialization
1056 *
1057 * During driver initialization is secure world probed to find out which
1058 * features it supports so the driver can be initialized with a matching
1059 * configuration. This involves for instance support for dynamic shared
1060 * memory instead of a static memory carvout.
1061 */
1062
optee_get_version(struct tee_device * teedev,struct tee_ioctl_version_data * vers)1063 static void optee_get_version(struct tee_device *teedev,
1064 struct tee_ioctl_version_data *vers)
1065 {
1066 struct tee_ioctl_version_data v = {
1067 .impl_id = TEE_IMPL_ID_OPTEE,
1068 .impl_caps = TEE_OPTEE_CAP_TZ,
1069 .gen_caps = TEE_GEN_CAP_GP,
1070 };
1071 struct optee *optee = tee_get_drvdata(teedev);
1072
1073 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1074 v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1075 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1076 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1077 *vers = v;
1078 }
1079
optee_smc_open(struct tee_context * ctx)1080 static int optee_smc_open(struct tee_context *ctx)
1081 {
1082 struct optee *optee = tee_get_drvdata(ctx->teedev);
1083 u32 sec_caps = optee->smc.sec_caps;
1084
1085 return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1086 }
1087
1088 static const struct tee_driver_ops optee_clnt_ops = {
1089 .get_version = optee_get_version,
1090 .open = optee_smc_open,
1091 .release = optee_release,
1092 .open_session = optee_open_session,
1093 .close_session = optee_close_session,
1094 .invoke_func = optee_invoke_func,
1095 .cancel_req = optee_cancel_req,
1096 .shm_register = optee_shm_register,
1097 .shm_unregister = optee_shm_unregister,
1098 };
1099
1100 static const struct tee_desc optee_clnt_desc = {
1101 .name = DRIVER_NAME "-clnt",
1102 .ops = &optee_clnt_ops,
1103 .owner = THIS_MODULE,
1104 };
1105
1106 static const struct tee_driver_ops optee_supp_ops = {
1107 .get_version = optee_get_version,
1108 .open = optee_smc_open,
1109 .release = optee_release_supp,
1110 .supp_recv = optee_supp_recv,
1111 .supp_send = optee_supp_send,
1112 .shm_register = optee_shm_register_supp,
1113 .shm_unregister = optee_shm_unregister_supp,
1114 };
1115
1116 static const struct tee_desc optee_supp_desc = {
1117 .name = DRIVER_NAME "-supp",
1118 .ops = &optee_supp_ops,
1119 .owner = THIS_MODULE,
1120 .flags = TEE_DESC_PRIVILEGED,
1121 };
1122
1123 static const struct optee_ops optee_ops = {
1124 .do_call_with_arg = optee_smc_do_call_with_arg,
1125 .to_msg_param = optee_to_msg_param,
1126 .from_msg_param = optee_from_msg_param,
1127 };
1128
enable_async_notif(optee_invoke_fn * invoke_fn)1129 static int enable_async_notif(optee_invoke_fn *invoke_fn)
1130 {
1131 struct arm_smccc_res res;
1132
1133 invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1134
1135 if (res.a0)
1136 return -EINVAL;
1137 return 0;
1138 }
1139
optee_msg_api_uid_is_optee_api(optee_invoke_fn * invoke_fn)1140 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1141 {
1142 struct arm_smccc_res res;
1143
1144 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1145
1146 if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1147 res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1148 return true;
1149 return false;
1150 }
1151
optee_msg_get_os_revision(optee_invoke_fn * invoke_fn)1152 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1153 {
1154 union {
1155 struct arm_smccc_res smccc;
1156 struct optee_smc_call_get_os_revision_result result;
1157 } res = {
1158 .result = {
1159 .build_id = 0
1160 }
1161 };
1162
1163 invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1164 &res.smccc);
1165
1166 if (res.result.build_id)
1167 pr_info("revision %lu.%lu (%08lx)", res.result.major,
1168 res.result.minor, res.result.build_id);
1169 else
1170 pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1171 }
1172
optee_msg_api_revision_is_compatible(optee_invoke_fn * invoke_fn)1173 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1174 {
1175 union {
1176 struct arm_smccc_res smccc;
1177 struct optee_smc_calls_revision_result result;
1178 } res;
1179
1180 invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1181
1182 if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1183 (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1184 return true;
1185 return false;
1186 }
1187
optee_msg_exchange_capabilities(optee_invoke_fn * invoke_fn,u32 * sec_caps,u32 * max_notif_value,unsigned int * rpc_param_count)1188 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1189 u32 *sec_caps, u32 *max_notif_value,
1190 unsigned int *rpc_param_count)
1191 {
1192 union {
1193 struct arm_smccc_res smccc;
1194 struct optee_smc_exchange_capabilities_result result;
1195 } res;
1196 u32 a1 = 0;
1197
1198 /*
1199 * TODO This isn't enough to tell if it's UP system (from kernel
1200 * point of view) or not, is_smp() returns the information
1201 * needed, but can't be called directly from here.
1202 */
1203 if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1204 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1205
1206 invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1207 &res.smccc);
1208
1209 if (res.result.status != OPTEE_SMC_RETURN_OK)
1210 return false;
1211
1212 *sec_caps = res.result.capabilities;
1213 if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1214 *max_notif_value = res.result.max_notif_value;
1215 else
1216 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1217 if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1218 *rpc_param_count = (u8)res.result.data;
1219 else
1220 *rpc_param_count = 0;
1221
1222 return true;
1223 }
1224
1225 static struct tee_shm_pool *
optee_config_shm_memremap(optee_invoke_fn * invoke_fn,void ** memremaped_shm)1226 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1227 {
1228 union {
1229 struct arm_smccc_res smccc;
1230 struct optee_smc_get_shm_config_result result;
1231 } res;
1232 unsigned long vaddr;
1233 phys_addr_t paddr;
1234 size_t size;
1235 phys_addr_t begin;
1236 phys_addr_t end;
1237 void *va;
1238 void *rc;
1239
1240 invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1241 if (res.result.status != OPTEE_SMC_RETURN_OK) {
1242 pr_err("static shm service not available\n");
1243 return ERR_PTR(-ENOENT);
1244 }
1245
1246 if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1247 pr_err("only normal cached shared memory supported\n");
1248 return ERR_PTR(-EINVAL);
1249 }
1250
1251 begin = roundup(res.result.start, PAGE_SIZE);
1252 end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1253 paddr = begin;
1254 size = end - begin;
1255
1256 va = memremap(paddr, size, MEMREMAP_WB);
1257 if (!va) {
1258 pr_err("shared memory ioremap failed\n");
1259 return ERR_PTR(-EINVAL);
1260 }
1261 vaddr = (unsigned long)va;
1262
1263 rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1264 OPTEE_MIN_STATIC_POOL_ALIGN);
1265 if (IS_ERR(rc))
1266 memunmap(va);
1267 else
1268 *memremaped_shm = va;
1269
1270 return rc;
1271 }
1272
1273 /* Simple wrapper functions to be able to use a function pointer */
optee_smccc_smc(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4,unsigned long a5,unsigned long a6,unsigned long a7,struct arm_smccc_res * res)1274 static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1275 unsigned long a2, unsigned long a3,
1276 unsigned long a4, unsigned long a5,
1277 unsigned long a6, unsigned long a7,
1278 struct arm_smccc_res *res)
1279 {
1280 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1281 }
1282
optee_smccc_hvc(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4,unsigned long a5,unsigned long a6,unsigned long a7,struct arm_smccc_res * res)1283 static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1284 unsigned long a2, unsigned long a3,
1285 unsigned long a4, unsigned long a5,
1286 unsigned long a6, unsigned long a7,
1287 struct arm_smccc_res *res)
1288 {
1289 arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1290 }
1291
get_invoke_func(struct device * dev)1292 static optee_invoke_fn *get_invoke_func(struct device *dev)
1293 {
1294 const char *method;
1295
1296 pr_info("probing for conduit method.\n");
1297
1298 if (device_property_read_string(dev, "method", &method)) {
1299 pr_warn("missing \"method\" property\n");
1300 return ERR_PTR(-ENXIO);
1301 }
1302
1303 if (!strcmp("hvc", method))
1304 return optee_smccc_hvc;
1305 else if (!strcmp("smc", method))
1306 return optee_smccc_smc;
1307
1308 pr_warn("invalid \"method\" property: %s\n", method);
1309 return ERR_PTR(-EINVAL);
1310 }
1311
1312 /* optee_remove - Device Removal Routine
1313 * @pdev: platform device information struct
1314 *
1315 * optee_remove is called by platform subsystem to alert the driver
1316 * that it should release the device
1317 */
optee_smc_remove(struct platform_device * pdev)1318 static int optee_smc_remove(struct platform_device *pdev)
1319 {
1320 struct optee *optee = platform_get_drvdata(pdev);
1321
1322 /*
1323 * Ask OP-TEE to free all cached shared memory objects to decrease
1324 * reference counters and also avoid wild pointers in secure world
1325 * into the old shared memory range.
1326 */
1327 if (!optee->rpc_param_count)
1328 optee_disable_shm_cache(optee);
1329
1330 optee_smc_notif_uninit_irq(optee);
1331
1332 optee_remove_common(optee);
1333
1334 if (optee->smc.memremaped_shm)
1335 memunmap(optee->smc.memremaped_shm);
1336
1337 kfree(optee);
1338
1339 return 0;
1340 }
1341
1342 /* optee_shutdown - Device Removal Routine
1343 * @pdev: platform device information struct
1344 *
1345 * platform_shutdown is called by the platform subsystem to alert
1346 * the driver that a shutdown, reboot, or kexec is happening and
1347 * device must be disabled.
1348 */
optee_shutdown(struct platform_device * pdev)1349 static void optee_shutdown(struct platform_device *pdev)
1350 {
1351 struct optee *optee = platform_get_drvdata(pdev);
1352
1353 if (!optee->rpc_param_count)
1354 optee_disable_shm_cache(optee);
1355 }
1356
optee_probe(struct platform_device * pdev)1357 static int optee_probe(struct platform_device *pdev)
1358 {
1359 optee_invoke_fn *invoke_fn;
1360 struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1361 struct optee *optee = NULL;
1362 void *memremaped_shm = NULL;
1363 unsigned int rpc_param_count;
1364 struct tee_device *teedev;
1365 struct tee_context *ctx;
1366 u32 max_notif_value;
1367 u32 arg_cache_flags;
1368 u32 sec_caps;
1369 int rc;
1370
1371 invoke_fn = get_invoke_func(&pdev->dev);
1372 if (IS_ERR(invoke_fn))
1373 return PTR_ERR(invoke_fn);
1374
1375 if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1376 pr_warn("api uid mismatch\n");
1377 return -EINVAL;
1378 }
1379
1380 optee_msg_get_os_revision(invoke_fn);
1381
1382 if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1383 pr_warn("api revision mismatch\n");
1384 return -EINVAL;
1385 }
1386
1387 if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1388 &max_notif_value,
1389 &rpc_param_count)) {
1390 pr_warn("capabilities mismatch\n");
1391 return -EINVAL;
1392 }
1393
1394 /*
1395 * Try to use dynamic shared memory if possible
1396 */
1397 if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
1398 /*
1399 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
1400 * optee_get_msg_arg() to pre-register (by having
1401 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
1402 * an argument struct.
1403 *
1404 * With the page is pre-registered we can use a non-zero
1405 * offset for argument struct, this is indicated with
1406 * OPTEE_SHM_ARG_SHARED.
1407 *
1408 * This means that optee_smc_do_call_with_arg() will use
1409 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
1410 */
1411 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1412 arg_cache_flags = OPTEE_SHM_ARG_SHARED;
1413 else
1414 arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
1415
1416 pool = optee_shm_pool_alloc_pages();
1417 }
1418
1419 /*
1420 * If dynamic shared memory is not available or failed - try static one
1421 */
1422 if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
1423 /*
1424 * The static memory pool can use non-zero page offsets so
1425 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
1426 *
1427 * optee_get_msg_arg() should not pre-register the
1428 * allocated page used to pass an argument struct, this is
1429 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
1430 *
1431 * This means that optee_smc_do_call_with_arg() will use
1432 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
1433 * OPTEE_SMC_CALL_WITH_RPC_ARG.
1434 */
1435 arg_cache_flags = OPTEE_SHM_ARG_SHARED |
1436 OPTEE_SHM_ARG_ALLOC_PRIV;
1437 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1438 }
1439
1440 if (IS_ERR(pool))
1441 return PTR_ERR(pool);
1442
1443 optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1444 if (!optee) {
1445 rc = -ENOMEM;
1446 goto err_free_pool;
1447 }
1448
1449 optee->ops = &optee_ops;
1450 optee->smc.invoke_fn = invoke_fn;
1451 optee->smc.sec_caps = sec_caps;
1452 optee->rpc_param_count = rpc_param_count;
1453
1454 teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1455 if (IS_ERR(teedev)) {
1456 rc = PTR_ERR(teedev);
1457 goto err_free_optee;
1458 }
1459 optee->teedev = teedev;
1460
1461 teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1462 if (IS_ERR(teedev)) {
1463 rc = PTR_ERR(teedev);
1464 goto err_unreg_teedev;
1465 }
1466 optee->supp_teedev = teedev;
1467
1468 rc = tee_device_register(optee->teedev);
1469 if (rc)
1470 goto err_unreg_supp_teedev;
1471
1472 rc = tee_device_register(optee->supp_teedev);
1473 if (rc)
1474 goto err_unreg_supp_teedev;
1475
1476 mutex_init(&optee->call_queue.mutex);
1477 INIT_LIST_HEAD(&optee->call_queue.waiters);
1478 optee_supp_init(&optee->supp);
1479 optee->smc.memremaped_shm = memremaped_shm;
1480 optee->pool = pool;
1481 optee_shm_arg_cache_init(optee, arg_cache_flags);
1482
1483 platform_set_drvdata(pdev, optee);
1484 ctx = teedev_open(optee->teedev);
1485 if (IS_ERR(ctx)) {
1486 rc = PTR_ERR(ctx);
1487 goto err_supp_uninit;
1488 }
1489 optee->ctx = ctx;
1490 rc = optee_notif_init(optee, max_notif_value);
1491 if (rc)
1492 goto err_close_ctx;
1493
1494 if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1495 unsigned int irq;
1496
1497 rc = platform_get_irq(pdev, 0);
1498 if (rc < 0) {
1499 pr_err("platform_get_irq: ret %d\n", rc);
1500 goto err_notif_uninit;
1501 }
1502 irq = rc;
1503
1504 rc = optee_smc_notif_init_irq(optee, irq);
1505 if (rc) {
1506 irq_dispose_mapping(irq);
1507 goto err_notif_uninit;
1508 }
1509 enable_async_notif(optee->smc.invoke_fn);
1510 pr_info("Asynchronous notifications enabled\n");
1511 }
1512
1513 /*
1514 * Ensure that there are no pre-existing shm objects before enabling
1515 * the shm cache so that there's no chance of receiving an invalid
1516 * address during shutdown. This could occur, for example, if we're
1517 * kexec booting from an older kernel that did not properly cleanup the
1518 * shm cache.
1519 */
1520 optee_disable_unmapped_shm_cache(optee);
1521
1522 /*
1523 * Only enable the shm cache in case we're not able to pass the RPC
1524 * arg struct right after the normal arg struct.
1525 */
1526 if (!optee->rpc_param_count)
1527 optee_enable_shm_cache(optee);
1528
1529 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1530 pr_info("dynamic shared memory is enabled\n");
1531
1532 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1533 if (rc)
1534 goto err_disable_shm_cache;
1535
1536 pr_info("initialized driver\n");
1537 return 0;
1538
1539 err_disable_shm_cache:
1540 if (!optee->rpc_param_count)
1541 optee_disable_shm_cache(optee);
1542 optee_smc_notif_uninit_irq(optee);
1543 optee_unregister_devices();
1544 err_notif_uninit:
1545 optee_notif_uninit(optee);
1546 err_close_ctx:
1547 teedev_close_context(ctx);
1548 err_supp_uninit:
1549 optee_shm_arg_cache_uninit(optee);
1550 optee_supp_uninit(&optee->supp);
1551 mutex_destroy(&optee->call_queue.mutex);
1552 err_unreg_supp_teedev:
1553 tee_device_unregister(optee->supp_teedev);
1554 err_unreg_teedev:
1555 tee_device_unregister(optee->teedev);
1556 err_free_optee:
1557 kfree(optee);
1558 err_free_pool:
1559 tee_shm_pool_free(pool);
1560 if (memremaped_shm)
1561 memunmap(memremaped_shm);
1562 return rc;
1563 }
1564
1565 static const struct of_device_id optee_dt_match[] = {
1566 { .compatible = "linaro,optee-tz" },
1567 {},
1568 };
1569 MODULE_DEVICE_TABLE(of, optee_dt_match);
1570
1571 static struct platform_driver optee_driver = {
1572 .probe = optee_probe,
1573 .remove = optee_smc_remove,
1574 .shutdown = optee_shutdown,
1575 .driver = {
1576 .name = "optee",
1577 .of_match_table = optee_dt_match,
1578 },
1579 };
1580
optee_smc_abi_register(void)1581 int optee_smc_abi_register(void)
1582 {
1583 return platform_driver_register(&optee_driver);
1584 }
1585
optee_smc_abi_unregister(void)1586 void optee_smc_abi_unregister(void)
1587 {
1588 platform_driver_unregister(&optee_driver);
1589 }
1590