1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel PCH/PCU SPI flash driver.
4 *
5 * Copyright (C) 2016 - 2022, Intel Corporation
6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 */
8
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19 #include "spi-intel.h"
20
21 /* Offsets are from @ispi->base */
22 #define BFPREG 0x00
23
24 #define HSFSTS_CTL 0x04
25 #define HSFSTS_CTL_FSMIE BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT 24
27 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
28
29 #define HSFSTS_CTL_FCYCLE_SHIFT 17
30 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
39
40 #define HSFSTS_CTL_FGO BIT(16)
41 #define HSFSTS_CTL_FLOCKDN BIT(15)
42 #define HSFSTS_CTL_FDV BIT(14)
43 #define HSFSTS_CTL_SCIP BIT(5)
44 #define HSFSTS_CTL_AEL BIT(2)
45 #define HSFSTS_CTL_FCERR BIT(1)
46 #define HSFSTS_CTL_FDONE BIT(0)
47
48 #define FADDR 0x08
49 #define DLOCK 0x0c
50 #define FDATA(n) (0x10 + ((n) * 4))
51
52 #define FRACC 0x50
53
54 #define FREG(n) (0x54 + ((n) * 4))
55 #define FREG_BASE_MASK 0x3fff
56 #define FREG_LIMIT_SHIFT 16
57 #define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
58
59 /* Offset is from @ispi->pregs */
60 #define PR(n) ((n) * 4)
61 #define PR_WPE BIT(31)
62 #define PR_LIMIT_SHIFT 16
63 #define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
64 #define PR_RPE BIT(15)
65 #define PR_BASE_MASK 0x3fff
66
67 /* Offsets are from @ispi->sregs */
68 #define SSFSTS_CTL 0x00
69 #define SSFSTS_CTL_FSMIE BIT(23)
70 #define SSFSTS_CTL_DS BIT(22)
71 #define SSFSTS_CTL_DBC_SHIFT 16
72 #define SSFSTS_CTL_SPOP BIT(11)
73 #define SSFSTS_CTL_ACS BIT(10)
74 #define SSFSTS_CTL_SCGO BIT(9)
75 #define SSFSTS_CTL_COP_SHIFT 12
76 #define SSFSTS_CTL_FRS BIT(7)
77 #define SSFSTS_CTL_DOFRS BIT(6)
78 #define SSFSTS_CTL_AEL BIT(4)
79 #define SSFSTS_CTL_FCERR BIT(3)
80 #define SSFSTS_CTL_FDONE BIT(2)
81 #define SSFSTS_CTL_SCIP BIT(0)
82
83 #define PREOP_OPTYPE 0x04
84 #define OPMENU0 0x08
85 #define OPMENU1 0x0c
86
87 #define OPTYPE_READ_NO_ADDR 0
88 #define OPTYPE_WRITE_NO_ADDR 1
89 #define OPTYPE_READ_WITH_ADDR 2
90 #define OPTYPE_WRITE_WITH_ADDR 3
91
92 /* CPU specifics */
93 #define BYT_PR 0x74
94 #define BYT_SSFSTS_CTL 0x90
95 #define BYT_FREG_NUM 5
96 #define BYT_PR_NUM 5
97
98 #define LPT_PR 0x74
99 #define LPT_SSFSTS_CTL 0x90
100 #define LPT_FREG_NUM 5
101 #define LPT_PR_NUM 5
102
103 #define BXT_PR 0x84
104 #define BXT_SSFSTS_CTL 0xa0
105 #define BXT_FREG_NUM 12
106 #define BXT_PR_NUM 6
107
108 #define CNL_PR 0x84
109 #define CNL_FREG_NUM 6
110 #define CNL_PR_NUM 5
111
112 #define LVSCC 0xc4
113 #define UVSCC 0xc8
114 #define ERASE_OPCODE_SHIFT 8
115 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
116 #define ERASE_64K_OPCODE_SHIFT 16
117 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
118
119 #define INTEL_SPI_TIMEOUT 5000 /* ms */
120 #define INTEL_SPI_FIFO_SZ 64
121
122 /**
123 * struct intel_spi - Driver private data
124 * @dev: Device pointer
125 * @info: Pointer to board specific info
126 * @base: Beginning of MMIO space
127 * @pregs: Start of protection registers
128 * @sregs: Start of software sequencer registers
129 * @master: Pointer to the SPI controller structure
130 * @nregions: Maximum number of regions
131 * @pr_num: Maximum number of protected range registers
132 * @locked: Is SPI setting locked
133 * @swseq_reg: Use SW sequencer in register reads/writes
134 * @swseq_erase: Use SW sequencer in erase operation
135 * @atomic_preopcode: Holds preopcode when atomic sequence is requested
136 * @opcodes: Opcodes which are supported. This are programmed by BIOS
137 * before it locks down the controller.
138 * @mem_ops: Pointer to SPI MEM ops supported by the controller
139 */
140 struct intel_spi {
141 struct device *dev;
142 const struct intel_spi_boardinfo *info;
143 void __iomem *base;
144 void __iomem *pregs;
145 void __iomem *sregs;
146 struct spi_controller *master;
147 size_t nregions;
148 size_t pr_num;
149 bool locked;
150 bool swseq_reg;
151 bool swseq_erase;
152 u8 atomic_preopcode;
153 u8 opcodes[8];
154 const struct intel_spi_mem_op *mem_ops;
155 };
156
157 struct intel_spi_mem_op {
158 struct spi_mem_op mem_op;
159 u32 replacement_op;
160 int (*exec_op)(struct intel_spi *ispi,
161 const struct intel_spi_mem_op *iop,
162 const struct spi_mem_op *op);
163 };
164
165 static bool writeable;
166 module_param(writeable, bool, 0);
167 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
168
intel_spi_dump_regs(struct intel_spi * ispi)169 static void intel_spi_dump_regs(struct intel_spi *ispi)
170 {
171 u32 value;
172 int i;
173
174 dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
175
176 value = readl(ispi->base + HSFSTS_CTL);
177 dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
178 if (value & HSFSTS_CTL_FLOCKDN)
179 dev_dbg(ispi->dev, "-> Locked\n");
180
181 dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
182 dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
183
184 for (i = 0; i < 16; i++)
185 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
186 i, readl(ispi->base + FDATA(i)));
187
188 dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
189
190 for (i = 0; i < ispi->nregions; i++)
191 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
192 readl(ispi->base + FREG(i)));
193 for (i = 0; i < ispi->pr_num; i++)
194 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
195 readl(ispi->pregs + PR(i)));
196
197 if (ispi->sregs) {
198 value = readl(ispi->sregs + SSFSTS_CTL);
199 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
200 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
201 readl(ispi->sregs + PREOP_OPTYPE));
202 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
203 readl(ispi->sregs + OPMENU0));
204 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
205 readl(ispi->sregs + OPMENU1));
206 }
207
208 dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
209 dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
210
211 dev_dbg(ispi->dev, "Protected regions:\n");
212 for (i = 0; i < ispi->pr_num; i++) {
213 u32 base, limit;
214
215 value = readl(ispi->pregs + PR(i));
216 if (!(value & (PR_WPE | PR_RPE)))
217 continue;
218
219 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
220 base = value & PR_BASE_MASK;
221
222 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
223 i, base << 12, (limit << 12) | 0xfff,
224 value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
225 }
226
227 dev_dbg(ispi->dev, "Flash regions:\n");
228 for (i = 0; i < ispi->nregions; i++) {
229 u32 region, base, limit;
230
231 region = readl(ispi->base + FREG(i));
232 base = region & FREG_BASE_MASK;
233 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
234
235 if (base >= limit || (i > 0 && limit == 0))
236 dev_dbg(ispi->dev, " %02d disabled\n", i);
237 else
238 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
239 i, base << 12, (limit << 12) | 0xfff);
240 }
241
242 dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
243 ispi->swseq_reg ? 'S' : 'H');
244 dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
245 ispi->swseq_erase ? 'S' : 'H');
246 }
247
248 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
intel_spi_read_block(struct intel_spi * ispi,void * buf,size_t size)249 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
250 {
251 size_t bytes;
252 int i = 0;
253
254 if (size > INTEL_SPI_FIFO_SZ)
255 return -EINVAL;
256
257 while (size > 0) {
258 bytes = min_t(size_t, size, 4);
259 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
260 size -= bytes;
261 buf += bytes;
262 i++;
263 }
264
265 return 0;
266 }
267
268 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
intel_spi_write_block(struct intel_spi * ispi,const void * buf,size_t size)269 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
270 size_t size)
271 {
272 size_t bytes;
273 int i = 0;
274
275 if (size > INTEL_SPI_FIFO_SZ)
276 return -EINVAL;
277
278 while (size > 0) {
279 bytes = min_t(size_t, size, 4);
280 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
281 size -= bytes;
282 buf += bytes;
283 i++;
284 }
285
286 return 0;
287 }
288
intel_spi_wait_hw_busy(struct intel_spi * ispi)289 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
290 {
291 u32 val;
292
293 return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
294 !(val & HSFSTS_CTL_SCIP), 0,
295 INTEL_SPI_TIMEOUT * 1000);
296 }
297
intel_spi_wait_sw_busy(struct intel_spi * ispi)298 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
299 {
300 u32 val;
301
302 return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
303 !(val & SSFSTS_CTL_SCIP), 0,
304 INTEL_SPI_TIMEOUT * 1000);
305 }
306
intel_spi_set_writeable(struct intel_spi * ispi)307 static bool intel_spi_set_writeable(struct intel_spi *ispi)
308 {
309 if (!ispi->info->set_writeable)
310 return false;
311
312 return ispi->info->set_writeable(ispi->base, ispi->info->data);
313 }
314
intel_spi_opcode_index(struct intel_spi * ispi,u8 opcode,int optype)315 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
316 {
317 int i;
318 int preop;
319
320 if (ispi->locked) {
321 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
322 if (ispi->opcodes[i] == opcode)
323 return i;
324
325 return -EINVAL;
326 }
327
328 /* The lock is off, so just use index 0 */
329 writel(opcode, ispi->sregs + OPMENU0);
330 preop = readw(ispi->sregs + PREOP_OPTYPE);
331 writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
332
333 return 0;
334 }
335
intel_spi_hw_cycle(struct intel_spi * ispi,u8 opcode,size_t len)336 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
337 {
338 u32 val, status;
339 int ret;
340
341 val = readl(ispi->base + HSFSTS_CTL);
342 val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
343
344 switch (opcode) {
345 case SPINOR_OP_RDID:
346 val |= HSFSTS_CTL_FCYCLE_RDID;
347 break;
348 case SPINOR_OP_WRSR:
349 val |= HSFSTS_CTL_FCYCLE_WRSR;
350 break;
351 case SPINOR_OP_RDSR:
352 val |= HSFSTS_CTL_FCYCLE_RDSR;
353 break;
354 default:
355 return -EINVAL;
356 }
357
358 if (len > INTEL_SPI_FIFO_SZ)
359 return -EINVAL;
360
361 val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
362 val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
363 val |= HSFSTS_CTL_FGO;
364 writel(val, ispi->base + HSFSTS_CTL);
365
366 ret = intel_spi_wait_hw_busy(ispi);
367 if (ret)
368 return ret;
369
370 status = readl(ispi->base + HSFSTS_CTL);
371 if (status & HSFSTS_CTL_FCERR)
372 return -EIO;
373 else if (status & HSFSTS_CTL_AEL)
374 return -EACCES;
375
376 return 0;
377 }
378
intel_spi_sw_cycle(struct intel_spi * ispi,u8 opcode,size_t len,int optype)379 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
380 int optype)
381 {
382 u32 val = 0, status;
383 u8 atomic_preopcode;
384 int ret;
385
386 ret = intel_spi_opcode_index(ispi, opcode, optype);
387 if (ret < 0)
388 return ret;
389
390 if (len > INTEL_SPI_FIFO_SZ)
391 return -EINVAL;
392
393 /*
394 * Always clear it after each SW sequencer operation regardless
395 * of whether it is successful or not.
396 */
397 atomic_preopcode = ispi->atomic_preopcode;
398 ispi->atomic_preopcode = 0;
399
400 /* Only mark 'Data Cycle' bit when there is data to be transferred */
401 if (len > 0)
402 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
403 val |= ret << SSFSTS_CTL_COP_SHIFT;
404 val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
405 val |= SSFSTS_CTL_SCGO;
406 if (atomic_preopcode) {
407 u16 preop;
408
409 switch (optype) {
410 case OPTYPE_WRITE_NO_ADDR:
411 case OPTYPE_WRITE_WITH_ADDR:
412 /* Pick matching preopcode for the atomic sequence */
413 preop = readw(ispi->sregs + PREOP_OPTYPE);
414 if ((preop & 0xff) == atomic_preopcode)
415 ; /* Do nothing */
416 else if ((preop >> 8) == atomic_preopcode)
417 val |= SSFSTS_CTL_SPOP;
418 else
419 return -EINVAL;
420
421 /* Enable atomic sequence */
422 val |= SSFSTS_CTL_ACS;
423 break;
424
425 default:
426 return -EINVAL;
427 }
428 }
429 writel(val, ispi->sregs + SSFSTS_CTL);
430
431 ret = intel_spi_wait_sw_busy(ispi);
432 if (ret)
433 return ret;
434
435 status = readl(ispi->sregs + SSFSTS_CTL);
436 if (status & SSFSTS_CTL_FCERR)
437 return -EIO;
438 else if (status & SSFSTS_CTL_AEL)
439 return -EACCES;
440
441 return 0;
442 }
443
intel_spi_read_reg(struct intel_spi * ispi,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)444 static int intel_spi_read_reg(struct intel_spi *ispi,
445 const struct intel_spi_mem_op *iop,
446 const struct spi_mem_op *op)
447 {
448 size_t nbytes = op->data.nbytes;
449 u8 opcode = op->cmd.opcode;
450 int ret;
451
452 /* Address of the first chip */
453 writel(0, ispi->base + FADDR);
454
455 if (ispi->swseq_reg)
456 ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
457 OPTYPE_READ_NO_ADDR);
458 else
459 ret = intel_spi_hw_cycle(ispi, opcode, nbytes);
460
461 if (ret)
462 return ret;
463
464 return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
465 }
466
intel_spi_write_reg(struct intel_spi * ispi,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)467 static int intel_spi_write_reg(struct intel_spi *ispi,
468 const struct intel_spi_mem_op *iop,
469 const struct spi_mem_op *op)
470 {
471 size_t nbytes = op->data.nbytes;
472 u8 opcode = op->cmd.opcode;
473 int ret;
474
475 /*
476 * This is handled with atomic operation and preop code in Intel
477 * controller so we only verify that it is available. If the
478 * controller is not locked, program the opcode to the PREOP
479 * register for later use.
480 *
481 * When hardware sequencer is used there is no need to program
482 * any opcodes (it handles them automatically as part of a command).
483 */
484 if (opcode == SPINOR_OP_WREN) {
485 u16 preop;
486
487 if (!ispi->swseq_reg)
488 return 0;
489
490 preop = readw(ispi->sregs + PREOP_OPTYPE);
491 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
492 if (ispi->locked)
493 return -EINVAL;
494 writel(opcode, ispi->sregs + PREOP_OPTYPE);
495 }
496
497 /*
498 * This enables atomic sequence on next SW sycle. Will
499 * be cleared after next operation.
500 */
501 ispi->atomic_preopcode = opcode;
502 return 0;
503 }
504
505 /*
506 * We hope that HW sequencer will do the right thing automatically and
507 * with the SW sequencer we cannot use preopcode anyway, so just ignore
508 * the Write Disable operation and pretend it was completed
509 * successfully.
510 */
511 if (opcode == SPINOR_OP_WRDI)
512 return 0;
513
514 writel(0, ispi->base + FADDR);
515
516 /* Write the value beforehand */
517 ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
518 if (ret)
519 return ret;
520
521 if (ispi->swseq_reg)
522 return intel_spi_sw_cycle(ispi, opcode, nbytes,
523 OPTYPE_WRITE_NO_ADDR);
524 return intel_spi_hw_cycle(ispi, opcode, nbytes);
525 }
526
intel_spi_read(struct intel_spi * ispi,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)527 static int intel_spi_read(struct intel_spi *ispi,
528 const struct intel_spi_mem_op *iop,
529 const struct spi_mem_op *op)
530 {
531 void *read_buf = op->data.buf.in;
532 size_t block_size, nbytes = op->data.nbytes;
533 u32 addr = op->addr.val;
534 u32 val, status;
535 int ret;
536
537 /*
538 * Atomic sequence is not expected with HW sequencer reads. Make
539 * sure it is cleared regardless.
540 */
541 if (WARN_ON_ONCE(ispi->atomic_preopcode))
542 ispi->atomic_preopcode = 0;
543
544 while (nbytes > 0) {
545 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
546
547 /* Read cannot cross 4K boundary */
548 block_size = min_t(loff_t, addr + block_size,
549 round_up(addr + 1, SZ_4K)) - addr;
550
551 writel(addr, ispi->base + FADDR);
552
553 val = readl(ispi->base + HSFSTS_CTL);
554 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
555 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
556 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
557 val |= HSFSTS_CTL_FCYCLE_READ;
558 val |= HSFSTS_CTL_FGO;
559 writel(val, ispi->base + HSFSTS_CTL);
560
561 ret = intel_spi_wait_hw_busy(ispi);
562 if (ret)
563 return ret;
564
565 status = readl(ispi->base + HSFSTS_CTL);
566 if (status & HSFSTS_CTL_FCERR)
567 ret = -EIO;
568 else if (status & HSFSTS_CTL_AEL)
569 ret = -EACCES;
570
571 if (ret < 0) {
572 dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
573 return ret;
574 }
575
576 ret = intel_spi_read_block(ispi, read_buf, block_size);
577 if (ret)
578 return ret;
579
580 nbytes -= block_size;
581 addr += block_size;
582 read_buf += block_size;
583 }
584
585 return 0;
586 }
587
intel_spi_write(struct intel_spi * ispi,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)588 static int intel_spi_write(struct intel_spi *ispi,
589 const struct intel_spi_mem_op *iop,
590 const struct spi_mem_op *op)
591 {
592 size_t block_size, nbytes = op->data.nbytes;
593 const void *write_buf = op->data.buf.out;
594 u32 addr = op->addr.val;
595 u32 val, status;
596 int ret;
597
598 /* Not needed with HW sequencer write, make sure it is cleared */
599 ispi->atomic_preopcode = 0;
600
601 while (nbytes > 0) {
602 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
603
604 /* Write cannot cross 4K boundary */
605 block_size = min_t(loff_t, addr + block_size,
606 round_up(addr + 1, SZ_4K)) - addr;
607
608 writel(addr, ispi->base + FADDR);
609
610 val = readl(ispi->base + HSFSTS_CTL);
611 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
612 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
613 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
614 val |= HSFSTS_CTL_FCYCLE_WRITE;
615
616 ret = intel_spi_write_block(ispi, write_buf, block_size);
617 if (ret) {
618 dev_err(ispi->dev, "failed to write block\n");
619 return ret;
620 }
621
622 /* Start the write now */
623 val |= HSFSTS_CTL_FGO;
624 writel(val, ispi->base + HSFSTS_CTL);
625
626 ret = intel_spi_wait_hw_busy(ispi);
627 if (ret) {
628 dev_err(ispi->dev, "timeout\n");
629 return ret;
630 }
631
632 status = readl(ispi->base + HSFSTS_CTL);
633 if (status & HSFSTS_CTL_FCERR)
634 ret = -EIO;
635 else if (status & HSFSTS_CTL_AEL)
636 ret = -EACCES;
637
638 if (ret < 0) {
639 dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
640 return ret;
641 }
642
643 nbytes -= block_size;
644 addr += block_size;
645 write_buf += block_size;
646 }
647
648 return 0;
649 }
650
intel_spi_erase(struct intel_spi * ispi,const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)651 static int intel_spi_erase(struct intel_spi *ispi,
652 const struct intel_spi_mem_op *iop,
653 const struct spi_mem_op *op)
654 {
655 u8 opcode = op->cmd.opcode;
656 u32 addr = op->addr.val;
657 u32 val, status;
658 int ret;
659
660 writel(addr, ispi->base + FADDR);
661
662 if (ispi->swseq_erase)
663 return intel_spi_sw_cycle(ispi, opcode, 0,
664 OPTYPE_WRITE_WITH_ADDR);
665
666 /* Not needed with HW sequencer erase, make sure it is cleared */
667 ispi->atomic_preopcode = 0;
668
669 val = readl(ispi->base + HSFSTS_CTL);
670 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
671 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
672 val |= HSFSTS_CTL_FGO;
673 val |= iop->replacement_op;
674 writel(val, ispi->base + HSFSTS_CTL);
675
676 ret = intel_spi_wait_hw_busy(ispi);
677 if (ret)
678 return ret;
679
680 status = readl(ispi->base + HSFSTS_CTL);
681 if (status & HSFSTS_CTL_FCERR)
682 return -EIO;
683 if (status & HSFSTS_CTL_AEL)
684 return -EACCES;
685
686 return 0;
687 }
688
intel_spi_cmp_mem_op(const struct intel_spi_mem_op * iop,const struct spi_mem_op * op)689 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
690 const struct spi_mem_op *op)
691 {
692 if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
693 iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
694 iop->mem_op.cmd.dtr != op->cmd.dtr ||
695 iop->mem_op.cmd.opcode != op->cmd.opcode)
696 return false;
697
698 if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
699 iop->mem_op.addr.dtr != op->addr.dtr)
700 return false;
701
702 if (iop->mem_op.data.dir != op->data.dir ||
703 iop->mem_op.data.dtr != op->data.dtr)
704 return false;
705
706 if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
707 if (iop->mem_op.data.buswidth != op->data.buswidth)
708 return false;
709 }
710
711 return true;
712 }
713
714 static const struct intel_spi_mem_op *
intel_spi_match_mem_op(struct intel_spi * ispi,const struct spi_mem_op * op)715 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
716 {
717 const struct intel_spi_mem_op *iop;
718
719 for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
720 if (intel_spi_cmp_mem_op(iop, op))
721 break;
722 }
723
724 return iop->mem_op.cmd.opcode ? iop : NULL;
725 }
726
intel_spi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)727 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
728 const struct spi_mem_op *op)
729 {
730 struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
731 const struct intel_spi_mem_op *iop;
732
733 iop = intel_spi_match_mem_op(ispi, op);
734 if (!iop) {
735 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
736 return false;
737 }
738
739 /*
740 * For software sequencer check that the opcode is actually
741 * present in the opmenu if it is locked.
742 */
743 if (ispi->swseq_reg && ispi->locked) {
744 int i;
745
746 /* Check if it is in the locked opcodes list */
747 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
748 if (ispi->opcodes[i] == op->cmd.opcode)
749 return true;
750 }
751
752 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
753 return false;
754 }
755
756 return true;
757 }
758
intel_spi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)759 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
760 {
761 struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
762 const struct intel_spi_mem_op *iop;
763
764 iop = intel_spi_match_mem_op(ispi, op);
765 if (!iop)
766 return -EOPNOTSUPP;
767
768 return iop->exec_op(ispi, iop, op);
769 }
770
intel_spi_get_name(struct spi_mem * mem)771 static const char *intel_spi_get_name(struct spi_mem *mem)
772 {
773 const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
774
775 /*
776 * Return name of the flash controller device to be compatible
777 * with the MTD version.
778 */
779 return dev_name(ispi->dev);
780 }
781
intel_spi_dirmap_create(struct spi_mem_dirmap_desc * desc)782 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
783 {
784 struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
785 const struct intel_spi_mem_op *iop;
786
787 iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
788 if (!iop)
789 return -EOPNOTSUPP;
790
791 desc->priv = (void *)iop;
792 return 0;
793 }
794
intel_spi_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)795 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
796 size_t len, void *buf)
797 {
798 struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
799 const struct intel_spi_mem_op *iop = desc->priv;
800 struct spi_mem_op op = desc->info.op_tmpl;
801 int ret;
802
803 /* Fill in the gaps */
804 op.addr.val = offs;
805 op.data.nbytes = len;
806 op.data.buf.in = buf;
807
808 ret = iop->exec_op(ispi, iop, &op);
809 return ret ? ret : len;
810 }
811
intel_spi_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)812 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
813 size_t len, const void *buf)
814 {
815 struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
816 const struct intel_spi_mem_op *iop = desc->priv;
817 struct spi_mem_op op = desc->info.op_tmpl;
818 int ret;
819
820 op.addr.val = offs;
821 op.data.nbytes = len;
822 op.data.buf.out = buf;
823
824 ret = iop->exec_op(ispi, iop, &op);
825 return ret ? ret : len;
826 }
827
828 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
829 .supports_op = intel_spi_supports_mem_op,
830 .exec_op = intel_spi_exec_mem_op,
831 .get_name = intel_spi_get_name,
832 .dirmap_create = intel_spi_dirmap_create,
833 .dirmap_read = intel_spi_dirmap_read,
834 .dirmap_write = intel_spi_dirmap_write,
835 };
836
837 #define INTEL_SPI_OP_ADDR(__nbytes) \
838 { \
839 .nbytes = __nbytes, \
840 }
841
842 #define INTEL_SPI_OP_NO_DATA \
843 { \
844 .dir = SPI_MEM_NO_DATA, \
845 }
846
847 #define INTEL_SPI_OP_DATA_IN(__buswidth) \
848 { \
849 .dir = SPI_MEM_DATA_IN, \
850 .buswidth = __buswidth, \
851 }
852
853 #define INTEL_SPI_OP_DATA_OUT(__buswidth) \
854 { \
855 .dir = SPI_MEM_DATA_OUT, \
856 .buswidth = __buswidth, \
857 }
858
859 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \
860 { \
861 .mem_op = { \
862 .cmd = __cmd, \
863 .addr = __addr, \
864 .data = __data, \
865 }, \
866 .exec_op = __exec_op, \
867 }
868
869 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
870 { \
871 .mem_op = { \
872 .cmd = __cmd, \
873 .addr = __addr, \
874 .data = __data, \
875 }, \
876 .exec_op = __exec_op, \
877 .replacement_op = __repl, \
878 }
879
880 /*
881 * The controller handles pretty much everything internally based on the
882 * SFDP data but we want to make sure we only support the operations
883 * actually possible. Only check buswidth and transfer direction, the
884 * core validates data.
885 */
886 #define INTEL_SPI_GENERIC_OPS \
887 /* Status register operations */ \
888 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \
889 SPI_MEM_OP_NO_ADDR, \
890 INTEL_SPI_OP_DATA_IN(1), \
891 intel_spi_read_reg), \
892 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \
893 SPI_MEM_OP_NO_ADDR, \
894 INTEL_SPI_OP_DATA_IN(1), \
895 intel_spi_read_reg), \
896 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \
897 SPI_MEM_OP_NO_ADDR, \
898 INTEL_SPI_OP_DATA_OUT(1), \
899 intel_spi_write_reg), \
900 /* Normal read */ \
901 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
902 INTEL_SPI_OP_ADDR(3), \
903 INTEL_SPI_OP_DATA_IN(1), \
904 intel_spi_read), \
905 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
906 INTEL_SPI_OP_ADDR(3), \
907 INTEL_SPI_OP_DATA_IN(2), \
908 intel_spi_read), \
909 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
910 INTEL_SPI_OP_ADDR(3), \
911 INTEL_SPI_OP_DATA_IN(4), \
912 intel_spi_read), \
913 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
914 INTEL_SPI_OP_ADDR(4), \
915 INTEL_SPI_OP_DATA_IN(1), \
916 intel_spi_read), \
917 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
918 INTEL_SPI_OP_ADDR(4), \
919 INTEL_SPI_OP_DATA_IN(2), \
920 intel_spi_read), \
921 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \
922 INTEL_SPI_OP_ADDR(4), \
923 INTEL_SPI_OP_DATA_IN(4), \
924 intel_spi_read), \
925 /* Fast read */ \
926 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
927 INTEL_SPI_OP_ADDR(3), \
928 INTEL_SPI_OP_DATA_IN(1), \
929 intel_spi_read), \
930 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
931 INTEL_SPI_OP_ADDR(3), \
932 INTEL_SPI_OP_DATA_IN(2), \
933 intel_spi_read), \
934 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
935 INTEL_SPI_OP_ADDR(3), \
936 INTEL_SPI_OP_DATA_IN(4), \
937 intel_spi_read), \
938 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
939 INTEL_SPI_OP_ADDR(4), \
940 INTEL_SPI_OP_DATA_IN(1), \
941 intel_spi_read), \
942 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
943 INTEL_SPI_OP_ADDR(4), \
944 INTEL_SPI_OP_DATA_IN(2), \
945 intel_spi_read), \
946 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \
947 INTEL_SPI_OP_ADDR(4), \
948 INTEL_SPI_OP_DATA_IN(4), \
949 intel_spi_read), \
950 /* Read with 4-byte address opcode */ \
951 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
952 INTEL_SPI_OP_ADDR(4), \
953 INTEL_SPI_OP_DATA_IN(1), \
954 intel_spi_read), \
955 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
956 INTEL_SPI_OP_ADDR(4), \
957 INTEL_SPI_OP_DATA_IN(2), \
958 intel_spi_read), \
959 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \
960 INTEL_SPI_OP_ADDR(4), \
961 INTEL_SPI_OP_DATA_IN(4), \
962 intel_spi_read), \
963 /* Fast read with 4-byte address opcode */ \
964 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
965 INTEL_SPI_OP_ADDR(4), \
966 INTEL_SPI_OP_DATA_IN(1), \
967 intel_spi_read), \
968 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
969 INTEL_SPI_OP_ADDR(4), \
970 INTEL_SPI_OP_DATA_IN(2), \
971 intel_spi_read), \
972 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \
973 INTEL_SPI_OP_ADDR(4), \
974 INTEL_SPI_OP_DATA_IN(4), \
975 intel_spi_read), \
976 /* Write operations */ \
977 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
978 INTEL_SPI_OP_ADDR(3), \
979 INTEL_SPI_OP_DATA_OUT(1), \
980 intel_spi_write), \
981 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \
982 INTEL_SPI_OP_ADDR(4), \
983 INTEL_SPI_OP_DATA_OUT(1), \
984 intel_spi_write), \
985 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \
986 INTEL_SPI_OP_ADDR(4), \
987 INTEL_SPI_OP_DATA_OUT(1), \
988 intel_spi_write), \
989 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \
990 SPI_MEM_OP_NO_ADDR, \
991 SPI_MEM_OP_NO_DATA, \
992 intel_spi_write_reg), \
993 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \
994 SPI_MEM_OP_NO_ADDR, \
995 SPI_MEM_OP_NO_DATA, \
996 intel_spi_write_reg), \
997 /* Erase operations */ \
998 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
999 INTEL_SPI_OP_ADDR(3), \
1000 SPI_MEM_OP_NO_DATA, \
1001 intel_spi_erase, \
1002 HSFSTS_CTL_FCYCLE_ERASE), \
1003 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \
1004 INTEL_SPI_OP_ADDR(4), \
1005 SPI_MEM_OP_NO_DATA, \
1006 intel_spi_erase, \
1007 HSFSTS_CTL_FCYCLE_ERASE), \
1008 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \
1009 INTEL_SPI_OP_ADDR(4), \
1010 SPI_MEM_OP_NO_DATA, \
1011 intel_spi_erase, \
1012 HSFSTS_CTL_FCYCLE_ERASE) \
1013
1014 static const struct intel_spi_mem_op generic_mem_ops[] = {
1015 INTEL_SPI_GENERIC_OPS,
1016 { },
1017 };
1018
1019 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1020 INTEL_SPI_GENERIC_OPS,
1021 /* 64k sector erase operations */
1022 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1023 INTEL_SPI_OP_ADDR(3),
1024 SPI_MEM_OP_NO_DATA,
1025 intel_spi_erase,
1026 HSFSTS_CTL_FCYCLE_ERASE_64K),
1027 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1028 INTEL_SPI_OP_ADDR(4),
1029 SPI_MEM_OP_NO_DATA,
1030 intel_spi_erase,
1031 HSFSTS_CTL_FCYCLE_ERASE_64K),
1032 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1033 INTEL_SPI_OP_ADDR(4),
1034 SPI_MEM_OP_NO_DATA,
1035 intel_spi_erase,
1036 HSFSTS_CTL_FCYCLE_ERASE_64K),
1037 { },
1038 };
1039
intel_spi_init(struct intel_spi * ispi)1040 static int intel_spi_init(struct intel_spi *ispi)
1041 {
1042 u32 opmenu0, opmenu1, lvscc, uvscc, val;
1043 bool erase_64k = false;
1044 int i;
1045
1046 switch (ispi->info->type) {
1047 case INTEL_SPI_BYT:
1048 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1049 ispi->pregs = ispi->base + BYT_PR;
1050 ispi->nregions = BYT_FREG_NUM;
1051 ispi->pr_num = BYT_PR_NUM;
1052 ispi->swseq_reg = true;
1053 break;
1054
1055 case INTEL_SPI_LPT:
1056 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1057 ispi->pregs = ispi->base + LPT_PR;
1058 ispi->nregions = LPT_FREG_NUM;
1059 ispi->pr_num = LPT_PR_NUM;
1060 ispi->swseq_reg = true;
1061 break;
1062
1063 case INTEL_SPI_BXT:
1064 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1065 ispi->pregs = ispi->base + BXT_PR;
1066 ispi->nregions = BXT_FREG_NUM;
1067 ispi->pr_num = BXT_PR_NUM;
1068 erase_64k = true;
1069 break;
1070
1071 case INTEL_SPI_CNL:
1072 ispi->sregs = NULL;
1073 ispi->pregs = ispi->base + CNL_PR;
1074 ispi->nregions = CNL_FREG_NUM;
1075 ispi->pr_num = CNL_PR_NUM;
1076 break;
1077
1078 default:
1079 return -EINVAL;
1080 }
1081
1082 /* Try to disable write protection if user asked to do so */
1083 if (writeable && !intel_spi_set_writeable(ispi)) {
1084 dev_warn(ispi->dev, "can't disable chip write protection\n");
1085 writeable = false;
1086 }
1087
1088 /* Disable #SMI generation from HW sequencer */
1089 val = readl(ispi->base + HSFSTS_CTL);
1090 val &= ~HSFSTS_CTL_FSMIE;
1091 writel(val, ispi->base + HSFSTS_CTL);
1092
1093 /*
1094 * Determine whether erase operation should use HW or SW sequencer.
1095 *
1096 * The HW sequencer has a predefined list of opcodes, with only the
1097 * erase opcode being programmable in LVSCC and UVSCC registers.
1098 * If these registers don't contain a valid erase opcode, erase
1099 * cannot be done using HW sequencer.
1100 */
1101 lvscc = readl(ispi->base + LVSCC);
1102 uvscc = readl(ispi->base + UVSCC);
1103 if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1104 ispi->swseq_erase = true;
1105 /* SPI controller on Intel BXT supports 64K erase opcode */
1106 if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1107 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1108 !(uvscc & ERASE_64K_OPCODE_MASK))
1109 erase_64k = false;
1110
1111 if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1112 dev_err(ispi->dev, "software sequencer not supported, but required\n");
1113 return -EINVAL;
1114 }
1115
1116 /*
1117 * Some controllers can only do basic operations using hardware
1118 * sequencer. All other operations are supposed to be carried out
1119 * using software sequencer.
1120 */
1121 if (ispi->swseq_reg) {
1122 /* Disable #SMI generation from SW sequencer */
1123 val = readl(ispi->sregs + SSFSTS_CTL);
1124 val &= ~SSFSTS_CTL_FSMIE;
1125 writel(val, ispi->sregs + SSFSTS_CTL);
1126 }
1127
1128 /* Check controller's lock status */
1129 val = readl(ispi->base + HSFSTS_CTL);
1130 ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1131
1132 if (ispi->locked && ispi->sregs) {
1133 /*
1134 * BIOS programs allowed opcodes and then locks down the
1135 * register. So read back what opcodes it decided to support.
1136 * That's the set we are going to support as well.
1137 */
1138 opmenu0 = readl(ispi->sregs + OPMENU0);
1139 opmenu1 = readl(ispi->sregs + OPMENU1);
1140
1141 if (opmenu0 && opmenu1) {
1142 for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1143 ispi->opcodes[i] = opmenu0 >> i * 8;
1144 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1145 }
1146 }
1147 }
1148
1149 if (erase_64k) {
1150 dev_dbg(ispi->dev, "Using erase_64k memory operations");
1151 ispi->mem_ops = erase_64k_mem_ops;
1152 } else {
1153 dev_dbg(ispi->dev, "Using generic memory operations");
1154 ispi->mem_ops = generic_mem_ops;
1155 }
1156
1157 intel_spi_dump_regs(ispi);
1158 return 0;
1159 }
1160
intel_spi_is_protected(const struct intel_spi * ispi,unsigned int base,unsigned int limit)1161 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1162 unsigned int base, unsigned int limit)
1163 {
1164 int i;
1165
1166 for (i = 0; i < ispi->pr_num; i++) {
1167 u32 pr_base, pr_limit, pr_value;
1168
1169 pr_value = readl(ispi->pregs + PR(i));
1170 if (!(pr_value & (PR_WPE | PR_RPE)))
1171 continue;
1172
1173 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1174 pr_base = pr_value & PR_BASE_MASK;
1175
1176 if (pr_base >= base && pr_limit <= limit)
1177 return true;
1178 }
1179
1180 return false;
1181 }
1182
1183 /*
1184 * There will be a single partition holding all enabled flash regions. We
1185 * call this "BIOS".
1186 */
intel_spi_fill_partition(struct intel_spi * ispi,struct mtd_partition * part)1187 static void intel_spi_fill_partition(struct intel_spi *ispi,
1188 struct mtd_partition *part)
1189 {
1190 u64 end;
1191 int i;
1192
1193 memset(part, 0, sizeof(*part));
1194
1195 /* Start from the mandatory descriptor region */
1196 part->size = 4096;
1197 part->name = "BIOS";
1198
1199 /*
1200 * Now try to find where this partition ends based on the flash
1201 * region registers.
1202 */
1203 for (i = 1; i < ispi->nregions; i++) {
1204 u32 region, base, limit;
1205
1206 region = readl(ispi->base + FREG(i));
1207 base = region & FREG_BASE_MASK;
1208 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1209
1210 if (base >= limit || limit == 0)
1211 continue;
1212
1213 /*
1214 * If any of the regions have protection bits set, make the
1215 * whole partition read-only to be on the safe side.
1216 *
1217 * Also if the user did not ask the chip to be writeable
1218 * mask the bit too.
1219 */
1220 if (!writeable || intel_spi_is_protected(ispi, base, limit))
1221 part->mask_flags |= MTD_WRITEABLE;
1222
1223 end = (limit << 12) + 4096;
1224 if (end > part->size)
1225 part->size = end;
1226 }
1227 }
1228
intel_spi_populate_chip(struct intel_spi * ispi)1229 static int intel_spi_populate_chip(struct intel_spi *ispi)
1230 {
1231 struct flash_platform_data *pdata;
1232 struct spi_board_info chip;
1233
1234 pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1235 if (!pdata)
1236 return -ENOMEM;
1237
1238 pdata->nr_parts = 1;
1239 pdata->parts = devm_kcalloc(ispi->dev, sizeof(*pdata->parts),
1240 pdata->nr_parts, GFP_KERNEL);
1241 if (!pdata->parts)
1242 return -ENOMEM;
1243
1244 intel_spi_fill_partition(ispi, pdata->parts);
1245
1246 memset(&chip, 0, sizeof(chip));
1247 snprintf(chip.modalias, 8, "spi-nor");
1248 chip.platform_data = pdata;
1249
1250 return spi_new_device(ispi->master, &chip) ? 0 : -ENODEV;
1251 }
1252
1253 /**
1254 * intel_spi_probe() - Probe the Intel SPI flash controller
1255 * @dev: Pointer to the parent device
1256 * @mem: MMIO resource
1257 * @info: Platform specific information
1258 *
1259 * Probes Intel SPI flash controller and creates the flash chip device.
1260 * Returns %0 on success and negative errno in case of failure.
1261 */
intel_spi_probe(struct device * dev,struct resource * mem,const struct intel_spi_boardinfo * info)1262 int intel_spi_probe(struct device *dev, struct resource *mem,
1263 const struct intel_spi_boardinfo *info)
1264 {
1265 struct spi_controller *master;
1266 struct intel_spi *ispi;
1267 int ret;
1268
1269 master = devm_spi_alloc_master(dev, sizeof(*ispi));
1270 if (!master)
1271 return -ENOMEM;
1272
1273 master->mem_ops = &intel_spi_mem_ops;
1274
1275 ispi = spi_master_get_devdata(master);
1276
1277 ispi->base = devm_ioremap_resource(dev, mem);
1278 if (IS_ERR(ispi->base))
1279 return PTR_ERR(ispi->base);
1280
1281 ispi->dev = dev;
1282 ispi->master = master;
1283 ispi->info = info;
1284
1285 ret = intel_spi_init(ispi);
1286 if (ret)
1287 return ret;
1288
1289 ret = devm_spi_register_master(dev, master);
1290 if (ret)
1291 return ret;
1292
1293 return intel_spi_populate_chip(ispi);
1294 }
1295 EXPORT_SYMBOL_GPL(intel_spi_probe);
1296
1297 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1298 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1299 MODULE_LICENSE("GPL v2");
1300