1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
117 );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122 "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123 "when poll_queues are enabled then &\n\t\t"
124 "perf_mode is set to latency mode. &\n\t\t"
125 );
126
127 enum mpt3sas_perf_mode {
128 MPT_PERF_MODE_DEFAULT = -1,
129 MPT_PERF_MODE_BALANCED = 0,
130 MPT_PERF_MODE_IOPS = 1,
131 MPT_PERF_MODE_LATENCY = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 /**
143 * mpt3sas_base_check_cmd_timeout - Function
144 * to check timeout and command termination due
145 * to Host reset.
146 *
147 * @ioc: per adapter object.
148 * @status: Status of issued command.
149 * @mpi_request:mf request pointer.
150 * @sz: size of buffer.
151 *
152 * Return: 1/0 Reset to be done or Not
153 */
154 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156 u8 status, void *mpi_request, int sz)
157 {
158 u8 issue_reset = 0;
159
160 if (!(status & MPT3_CMD_RESET))
161 issue_reset = 1;
162
163 ioc_err(ioc, "Command %s\n",
164 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165 _debug_dump_mf(mpi_request, sz);
166
167 return issue_reset;
168 }
169
170 /**
171 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172 * @val: ?
173 * @kp: ?
174 *
175 * Return: ?
176 */
177 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180 int ret = param_set_int(val, kp);
181 struct MPT3SAS_ADAPTER *ioc;
182
183 if (ret)
184 return ret;
185
186 /* global ioc spinlock to protect controller list on list operations */
187 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188 spin_lock(&gioc_lock);
189 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190 ioc->fwfault_debug = mpt3sas_fwfault_debug;
191 spin_unlock(&gioc_lock);
192 return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195 param_get_int, &mpt3sas_fwfault_debug, 0644);
196
197 /**
198 * _base_readl_aero - retry readl for max three times.
199 * @addr: MPT Fusion system interface register address
200 *
201 * Retry the readl() for max three times if it gets zero value
202 * while reading the system interface register.
203 */
204 static inline u32
_base_readl_aero(const volatile void __iomem * addr)205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207 u32 i = 0, ret_val;
208
209 do {
210 ret_val = readl(addr);
211 i++;
212 } while (ret_val == 0 && i < 3);
213
214 return ret_val;
215 }
216
217 static inline u32
_base_readl(const volatile void __iomem * addr)218 _base_readl(const volatile void __iomem *addr)
219 {
220 return readl(addr);
221 }
222
223 /**
224 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225 * in BAR0 space.
226 *
227 * @ioc: per adapter object
228 * @reply: reply message frame(lower 32bit addr)
229 * @index: System request message index.
230 */
231 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233 u32 index)
234 {
235 /*
236 * 256 is offset within sys register.
237 * 256 offset MPI frame starts. Max MPI frame supported is 32.
238 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239 */
240 u16 cmd_credit = ioc->facts.RequestCredit + 1;
241 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242 MPI_FRAME_START_OFFSET +
243 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244
245 writel(reply, reply_free_iomem);
246 }
247
248 /**
249 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250 * to system/BAR0 region.
251 *
252 * @dst_iomem: Pointer to the destination location in BAR0 space.
253 * @src: Pointer to the Source data.
254 * @size: Size of data to be copied.
255 */
256 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259 int i;
260 u32 *src_virt_mem = (u32 *)src;
261
262 for (i = 0; i < size/4; i++)
263 writel((u32)src_virt_mem[i],
264 (void __iomem *)dst_iomem + (i * 4));
265 }
266
267 /**
268 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269 *
270 * @dst_iomem: Pointer to the destination location in BAR0 space.
271 * @src: Pointer to the Source data.
272 * @size: Size of data to be copied.
273 */
274 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277 int i;
278 u32 *src_virt_mem = (u32 *)(src);
279
280 for (i = 0; i < size/4; i++)
281 writel((u32)src_virt_mem[i],
282 (void __iomem *)dst_iomem + (i * 4));
283 }
284
285 /**
286 * _base_get_chain - Calculates and Returns virtual chain address
287 * for the provided smid in BAR0 space.
288 *
289 * @ioc: per adapter object
290 * @smid: system request message index
291 * @sge_chain_count: Scatter gather chain count.
292 *
293 * Return: the chain address.
294 */
295 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297 u8 sge_chain_count)
298 {
299 void __iomem *base_chain, *chain_virt;
300 u16 cmd_credit = ioc->facts.RequestCredit + 1;
301
302 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303 (cmd_credit * ioc->request_sz) +
304 REPLY_FREE_POOL_SIZE;
305 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307 return chain_virt;
308 }
309
310 /**
311 * _base_get_chain_phys - Calculates and Returns physical address
312 * in BAR0 for scatter gather chains, for
313 * the provided smid.
314 *
315 * @ioc: per adapter object
316 * @smid: system request message index
317 * @sge_chain_count: Scatter gather chain count.
318 *
319 * Return: Physical chain address.
320 */
321 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323 u8 sge_chain_count)
324 {
325 phys_addr_t base_chain_phys, chain_phys;
326 u16 cmd_credit = ioc->facts.RequestCredit + 1;
327
328 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329 (cmd_credit * ioc->request_sz) +
330 REPLY_FREE_POOL_SIZE;
331 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333 return chain_phys;
334 }
335
336 /**
337 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338 * buffer address for the provided smid.
339 * (Each smid can have 64K starts from 17024)
340 *
341 * @ioc: per adapter object
342 * @smid: system request message index
343 *
344 * Return: Pointer to buffer location in BAR0.
345 */
346
347 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350 u16 cmd_credit = ioc->facts.RequestCredit + 1;
351 // Added extra 1 to reach end of chain.
352 void __iomem *chain_end = _base_get_chain(ioc,
353 cmd_credit + 1,
354 ioc->facts.MaxChainDepth);
355 return chain_end + (smid * 64 * 1024);
356 }
357
358 /**
359 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360 * Host buffer Physical address for the provided smid.
361 * (Each smid can have 64K starts from 17024)
362 *
363 * @ioc: per adapter object
364 * @smid: system request message index
365 *
366 * Return: Pointer to buffer location in BAR0.
367 */
368 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371 u16 cmd_credit = ioc->facts.RequestCredit + 1;
372 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373 cmd_credit + 1,
374 ioc->facts.MaxChainDepth);
375 return chain_end_phys + (smid * 64 * 1024);
376 }
377
378 /**
379 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380 * lookup list and Provides chain_buffer
381 * address for the matching dma address.
382 * (Each smid can have 64K starts from 17024)
383 *
384 * @ioc: per adapter object
385 * @chain_buffer_dma: Chain buffer dma address.
386 *
387 * Return: Pointer to chain buffer. Or Null on Failure.
388 */
389 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391 dma_addr_t chain_buffer_dma)
392 {
393 u16 index, j;
394 struct chain_tracker *ct;
395
396 for (index = 0; index < ioc->scsiio_depth; index++) {
397 for (j = 0; j < ioc->chains_needed_per_io; j++) {
398 ct = &ioc->chain_lookup[index].chains_per_smid[j];
399 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400 return ct->chain_buffer;
401 }
402 }
403 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404 return NULL;
405 }
406
407 /**
408 * _clone_sg_entries - MPI EP's scsiio and config requests
409 * are handled here. Base function for
410 * double buffering, before submitting
411 * the requests.
412 *
413 * @ioc: per adapter object.
414 * @mpi_request: mf request pointer.
415 * @smid: system request message index.
416 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418 void *mpi_request, u16 smid)
419 {
420 Mpi2SGESimple32_t *sgel, *sgel_next;
421 u32 sgl_flags, sge_chain_count = 0;
422 bool is_write = false;
423 u16 i = 0;
424 void __iomem *buffer_iomem;
425 phys_addr_t buffer_iomem_phys;
426 void __iomem *buff_ptr;
427 phys_addr_t buff_ptr_phys;
428 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430 phys_addr_t dst_addr_phys;
431 MPI2RequestHeader_t *request_hdr;
432 struct scsi_cmnd *scmd;
433 struct scatterlist *sg_scmd = NULL;
434 int is_scsiio_req = 0;
435
436 request_hdr = (MPI2RequestHeader_t *) mpi_request;
437
438 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439 Mpi25SCSIIORequest_t *scsiio_request =
440 (Mpi25SCSIIORequest_t *)mpi_request;
441 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442 is_scsiio_req = 1;
443 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444 Mpi2ConfigRequest_t *config_req =
445 (Mpi2ConfigRequest_t *)mpi_request;
446 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447 } else
448 return;
449
450 /* From smid we can get scsi_cmd, once we have sg_scmd,
451 * we just need to get sg_virt and sg_next to get virtual
452 * address associated with sgel->Address.
453 */
454
455 if (is_scsiio_req) {
456 /* Get scsi_cmd using smid */
457 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458 if (scmd == NULL) {
459 ioc_err(ioc, "scmd is NULL\n");
460 return;
461 }
462
463 /* Get sg_scmd from scmd provided */
464 sg_scmd = scsi_sglist(scmd);
465 }
466
467 /*
468 * 0 - 255 System register
469 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
470 * 4352 - 4864 Reply_free pool (512 byte is reserved
471 * considering maxCredit 32. Reply need extra
472 * room, for mCPU case kept four times of
473 * maxCredit).
474 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
475 * 128 byte size = 12288)
476 * 17152 - x Host buffer mapped with smid.
477 * (Each smid can have 64K Max IO.)
478 * BAR0+Last 1K MSIX Addr and Data
479 * Total size in use 2113664 bytes of 4MB BAR0
480 */
481
482 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484
485 buff_ptr = buffer_iomem;
486 buff_ptr_phys = buffer_iomem_phys;
487 WARN_ON(buff_ptr_phys > U32_MAX);
488
489 if (le32_to_cpu(sgel->FlagsLength) &
490 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491 is_write = true;
492
493 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494
495 sgl_flags =
496 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497
498 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500 /*
501 * Helper function which on passing
502 * chain_buffer_dma returns chain_buffer. Get
503 * the virtual address for sgel->Address
504 */
505 sgel_next =
506 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
507 le32_to_cpu(sgel->Address));
508 if (sgel_next == NULL)
509 return;
510 /*
511 * This is coping 128 byte chain
512 * frame (not a host buffer)
513 */
514 dst_chain_addr[sge_chain_count] =
515 _base_get_chain(ioc,
516 smid, sge_chain_count);
517 src_chain_addr[sge_chain_count] =
518 (void *) sgel_next;
519 dst_addr_phys = _base_get_chain_phys(ioc,
520 smid, sge_chain_count);
521 WARN_ON(dst_addr_phys > U32_MAX);
522 sgel->Address =
523 cpu_to_le32(lower_32_bits(dst_addr_phys));
524 sgel = sgel_next;
525 sge_chain_count++;
526 break;
527 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528 if (is_write) {
529 if (is_scsiio_req) {
530 _base_clone_to_sys_mem(buff_ptr,
531 sg_virt(sg_scmd),
532 (le32_to_cpu(sgel->FlagsLength) &
533 0x00ffffff));
534 /*
535 * FIXME: this relies on a a zero
536 * PCI mem_offset.
537 */
538 sgel->Address =
539 cpu_to_le32((u32)buff_ptr_phys);
540 } else {
541 _base_clone_to_sys_mem(buff_ptr,
542 ioc->config_vaddr,
543 (le32_to_cpu(sgel->FlagsLength) &
544 0x00ffffff));
545 sgel->Address =
546 cpu_to_le32((u32)buff_ptr_phys);
547 }
548 }
549 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550 0x00ffffff);
551 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552 0x00ffffff);
553 if ((le32_to_cpu(sgel->FlagsLength) &
554 (MPI2_SGE_FLAGS_END_OF_BUFFER
555 << MPI2_SGE_FLAGS_SHIFT)))
556 goto eob_clone_chain;
557 else {
558 /*
559 * Every single element in MPT will have
560 * associated sg_next. Better to sanity that
561 * sg_next is not NULL, but it will be a bug
562 * if it is null.
563 */
564 if (is_scsiio_req) {
565 sg_scmd = sg_next(sg_scmd);
566 if (sg_scmd)
567 sgel++;
568 else
569 goto eob_clone_chain;
570 }
571 }
572 break;
573 }
574 }
575
576 eob_clone_chain:
577 for (i = 0; i < sge_chain_count; i++) {
578 if (is_scsiio_req)
579 _base_clone_to_sys_mem(dst_chain_addr[i],
580 src_chain_addr[i], ioc->request_sz);
581 }
582 }
583
584 /**
585 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586 * @arg: input argument, used to derive ioc
587 *
588 * Return:
589 * 0 if controller is removed from pci subsystem.
590 * -1 for other case.
591 */
mpt3sas_remove_dead_ioc_func(void * arg)592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595 struct pci_dev *pdev;
596
597 if (!ioc)
598 return -1;
599
600 pdev = ioc->pdev;
601 if (!pdev)
602 return -1;
603 pci_stop_and_remove_bus_device_locked(pdev);
604 return 0;
605 }
606
607 /**
608 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609 * @ioc: Per Adapter Object
610 *
611 * Return: nothing.
612 */
_base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER * ioc)613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615 Mpi26IoUnitControlRequest_t *mpi_request;
616 Mpi26IoUnitControlReply_t *mpi_reply;
617 u16 smid;
618 ktime_t current_time;
619 u64 TimeStamp = 0;
620 u8 issue_reset = 0;
621
622 mutex_lock(&ioc->scsih_cmds.mutex);
623 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625 goto out;
626 }
627 ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629 if (!smid) {
630 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632 goto out;
633 }
634 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635 ioc->scsih_cmds.smid = smid;
636 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640 current_time = ktime_get_real();
641 TimeStamp = ktime_to_ms(current_time);
642 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644 init_completion(&ioc->scsih_cmds.done);
645 ioc->put_smid_default(ioc, smid);
646 dinitprintk(ioc, ioc_info(ioc,
647 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648 TimeStamp));
649 wait_for_completion_timeout(&ioc->scsih_cmds.done,
650 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652 mpt3sas_check_cmd_timeout(ioc,
653 ioc->scsih_cmds.status, mpi_request,
654 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655 goto issue_host_reset;
656 }
657 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658 mpi_reply = ioc->scsih_cmds.reply;
659 dinitprintk(ioc, ioc_info(ioc,
660 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661 le16_to_cpu(mpi_reply->IOCStatus),
662 le32_to_cpu(mpi_reply->IOCLogInfo)));
663 }
664 issue_host_reset:
665 if (issue_reset)
666 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669 mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671
672 /**
673 * _base_fault_reset_work - workq handling ioc fault conditions
674 * @work: input argument, used to derive ioc
675 *
676 * Context: sleep.
677 */
678 static void
_base_fault_reset_work(struct work_struct * work)679 _base_fault_reset_work(struct work_struct *work)
680 {
681 struct MPT3SAS_ADAPTER *ioc =
682 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683 unsigned long flags;
684 u32 doorbell;
685 int rc;
686 struct task_struct *p;
687
688
689 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691 ioc->pci_error_recovery)
692 goto rearm_timer;
693 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694
695 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698
699 /* It may be possible that EEH recovery can resolve some of
700 * pci bus failure issues rather removing the dead ioc function
701 * by considering controller is in a non-operational state. So
702 * here priority is given to the EEH recovery. If it doesn't
703 * not resolve this issue, mpt3sas driver will consider this
704 * controller to non-operational state and remove the dead ioc
705 * function.
706 */
707 if (ioc->non_operational_loop++ < 5) {
708 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709 flags);
710 goto rearm_timer;
711 }
712
713 /*
714 * Call _scsih_flush_pending_cmds callback so that we flush all
715 * pending commands back to OS. This call is required to avoid
716 * deadlock at block layer. Dead IOC will fail to do diag reset,
717 * and this call is safe since dead ioc will never return any
718 * command back from HW.
719 */
720 mpt3sas_base_pause_mq_polling(ioc);
721 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722 /*
723 * Set remove_host flag early since kernel thread will
724 * take some time to execute.
725 */
726 ioc->remove_host = 1;
727 /*Remove the Dead Host */
728 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730 if (IS_ERR(p))
731 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732 __func__);
733 else
734 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735 __func__);
736 return; /* don't rearm timer */
737 }
738
739 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741 ioc->manu_pg11.CoreDumpTOSec :
742 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743
744 timeout /= (FAULT_POLLING_INTERVAL/1000);
745
746 if (ioc->ioc_coredump_loop == 0) {
747 mpt3sas_print_coredump_info(ioc,
748 doorbell & MPI2_DOORBELL_DATA_MASK);
749 /* do not accept any IOs and disable the interrupts */
750 spin_lock_irqsave(
751 &ioc->ioc_reset_in_progress_lock, flags);
752 ioc->shost_recovery = 1;
753 spin_unlock_irqrestore(
754 &ioc->ioc_reset_in_progress_lock, flags);
755 mpt3sas_base_mask_interrupts(ioc);
756 mpt3sas_base_pause_mq_polling(ioc);
757 _base_clear_outstanding_commands(ioc);
758 }
759
760 ioc_info(ioc, "%s: CoreDump loop %d.",
761 __func__, ioc->ioc_coredump_loop);
762
763 /* Wait until CoreDump completes or times out */
764 if (ioc->ioc_coredump_loop++ < timeout) {
765 spin_lock_irqsave(
766 &ioc->ioc_reset_in_progress_lock, flags);
767 goto rearm_timer;
768 }
769 }
770
771 if (ioc->ioc_coredump_loop) {
772 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774 __func__, ioc->ioc_coredump_loop);
775 else
776 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777 __func__, ioc->ioc_coredump_loop);
778 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779 }
780 ioc->non_operational_loop = 0;
781 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783 ioc_warn(ioc, "%s: hard reset: %s\n",
784 __func__, rc == 0 ? "success" : "failed");
785 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787 mpt3sas_print_fault_code(ioc, doorbell &
788 MPI2_DOORBELL_DATA_MASK);
789 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790 MPI2_IOC_STATE_COREDUMP)
791 mpt3sas_print_coredump_info(ioc, doorbell &
792 MPI2_DOORBELL_DATA_MASK);
793 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794 MPI2_IOC_STATE_OPERATIONAL)
795 return; /* don't rearm timer */
796 }
797 ioc->ioc_coredump_loop = 0;
798 if (ioc->time_sync_interval &&
799 ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800 ioc->timestamp_update_count = 0;
801 _base_sync_drv_fw_timestamp(ioc);
802 }
803 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804 rearm_timer:
805 if (ioc->fault_reset_work_q)
806 queue_delayed_work(ioc->fault_reset_work_q,
807 &ioc->fault_reset_work,
808 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811
812 /**
813 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814 * @ioc: per adapter object
815 *
816 * Context: sleep.
817 */
818 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821 unsigned long flags;
822
823 if (ioc->fault_reset_work_q)
824 return;
825
826 ioc->timestamp_update_count = 0;
827 /* initialize fault polling */
828
829 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830 snprintf(ioc->fault_reset_work_q_name,
831 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832 ioc->driver_name, ioc->id);
833 ioc->fault_reset_work_q =
834 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835 if (!ioc->fault_reset_work_q) {
836 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837 return;
838 }
839 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840 if (ioc->fault_reset_work_q)
841 queue_delayed_work(ioc->fault_reset_work_q,
842 &ioc->fault_reset_work,
843 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846
847 /**
848 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849 * @ioc: per adapter object
850 *
851 * Context: sleep.
852 */
853 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856 unsigned long flags;
857 struct workqueue_struct *wq;
858
859 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860 wq = ioc->fault_reset_work_q;
861 ioc->fault_reset_work_q = NULL;
862 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863 if (wq) {
864 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865 flush_workqueue(wq);
866 destroy_workqueue(wq);
867 }
868 }
869
870 /**
871 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872 * @ioc: per adapter object
873 * @fault_code: fault code
874 */
875 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
877 {
878 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880
881 /**
882 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883 * @ioc: per adapter object
884 * @fault_code: fault code
885 *
886 * Return: nothing.
887 */
888 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893
894 /**
895 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896 * completes or times out
897 * @ioc: per adapter object
898 * @caller: caller function name
899 *
900 * Return: 0 for success, non-zero for failure.
901 */
902 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904 const char *caller)
905 {
906 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907 ioc->manu_pg11.CoreDumpTOSec :
908 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909
910 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911 timeout);
912
913 if (ioc_state)
914 ioc_err(ioc,
915 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916 caller, ioc_state);
917 else
918 ioc_info(ioc,
919 "%s: CoreDump completed. (ioc_state=0x%x)\n",
920 caller, ioc_state);
921
922 return ioc_state;
923 }
924
925 /**
926 * mpt3sas_halt_firmware - halt's mpt controller firmware
927 * @ioc: per adapter object
928 *
929 * For debugging timeout related issues. Writing 0xCOFFEE00
930 * to the doorbell register will halt controller firmware. With
931 * the purpose to stop both driver and firmware, the enduser can
932 * obtain a ring buffer from controller UART.
933 */
934 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937 u32 doorbell;
938
939 if (!ioc->fwfault_debug)
940 return;
941
942 dump_stack();
943
944 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946 mpt3sas_print_fault_code(ioc, doorbell &
947 MPI2_DOORBELL_DATA_MASK);
948 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949 MPI2_IOC_STATE_COREDUMP) {
950 mpt3sas_print_coredump_info(ioc, doorbell &
951 MPI2_DOORBELL_DATA_MASK);
952 } else {
953 writel(0xC0FFEE00, &ioc->chip->Doorbell);
954 ioc_err(ioc, "Firmware is halted due to command timeout\n");
955 }
956
957 if (ioc->fwfault_debug == 2)
958 for (;;)
959 ;
960 else
961 panic("panic in %s\n", __func__);
962 }
963
964 /**
965 * _base_sas_ioc_info - verbose translation of the ioc status
966 * @ioc: per adapter object
967 * @mpi_reply: reply mf payload returned from firmware
968 * @request_hdr: request mf
969 */
970 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972 MPI2RequestHeader_t *request_hdr)
973 {
974 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975 MPI2_IOCSTATUS_MASK;
976 char *desc = NULL;
977 u16 frame_sz;
978 char *func_str = NULL;
979
980 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984 return;
985
986 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987 return;
988 /*
989 * Older Firmware version doesn't support driver trigger pages.
990 * So, skip displaying 'config invalid type' type
991 * of error message.
992 */
993 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995
996 if ((rqst->ExtPageType ==
997 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998 !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999 return;
1000 }
1001 }
1002
1003 switch (ioc_status) {
1004
1005 /****************************************************************************
1006 * Common IOCStatus values for all replies
1007 ****************************************************************************/
1008
1009 case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010 desc = "invalid function";
1011 break;
1012 case MPI2_IOCSTATUS_BUSY:
1013 desc = "busy";
1014 break;
1015 case MPI2_IOCSTATUS_INVALID_SGL:
1016 desc = "invalid sgl";
1017 break;
1018 case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019 desc = "internal error";
1020 break;
1021 case MPI2_IOCSTATUS_INVALID_VPID:
1022 desc = "invalid vpid";
1023 break;
1024 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025 desc = "insufficient resources";
1026 break;
1027 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028 desc = "insufficient power";
1029 break;
1030 case MPI2_IOCSTATUS_INVALID_FIELD:
1031 desc = "invalid field";
1032 break;
1033 case MPI2_IOCSTATUS_INVALID_STATE:
1034 desc = "invalid state";
1035 break;
1036 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037 desc = "op state not supported";
1038 break;
1039
1040 /****************************************************************************
1041 * Config IOCStatus values
1042 ****************************************************************************/
1043
1044 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045 desc = "config invalid action";
1046 break;
1047 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048 desc = "config invalid type";
1049 break;
1050 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051 desc = "config invalid page";
1052 break;
1053 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054 desc = "config invalid data";
1055 break;
1056 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057 desc = "config no defaults";
1058 break;
1059 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060 desc = "config cant commit";
1061 break;
1062
1063 /****************************************************************************
1064 * SCSI IO Reply
1065 ****************************************************************************/
1066
1067 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079 break;
1080
1081 /****************************************************************************
1082 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084
1085 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086 desc = "eedp guard error";
1087 break;
1088 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089 desc = "eedp ref tag error";
1090 break;
1091 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092 desc = "eedp app tag error";
1093 break;
1094
1095 /****************************************************************************
1096 * SCSI Target values
1097 ****************************************************************************/
1098
1099 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100 desc = "target invalid io index";
1101 break;
1102 case MPI2_IOCSTATUS_TARGET_ABORTED:
1103 desc = "target aborted";
1104 break;
1105 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106 desc = "target no conn retryable";
1107 break;
1108 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109 desc = "target no connection";
1110 break;
1111 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112 desc = "target xfer count mismatch";
1113 break;
1114 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115 desc = "target data offset error";
1116 break;
1117 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118 desc = "target too much write data";
1119 break;
1120 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121 desc = "target iu too short";
1122 break;
1123 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124 desc = "target ack nak timeout";
1125 break;
1126 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127 desc = "target nak received";
1128 break;
1129
1130 /****************************************************************************
1131 * Serial Attached SCSI values
1132 ****************************************************************************/
1133
1134 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135 desc = "smp request failed";
1136 break;
1137 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138 desc = "smp data overrun";
1139 break;
1140
1141 /****************************************************************************
1142 * Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144
1145 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146 desc = "diagnostic released";
1147 break;
1148 default:
1149 break;
1150 }
1151
1152 if (!desc)
1153 return;
1154
1155 switch (request_hdr->Function) {
1156 case MPI2_FUNCTION_CONFIG:
1157 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158 func_str = "config_page";
1159 break;
1160 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162 func_str = "task_mgmt";
1163 break;
1164 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166 func_str = "sas_iounit_ctl";
1167 break;
1168 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169 frame_sz = sizeof(Mpi2SepRequest_t);
1170 func_str = "enclosure";
1171 break;
1172 case MPI2_FUNCTION_IOC_INIT:
1173 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174 func_str = "ioc_init";
1175 break;
1176 case MPI2_FUNCTION_PORT_ENABLE:
1177 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178 func_str = "port_enable";
1179 break;
1180 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182 func_str = "smp_passthru";
1183 break;
1184 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186 ioc->sge_size;
1187 func_str = "nvme_encapsulated";
1188 break;
1189 default:
1190 frame_sz = 32;
1191 func_str = "unknown";
1192 break;
1193 }
1194
1195 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196 desc, ioc_status, request_hdr, func_str);
1197
1198 _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200
1201 /**
1202 * _base_display_event_data - verbose translation of firmware asyn events
1203 * @ioc: per adapter object
1204 * @mpi_reply: reply mf payload returned from firmware
1205 */
1206 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208 Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210 char *desc = NULL;
1211 u16 event;
1212
1213 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214 return;
1215
1216 event = le16_to_cpu(mpi_reply->Event);
1217
1218 switch (event) {
1219 case MPI2_EVENT_LOG_DATA:
1220 desc = "Log Data";
1221 break;
1222 case MPI2_EVENT_STATE_CHANGE:
1223 desc = "Status Change";
1224 break;
1225 case MPI2_EVENT_HARD_RESET_RECEIVED:
1226 desc = "Hard Reset Received";
1227 break;
1228 case MPI2_EVENT_EVENT_CHANGE:
1229 desc = "Event Change";
1230 break;
1231 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232 desc = "Device Status Change";
1233 break;
1234 case MPI2_EVENT_IR_OPERATION_STATUS:
1235 if (!ioc->hide_ir_msg)
1236 desc = "IR Operation Status";
1237 break;
1238 case MPI2_EVENT_SAS_DISCOVERY:
1239 {
1240 Mpi2EventDataSasDiscovery_t *event_data =
1241 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242 ioc_info(ioc, "Discovery: (%s)",
1243 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244 "start" : "stop");
1245 if (event_data->DiscoveryStatus)
1246 pr_cont(" discovery_status(0x%08x)",
1247 le32_to_cpu(event_data->DiscoveryStatus));
1248 pr_cont("\n");
1249 return;
1250 }
1251 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252 desc = "SAS Broadcast Primitive";
1253 break;
1254 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255 desc = "SAS Init Device Status Change";
1256 break;
1257 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258 desc = "SAS Init Table Overflow";
1259 break;
1260 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261 desc = "SAS Topology Change List";
1262 break;
1263 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264 desc = "SAS Enclosure Device Status Change";
1265 break;
1266 case MPI2_EVENT_IR_VOLUME:
1267 if (!ioc->hide_ir_msg)
1268 desc = "IR Volume";
1269 break;
1270 case MPI2_EVENT_IR_PHYSICAL_DISK:
1271 if (!ioc->hide_ir_msg)
1272 desc = "IR Physical Disk";
1273 break;
1274 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275 if (!ioc->hide_ir_msg)
1276 desc = "IR Configuration Change List";
1277 break;
1278 case MPI2_EVENT_LOG_ENTRY_ADDED:
1279 if (!ioc->hide_ir_msg)
1280 desc = "Log Entry Added";
1281 break;
1282 case MPI2_EVENT_TEMP_THRESHOLD:
1283 desc = "Temperature Threshold";
1284 break;
1285 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286 desc = "Cable Event";
1287 break;
1288 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289 desc = "SAS Device Discovery Error";
1290 break;
1291 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292 desc = "PCIE Device Status Change";
1293 break;
1294 case MPI2_EVENT_PCIE_ENUMERATION:
1295 {
1296 Mpi26EventDataPCIeEnumeration_t *event_data =
1297 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298 ioc_info(ioc, "PCIE Enumeration: (%s)",
1299 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300 "start" : "stop");
1301 if (event_data->EnumerationStatus)
1302 pr_cont("enumeration_status(0x%08x)",
1303 le32_to_cpu(event_data->EnumerationStatus));
1304 pr_cont("\n");
1305 return;
1306 }
1307 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308 desc = "PCIE Topology Change List";
1309 break;
1310 }
1311
1312 if (!desc)
1313 return;
1314
1315 ioc_info(ioc, "%s\n", desc);
1316 }
1317
1318 /**
1319 * _base_sas_log_info - verbose translation of firmware log info
1320 * @ioc: per adapter object
1321 * @log_info: log info
1322 */
1323 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325 {
1326 union loginfo_type {
1327 u32 loginfo;
1328 struct {
1329 u32 subcode:16;
1330 u32 code:8;
1331 u32 originator:4;
1332 u32 bus_type:4;
1333 } dw;
1334 };
1335 union loginfo_type sas_loginfo;
1336 char *originator_str = NULL;
1337
1338 sas_loginfo.loginfo = log_info;
1339 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340 return;
1341
1342 /* each nexus loss loginfo */
1343 if (log_info == 0x31170000)
1344 return;
1345
1346 /* eat the loginfos associated with task aborts */
1347 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348 0x31140000 || log_info == 0x31130000))
1349 return;
1350
1351 switch (sas_loginfo.dw.originator) {
1352 case 0:
1353 originator_str = "IOP";
1354 break;
1355 case 1:
1356 originator_str = "PL";
1357 break;
1358 case 2:
1359 if (!ioc->hide_ir_msg)
1360 originator_str = "IR";
1361 else
1362 originator_str = "WarpDrive";
1363 break;
1364 }
1365
1366 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367 log_info,
1368 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370
1371 /**
1372 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373 * @ioc: per adapter object
1374 * @smid: system request message index
1375 * @msix_index: MSIX table index supplied by the OS
1376 * @reply: reply message frame (lower 32bit addr)
1377 */
1378 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380 u32 reply)
1381 {
1382 MPI2DefaultReply_t *mpi_reply;
1383 u16 ioc_status;
1384 u32 loginfo = 0;
1385
1386 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387 if (unlikely(!mpi_reply)) {
1388 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389 __FILE__, __LINE__, __func__);
1390 return;
1391 }
1392 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396 _base_sas_ioc_info(ioc , mpi_reply,
1397 mpt3sas_base_get_msg_frame(ioc, smid));
1398 }
1399
1400 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402 _base_sas_log_info(ioc, loginfo);
1403 }
1404
1405 if (ioc_status || loginfo) {
1406 ioc_status &= MPI2_IOCSTATUS_MASK;
1407 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408 }
1409 }
1410
1411 /**
1412 * mpt3sas_base_done - base internal command completion routine
1413 * @ioc: per adapter object
1414 * @smid: system request message index
1415 * @msix_index: MSIX table index supplied by the OS
1416 * @reply: reply message frame(lower 32bit addr)
1417 *
1418 * Return:
1419 * 1 meaning mf should be freed from _base_interrupt
1420 * 0 means the mf is freed from this function.
1421 */
1422 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424 u32 reply)
1425 {
1426 MPI2DefaultReply_t *mpi_reply;
1427
1428 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433 return 1;
1434
1435 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436 if (mpi_reply) {
1437 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439 }
1440 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442 complete(&ioc->base_cmds.done);
1443 return 1;
1444 }
1445
1446 /**
1447 * _base_async_event - main callback handler for firmware asyn events
1448 * @ioc: per adapter object
1449 * @msix_index: MSIX table index supplied by the OS
1450 * @reply: reply message frame(lower 32bit addr)
1451 *
1452 * Return:
1453 * 1 meaning mf should be freed from _base_interrupt
1454 * 0 means the mf is freed from this function.
1455 */
1456 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459 Mpi2EventNotificationReply_t *mpi_reply;
1460 Mpi2EventAckRequest_t *ack_request;
1461 u16 smid;
1462 struct _event_ack_list *delayed_event_ack;
1463
1464 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465 if (!mpi_reply)
1466 return 1;
1467 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468 return 1;
1469
1470 _base_display_event_data(ioc, mpi_reply);
1471
1472 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473 goto out;
1474 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475 if (!smid) {
1476 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477 GFP_ATOMIC);
1478 if (!delayed_event_ack)
1479 goto out;
1480 INIT_LIST_HEAD(&delayed_event_ack->list);
1481 delayed_event_ack->Event = mpi_reply->Event;
1482 delayed_event_ack->EventContext = mpi_reply->EventContext;
1483 list_add_tail(&delayed_event_ack->list,
1484 &ioc->delayed_event_ack_list);
1485 dewtprintk(ioc,
1486 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487 le16_to_cpu(mpi_reply->Event)));
1488 goto out;
1489 }
1490
1491 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494 ack_request->Event = mpi_reply->Event;
1495 ack_request->EventContext = mpi_reply->EventContext;
1496 ack_request->VF_ID = 0; /* TODO */
1497 ack_request->VP_ID = 0;
1498 ioc->put_smid_default(ioc, smid);
1499
1500 out:
1501
1502 /* scsih callback handler */
1503 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505 /* ctl callback handler */
1506 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508 return 1;
1509 }
1510
1511 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514 struct scsi_cmnd *cmd;
1515
1516 if (WARN_ON(!smid) ||
1517 WARN_ON(smid >= ioc->hi_priority_smid))
1518 return NULL;
1519
1520 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521 if (cmd)
1522 return scsi_cmd_priv(cmd);
1523
1524 return NULL;
1525 }
1526
1527 /**
1528 * _base_get_cb_idx - obtain the callback index
1529 * @ioc: per adapter object
1530 * @smid: system request message index
1531 *
1532 * Return: callback index.
1533 */
1534 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537 int i;
1538 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539 u8 cb_idx = 0xFF;
1540
1541 if (smid < ioc->hi_priority_smid) {
1542 struct scsiio_tracker *st;
1543
1544 if (smid < ctl_smid) {
1545 st = _get_st_from_smid(ioc, smid);
1546 if (st)
1547 cb_idx = st->cb_idx;
1548 } else if (smid == ctl_smid)
1549 cb_idx = ioc->ctl_cb_idx;
1550 } else if (smid < ioc->internal_smid) {
1551 i = smid - ioc->hi_priority_smid;
1552 cb_idx = ioc->hpr_lookup[i].cb_idx;
1553 } else if (smid <= ioc->hba_queue_depth) {
1554 i = smid - ioc->internal_smid;
1555 cb_idx = ioc->internal_lookup[i].cb_idx;
1556 }
1557 return cb_idx;
1558 }
1559
1560 /**
1561 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562 * when driver is flushing out the IOs.
1563 * @ioc: per adapter object
1564 *
1565 * Pause polling on the mq poll (io uring) queues when driver is flushing
1566 * out the IOs. Otherwise we may see the race condition of completing the same
1567 * IO from two paths.
1568 *
1569 * Returns nothing.
1570 */
1571 void
mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER * ioc)1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574 int iopoll_q_count =
1575 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576 int qid;
1577
1578 for (qid = 0; qid < iopoll_q_count; qid++)
1579 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581 /*
1582 * wait for current poll to complete.
1583 */
1584 for (qid = 0; qid < iopoll_q_count; qid++) {
1585 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586 cpu_relax();
1587 udelay(500);
1588 }
1589 }
1590 }
1591
1592 /**
1593 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594 * @ioc: per adapter object
1595 *
1596 * Returns nothing.
1597 */
1598 void
mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER * ioc)1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601 int iopoll_q_count =
1602 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603 int qid;
1604
1605 for (qid = 0; qid < iopoll_q_count; qid++)
1606 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608
1609 /**
1610 * mpt3sas_base_mask_interrupts - disable interrupts
1611 * @ioc: per adapter object
1612 *
1613 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614 */
1615 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618 u32 him_register;
1619
1620 ioc->mask_interrupts = 1;
1621 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623 writel(him_register, &ioc->chip->HostInterruptMask);
1624 ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626
1627 /**
1628 * mpt3sas_base_unmask_interrupts - enable interrupts
1629 * @ioc: per adapter object
1630 *
1631 * Enabling only Reply Interrupts
1632 */
1633 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636 u32 him_register;
1637
1638 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639 him_register &= ~MPI2_HIM_RIM;
1640 writel(him_register, &ioc->chip->HostInterruptMask);
1641 ioc->mask_interrupts = 0;
1642 }
1643
1644 union reply_descriptor {
1645 u64 word;
1646 struct {
1647 u32 low;
1648 u32 high;
1649 } u;
1650 };
1651
base_mod64(u64 dividend,u32 divisor)1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654 u32 remainder;
1655
1656 if (!divisor)
1657 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658 remainder = do_div(dividend, divisor);
1659 return remainder;
1660 }
1661
1662 /**
1663 * _base_process_reply_queue - Process reply descriptors from reply
1664 * descriptor post queue.
1665 * @reply_q: per IRQ's reply queue object.
1666 *
1667 * Return: number of reply descriptors processed from reply
1668 * descriptor queue.
1669 */
1670 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673 union reply_descriptor rd;
1674 u64 completed_cmds;
1675 u8 request_descript_type;
1676 u16 smid;
1677 u8 cb_idx;
1678 u32 reply;
1679 u8 msix_index = reply_q->msix_index;
1680 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681 Mpi2ReplyDescriptorsUnion_t *rpf;
1682 u8 rc;
1683
1684 completed_cmds = 0;
1685 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686 return completed_cmds;
1687
1688 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689 request_descript_type = rpf->Default.ReplyFlags
1690 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692 atomic_dec(&reply_q->busy);
1693 return completed_cmds;
1694 }
1695
1696 cb_idx = 0xFF;
1697 do {
1698 rd.word = le64_to_cpu(rpf->Words);
1699 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700 goto out;
1701 reply = 0;
1702 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703 if (request_descript_type ==
1704 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705 request_descript_type ==
1706 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707 request_descript_type ==
1708 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709 cb_idx = _base_get_cb_idx(ioc, smid);
1710 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711 (likely(mpt_callbacks[cb_idx] != NULL))) {
1712 rc = mpt_callbacks[cb_idx](ioc, smid,
1713 msix_index, 0);
1714 if (rc)
1715 mpt3sas_base_free_smid(ioc, smid);
1716 }
1717 } else if (request_descript_type ==
1718 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719 reply = le32_to_cpu(
1720 rpf->AddressReply.ReplyFrameAddress);
1721 if (reply > ioc->reply_dma_max_address ||
1722 reply < ioc->reply_dma_min_address)
1723 reply = 0;
1724 if (smid) {
1725 cb_idx = _base_get_cb_idx(ioc, smid);
1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 rc = mpt_callbacks[cb_idx](ioc, smid,
1729 msix_index, reply);
1730 if (reply)
1731 _base_display_reply_info(ioc,
1732 smid, msix_index, reply);
1733 if (rc)
1734 mpt3sas_base_free_smid(ioc,
1735 smid);
1736 }
1737 } else {
1738 _base_async_event(ioc, msix_index, reply);
1739 }
1740
1741 /* reply free queue handling */
1742 if (reply) {
1743 ioc->reply_free_host_index =
1744 (ioc->reply_free_host_index ==
1745 (ioc->reply_free_queue_depth - 1)) ?
1746 0 : ioc->reply_free_host_index + 1;
1747 ioc->reply_free[ioc->reply_free_host_index] =
1748 cpu_to_le32(reply);
1749 if (ioc->is_mcpu_endpoint)
1750 _base_clone_reply_to_sys_mem(ioc,
1751 reply,
1752 ioc->reply_free_host_index);
1753 writel(ioc->reply_free_host_index,
1754 &ioc->chip->ReplyFreeHostIndex);
1755 }
1756 }
1757
1758 rpf->Words = cpu_to_le64(ULLONG_MAX);
1759 reply_q->reply_post_host_index =
1760 (reply_q->reply_post_host_index ==
1761 (ioc->reply_post_queue_depth - 1)) ? 0 :
1762 reply_q->reply_post_host_index + 1;
1763 request_descript_type =
1764 reply_q->reply_post_free[reply_q->reply_post_host_index].
1765 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766 completed_cmds++;
1767 /* Update the reply post host index after continuously
1768 * processing the threshold number of Reply Descriptors.
1769 * So that FW can find enough entries to post the Reply
1770 * Descriptors in the reply descriptor post queue.
1771 */
1772 if (completed_cmds >= ioc->thresh_hold) {
1773 if (ioc->combined_reply_queue) {
1774 writel(reply_q->reply_post_host_index |
1775 ((msix_index & 7) <<
1776 MPI2_RPHI_MSIX_INDEX_SHIFT),
1777 ioc->replyPostRegisterIndex[msix_index/8]);
1778 } else {
1779 writel(reply_q->reply_post_host_index |
1780 (msix_index <<
1781 MPI2_RPHI_MSIX_INDEX_SHIFT),
1782 &ioc->chip->ReplyPostHostIndex);
1783 }
1784 if (!reply_q->is_iouring_poll_q &&
1785 !reply_q->irq_poll_scheduled) {
1786 reply_q->irq_poll_scheduled = true;
1787 irq_poll_sched(&reply_q->irqpoll);
1788 }
1789 atomic_dec(&reply_q->busy);
1790 return completed_cmds;
1791 }
1792 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793 goto out;
1794 if (!reply_q->reply_post_host_index)
1795 rpf = reply_q->reply_post_free;
1796 else
1797 rpf++;
1798 } while (1);
1799
1800 out:
1801
1802 if (!completed_cmds) {
1803 atomic_dec(&reply_q->busy);
1804 return completed_cmds;
1805 }
1806
1807 if (ioc->is_warpdrive) {
1808 writel(reply_q->reply_post_host_index,
1809 ioc->reply_post_host_index[msix_index]);
1810 atomic_dec(&reply_q->busy);
1811 return completed_cmds;
1812 }
1813
1814 /* Update Reply Post Host Index.
1815 * For those HBA's which support combined reply queue feature
1816 * 1. Get the correct Supplemental Reply Post Host Index Register.
1817 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818 * Index Register address bank i.e replyPostRegisterIndex[],
1819 * 2. Then update this register with new reply host index value
1820 * in ReplyPostIndex field and the MSIxIndex field with
1821 * msix_index value reduced to a value between 0 and 7,
1822 * using a modulo 8 operation. Since each Supplemental Reply Post
1823 * Host Index Register supports 8 MSI-X vectors.
1824 *
1825 * For other HBA's just update the Reply Post Host Index register with
1826 * new reply host index value in ReplyPostIndex Field and msix_index
1827 * value in MSIxIndex field.
1828 */
1829 if (ioc->combined_reply_queue)
1830 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1831 MPI2_RPHI_MSIX_INDEX_SHIFT),
1832 ioc->replyPostRegisterIndex[msix_index/8]);
1833 else
1834 writel(reply_q->reply_post_host_index | (msix_index <<
1835 MPI2_RPHI_MSIX_INDEX_SHIFT),
1836 &ioc->chip->ReplyPostHostIndex);
1837 atomic_dec(&reply_q->busy);
1838 return completed_cmds;
1839 }
1840
1841 /**
1842 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843 * @shost: Scsi_Host object
1844 * @queue_num: hw ctx queue number
1845 *
1846 * Return number of entries that has been processed from poll queue.
1847 */
mpt3sas_blk_mq_poll(struct Scsi_Host * shost,unsigned int queue_num)1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850 struct MPT3SAS_ADAPTER *ioc =
1851 (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852 struct adapter_reply_queue *reply_q;
1853 int num_entries = 0;
1854 int qid = queue_num - ioc->iopoll_q_start_index;
1855
1856 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858 return 0;
1859
1860 reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861
1862 num_entries = _base_process_reply_queue(reply_q);
1863 atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864
1865 return num_entries;
1866 }
1867
1868 /**
1869 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870 * @irq: irq number (not used)
1871 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872 *
1873 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874 */
1875 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878 struct adapter_reply_queue *reply_q = bus_id;
1879 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880
1881 if (ioc->mask_interrupts)
1882 return IRQ_NONE;
1883 if (reply_q->irq_poll_scheduled)
1884 return IRQ_HANDLED;
1885 return ((_base_process_reply_queue(reply_q) > 0) ?
1886 IRQ_HANDLED : IRQ_NONE);
1887 }
1888
1889 /**
1890 * _base_irqpoll - IRQ poll callback handler
1891 * @irqpoll: irq_poll object
1892 * @budget: irq poll weight
1893 *
1894 * Return: number of reply descriptors processed
1895 */
1896 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899 struct adapter_reply_queue *reply_q;
1900 int num_entries = 0;
1901
1902 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903 irqpoll);
1904 if (reply_q->irq_line_enable) {
1905 disable_irq_nosync(reply_q->os_irq);
1906 reply_q->irq_line_enable = false;
1907 }
1908 num_entries = _base_process_reply_queue(reply_q);
1909 if (num_entries < budget) {
1910 irq_poll_complete(irqpoll);
1911 reply_q->irq_poll_scheduled = false;
1912 reply_q->irq_line_enable = true;
1913 enable_irq(reply_q->os_irq);
1914 /*
1915 * Go for one more round of processing the
1916 * reply descriptor post queue in case the HBA
1917 * Firmware has posted some reply descriptors
1918 * while reenabling the IRQ.
1919 */
1920 _base_process_reply_queue(reply_q);
1921 }
1922
1923 return num_entries;
1924 }
1925
1926 /**
1927 * _base_init_irqpolls - initliaze IRQ polls
1928 * @ioc: per adapter object
1929 *
1930 * Return: nothing
1931 */
1932 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935 struct adapter_reply_queue *reply_q, *next;
1936
1937 if (list_empty(&ioc->reply_queue_list))
1938 return;
1939
1940 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941 if (reply_q->is_iouring_poll_q)
1942 continue;
1943 irq_poll_init(&reply_q->irqpoll,
1944 ioc->hba_queue_depth/4, _base_irqpoll);
1945 reply_q->irq_poll_scheduled = false;
1946 reply_q->irq_line_enable = true;
1947 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948 reply_q->msix_index);
1949 }
1950 }
1951
1952 /**
1953 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954 * @ioc: per adapter object
1955 *
1956 * Return: Whether or not MSI/X is enabled.
1957 */
1958 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961 return (ioc->facts.IOCCapabilities &
1962 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964
1965 /**
1966 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967 * @ioc: per adapter object
1968 * @poll: poll over reply descriptor pools incase interrupt for
1969 * timed-out SCSI command got delayed
1970 * Context: non-ISR context
1971 *
1972 * Called when a Task Management request has completed.
1973 */
1974 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977 struct adapter_reply_queue *reply_q;
1978
1979 /* If MSIX capability is turned off
1980 * then multi-queues are not enabled
1981 */
1982 if (!_base_is_controller_msix_enabled(ioc))
1983 return;
1984
1985 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986 if (ioc->shost_recovery || ioc->remove_host ||
1987 ioc->pci_error_recovery)
1988 return;
1989 /* TMs are on msix_index == 0 */
1990 if (reply_q->msix_index == 0)
1991 continue;
1992
1993 if (reply_q->is_iouring_poll_q) {
1994 _base_process_reply_queue(reply_q);
1995 continue;
1996 }
1997
1998 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999 if (reply_q->irq_poll_scheduled) {
2000 /* Calling irq_poll_disable will wait for any pending
2001 * callbacks to have completed.
2002 */
2003 irq_poll_disable(&reply_q->irqpoll);
2004 irq_poll_enable(&reply_q->irqpoll);
2005 /* check how the scheduled poll has ended,
2006 * clean up only if necessary
2007 */
2008 if (reply_q->irq_poll_scheduled) {
2009 reply_q->irq_poll_scheduled = false;
2010 reply_q->irq_line_enable = true;
2011 enable_irq(reply_q->os_irq);
2012 }
2013 }
2014
2015 if (poll)
2016 _base_process_reply_queue(reply_q);
2017 }
2018 }
2019
2020 /**
2021 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2022 * @cb_idx: callback index
2023 */
2024 void
mpt3sas_base_release_callback_handler(u8 cb_idx)2025 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 {
2027 mpt_callbacks[cb_idx] = NULL;
2028 }
2029
2030 /**
2031 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2032 * @cb_func: callback function
2033 *
2034 * Return: Index of @cb_func.
2035 */
2036 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2038 {
2039 u8 cb_idx;
2040
2041 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2042 if (mpt_callbacks[cb_idx] == NULL)
2043 break;
2044
2045 mpt_callbacks[cb_idx] = cb_func;
2046 return cb_idx;
2047 }
2048
2049 /**
2050 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2051 */
2052 void
mpt3sas_base_initialize_callback_handler(void)2053 mpt3sas_base_initialize_callback_handler(void)
2054 {
2055 u8 cb_idx;
2056
2057 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2058 mpt3sas_base_release_callback_handler(cb_idx);
2059 }
2060
2061
2062 /**
2063 * _base_build_zero_len_sge - build zero length sg entry
2064 * @ioc: per adapter object
2065 * @paddr: virtual address for SGE
2066 *
2067 * Create a zero length scatter gather entry to insure the IOCs hardware has
2068 * something to use if the target device goes brain dead and tries
2069 * to send data even when none is asked for.
2070 */
2071 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 {
2074 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2075 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2076 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2077 MPI2_SGE_FLAGS_SHIFT);
2078 ioc->base_add_sg_single(paddr, flags_length, -1);
2079 }
2080
2081 /**
2082 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2083 * @paddr: virtual address for SGE
2084 * @flags_length: SGE flags and data transfer length
2085 * @dma_addr: Physical address
2086 */
2087 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 {
2090 Mpi2SGESimple32_t *sgel = paddr;
2091
2092 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2093 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2094 sgel->FlagsLength = cpu_to_le32(flags_length);
2095 sgel->Address = cpu_to_le32(dma_addr);
2096 }
2097
2098
2099 /**
2100 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2101 * @paddr: virtual address for SGE
2102 * @flags_length: SGE flags and data transfer length
2103 * @dma_addr: Physical address
2104 */
2105 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 {
2108 Mpi2SGESimple64_t *sgel = paddr;
2109
2110 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2111 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2112 sgel->FlagsLength = cpu_to_le32(flags_length);
2113 sgel->Address = cpu_to_le64(dma_addr);
2114 }
2115
2116 /**
2117 * _base_get_chain_buffer_tracker - obtain chain tracker
2118 * @ioc: per adapter object
2119 * @scmd: SCSI commands of the IO request
2120 *
2121 * Return: chain tracker from chain_lookup table using key as
2122 * smid and smid's chain_offset.
2123 */
2124 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2126 struct scsi_cmnd *scmd)
2127 {
2128 struct chain_tracker *chain_req;
2129 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2130 u16 smid = st->smid;
2131 u8 chain_offset =
2132 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133
2134 if (chain_offset == ioc->chains_needed_per_io)
2135 return NULL;
2136
2137 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2138 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2139 return chain_req;
2140 }
2141
2142
2143 /**
2144 * _base_build_sg - build generic sg
2145 * @ioc: per adapter object
2146 * @psge: virtual address for SGE
2147 * @data_out_dma: physical address for WRITES
2148 * @data_out_sz: data xfer size for WRITES
2149 * @data_in_dma: physical address for READS
2150 * @data_in_sz: data xfer size for READS
2151 */
2152 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2154 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2155 size_t data_in_sz)
2156 {
2157 u32 sgl_flags;
2158
2159 if (!data_out_sz && !data_in_sz) {
2160 _base_build_zero_len_sge(ioc, psge);
2161 return;
2162 }
2163
2164 if (data_out_sz && data_in_sz) {
2165 /* WRITE sgel first */
2166 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2167 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2168 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2169 ioc->base_add_sg_single(psge, sgl_flags |
2170 data_out_sz, data_out_dma);
2171
2172 /* incr sgel */
2173 psge += ioc->sge_size;
2174
2175 /* READ sgel last */
2176 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2177 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2178 MPI2_SGE_FLAGS_END_OF_LIST);
2179 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2180 ioc->base_add_sg_single(psge, sgl_flags |
2181 data_in_sz, data_in_dma);
2182 } else if (data_out_sz) /* WRITE */ {
2183 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2185 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2186 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2187 ioc->base_add_sg_single(psge, sgl_flags |
2188 data_out_sz, data_out_dma);
2189 } else if (data_in_sz) /* READ */ {
2190 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2191 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2192 MPI2_SGE_FLAGS_END_OF_LIST);
2193 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2194 ioc->base_add_sg_single(psge, sgl_flags |
2195 data_in_sz, data_in_dma);
2196 }
2197 }
2198
2199 /* IEEE format sgls */
2200
2201 /**
2202 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2203 * a native SGL (NVMe PRP).
2204 * @ioc: per adapter object
2205 * @smid: system request message index for getting asscociated SGL
2206 * @nvme_encap_request: the NVMe request msg frame pointer
2207 * @data_out_dma: physical address for WRITES
2208 * @data_out_sz: data xfer size for WRITES
2209 * @data_in_dma: physical address for READS
2210 * @data_in_sz: data xfer size for READS
2211 *
2212 * The native SGL is built starting in the first PRP
2213 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2214 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2215 * used to describe a larger data buffer. If the data buffer is too large to
2216 * describe using the two PRP entriess inside the NVMe message, then PRP1
2217 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2218 * list located elsewhere in memory to describe the remaining data memory
2219 * segments. The PRP list will be contiguous.
2220 *
2221 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2222 * consists of a list of PRP entries to describe a number of noncontigous
2223 * physical memory segments as a single memory buffer, just as a SGL does. Note
2224 * however, that this function is only used by the IOCTL call, so the memory
2225 * given will be guaranteed to be contiguous. There is no need to translate
2226 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2227 * contiguous space that is one page size each.
2228 *
2229 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2230 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2231 * contains the second PRP element if the memory being described fits within 2
2232 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233 *
2234 * A PRP list pointer contains the address of a PRP list, structured as a linear
2235 * array of PRP entries. Each PRP entry in this list describes a segment of
2236 * physical memory.
2237 *
2238 * Each 64-bit PRP entry comprises an address and an offset field. The address
2239 * always points at the beginning of a 4KB physical memory page, and the offset
2240 * describes where within that 4KB page the memory segment begins. Only the
2241 * first element in a PRP list may contain a non-zero offset, implying that all
2242 * memory segments following the first begin at the start of a 4KB page.
2243 *
2244 * Each PRP element normally describes 4KB of physical memory, with exceptions
2245 * for the first and last elements in the list. If the memory being described
2246 * by the list begins at a non-zero offset within the first 4KB page, then the
2247 * first PRP element will contain a non-zero offset indicating where the region
2248 * begins within the 4KB page. The last memory segment may end before the end
2249 * of the 4KB segment, depending upon the overall size of the memory being
2250 * described by the PRP list.
2251 *
2252 * Since PRP entries lack any indication of size, the overall data buffer length
2253 * is used to determine where the end of the data memory buffer is located, and
2254 * how many PRP entries are required to describe it.
2255 */
2256 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2258 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2259 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2260 size_t data_in_sz)
2261 {
2262 int prp_size = NVME_PRP_SIZE;
2263 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2264 __le64 *prp_page;
2265 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2266 u32 offset, entry_len;
2267 u32 page_mask_result, page_mask;
2268 size_t length;
2269 struct mpt3sas_nvme_cmd *nvme_cmd =
2270 (void *)nvme_encap_request->NVMe_Command;
2271
2272 /*
2273 * Not all commands require a data transfer. If no data, just return
2274 * without constructing any PRP.
2275 */
2276 if (!data_in_sz && !data_out_sz)
2277 return;
2278 prp1_entry = &nvme_cmd->prp1;
2279 prp2_entry = &nvme_cmd->prp2;
2280 prp_entry = prp1_entry;
2281 /*
2282 * For the PRP entries, use the specially allocated buffer of
2283 * contiguous memory.
2284 */
2285 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2286 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287
2288 /*
2289 * Check if we are within 1 entry of a page boundary we don't
2290 * want our first entry to be a PRP List entry.
2291 */
2292 page_mask = ioc->page_size - 1;
2293 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2294 if (!page_mask_result) {
2295 /* Bump up to next page boundary. */
2296 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2297 prp_page_dma = prp_page_dma + prp_size;
2298 }
2299
2300 /*
2301 * Set PRP physical pointer, which initially points to the current PRP
2302 * DMA memory page.
2303 */
2304 prp_entry_dma = prp_page_dma;
2305
2306 /* Get physical address and length of the data buffer. */
2307 if (data_in_sz) {
2308 dma_addr = data_in_dma;
2309 length = data_in_sz;
2310 } else {
2311 dma_addr = data_out_dma;
2312 length = data_out_sz;
2313 }
2314
2315 /* Loop while the length is not zero. */
2316 while (length) {
2317 /*
2318 * Check if we need to put a list pointer here if we are at
2319 * page boundary - prp_size (8 bytes).
2320 */
2321 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2322 if (!page_mask_result) {
2323 /*
2324 * This is the last entry in a PRP List, so we need to
2325 * put a PRP list pointer here. What this does is:
2326 * - bump the current memory pointer to the next
2327 * address, which will be the next full page.
2328 * - set the PRP Entry to point to that page. This
2329 * is now the PRP List pointer.
2330 * - bump the PRP Entry pointer the start of the
2331 * next page. Since all of this PRP memory is
2332 * contiguous, no need to get a new page - it's
2333 * just the next address.
2334 */
2335 prp_entry_dma++;
2336 *prp_entry = cpu_to_le64(prp_entry_dma);
2337 prp_entry++;
2338 }
2339
2340 /* Need to handle if entry will be part of a page. */
2341 offset = dma_addr & page_mask;
2342 entry_len = ioc->page_size - offset;
2343
2344 if (prp_entry == prp1_entry) {
2345 /*
2346 * Must fill in the first PRP pointer (PRP1) before
2347 * moving on.
2348 */
2349 *prp1_entry = cpu_to_le64(dma_addr);
2350
2351 /*
2352 * Now point to the second PRP entry within the
2353 * command (PRP2).
2354 */
2355 prp_entry = prp2_entry;
2356 } else if (prp_entry == prp2_entry) {
2357 /*
2358 * Should the PRP2 entry be a PRP List pointer or just
2359 * a regular PRP pointer? If there is more than one
2360 * more page of data, must use a PRP List pointer.
2361 */
2362 if (length > ioc->page_size) {
2363 /*
2364 * PRP2 will contain a PRP List pointer because
2365 * more PRP's are needed with this command. The
2366 * list will start at the beginning of the
2367 * contiguous buffer.
2368 */
2369 *prp2_entry = cpu_to_le64(prp_entry_dma);
2370
2371 /*
2372 * The next PRP Entry will be the start of the
2373 * first PRP List.
2374 */
2375 prp_entry = prp_page;
2376 } else {
2377 /*
2378 * After this, the PRP Entries are complete.
2379 * This command uses 2 PRP's and no PRP list.
2380 */
2381 *prp2_entry = cpu_to_le64(dma_addr);
2382 }
2383 } else {
2384 /*
2385 * Put entry in list and bump the addresses.
2386 *
2387 * After PRP1 and PRP2 are filled in, this will fill in
2388 * all remaining PRP entries in a PRP List, one per
2389 * each time through the loop.
2390 */
2391 *prp_entry = cpu_to_le64(dma_addr);
2392 prp_entry++;
2393 prp_entry_dma++;
2394 }
2395
2396 /*
2397 * Bump the phys address of the command's data buffer by the
2398 * entry_len.
2399 */
2400 dma_addr += entry_len;
2401
2402 /* Decrement length accounting for last partial page. */
2403 if (entry_len > length)
2404 length = 0;
2405 else
2406 length -= entry_len;
2407 }
2408 }
2409
2410 /**
2411 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2412 * SGLs specific to NVMe drives only
2413 *
2414 * @ioc: per adapter object
2415 * @scmd: SCSI command from the mid-layer
2416 * @mpi_request: mpi request
2417 * @smid: msg Index
2418 * @sge_count: scatter gather element count.
2419 *
2420 * Return: true: PRPs are built
2421 * false: IEEE SGLs needs to be built
2422 */
2423 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2425 struct scsi_cmnd *scmd,
2426 Mpi25SCSIIORequest_t *mpi_request,
2427 u16 smid, int sge_count)
2428 {
2429 int sge_len, num_prp_in_chain = 0;
2430 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431 __le64 *curr_buff;
2432 dma_addr_t msg_dma, sge_addr, offset;
2433 u32 page_mask, page_mask_result;
2434 struct scatterlist *sg_scmd;
2435 u32 first_prp_len;
2436 int data_len = scsi_bufflen(scmd);
2437 u32 nvme_pg_size;
2438
2439 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440 /*
2441 * Nvme has a very convoluted prp format. One prp is required
2442 * for each page or partial page. Driver need to split up OS sg_list
2443 * entries if it is longer than one page or cross a page
2444 * boundary. Driver also have to insert a PRP list pointer entry as
2445 * the last entry in each physical page of the PRP list.
2446 *
2447 * NOTE: The first PRP "entry" is actually placed in the first
2448 * SGL entry in the main message as IEEE 64 format. The 2nd
2449 * entry in the main message is the chain element, and the rest
2450 * of the PRP entries are built in the contiguous pcie buffer.
2451 */
2452 page_mask = nvme_pg_size - 1;
2453
2454 /*
2455 * Native SGL is needed.
2456 * Put a chain element in main message frame that points to the first
2457 * chain buffer.
2458 *
2459 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2460 * a native SGL.
2461 */
2462
2463 /* Set main message chain element pointer */
2464 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465 /*
2466 * For NVMe the chain element needs to be the 2nd SG entry in the main
2467 * message.
2468 */
2469 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2470 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2471
2472 /*
2473 * For the PRP entries, use the specially allocated buffer of
2474 * contiguous memory. Normal chain buffers can't be used
2475 * because each chain buffer would need to be the size of an OS
2476 * page (4k).
2477 */
2478 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2479 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480
2481 main_chain_element->Address = cpu_to_le64(msg_dma);
2482 main_chain_element->NextChainOffset = 0;
2483 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2484 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2485 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486
2487 /* Build first prp, sge need not to be page aligned*/
2488 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2489 sg_scmd = scsi_sglist(scmd);
2490 sge_addr = sg_dma_address(sg_scmd);
2491 sge_len = sg_dma_len(sg_scmd);
2492
2493 offset = sge_addr & page_mask;
2494 first_prp_len = nvme_pg_size - offset;
2495
2496 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2497 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498
2499 data_len -= first_prp_len;
2500
2501 if (sge_len > first_prp_len) {
2502 sge_addr += first_prp_len;
2503 sge_len -= first_prp_len;
2504 } else if (data_len && (sge_len == first_prp_len)) {
2505 sg_scmd = sg_next(sg_scmd);
2506 sge_addr = sg_dma_address(sg_scmd);
2507 sge_len = sg_dma_len(sg_scmd);
2508 }
2509
2510 for (;;) {
2511 offset = sge_addr & page_mask;
2512
2513 /* Put PRP pointer due to page boundary*/
2514 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2515 if (unlikely(!page_mask_result)) {
2516 scmd_printk(KERN_NOTICE,
2517 scmd, "page boundary curr_buff: 0x%p\n",
2518 curr_buff);
2519 msg_dma += 8;
2520 *curr_buff = cpu_to_le64(msg_dma);
2521 curr_buff++;
2522 num_prp_in_chain++;
2523 }
2524
2525 *curr_buff = cpu_to_le64(sge_addr);
2526 curr_buff++;
2527 msg_dma += 8;
2528 num_prp_in_chain++;
2529
2530 sge_addr += nvme_pg_size;
2531 sge_len -= nvme_pg_size;
2532 data_len -= nvme_pg_size;
2533
2534 if (data_len <= 0)
2535 break;
2536
2537 if (sge_len > 0)
2538 continue;
2539
2540 sg_scmd = sg_next(sg_scmd);
2541 sge_addr = sg_dma_address(sg_scmd);
2542 sge_len = sg_dma_len(sg_scmd);
2543 }
2544
2545 main_chain_element->Length =
2546 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2547 return;
2548 }
2549
2550 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2552 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 {
2554 u32 data_length = 0;
2555 bool build_prp = true;
2556
2557 data_length = scsi_bufflen(scmd);
2558 if (pcie_device &&
2559 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2560 build_prp = false;
2561 return build_prp;
2562 }
2563
2564 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2565 * we built IEEE SGL
2566 */
2567 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2568 build_prp = false;
2569
2570 return build_prp;
2571 }
2572
2573 /**
2574 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2575 * determine if the driver needs to build a native SGL. If so, that native
2576 * SGL is built in the special contiguous buffers allocated especially for
2577 * PCIe SGL creation. If the driver will not build a native SGL, return
2578 * TRUE and a normal IEEE SGL will be built. Currently this routine
2579 * supports NVMe.
2580 * @ioc: per adapter object
2581 * @mpi_request: mf request pointer
2582 * @smid: system request message index
2583 * @scmd: scsi command
2584 * @pcie_device: points to the PCIe device's info
2585 *
2586 * Return: 0 if native SGL was built, 1 if no SGL was built
2587 */
2588 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2590 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2591 struct _pcie_device *pcie_device)
2592 {
2593 int sges_left;
2594
2595 /* Get the SG list pointer and info. */
2596 sges_left = scsi_dma_map(scmd);
2597 if (sges_left < 0)
2598 return 1;
2599
2600 /* Check if we need to build a native SG list. */
2601 if (!base_is_prp_possible(ioc, pcie_device,
2602 scmd, sges_left)) {
2603 /* We built a native SG list, just return. */
2604 goto out;
2605 }
2606
2607 /*
2608 * Build native NVMe PRP.
2609 */
2610 base_make_prp_nvme(ioc, scmd, mpi_request,
2611 smid, sges_left);
2612
2613 return 0;
2614 out:
2615 scsi_dma_unmap(scmd);
2616 return 1;
2617 }
2618
2619 /**
2620 * _base_add_sg_single_ieee - add sg element for IEEE format
2621 * @paddr: virtual address for SGE
2622 * @flags: SGE flags
2623 * @chain_offset: number of 128 byte elements from start of segment
2624 * @length: data transfer length
2625 * @dma_addr: Physical address
2626 */
2627 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2628 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2629 dma_addr_t dma_addr)
2630 {
2631 Mpi25IeeeSgeChain64_t *sgel = paddr;
2632
2633 sgel->Flags = flags;
2634 sgel->NextChainOffset = chain_offset;
2635 sgel->Length = cpu_to_le32(length);
2636 sgel->Address = cpu_to_le64(dma_addr);
2637 }
2638
2639 /**
2640 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2641 * @ioc: per adapter object
2642 * @paddr: virtual address for SGE
2643 *
2644 * Create a zero length scatter gather entry to insure the IOCs hardware has
2645 * something to use if the target device goes brain dead and tries
2646 * to send data even when none is asked for.
2647 */
2648 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2649 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2650 {
2651 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2652 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2653 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2654
2655 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2656 }
2657
2658 /**
2659 * _base_build_sg_scmd - main sg creation routine
2660 * pcie_device is unused here!
2661 * @ioc: per adapter object
2662 * @scmd: scsi command
2663 * @smid: system request message index
2664 * @unused: unused pcie_device pointer
2665 * Context: none.
2666 *
2667 * The main routine that builds scatter gather table from a given
2668 * scsi request sent via the .queuecommand main handler.
2669 *
2670 * Return: 0 success, anything else error
2671 */
2672 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2673 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2674 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2675 {
2676 Mpi2SCSIIORequest_t *mpi_request;
2677 dma_addr_t chain_dma;
2678 struct scatterlist *sg_scmd;
2679 void *sg_local, *chain;
2680 u32 chain_offset;
2681 u32 chain_length;
2682 u32 chain_flags;
2683 int sges_left;
2684 u32 sges_in_segment;
2685 u32 sgl_flags;
2686 u32 sgl_flags_last_element;
2687 u32 sgl_flags_end_buffer;
2688 struct chain_tracker *chain_req;
2689
2690 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2691
2692 /* init scatter gather flags */
2693 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2694 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2695 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2696 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2697 << MPI2_SGE_FLAGS_SHIFT;
2698 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2699 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2700 << MPI2_SGE_FLAGS_SHIFT;
2701 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2702
2703 sg_scmd = scsi_sglist(scmd);
2704 sges_left = scsi_dma_map(scmd);
2705 if (sges_left < 0)
2706 return -ENOMEM;
2707
2708 sg_local = &mpi_request->SGL;
2709 sges_in_segment = ioc->max_sges_in_main_message;
2710 if (sges_left <= sges_in_segment)
2711 goto fill_in_last_segment;
2712
2713 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2714 (sges_in_segment * ioc->sge_size))/4;
2715
2716 /* fill in main message segment when there is a chain following */
2717 while (sges_in_segment) {
2718 if (sges_in_segment == 1)
2719 ioc->base_add_sg_single(sg_local,
2720 sgl_flags_last_element | sg_dma_len(sg_scmd),
2721 sg_dma_address(sg_scmd));
2722 else
2723 ioc->base_add_sg_single(sg_local, sgl_flags |
2724 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2725 sg_scmd = sg_next(sg_scmd);
2726 sg_local += ioc->sge_size;
2727 sges_left--;
2728 sges_in_segment--;
2729 }
2730
2731 /* initializing the chain flags and pointers */
2732 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2733 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2734 if (!chain_req)
2735 return -1;
2736 chain = chain_req->chain_buffer;
2737 chain_dma = chain_req->chain_buffer_dma;
2738 do {
2739 sges_in_segment = (sges_left <=
2740 ioc->max_sges_in_chain_message) ? sges_left :
2741 ioc->max_sges_in_chain_message;
2742 chain_offset = (sges_left == sges_in_segment) ?
2743 0 : (sges_in_segment * ioc->sge_size)/4;
2744 chain_length = sges_in_segment * ioc->sge_size;
2745 if (chain_offset) {
2746 chain_offset = chain_offset <<
2747 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2748 chain_length += ioc->sge_size;
2749 }
2750 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2751 chain_length, chain_dma);
2752 sg_local = chain;
2753 if (!chain_offset)
2754 goto fill_in_last_segment;
2755
2756 /* fill in chain segments */
2757 while (sges_in_segment) {
2758 if (sges_in_segment == 1)
2759 ioc->base_add_sg_single(sg_local,
2760 sgl_flags_last_element |
2761 sg_dma_len(sg_scmd),
2762 sg_dma_address(sg_scmd));
2763 else
2764 ioc->base_add_sg_single(sg_local, sgl_flags |
2765 sg_dma_len(sg_scmd),
2766 sg_dma_address(sg_scmd));
2767 sg_scmd = sg_next(sg_scmd);
2768 sg_local += ioc->sge_size;
2769 sges_left--;
2770 sges_in_segment--;
2771 }
2772
2773 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2774 if (!chain_req)
2775 return -1;
2776 chain = chain_req->chain_buffer;
2777 chain_dma = chain_req->chain_buffer_dma;
2778 } while (1);
2779
2780
2781 fill_in_last_segment:
2782
2783 /* fill the last segment */
2784 while (sges_left) {
2785 if (sges_left == 1)
2786 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2787 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2788 else
2789 ioc->base_add_sg_single(sg_local, sgl_flags |
2790 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2791 sg_scmd = sg_next(sg_scmd);
2792 sg_local += ioc->sge_size;
2793 sges_left--;
2794 }
2795
2796 return 0;
2797 }
2798
2799 /**
2800 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2801 * @ioc: per adapter object
2802 * @scmd: scsi command
2803 * @smid: system request message index
2804 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2805 * constructed on need.
2806 * Context: none.
2807 *
2808 * The main routine that builds scatter gather table from a given
2809 * scsi request sent via the .queuecommand main handler.
2810 *
2811 * Return: 0 success, anything else error
2812 */
2813 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2814 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2815 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2816 {
2817 Mpi25SCSIIORequest_t *mpi_request;
2818 dma_addr_t chain_dma;
2819 struct scatterlist *sg_scmd;
2820 void *sg_local, *chain;
2821 u32 chain_offset;
2822 u32 chain_length;
2823 int sges_left;
2824 u32 sges_in_segment;
2825 u8 simple_sgl_flags;
2826 u8 simple_sgl_flags_last;
2827 u8 chain_sgl_flags;
2828 struct chain_tracker *chain_req;
2829
2830 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2831
2832 /* init scatter gather flags */
2833 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2834 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2835 simple_sgl_flags_last = simple_sgl_flags |
2836 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2837 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2838 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2839
2840 /* Check if we need to build a native SG list. */
2841 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2842 smid, scmd, pcie_device) == 0)) {
2843 /* We built a native SG list, just return. */
2844 return 0;
2845 }
2846
2847 sg_scmd = scsi_sglist(scmd);
2848 sges_left = scsi_dma_map(scmd);
2849 if (sges_left < 0)
2850 return -ENOMEM;
2851
2852 sg_local = &mpi_request->SGL;
2853 sges_in_segment = (ioc->request_sz -
2854 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2855 if (sges_left <= sges_in_segment)
2856 goto fill_in_last_segment;
2857
2858 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2859 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2860
2861 /* fill in main message segment when there is a chain following */
2862 while (sges_in_segment > 1) {
2863 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2864 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2865 sg_scmd = sg_next(sg_scmd);
2866 sg_local += ioc->sge_size_ieee;
2867 sges_left--;
2868 sges_in_segment--;
2869 }
2870
2871 /* initializing the pointers */
2872 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2873 if (!chain_req)
2874 return -1;
2875 chain = chain_req->chain_buffer;
2876 chain_dma = chain_req->chain_buffer_dma;
2877 do {
2878 sges_in_segment = (sges_left <=
2879 ioc->max_sges_in_chain_message) ? sges_left :
2880 ioc->max_sges_in_chain_message;
2881 chain_offset = (sges_left == sges_in_segment) ?
2882 0 : sges_in_segment;
2883 chain_length = sges_in_segment * ioc->sge_size_ieee;
2884 if (chain_offset)
2885 chain_length += ioc->sge_size_ieee;
2886 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2887 chain_offset, chain_length, chain_dma);
2888
2889 sg_local = chain;
2890 if (!chain_offset)
2891 goto fill_in_last_segment;
2892
2893 /* fill in chain segments */
2894 while (sges_in_segment) {
2895 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897 sg_scmd = sg_next(sg_scmd);
2898 sg_local += ioc->sge_size_ieee;
2899 sges_left--;
2900 sges_in_segment--;
2901 }
2902
2903 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2904 if (!chain_req)
2905 return -1;
2906 chain = chain_req->chain_buffer;
2907 chain_dma = chain_req->chain_buffer_dma;
2908 } while (1);
2909
2910
2911 fill_in_last_segment:
2912
2913 /* fill the last segment */
2914 while (sges_left > 0) {
2915 if (sges_left == 1)
2916 _base_add_sg_single_ieee(sg_local,
2917 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2918 sg_dma_address(sg_scmd));
2919 else
2920 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2921 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2922 sg_scmd = sg_next(sg_scmd);
2923 sg_local += ioc->sge_size_ieee;
2924 sges_left--;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /**
2931 * _base_build_sg_ieee - build generic sg for IEEE format
2932 * @ioc: per adapter object
2933 * @psge: virtual address for SGE
2934 * @data_out_dma: physical address for WRITES
2935 * @data_out_sz: data xfer size for WRITES
2936 * @data_in_dma: physical address for READS
2937 * @data_in_sz: data xfer size for READS
2938 */
2939 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2940 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2941 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2942 size_t data_in_sz)
2943 {
2944 u8 sgl_flags;
2945
2946 if (!data_out_sz && !data_in_sz) {
2947 _base_build_zero_len_sge_ieee(ioc, psge);
2948 return;
2949 }
2950
2951 if (data_out_sz && data_in_sz) {
2952 /* WRITE sgel first */
2953 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2954 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2955 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2956 data_out_dma);
2957
2958 /* incr sgel */
2959 psge += ioc->sge_size_ieee;
2960
2961 /* READ sgel last */
2962 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2963 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2964 data_in_dma);
2965 } else if (data_out_sz) /* WRITE */ {
2966 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2967 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2968 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2969 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2970 data_out_dma);
2971 } else if (data_in_sz) /* READ */ {
2972 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2973 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2974 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2975 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2976 data_in_dma);
2977 }
2978 }
2979
2980 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2981
2982 /**
2983 * _base_config_dma_addressing - set dma addressing
2984 * @ioc: per adapter object
2985 * @pdev: PCI device struct
2986 *
2987 * Return: 0 for success, non-zero for failure.
2988 */
2989 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)2990 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2991 {
2992 struct sysinfo s;
2993
2994 if (ioc->is_mcpu_endpoint ||
2995 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2996 dma_get_required_mask(&pdev->dev) <= 32)
2997 ioc->dma_mask = 32;
2998 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2999 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3000 ioc->dma_mask = 63;
3001 else
3002 ioc->dma_mask = 64;
3003
3004 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3005 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3006 return -ENODEV;
3007
3008 if (ioc->dma_mask > 32) {
3009 ioc->base_add_sg_single = &_base_add_sg_single_64;
3010 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3011 } else {
3012 ioc->base_add_sg_single = &_base_add_sg_single_32;
3013 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3014 }
3015
3016 si_meminfo(&s);
3017 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3018 ioc->dma_mask, convert_to_kb(s.totalram));
3019
3020 return 0;
3021 }
3022
3023 /**
3024 * _base_check_enable_msix - checks MSIX capabable.
3025 * @ioc: per adapter object
3026 *
3027 * Check to see if card is capable of MSIX, and set number
3028 * of available msix vectors
3029 */
3030 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)3031 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3032 {
3033 int base;
3034 u16 message_control;
3035
3036 /* Check whether controller SAS2008 B0 controller,
3037 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3038 */
3039 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3040 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3041 return -EINVAL;
3042 }
3043
3044 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3045 if (!base) {
3046 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3047 return -EINVAL;
3048 }
3049
3050 /* get msix vector count */
3051 /* NUMA_IO not supported for older controllers */
3052 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3053 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3054 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3055 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3056 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3057 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3058 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3059 ioc->msix_vector_count = 1;
3060 else {
3061 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3062 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3063 }
3064 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3065 ioc->msix_vector_count));
3066 return 0;
3067 }
3068
3069 /**
3070 * mpt3sas_base_free_irq - free irq
3071 * @ioc: per adapter object
3072 *
3073 * Freeing respective reply_queue from the list.
3074 */
3075 void
mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER * ioc)3076 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3077 {
3078 unsigned int irq;
3079 struct adapter_reply_queue *reply_q, *next;
3080
3081 if (list_empty(&ioc->reply_queue_list))
3082 return;
3083
3084 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3085 list_del(&reply_q->list);
3086 if (reply_q->is_iouring_poll_q) {
3087 kfree(reply_q);
3088 continue;
3089 }
3090
3091 if (ioc->smp_affinity_enable) {
3092 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3093 irq_update_affinity_hint(irq, NULL);
3094 }
3095 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3096 reply_q);
3097 kfree(reply_q);
3098 }
3099 }
3100
3101 /**
3102 * _base_request_irq - request irq
3103 * @ioc: per adapter object
3104 * @index: msix index into vector table
3105 *
3106 * Inserting respective reply_queue into the list.
3107 */
3108 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)3109 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3110 {
3111 struct pci_dev *pdev = ioc->pdev;
3112 struct adapter_reply_queue *reply_q;
3113 int r, qid;
3114
3115 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3116 if (!reply_q) {
3117 ioc_err(ioc, "unable to allocate memory %zu!\n",
3118 sizeof(struct adapter_reply_queue));
3119 return -ENOMEM;
3120 }
3121 reply_q->ioc = ioc;
3122 reply_q->msix_index = index;
3123
3124 atomic_set(&reply_q->busy, 0);
3125
3126 if (index >= ioc->iopoll_q_start_index) {
3127 qid = index - ioc->iopoll_q_start_index;
3128 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3129 ioc->driver_name, ioc->id, qid);
3130 reply_q->is_iouring_poll_q = 1;
3131 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3132 goto out;
3133 }
3134
3135
3136 if (ioc->msix_enable)
3137 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3138 ioc->driver_name, ioc->id, index);
3139 else
3140 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3141 ioc->driver_name, ioc->id);
3142 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3143 IRQF_SHARED, reply_q->name, reply_q);
3144 if (r) {
3145 pr_err("%s: unable to allocate interrupt %d!\n",
3146 reply_q->name, pci_irq_vector(pdev, index));
3147 kfree(reply_q);
3148 return -EBUSY;
3149 }
3150 out:
3151 INIT_LIST_HEAD(&reply_q->list);
3152 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3153 return 0;
3154 }
3155
3156 /**
3157 * _base_assign_reply_queues - assigning msix index for each cpu
3158 * @ioc: per adapter object
3159 *
3160 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3161 */
3162 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)3163 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3164 {
3165 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3166 struct adapter_reply_queue *reply_q;
3167 int iopoll_q_count = ioc->reply_queue_count -
3168 ioc->iopoll_q_start_index;
3169 const struct cpumask *mask;
3170
3171 if (!_base_is_controller_msix_enabled(ioc))
3172 return;
3173
3174 if (ioc->msix_load_balance)
3175 return;
3176
3177 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3178
3179 nr_cpus = num_online_cpus();
3180 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3181 ioc->facts.MaxMSIxVectors);
3182 if (!nr_msix)
3183 return;
3184
3185 if (ioc->smp_affinity_enable) {
3186
3187 /*
3188 * set irq affinity to local numa node for those irqs
3189 * corresponding to high iops queues.
3190 */
3191 if (ioc->high_iops_queues) {
3192 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3193 for (index = 0; index < ioc->high_iops_queues;
3194 index++) {
3195 irq = pci_irq_vector(ioc->pdev, index);
3196 irq_set_affinity_and_hint(irq, mask);
3197 }
3198 }
3199
3200 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3201 const cpumask_t *mask;
3202
3203 if (reply_q->msix_index < ioc->high_iops_queues ||
3204 reply_q->msix_index >= ioc->iopoll_q_start_index)
3205 continue;
3206
3207 mask = pci_irq_get_affinity(ioc->pdev,
3208 reply_q->msix_index);
3209 if (!mask) {
3210 ioc_warn(ioc, "no affinity for msi %x\n",
3211 reply_q->msix_index);
3212 goto fall_back;
3213 }
3214
3215 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3216 if (cpu >= ioc->cpu_msix_table_sz)
3217 break;
3218 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3219 }
3220 }
3221 return;
3222 }
3223
3224 fall_back:
3225 cpu = cpumask_first(cpu_online_mask);
3226 nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3227 index = 0;
3228
3229 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3230 unsigned int i, group = nr_cpus / nr_msix;
3231
3232 if (reply_q->msix_index < ioc->high_iops_queues ||
3233 reply_q->msix_index >= ioc->iopoll_q_start_index)
3234 continue;
3235
3236 if (cpu >= nr_cpus)
3237 break;
3238
3239 if (index < nr_cpus % nr_msix)
3240 group++;
3241
3242 for (i = 0 ; i < group ; i++) {
3243 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3244 cpu = cpumask_next(cpu, cpu_online_mask);
3245 }
3246 index++;
3247 }
3248 }
3249
3250 /**
3251 * _base_check_and_enable_high_iops_queues - enable high iops mode
3252 * @ioc: per adapter object
3253 * @hba_msix_vector_count: msix vectors supported by HBA
3254 *
3255 * Enable high iops queues only if
3256 * - HBA is a SEA/AERO controller and
3257 * - MSI-Xs vector supported by the HBA is 128 and
3258 * - total CPU count in the system >=16 and
3259 * - loaded driver with default max_msix_vectors module parameter and
3260 * - system booted in non kdump mode
3261 *
3262 * Return: nothing.
3263 */
3264 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3265 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3266 int hba_msix_vector_count)
3267 {
3268 u16 lnksta, speed;
3269
3270 /*
3271 * Disable high iops queues if io uring poll queues are enabled.
3272 */
3273 if (perf_mode == MPT_PERF_MODE_IOPS ||
3274 perf_mode == MPT_PERF_MODE_LATENCY ||
3275 ioc->io_uring_poll_queues) {
3276 ioc->high_iops_queues = 0;
3277 return;
3278 }
3279
3280 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3281
3282 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3283 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3284
3285 if (speed < 0x4) {
3286 ioc->high_iops_queues = 0;
3287 return;
3288 }
3289 }
3290
3291 if (!reset_devices && ioc->is_aero_ioc &&
3292 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3293 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3294 max_msix_vectors == -1)
3295 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3296 else
3297 ioc->high_iops_queues = 0;
3298 }
3299
3300 /**
3301 * mpt3sas_base_disable_msix - disables msix
3302 * @ioc: per adapter object
3303 *
3304 */
3305 void
mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3306 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3307 {
3308 if (!ioc->msix_enable)
3309 return;
3310 pci_free_irq_vectors(ioc->pdev);
3311 ioc->msix_enable = 0;
3312 kfree(ioc->io_uring_poll_queues);
3313 }
3314
3315 /**
3316 * _base_alloc_irq_vectors - allocate msix vectors
3317 * @ioc: per adapter object
3318 *
3319 */
3320 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3321 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3322 {
3323 int i, irq_flags = PCI_IRQ_MSIX;
3324 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3325 struct irq_affinity *descp = &desc;
3326 /*
3327 * Don't allocate msix vectors for poll_queues.
3328 * msix_vectors is always within a range of FW supported reply queue.
3329 */
3330 int nr_msix_vectors = ioc->iopoll_q_start_index;
3331
3332
3333 if (ioc->smp_affinity_enable)
3334 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3335 else
3336 descp = NULL;
3337
3338 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3339 ioc->reply_queue_count, nr_msix_vectors);
3340
3341 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3342 ioc->high_iops_queues,
3343 nr_msix_vectors, irq_flags, descp);
3344
3345 return i;
3346 }
3347
3348 /**
3349 * _base_enable_msix - enables msix, failback to io_apic
3350 * @ioc: per adapter object
3351 *
3352 */
3353 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3354 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3355 {
3356 int r;
3357 int i, local_max_msix_vectors;
3358 u8 try_msix = 0;
3359 int iopoll_q_count = 0;
3360
3361 ioc->msix_load_balance = false;
3362
3363 if (msix_disable == -1 || msix_disable == 0)
3364 try_msix = 1;
3365
3366 if (!try_msix)
3367 goto try_ioapic;
3368
3369 if (_base_check_enable_msix(ioc) != 0)
3370 goto try_ioapic;
3371
3372 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3373 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3374 ioc->cpu_count, max_msix_vectors);
3375
3376 ioc->reply_queue_count =
3377 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3378
3379 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3380 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3381 else
3382 local_max_msix_vectors = max_msix_vectors;
3383
3384 if (local_max_msix_vectors == 0)
3385 goto try_ioapic;
3386
3387 /*
3388 * Enable msix_load_balance only if combined reply queue mode is
3389 * disabled on SAS3 & above generation HBA devices.
3390 */
3391 if (!ioc->combined_reply_queue &&
3392 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3393 ioc_info(ioc,
3394 "combined ReplyQueue is off, Enabling msix load balance\n");
3395 ioc->msix_load_balance = true;
3396 }
3397
3398 /*
3399 * smp affinity setting is not need when msix load balance
3400 * is enabled.
3401 */
3402 if (ioc->msix_load_balance)
3403 ioc->smp_affinity_enable = 0;
3404
3405 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3406 ioc->shost->host_tagset = 0;
3407
3408 /*
3409 * Enable io uring poll queues only if host_tagset is enabled.
3410 */
3411 if (ioc->shost->host_tagset)
3412 iopoll_q_count = poll_queues;
3413
3414 if (iopoll_q_count) {
3415 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3416 sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3417 if (!ioc->io_uring_poll_queues)
3418 iopoll_q_count = 0;
3419 }
3420
3421 if (ioc->is_aero_ioc)
3422 _base_check_and_enable_high_iops_queues(ioc,
3423 ioc->msix_vector_count);
3424
3425 /*
3426 * Add high iops queues count to reply queue count if high iops queues
3427 * are enabled.
3428 */
3429 ioc->reply_queue_count = min_t(int,
3430 ioc->reply_queue_count + ioc->high_iops_queues,
3431 ioc->msix_vector_count);
3432
3433 /*
3434 * Adjust the reply queue count incase reply queue count
3435 * exceeds the user provided MSIx vectors count.
3436 */
3437 if (local_max_msix_vectors > 0)
3438 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3439 ioc->reply_queue_count);
3440 /*
3441 * Add io uring poll queues count to reply queues count
3442 * if io uring is enabled in driver.
3443 */
3444 if (iopoll_q_count) {
3445 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3446 iopoll_q_count = 0;
3447 ioc->reply_queue_count = min_t(int,
3448 ioc->reply_queue_count + iopoll_q_count,
3449 ioc->msix_vector_count);
3450 }
3451
3452 /*
3453 * Starting index of io uring poll queues in reply queue list.
3454 */
3455 ioc->iopoll_q_start_index =
3456 ioc->reply_queue_count - iopoll_q_count;
3457
3458 r = _base_alloc_irq_vectors(ioc);
3459 if (r < 0) {
3460 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3461 goto try_ioapic;
3462 }
3463
3464 /*
3465 * Adjust the reply queue count if the allocated
3466 * MSIx vectors is less then the requested number
3467 * of MSIx vectors.
3468 */
3469 if (r < ioc->iopoll_q_start_index) {
3470 ioc->reply_queue_count = r + iopoll_q_count;
3471 ioc->iopoll_q_start_index =
3472 ioc->reply_queue_count - iopoll_q_count;
3473 }
3474
3475 ioc->msix_enable = 1;
3476 for (i = 0; i < ioc->reply_queue_count; i++) {
3477 r = _base_request_irq(ioc, i);
3478 if (r) {
3479 mpt3sas_base_free_irq(ioc);
3480 mpt3sas_base_disable_msix(ioc);
3481 goto try_ioapic;
3482 }
3483 }
3484
3485 ioc_info(ioc, "High IOPs queues : %s\n",
3486 ioc->high_iops_queues ? "enabled" : "disabled");
3487
3488 return 0;
3489
3490 /* failback to io_apic interrupt routing */
3491 try_ioapic:
3492 ioc->high_iops_queues = 0;
3493 ioc_info(ioc, "High IOPs queues : disabled\n");
3494 ioc->reply_queue_count = 1;
3495 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3496 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3497 if (r < 0) {
3498 dfailprintk(ioc,
3499 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3500 r));
3501 } else
3502 r = _base_request_irq(ioc, 0);
3503
3504 return r;
3505 }
3506
3507 /**
3508 * mpt3sas_base_unmap_resources - free controller resources
3509 * @ioc: per adapter object
3510 */
3511 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3512 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3513 {
3514 struct pci_dev *pdev = ioc->pdev;
3515
3516 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3517
3518 mpt3sas_base_free_irq(ioc);
3519 mpt3sas_base_disable_msix(ioc);
3520
3521 kfree(ioc->replyPostRegisterIndex);
3522 ioc->replyPostRegisterIndex = NULL;
3523
3524
3525 if (ioc->chip_phys) {
3526 iounmap(ioc->chip);
3527 ioc->chip_phys = 0;
3528 }
3529
3530 if (pci_is_enabled(pdev)) {
3531 pci_release_selected_regions(ioc->pdev, ioc->bars);
3532 pci_disable_pcie_error_reporting(pdev);
3533 pci_disable_device(pdev);
3534 }
3535 }
3536
3537 static int
3538 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3539
3540 /**
3541 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3542 * and if it is in fault state then issue diag reset.
3543 * @ioc: per adapter object
3544 *
3545 * Return: 0 for success, non-zero for failure.
3546 */
3547 int
mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3548 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3549 {
3550 u32 ioc_state;
3551 int rc = -EFAULT;
3552
3553 dinitprintk(ioc, pr_info("%s\n", __func__));
3554 if (ioc->pci_error_recovery)
3555 return 0;
3556 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3557 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3558
3559 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3560 mpt3sas_print_fault_code(ioc, ioc_state &
3561 MPI2_DOORBELL_DATA_MASK);
3562 mpt3sas_base_mask_interrupts(ioc);
3563 rc = _base_diag_reset(ioc);
3564 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3565 MPI2_IOC_STATE_COREDUMP) {
3566 mpt3sas_print_coredump_info(ioc, ioc_state &
3567 MPI2_DOORBELL_DATA_MASK);
3568 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3569 mpt3sas_base_mask_interrupts(ioc);
3570 rc = _base_diag_reset(ioc);
3571 }
3572
3573 return rc;
3574 }
3575
3576 /**
3577 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3578 * @ioc: per adapter object
3579 *
3580 * Return: 0 for success, non-zero for failure.
3581 */
3582 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3583 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3584 {
3585 struct pci_dev *pdev = ioc->pdev;
3586 u32 memap_sz;
3587 u32 pio_sz;
3588 int i, r = 0, rc;
3589 u64 pio_chip = 0;
3590 phys_addr_t chip_phys = 0;
3591 struct adapter_reply_queue *reply_q;
3592 int iopoll_q_count = 0;
3593
3594 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3595
3596 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3597 if (pci_enable_device_mem(pdev)) {
3598 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3599 ioc->bars = 0;
3600 return -ENODEV;
3601 }
3602
3603
3604 if (pci_request_selected_regions(pdev, ioc->bars,
3605 ioc->driver_name)) {
3606 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3607 ioc->bars = 0;
3608 r = -ENODEV;
3609 goto out_fail;
3610 }
3611
3612 /* AER (Advanced Error Reporting) hooks */
3613 pci_enable_pcie_error_reporting(pdev);
3614
3615 pci_set_master(pdev);
3616
3617
3618 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3619 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3620 r = -ENODEV;
3621 goto out_fail;
3622 }
3623
3624 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3625 (!memap_sz || !pio_sz); i++) {
3626 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3627 if (pio_sz)
3628 continue;
3629 pio_chip = (u64)pci_resource_start(pdev, i);
3630 pio_sz = pci_resource_len(pdev, i);
3631 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3632 if (memap_sz)
3633 continue;
3634 ioc->chip_phys = pci_resource_start(pdev, i);
3635 chip_phys = ioc->chip_phys;
3636 memap_sz = pci_resource_len(pdev, i);
3637 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3638 }
3639 }
3640
3641 if (ioc->chip == NULL) {
3642 ioc_err(ioc,
3643 "unable to map adapter memory! or resource not found\n");
3644 r = -EINVAL;
3645 goto out_fail;
3646 }
3647
3648 mpt3sas_base_mask_interrupts(ioc);
3649
3650 r = _base_get_ioc_facts(ioc);
3651 if (r) {
3652 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3653 if (rc || (_base_get_ioc_facts(ioc)))
3654 goto out_fail;
3655 }
3656
3657 if (!ioc->rdpq_array_enable_assigned) {
3658 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3659 ioc->rdpq_array_enable_assigned = 1;
3660 }
3661
3662 r = _base_enable_msix(ioc);
3663 if (r)
3664 goto out_fail;
3665
3666 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3667 for (i = 0; i < iopoll_q_count; i++) {
3668 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3669 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3670 }
3671
3672 if (!ioc->is_driver_loading)
3673 _base_init_irqpolls(ioc);
3674 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3675 * revision HBAs and also only when reply queue count is greater than 8
3676 */
3677 if (ioc->combined_reply_queue) {
3678 /* Determine the Supplemental Reply Post Host Index Registers
3679 * Addresse. Supplemental Reply Post Host Index Registers
3680 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3681 * each register is at offset bytes of
3682 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3683 */
3684 ioc->replyPostRegisterIndex = kcalloc(
3685 ioc->combined_reply_index_count,
3686 sizeof(resource_size_t *), GFP_KERNEL);
3687 if (!ioc->replyPostRegisterIndex) {
3688 ioc_err(ioc,
3689 "allocation for replyPostRegisterIndex failed!\n");
3690 r = -ENOMEM;
3691 goto out_fail;
3692 }
3693
3694 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3695 ioc->replyPostRegisterIndex[i] =
3696 (resource_size_t __iomem *)
3697 ((u8 __force *)&ioc->chip->Doorbell +
3698 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3699 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3700 }
3701 }
3702
3703 if (ioc->is_warpdrive) {
3704 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3705 &ioc->chip->ReplyPostHostIndex;
3706
3707 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3708 ioc->reply_post_host_index[i] =
3709 (resource_size_t __iomem *)
3710 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3711 * 4)));
3712 }
3713
3714 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3715 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3716 pr_info("%s: enabled: index: %d\n",
3717 reply_q->name, reply_q->msix_index);
3718 continue;
3719 }
3720
3721 pr_info("%s: %s enabled: IRQ %d\n",
3722 reply_q->name,
3723 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3724 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3725 }
3726
3727 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3728 &chip_phys, ioc->chip, memap_sz);
3729 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3730 (unsigned long long)pio_chip, pio_sz);
3731
3732 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3733 pci_save_state(pdev);
3734 return 0;
3735
3736 out_fail:
3737 mpt3sas_base_unmap_resources(ioc);
3738 return r;
3739 }
3740
3741 /**
3742 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3743 * @ioc: per adapter object
3744 * @smid: system request message index(smid zero is invalid)
3745 *
3746 * Return: virt pointer to message frame.
3747 */
3748 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3749 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3750 {
3751 return (void *)(ioc->request + (smid * ioc->request_sz));
3752 }
3753
3754 /**
3755 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3756 * @ioc: per adapter object
3757 * @smid: system request message index
3758 *
3759 * Return: virt pointer to sense buffer.
3760 */
3761 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3762 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3763 {
3764 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3765 }
3766
3767 /**
3768 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3769 * @ioc: per adapter object
3770 * @smid: system request message index
3771 *
3772 * Return: phys pointer to the low 32bit address of the sense buffer.
3773 */
3774 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3775 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3776 {
3777 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3778 SCSI_SENSE_BUFFERSIZE));
3779 }
3780
3781 /**
3782 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3783 * @ioc: per adapter object
3784 * @smid: system request message index
3785 *
3786 * Return: virt pointer to a PCIe SGL.
3787 */
3788 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3789 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3790 {
3791 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3792 }
3793
3794 /**
3795 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3796 * @ioc: per adapter object
3797 * @smid: system request message index
3798 *
3799 * Return: phys pointer to the address of the PCIe buffer.
3800 */
3801 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3802 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3803 {
3804 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3805 }
3806
3807 /**
3808 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3809 * @ioc: per adapter object
3810 * @phys_addr: lower 32 physical addr of the reply
3811 *
3812 * Converts 32bit lower physical addr into a virt address.
3813 */
3814 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3815 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3816 {
3817 if (!phys_addr)
3818 return NULL;
3819 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3820 }
3821
3822 /**
3823 * _base_get_msix_index - get the msix index
3824 * @ioc: per adapter object
3825 * @scmd: scsi_cmnd object
3826 *
3827 * Return: msix index of general reply queues,
3828 * i.e. reply queue on which IO request's reply
3829 * should be posted by the HBA firmware.
3830 */
3831 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3832 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3833 struct scsi_cmnd *scmd)
3834 {
3835 /* Enables reply_queue load balancing */
3836 if (ioc->msix_load_balance)
3837 return ioc->reply_queue_count ?
3838 base_mod64(atomic64_add_return(1,
3839 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3840
3841 if (scmd && ioc->shost->nr_hw_queues > 1) {
3842 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3843
3844 return blk_mq_unique_tag_to_hwq(tag) +
3845 ioc->high_iops_queues;
3846 }
3847
3848 return ioc->cpu_msix_table[raw_smp_processor_id()];
3849 }
3850
3851 /**
3852 * _base_get_high_iops_msix_index - get the msix index of
3853 * high iops queues
3854 * @ioc: per adapter object
3855 * @scmd: scsi_cmnd object
3856 *
3857 * Return: msix index of high iops reply queues.
3858 * i.e. high iops reply queue on which IO request's
3859 * reply should be posted by the HBA firmware.
3860 */
3861 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3862 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3863 struct scsi_cmnd *scmd)
3864 {
3865 /**
3866 * Round robin the IO interrupts among the high iops
3867 * reply queues in terms of batch count 16 when outstanding
3868 * IOs on the target device is >=8.
3869 */
3870
3871 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3872 return base_mod64((
3873 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3874 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3875 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3876
3877 return _base_get_msix_index(ioc, scmd);
3878 }
3879
3880 /**
3881 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3882 * @ioc: per adapter object
3883 * @cb_idx: callback index
3884 *
3885 * Return: smid (zero is invalid)
3886 */
3887 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3888 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3889 {
3890 unsigned long flags;
3891 struct request_tracker *request;
3892 u16 smid;
3893
3894 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3895 if (list_empty(&ioc->internal_free_list)) {
3896 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3897 ioc_err(ioc, "%s: smid not available\n", __func__);
3898 return 0;
3899 }
3900
3901 request = list_entry(ioc->internal_free_list.next,
3902 struct request_tracker, tracker_list);
3903 request->cb_idx = cb_idx;
3904 smid = request->smid;
3905 list_del(&request->tracker_list);
3906 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3907 return smid;
3908 }
3909
3910 /**
3911 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3912 * @ioc: per adapter object
3913 * @cb_idx: callback index
3914 * @scmd: pointer to scsi command object
3915 *
3916 * Return: smid (zero is invalid)
3917 */
3918 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3919 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3920 struct scsi_cmnd *scmd)
3921 {
3922 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3923 u16 smid;
3924 u32 tag, unique_tag;
3925
3926 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3927 tag = blk_mq_unique_tag_to_tag(unique_tag);
3928
3929 /*
3930 * Store hw queue number corresponding to the tag.
3931 * This hw queue number is used later to determine
3932 * the unique_tag using the logic below. This unique_tag
3933 * is used to retrieve the scmd pointer corresponding
3934 * to tag using scsi_host_find_tag() API.
3935 *
3936 * tag = smid - 1;
3937 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3938 */
3939 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3940
3941 smid = tag + 1;
3942 request->cb_idx = cb_idx;
3943 request->smid = smid;
3944 request->scmd = scmd;
3945 INIT_LIST_HEAD(&request->chain_list);
3946 return smid;
3947 }
3948
3949 /**
3950 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3951 * @ioc: per adapter object
3952 * @cb_idx: callback index
3953 *
3954 * Return: smid (zero is invalid)
3955 */
3956 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3957 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3958 {
3959 unsigned long flags;
3960 struct request_tracker *request;
3961 u16 smid;
3962
3963 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3964 if (list_empty(&ioc->hpr_free_list)) {
3965 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3966 return 0;
3967 }
3968
3969 request = list_entry(ioc->hpr_free_list.next,
3970 struct request_tracker, tracker_list);
3971 request->cb_idx = cb_idx;
3972 smid = request->smid;
3973 list_del(&request->tracker_list);
3974 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3975 return smid;
3976 }
3977
3978 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)3979 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3980 {
3981 /*
3982 * See _wait_for_commands_to_complete() call with regards to this code.
3983 */
3984 if (ioc->shost_recovery && ioc->pending_io_count) {
3985 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3986 if (ioc->pending_io_count == 0)
3987 wake_up(&ioc->reset_wq);
3988 }
3989 }
3990
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)3991 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3992 struct scsiio_tracker *st)
3993 {
3994 if (WARN_ON(st->smid == 0))
3995 return;
3996 st->cb_idx = 0xFF;
3997 st->direct_io = 0;
3998 st->scmd = NULL;
3999 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4000 st->smid = 0;
4001 }
4002
4003 /**
4004 * mpt3sas_base_free_smid - put smid back on free_list
4005 * @ioc: per adapter object
4006 * @smid: system request message index
4007 */
4008 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)4009 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4010 {
4011 unsigned long flags;
4012 int i;
4013
4014 if (smid < ioc->hi_priority_smid) {
4015 struct scsiio_tracker *st;
4016 void *request;
4017
4018 st = _get_st_from_smid(ioc, smid);
4019 if (!st) {
4020 _base_recovery_check(ioc);
4021 return;
4022 }
4023
4024 /* Clear MPI request frame */
4025 request = mpt3sas_base_get_msg_frame(ioc, smid);
4026 memset(request, 0, ioc->request_sz);
4027
4028 mpt3sas_base_clear_st(ioc, st);
4029 _base_recovery_check(ioc);
4030 ioc->io_queue_num[smid - 1] = 0;
4031 return;
4032 }
4033
4034 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4035 if (smid < ioc->internal_smid) {
4036 /* hi-priority */
4037 i = smid - ioc->hi_priority_smid;
4038 ioc->hpr_lookup[i].cb_idx = 0xFF;
4039 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4040 } else if (smid <= ioc->hba_queue_depth) {
4041 /* internal queue */
4042 i = smid - ioc->internal_smid;
4043 ioc->internal_lookup[i].cb_idx = 0xFF;
4044 list_add(&ioc->internal_lookup[i].tracker_list,
4045 &ioc->internal_free_list);
4046 }
4047 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4048 }
4049
4050 /**
4051 * _base_mpi_ep_writeq - 32 bit write to MMIO
4052 * @b: data payload
4053 * @addr: address in MMIO space
4054 * @writeq_lock: spin lock
4055 *
4056 * This special handling for MPI EP to take care of 32 bit
4057 * environment where its not quarenteed to send the entire word
4058 * in one transfer.
4059 */
4060 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4061 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4062 spinlock_t *writeq_lock)
4063 {
4064 unsigned long flags;
4065
4066 spin_lock_irqsave(writeq_lock, flags);
4067 __raw_writel((u32)(b), addr);
4068 __raw_writel((u32)(b >> 32), (addr + 4));
4069 spin_unlock_irqrestore(writeq_lock, flags);
4070 }
4071
4072 /**
4073 * _base_writeq - 64 bit write to MMIO
4074 * @b: data payload
4075 * @addr: address in MMIO space
4076 * @writeq_lock: spin lock
4077 *
4078 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4079 * care of 32 bit environment where its not quarenteed to send the entire word
4080 * in one transfer.
4081 */
4082 #if defined(writeq) && defined(CONFIG_64BIT)
4083 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4084 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4085 {
4086 wmb();
4087 __raw_writeq(b, addr);
4088 barrier();
4089 }
4090 #else
4091 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4092 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4093 {
4094 _base_mpi_ep_writeq(b, addr, writeq_lock);
4095 }
4096 #endif
4097
4098 /**
4099 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4100 * variable of scsi tracker
4101 * @ioc: per adapter object
4102 * @smid: system request message index
4103 *
4104 * Return: msix index.
4105 */
4106 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)4107 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4108 {
4109 struct scsiio_tracker *st = NULL;
4110
4111 if (smid < ioc->hi_priority_smid)
4112 st = _get_st_from_smid(ioc, smid);
4113
4114 if (st == NULL)
4115 return _base_get_msix_index(ioc, NULL);
4116
4117 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4118 return st->msix_io;
4119 }
4120
4121 /**
4122 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4123 * @ioc: per adapter object
4124 * @smid: system request message index
4125 * @handle: device handle
4126 */
4127 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4128 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4129 u16 smid, u16 handle)
4130 {
4131 Mpi2RequestDescriptorUnion_t descriptor;
4132 u64 *request = (u64 *)&descriptor;
4133 void *mpi_req_iomem;
4134 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4135
4136 _clone_sg_entries(ioc, (void *) mfp, smid);
4137 mpi_req_iomem = (void __force *)ioc->chip +
4138 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4139 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4140 ioc->request_sz);
4141 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4142 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4143 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4144 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4145 descriptor.SCSIIO.LMID = 0;
4146 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4147 &ioc->scsi_lookup_lock);
4148 }
4149
4150 /**
4151 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4152 * @ioc: per adapter object
4153 * @smid: system request message index
4154 * @handle: device handle
4155 */
4156 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4157 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4158 {
4159 Mpi2RequestDescriptorUnion_t descriptor;
4160 u64 *request = (u64 *)&descriptor;
4161
4162
4163 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4164 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4165 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4166 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4167 descriptor.SCSIIO.LMID = 0;
4168 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4169 &ioc->scsi_lookup_lock);
4170 }
4171
4172 /**
4173 * _base_put_smid_fast_path - send fast path request to firmware
4174 * @ioc: per adapter object
4175 * @smid: system request message index
4176 * @handle: device handle
4177 */
4178 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4179 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4180 u16 handle)
4181 {
4182 Mpi2RequestDescriptorUnion_t descriptor;
4183 u64 *request = (u64 *)&descriptor;
4184
4185 descriptor.SCSIIO.RequestFlags =
4186 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4187 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4188 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4189 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4190 descriptor.SCSIIO.LMID = 0;
4191 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4192 &ioc->scsi_lookup_lock);
4193 }
4194
4195 /**
4196 * _base_put_smid_hi_priority - send Task Management request to firmware
4197 * @ioc: per adapter object
4198 * @smid: system request message index
4199 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4200 */
4201 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4202 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4203 u16 msix_task)
4204 {
4205 Mpi2RequestDescriptorUnion_t descriptor;
4206 void *mpi_req_iomem;
4207 u64 *request;
4208
4209 if (ioc->is_mcpu_endpoint) {
4210 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4211
4212 /* TBD 256 is offset within sys register. */
4213 mpi_req_iomem = (void __force *)ioc->chip
4214 + MPI_FRAME_START_OFFSET
4215 + (smid * ioc->request_sz);
4216 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4217 ioc->request_sz);
4218 }
4219
4220 request = (u64 *)&descriptor;
4221
4222 descriptor.HighPriority.RequestFlags =
4223 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4224 descriptor.HighPriority.MSIxIndex = msix_task;
4225 descriptor.HighPriority.SMID = cpu_to_le16(smid);
4226 descriptor.HighPriority.LMID = 0;
4227 descriptor.HighPriority.Reserved1 = 0;
4228 if (ioc->is_mcpu_endpoint)
4229 _base_mpi_ep_writeq(*request,
4230 &ioc->chip->RequestDescriptorPostLow,
4231 &ioc->scsi_lookup_lock);
4232 else
4233 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4234 &ioc->scsi_lookup_lock);
4235 }
4236
4237 /**
4238 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4239 * firmware
4240 * @ioc: per adapter object
4241 * @smid: system request message index
4242 */
4243 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)4244 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4245 {
4246 Mpi2RequestDescriptorUnion_t descriptor;
4247 u64 *request = (u64 *)&descriptor;
4248
4249 descriptor.Default.RequestFlags =
4250 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4251 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4252 descriptor.Default.SMID = cpu_to_le16(smid);
4253 descriptor.Default.LMID = 0;
4254 descriptor.Default.DescriptorTypeDependent = 0;
4255 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4256 &ioc->scsi_lookup_lock);
4257 }
4258
4259 /**
4260 * _base_put_smid_default - Default, primarily used for config pages
4261 * @ioc: per adapter object
4262 * @smid: system request message index
4263 */
4264 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)4265 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4266 {
4267 Mpi2RequestDescriptorUnion_t descriptor;
4268 void *mpi_req_iomem;
4269 u64 *request;
4270
4271 if (ioc->is_mcpu_endpoint) {
4272 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4273
4274 _clone_sg_entries(ioc, (void *) mfp, smid);
4275 /* TBD 256 is offset within sys register */
4276 mpi_req_iomem = (void __force *)ioc->chip +
4277 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4278 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4279 ioc->request_sz);
4280 }
4281 request = (u64 *)&descriptor;
4282 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4283 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4284 descriptor.Default.SMID = cpu_to_le16(smid);
4285 descriptor.Default.LMID = 0;
4286 descriptor.Default.DescriptorTypeDependent = 0;
4287 if (ioc->is_mcpu_endpoint)
4288 _base_mpi_ep_writeq(*request,
4289 &ioc->chip->RequestDescriptorPostLow,
4290 &ioc->scsi_lookup_lock);
4291 else
4292 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4293 &ioc->scsi_lookup_lock);
4294 }
4295
4296 /**
4297 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4298 * Atomic Request Descriptor
4299 * @ioc: per adapter object
4300 * @smid: system request message index
4301 * @handle: device handle, unused in this function, for function type match
4302 *
4303 * Return: nothing.
4304 */
4305 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4306 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4307 u16 handle)
4308 {
4309 Mpi26AtomicRequestDescriptor_t descriptor;
4310 u32 *request = (u32 *)&descriptor;
4311
4312 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4313 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4314 descriptor.SMID = cpu_to_le16(smid);
4315
4316 writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4317 }
4318
4319 /**
4320 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4321 * using Atomic Request Descriptor
4322 * @ioc: per adapter object
4323 * @smid: system request message index
4324 * @handle: device handle, unused in this function, for function type match
4325 * Return: nothing
4326 */
4327 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4328 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4329 u16 handle)
4330 {
4331 Mpi26AtomicRequestDescriptor_t descriptor;
4332 u32 *request = (u32 *)&descriptor;
4333
4334 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4335 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4336 descriptor.SMID = cpu_to_le16(smid);
4337
4338 writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4339 }
4340
4341 /**
4342 * _base_put_smid_hi_priority_atomic - send Task Management request to
4343 * firmware using Atomic Request Descriptor
4344 * @ioc: per adapter object
4345 * @smid: system request message index
4346 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4347 *
4348 * Return: nothing.
4349 */
4350 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4351 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4352 u16 msix_task)
4353 {
4354 Mpi26AtomicRequestDescriptor_t descriptor;
4355 u32 *request = (u32 *)&descriptor;
4356
4357 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4358 descriptor.MSIxIndex = msix_task;
4359 descriptor.SMID = cpu_to_le16(smid);
4360
4361 writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4362 }
4363
4364 /**
4365 * _base_put_smid_default_atomic - Default, primarily used for config pages
4366 * use Atomic Request Descriptor
4367 * @ioc: per adapter object
4368 * @smid: system request message index
4369 *
4370 * Return: nothing.
4371 */
4372 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4373 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4374 {
4375 Mpi26AtomicRequestDescriptor_t descriptor;
4376 u32 *request = (u32 *)&descriptor;
4377
4378 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4379 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4380 descriptor.SMID = cpu_to_le16(smid);
4381
4382 writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4383 }
4384
4385 /**
4386 * _base_display_OEMs_branding - Display branding string
4387 * @ioc: per adapter object
4388 */
4389 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4390 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4391 {
4392 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4393 return;
4394
4395 switch (ioc->pdev->subsystem_vendor) {
4396 case PCI_VENDOR_ID_INTEL:
4397 switch (ioc->pdev->device) {
4398 case MPI2_MFGPAGE_DEVID_SAS2008:
4399 switch (ioc->pdev->subsystem_device) {
4400 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4401 ioc_info(ioc, "%s\n",
4402 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4403 break;
4404 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4405 ioc_info(ioc, "%s\n",
4406 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4407 break;
4408 case MPT2SAS_INTEL_SSD910_SSDID:
4409 ioc_info(ioc, "%s\n",
4410 MPT2SAS_INTEL_SSD910_BRANDING);
4411 break;
4412 default:
4413 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4414 ioc->pdev->subsystem_device);
4415 break;
4416 }
4417 break;
4418 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4419 switch (ioc->pdev->subsystem_device) {
4420 case MPT2SAS_INTEL_RS25GB008_SSDID:
4421 ioc_info(ioc, "%s\n",
4422 MPT2SAS_INTEL_RS25GB008_BRANDING);
4423 break;
4424 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4425 ioc_info(ioc, "%s\n",
4426 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4427 break;
4428 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4429 ioc_info(ioc, "%s\n",
4430 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4431 break;
4432 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4433 ioc_info(ioc, "%s\n",
4434 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4435 break;
4436 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4437 ioc_info(ioc, "%s\n",
4438 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4439 break;
4440 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4441 ioc_info(ioc, "%s\n",
4442 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4443 break;
4444 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4445 ioc_info(ioc, "%s\n",
4446 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4447 break;
4448 default:
4449 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4450 ioc->pdev->subsystem_device);
4451 break;
4452 }
4453 break;
4454 case MPI25_MFGPAGE_DEVID_SAS3008:
4455 switch (ioc->pdev->subsystem_device) {
4456 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4457 ioc_info(ioc, "%s\n",
4458 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4459 break;
4460
4461 case MPT3SAS_INTEL_RS3GC008_SSDID:
4462 ioc_info(ioc, "%s\n",
4463 MPT3SAS_INTEL_RS3GC008_BRANDING);
4464 break;
4465 case MPT3SAS_INTEL_RS3FC044_SSDID:
4466 ioc_info(ioc, "%s\n",
4467 MPT3SAS_INTEL_RS3FC044_BRANDING);
4468 break;
4469 case MPT3SAS_INTEL_RS3UC080_SSDID:
4470 ioc_info(ioc, "%s\n",
4471 MPT3SAS_INTEL_RS3UC080_BRANDING);
4472 break;
4473 default:
4474 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4475 ioc->pdev->subsystem_device);
4476 break;
4477 }
4478 break;
4479 default:
4480 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4481 ioc->pdev->subsystem_device);
4482 break;
4483 }
4484 break;
4485 case PCI_VENDOR_ID_DELL:
4486 switch (ioc->pdev->device) {
4487 case MPI2_MFGPAGE_DEVID_SAS2008:
4488 switch (ioc->pdev->subsystem_device) {
4489 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4490 ioc_info(ioc, "%s\n",
4491 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4492 break;
4493 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4494 ioc_info(ioc, "%s\n",
4495 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4496 break;
4497 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4498 ioc_info(ioc, "%s\n",
4499 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4500 break;
4501 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4502 ioc_info(ioc, "%s\n",
4503 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4504 break;
4505 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4506 ioc_info(ioc, "%s\n",
4507 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4508 break;
4509 case MPT2SAS_DELL_PERC_H200_SSDID:
4510 ioc_info(ioc, "%s\n",
4511 MPT2SAS_DELL_PERC_H200_BRANDING);
4512 break;
4513 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4514 ioc_info(ioc, "%s\n",
4515 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4516 break;
4517 default:
4518 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4519 ioc->pdev->subsystem_device);
4520 break;
4521 }
4522 break;
4523 case MPI25_MFGPAGE_DEVID_SAS3008:
4524 switch (ioc->pdev->subsystem_device) {
4525 case MPT3SAS_DELL_12G_HBA_SSDID:
4526 ioc_info(ioc, "%s\n",
4527 MPT3SAS_DELL_12G_HBA_BRANDING);
4528 break;
4529 default:
4530 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4531 ioc->pdev->subsystem_device);
4532 break;
4533 }
4534 break;
4535 default:
4536 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4537 ioc->pdev->subsystem_device);
4538 break;
4539 }
4540 break;
4541 case PCI_VENDOR_ID_CISCO:
4542 switch (ioc->pdev->device) {
4543 case MPI25_MFGPAGE_DEVID_SAS3008:
4544 switch (ioc->pdev->subsystem_device) {
4545 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4546 ioc_info(ioc, "%s\n",
4547 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4548 break;
4549 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4550 ioc_info(ioc, "%s\n",
4551 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4552 break;
4553 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4554 ioc_info(ioc, "%s\n",
4555 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4556 break;
4557 default:
4558 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4559 ioc->pdev->subsystem_device);
4560 break;
4561 }
4562 break;
4563 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4564 switch (ioc->pdev->subsystem_device) {
4565 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4566 ioc_info(ioc, "%s\n",
4567 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4568 break;
4569 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4570 ioc_info(ioc, "%s\n",
4571 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4572 break;
4573 default:
4574 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4575 ioc->pdev->subsystem_device);
4576 break;
4577 }
4578 break;
4579 default:
4580 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4581 ioc->pdev->subsystem_device);
4582 break;
4583 }
4584 break;
4585 case MPT2SAS_HP_3PAR_SSVID:
4586 switch (ioc->pdev->device) {
4587 case MPI2_MFGPAGE_DEVID_SAS2004:
4588 switch (ioc->pdev->subsystem_device) {
4589 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4590 ioc_info(ioc, "%s\n",
4591 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4592 break;
4593 default:
4594 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4595 ioc->pdev->subsystem_device);
4596 break;
4597 }
4598 break;
4599 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4600 switch (ioc->pdev->subsystem_device) {
4601 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4602 ioc_info(ioc, "%s\n",
4603 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4604 break;
4605 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4606 ioc_info(ioc, "%s\n",
4607 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4608 break;
4609 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4610 ioc_info(ioc, "%s\n",
4611 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4612 break;
4613 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4614 ioc_info(ioc, "%s\n",
4615 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4616 break;
4617 default:
4618 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4619 ioc->pdev->subsystem_device);
4620 break;
4621 }
4622 break;
4623 default:
4624 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4625 ioc->pdev->subsystem_device);
4626 break;
4627 }
4628 break;
4629 default:
4630 break;
4631 }
4632 }
4633
4634 /**
4635 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4636 * version from FW Image Header.
4637 * @ioc: per adapter object
4638 *
4639 * Return: 0 for success, non-zero for failure.
4640 */
4641 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4642 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4643 {
4644 Mpi2FWImageHeader_t *fw_img_hdr;
4645 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4646 Mpi25FWUploadRequest_t *mpi_request;
4647 Mpi2FWUploadReply_t mpi_reply;
4648 int r = 0, issue_diag_reset = 0;
4649 u32 package_version = 0;
4650 void *fwpkg_data = NULL;
4651 dma_addr_t fwpkg_data_dma;
4652 u16 smid, ioc_status;
4653 size_t data_length;
4654
4655 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4656
4657 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4658 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4659 return -EAGAIN;
4660 }
4661
4662 data_length = sizeof(Mpi2FWImageHeader_t);
4663 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4664 &fwpkg_data_dma, GFP_KERNEL);
4665 if (!fwpkg_data) {
4666 ioc_err(ioc,
4667 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4668 __FILE__, __LINE__, __func__);
4669 return -ENOMEM;
4670 }
4671
4672 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4673 if (!smid) {
4674 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4675 r = -EAGAIN;
4676 goto out;
4677 }
4678
4679 ioc->base_cmds.status = MPT3_CMD_PENDING;
4680 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4681 ioc->base_cmds.smid = smid;
4682 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4683 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4684 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4685 mpi_request->ImageSize = cpu_to_le32(data_length);
4686 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4687 data_length);
4688 init_completion(&ioc->base_cmds.done);
4689 ioc->put_smid_default(ioc, smid);
4690 /* Wait for 15 seconds */
4691 wait_for_completion_timeout(&ioc->base_cmds.done,
4692 FW_IMG_HDR_READ_TIMEOUT*HZ);
4693 ioc_info(ioc, "%s: complete\n", __func__);
4694 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4695 ioc_err(ioc, "%s: timeout\n", __func__);
4696 _debug_dump_mf(mpi_request,
4697 sizeof(Mpi25FWUploadRequest_t)/4);
4698 issue_diag_reset = 1;
4699 } else {
4700 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4701 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4702 memcpy(&mpi_reply, ioc->base_cmds.reply,
4703 sizeof(Mpi2FWUploadReply_t));
4704 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4705 MPI2_IOCSTATUS_MASK;
4706 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4707 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4708 if (le32_to_cpu(fw_img_hdr->Signature) ==
4709 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4710 cmp_img_hdr =
4711 (Mpi26ComponentImageHeader_t *)
4712 (fwpkg_data);
4713 package_version =
4714 le32_to_cpu(
4715 cmp_img_hdr->ApplicationSpecific);
4716 } else
4717 package_version =
4718 le32_to_cpu(
4719 fw_img_hdr->PackageVersion.Word);
4720 if (package_version)
4721 ioc_info(ioc,
4722 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4723 ((package_version) & 0xFF000000) >> 24,
4724 ((package_version) & 0x00FF0000) >> 16,
4725 ((package_version) & 0x0000FF00) >> 8,
4726 (package_version) & 0x000000FF);
4727 } else {
4728 _debug_dump_mf(&mpi_reply,
4729 sizeof(Mpi2FWUploadReply_t)/4);
4730 }
4731 }
4732 }
4733 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4734 out:
4735 if (fwpkg_data)
4736 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4737 fwpkg_data_dma);
4738 if (issue_diag_reset) {
4739 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4740 return -EFAULT;
4741 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4742 return -EFAULT;
4743 r = -EAGAIN;
4744 }
4745 return r;
4746 }
4747
4748 /**
4749 * _base_display_ioc_capabilities - Display IOC's capabilities.
4750 * @ioc: per adapter object
4751 */
4752 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4753 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4754 {
4755 int i = 0;
4756 char desc[17] = {0};
4757 u32 iounit_pg1_flags;
4758 u32 bios_version;
4759
4760 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4761 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4762 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4763 desc,
4764 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4765 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4766 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4767 ioc->facts.FWVersion.Word & 0x000000FF,
4768 ioc->pdev->revision,
4769 (bios_version & 0xFF000000) >> 24,
4770 (bios_version & 0x00FF0000) >> 16,
4771 (bios_version & 0x0000FF00) >> 8,
4772 bios_version & 0x000000FF);
4773
4774 _base_display_OEMs_branding(ioc);
4775
4776 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4777 pr_info("%sNVMe", i ? "," : "");
4778 i++;
4779 }
4780
4781 ioc_info(ioc, "Protocol=(");
4782
4783 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4784 pr_cont("Initiator");
4785 i++;
4786 }
4787
4788 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4789 pr_cont("%sTarget", i ? "," : "");
4790 i++;
4791 }
4792
4793 i = 0;
4794 pr_cont("), Capabilities=(");
4795
4796 if (!ioc->hide_ir_msg) {
4797 if (ioc->facts.IOCCapabilities &
4798 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4799 pr_cont("Raid");
4800 i++;
4801 }
4802 }
4803
4804 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4805 pr_cont("%sTLR", i ? "," : "");
4806 i++;
4807 }
4808
4809 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4810 pr_cont("%sMulticast", i ? "," : "");
4811 i++;
4812 }
4813
4814 if (ioc->facts.IOCCapabilities &
4815 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4816 pr_cont("%sBIDI Target", i ? "," : "");
4817 i++;
4818 }
4819
4820 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4821 pr_cont("%sEEDP", i ? "," : "");
4822 i++;
4823 }
4824
4825 if (ioc->facts.IOCCapabilities &
4826 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4827 pr_cont("%sSnapshot Buffer", i ? "," : "");
4828 i++;
4829 }
4830
4831 if (ioc->facts.IOCCapabilities &
4832 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4833 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4834 i++;
4835 }
4836
4837 if (ioc->facts.IOCCapabilities &
4838 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4839 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4840 i++;
4841 }
4842
4843 if (ioc->facts.IOCCapabilities &
4844 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4845 pr_cont("%sTask Set Full", i ? "," : "");
4846 i++;
4847 }
4848
4849 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4850 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4851 pr_cont("%sNCQ", i ? "," : "");
4852 i++;
4853 }
4854
4855 pr_cont(")\n");
4856 }
4857
4858 /**
4859 * mpt3sas_base_update_missing_delay - change the missing delay timers
4860 * @ioc: per adapter object
4861 * @device_missing_delay: amount of time till device is reported missing
4862 * @io_missing_delay: interval IO is returned when there is a missing device
4863 *
4864 * Passed on the command line, this function will modify the device missing
4865 * delay, as well as the io missing delay. This should be called at driver
4866 * load time.
4867 */
4868 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4869 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4870 u16 device_missing_delay, u8 io_missing_delay)
4871 {
4872 u16 dmd, dmd_new, dmd_orignal;
4873 u8 io_missing_delay_original;
4874 u16 sz;
4875 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4876 Mpi2ConfigReply_t mpi_reply;
4877 u8 num_phys = 0;
4878 u16 ioc_status;
4879
4880 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4881 if (!num_phys)
4882 return;
4883
4884 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4885 sizeof(Mpi2SasIOUnit1PhyData_t));
4886 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4887 if (!sas_iounit_pg1) {
4888 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4889 __FILE__, __LINE__, __func__);
4890 goto out;
4891 }
4892 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4893 sas_iounit_pg1, sz))) {
4894 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4895 __FILE__, __LINE__, __func__);
4896 goto out;
4897 }
4898 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4899 MPI2_IOCSTATUS_MASK;
4900 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4901 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4902 __FILE__, __LINE__, __func__);
4903 goto out;
4904 }
4905
4906 /* device missing delay */
4907 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4908 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4909 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4910 else
4911 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4912 dmd_orignal = dmd;
4913 if (device_missing_delay > 0x7F) {
4914 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4915 device_missing_delay;
4916 dmd = dmd / 16;
4917 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4918 } else
4919 dmd = device_missing_delay;
4920 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4921
4922 /* io missing delay */
4923 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4924 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4925
4926 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4927 sz)) {
4928 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4929 dmd_new = (dmd &
4930 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4931 else
4932 dmd_new =
4933 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4934 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4935 dmd_orignal, dmd_new);
4936 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4937 io_missing_delay_original,
4938 io_missing_delay);
4939 ioc->device_missing_delay = dmd_new;
4940 ioc->io_missing_delay = io_missing_delay;
4941 }
4942
4943 out:
4944 kfree(sas_iounit_pg1);
4945 }
4946
4947 /**
4948 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4949 * according to performance mode.
4950 * @ioc : per adapter object
4951 *
4952 * Return: zero on success; otherwise return EAGAIN error code asking the
4953 * caller to retry.
4954 */
4955 static int
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4956 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4957 {
4958 Mpi2IOCPage1_t ioc_pg1;
4959 Mpi2ConfigReply_t mpi_reply;
4960 int rc;
4961
4962 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4963 if (rc)
4964 return rc;
4965 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4966
4967 switch (perf_mode) {
4968 case MPT_PERF_MODE_DEFAULT:
4969 case MPT_PERF_MODE_BALANCED:
4970 if (ioc->high_iops_queues) {
4971 ioc_info(ioc,
4972 "Enable interrupt coalescing only for first\t"
4973 "%d reply queues\n",
4974 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4975 /*
4976 * If 31st bit is zero then interrupt coalescing is
4977 * enabled for all reply descriptor post queues.
4978 * If 31st bit is set to one then user can
4979 * enable/disable interrupt coalescing on per reply
4980 * descriptor post queue group(8) basis. So to enable
4981 * interrupt coalescing only on first reply descriptor
4982 * post queue group 31st bit and zero th bit is enabled.
4983 */
4984 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4985 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4986 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4987 if (rc)
4988 return rc;
4989 ioc_info(ioc, "performance mode: balanced\n");
4990 return 0;
4991 }
4992 fallthrough;
4993 case MPT_PERF_MODE_LATENCY:
4994 /*
4995 * Enable interrupt coalescing on all reply queues
4996 * with timeout value 0xA
4997 */
4998 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4999 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5000 ioc_pg1.ProductSpecific = 0;
5001 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5002 if (rc)
5003 return rc;
5004 ioc_info(ioc, "performance mode: latency\n");
5005 break;
5006 case MPT_PERF_MODE_IOPS:
5007 /*
5008 * Enable interrupt coalescing on all reply queues.
5009 */
5010 ioc_info(ioc,
5011 "performance mode: iops with coalescing timeout: 0x%x\n",
5012 le32_to_cpu(ioc_pg1.CoalescingTimeout));
5013 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5014 ioc_pg1.ProductSpecific = 0;
5015 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5016 if (rc)
5017 return rc;
5018 break;
5019 }
5020 return 0;
5021 }
5022
5023 /**
5024 * _base_get_event_diag_triggers - get event diag trigger values from
5025 * persistent pages
5026 * @ioc : per adapter object
5027 *
5028 * Return: nothing.
5029 */
5030 static int
_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5031 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5032 {
5033 Mpi26DriverTriggerPage2_t trigger_pg2;
5034 struct SL_WH_EVENT_TRIGGER_T *event_tg;
5035 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5036 Mpi2ConfigReply_t mpi_reply;
5037 int r = 0, i = 0;
5038 u16 count = 0;
5039 u16 ioc_status;
5040
5041 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5042 &trigger_pg2);
5043 if (r)
5044 return r;
5045
5046 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5047 MPI2_IOCSTATUS_MASK;
5048 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5049 dinitprintk(ioc,
5050 ioc_err(ioc,
5051 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5052 __func__, ioc_status));
5053 return 0;
5054 }
5055
5056 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5057 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5058 count = min_t(u16, NUM_VALID_ENTRIES, count);
5059 ioc->diag_trigger_event.ValidEntries = count;
5060
5061 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5062 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5063 for (i = 0; i < count; i++) {
5064 event_tg->EventValue = le16_to_cpu(
5065 mpi_event_tg->MPIEventCode);
5066 event_tg->LogEntryQualifier = le16_to_cpu(
5067 mpi_event_tg->MPIEventCodeSpecific);
5068 event_tg++;
5069 mpi_event_tg++;
5070 }
5071 }
5072 return 0;
5073 }
5074
5075 /**
5076 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5077 * persistent pages
5078 * @ioc : per adapter object
5079 *
5080 * Return: 0 on success; otherwise return failure status.
5081 */
5082 static int
_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5083 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5084 {
5085 Mpi26DriverTriggerPage3_t trigger_pg3;
5086 struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5087 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5088 Mpi2ConfigReply_t mpi_reply;
5089 int r = 0, i = 0;
5090 u16 count = 0;
5091 u16 ioc_status;
5092
5093 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5094 &trigger_pg3);
5095 if (r)
5096 return r;
5097
5098 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5099 MPI2_IOCSTATUS_MASK;
5100 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5101 dinitprintk(ioc,
5102 ioc_err(ioc,
5103 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5104 __func__, ioc_status));
5105 return 0;
5106 }
5107
5108 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5109 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5110 count = min_t(u16, NUM_VALID_ENTRIES, count);
5111 ioc->diag_trigger_scsi.ValidEntries = count;
5112
5113 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5114 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5115 for (i = 0; i < count; i++) {
5116 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5117 scsi_tg->ASC = mpi_scsi_tg->ASC;
5118 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5119
5120 scsi_tg++;
5121 mpi_scsi_tg++;
5122 }
5123 }
5124 return 0;
5125 }
5126
5127 /**
5128 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5129 * persistent pages
5130 * @ioc : per adapter object
5131 *
5132 * Return: 0 on success; otherwise return failure status.
5133 */
5134 static int
_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5135 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5136 {
5137 Mpi26DriverTriggerPage4_t trigger_pg4;
5138 struct SL_WH_MPI_TRIGGER_T *status_tg;
5139 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5140 Mpi2ConfigReply_t mpi_reply;
5141 int r = 0, i = 0;
5142 u16 count = 0;
5143 u16 ioc_status;
5144
5145 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5146 &trigger_pg4);
5147 if (r)
5148 return r;
5149
5150 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5151 MPI2_IOCSTATUS_MASK;
5152 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5153 dinitprintk(ioc,
5154 ioc_err(ioc,
5155 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5156 __func__, ioc_status));
5157 return 0;
5158 }
5159
5160 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5161 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5162 count = min_t(u16, NUM_VALID_ENTRIES, count);
5163 ioc->diag_trigger_mpi.ValidEntries = count;
5164
5165 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5166 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5167
5168 for (i = 0; i < count; i++) {
5169 status_tg->IOCStatus = le16_to_cpu(
5170 mpi_status_tg->IOCStatus);
5171 status_tg->IocLogInfo = le32_to_cpu(
5172 mpi_status_tg->LogInfo);
5173
5174 status_tg++;
5175 mpi_status_tg++;
5176 }
5177 }
5178 return 0;
5179 }
5180
5181 /**
5182 * _base_get_master_diag_triggers - get master diag trigger values from
5183 * persistent pages
5184 * @ioc : per adapter object
5185 *
5186 * Return: nothing.
5187 */
5188 static int
_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5189 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5190 {
5191 Mpi26DriverTriggerPage1_t trigger_pg1;
5192 Mpi2ConfigReply_t mpi_reply;
5193 int r;
5194 u16 ioc_status;
5195
5196 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5197 &trigger_pg1);
5198 if (r)
5199 return r;
5200
5201 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5202 MPI2_IOCSTATUS_MASK;
5203 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5204 dinitprintk(ioc,
5205 ioc_err(ioc,
5206 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5207 __func__, ioc_status));
5208 return 0;
5209 }
5210
5211 if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5212 ioc->diag_trigger_master.MasterData |=
5213 le32_to_cpu(
5214 trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5215 return 0;
5216 }
5217
5218 /**
5219 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5220 * driver trigger pages or not
5221 * @ioc : per adapter object
5222 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5223 *
5224 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5225 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5226 * return EAGAIN if diag reset occurred due to FW fault and asking the
5227 * caller to retry the command.
5228 *
5229 */
5230 static int
_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER * ioc,u32 * trigger_flags)5231 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5232 {
5233 Mpi26DriverTriggerPage0_t trigger_pg0;
5234 int r = 0;
5235 Mpi2ConfigReply_t mpi_reply;
5236 u16 ioc_status;
5237
5238 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5239 &trigger_pg0);
5240 if (r)
5241 return r;
5242
5243 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5244 MPI2_IOCSTATUS_MASK;
5245 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5246 return -EFAULT;
5247
5248 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5249 return 0;
5250 }
5251
5252 /**
5253 * _base_get_diag_triggers - Retrieve diag trigger values from
5254 * persistent pages.
5255 * @ioc : per adapter object
5256 *
5257 * Return: zero on success; otherwise return EAGAIN error codes
5258 * asking the caller to retry.
5259 */
5260 static int
_base_get_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5261 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5262 {
5263 int trigger_flags;
5264 int r;
5265
5266 /*
5267 * Default setting of master trigger.
5268 */
5269 ioc->diag_trigger_master.MasterData =
5270 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5271
5272 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5273 if (r) {
5274 if (r == -EAGAIN)
5275 return r;
5276 /*
5277 * Don't go for error handling when FW doesn't support
5278 * driver trigger pages.
5279 */
5280 return 0;
5281 }
5282
5283 ioc->supports_trigger_pages = 1;
5284
5285 /*
5286 * Retrieve master diag trigger values from driver trigger pg1
5287 * if master trigger bit enabled in TriggerFlags.
5288 */
5289 if ((u16)trigger_flags &
5290 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5291 r = _base_get_master_diag_triggers(ioc);
5292 if (r)
5293 return r;
5294 }
5295
5296 /*
5297 * Retrieve event diag trigger values from driver trigger pg2
5298 * if event trigger bit enabled in TriggerFlags.
5299 */
5300 if ((u16)trigger_flags &
5301 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5302 r = _base_get_event_diag_triggers(ioc);
5303 if (r)
5304 return r;
5305 }
5306
5307 /*
5308 * Retrieve scsi diag trigger values from driver trigger pg3
5309 * if scsi trigger bit enabled in TriggerFlags.
5310 */
5311 if ((u16)trigger_flags &
5312 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5313 r = _base_get_scsi_diag_triggers(ioc);
5314 if (r)
5315 return r;
5316 }
5317 /*
5318 * Retrieve mpi error diag trigger values from driver trigger pg4
5319 * if loginfo trigger bit enabled in TriggerFlags.
5320 */
5321 if ((u16)trigger_flags &
5322 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5323 r = _base_get_mpi_diag_triggers(ioc);
5324 if (r)
5325 return r;
5326 }
5327 return 0;
5328 }
5329
5330 /**
5331 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5332 * online FW update, in case updated FW supports driver
5333 * trigger pages.
5334 * @ioc : per adapter object
5335 *
5336 * Return: nothing.
5337 */
5338 static void
_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER * ioc)5339 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5340 {
5341
5342 if (ioc->diag_trigger_master.MasterData)
5343 mpt3sas_config_update_driver_trigger_pg1(ioc,
5344 &ioc->diag_trigger_master, 1);
5345
5346 if (ioc->diag_trigger_event.ValidEntries)
5347 mpt3sas_config_update_driver_trigger_pg2(ioc,
5348 &ioc->diag_trigger_event, 1);
5349
5350 if (ioc->diag_trigger_scsi.ValidEntries)
5351 mpt3sas_config_update_driver_trigger_pg3(ioc,
5352 &ioc->diag_trigger_scsi, 1);
5353
5354 if (ioc->diag_trigger_mpi.ValidEntries)
5355 mpt3sas_config_update_driver_trigger_pg4(ioc,
5356 &ioc->diag_trigger_mpi, 1);
5357 }
5358
5359 /**
5360 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices.
5361 * - On failure set default QD values.
5362 * @ioc : per adapter object
5363 *
5364 * Returns 0 for success, non-zero for failure.
5365 *
5366 */
_base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER * ioc)5367 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5368 {
5369 Mpi2ConfigReply_t mpi_reply;
5370 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5371 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5372 u16 depth;
5373 int sz;
5374 int rc = 0;
5375
5376 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5377 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5378 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5379 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5380 if (!ioc->is_gen35_ioc)
5381 goto out;
5382 /* sas iounit page 1 */
5383 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5384 sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5385 if (!sas_iounit_pg1) {
5386 pr_err("%s: failure at %s:%d/%s()!\n",
5387 ioc->name, __FILE__, __LINE__, __func__);
5388 return rc;
5389 }
5390 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5391 sas_iounit_pg1, sz);
5392 if (rc) {
5393 pr_err("%s: failure at %s:%d/%s()!\n",
5394 ioc->name, __FILE__, __LINE__, __func__);
5395 goto out;
5396 }
5397
5398 depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5399 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5400
5401 depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5402 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5403
5404 depth = sas_iounit_pg1->SATAMaxQDepth;
5405 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5406
5407 /* pcie iounit page 1 */
5408 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5409 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5410 if (rc) {
5411 pr_err("%s: failure at %s:%d/%s()!\n",
5412 ioc->name, __FILE__, __LINE__, __func__);
5413 goto out;
5414 }
5415 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5416 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5417 MPT3SAS_NVME_QUEUE_DEPTH;
5418 out:
5419 dinitprintk(ioc, pr_err(
5420 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5421 ioc->max_wideport_qd, ioc->max_narrowport_qd,
5422 ioc->max_sata_qd, ioc->max_nvme_qd));
5423 kfree(sas_iounit_pg1);
5424 return rc;
5425 }
5426
5427 /**
5428 * _base_static_config_pages - static start of day config pages
5429 * @ioc: per adapter object
5430 */
5431 static int
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)5432 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5433 {
5434 Mpi2ConfigReply_t mpi_reply;
5435 u32 iounit_pg1_flags;
5436 int tg_flags = 0;
5437 int rc;
5438 ioc->nvme_abort_timeout = 30;
5439
5440 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5441 &ioc->manu_pg0);
5442 if (rc)
5443 return rc;
5444 if (ioc->ir_firmware) {
5445 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5446 &ioc->manu_pg10);
5447 if (rc)
5448 return rc;
5449 }
5450 /*
5451 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5452 * flag unset in NVDATA.
5453 */
5454 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5455 &ioc->manu_pg11);
5456 if (rc)
5457 return rc;
5458 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5459 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5460 ioc->name);
5461 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5462 ioc->manu_pg11.EEDPTagMode |= 0x1;
5463 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5464 &ioc->manu_pg11);
5465 }
5466 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5467 ioc->tm_custom_handling = 1;
5468 else {
5469 ioc->tm_custom_handling = 0;
5470 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5471 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5472 else if (ioc->manu_pg11.NVMeAbortTO >
5473 NVME_TASK_ABORT_MAX_TIMEOUT)
5474 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5475 else
5476 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5477 }
5478 ioc->time_sync_interval =
5479 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5480 if (ioc->time_sync_interval) {
5481 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5482 ioc->time_sync_interval =
5483 ioc->time_sync_interval * SECONDS_PER_HOUR;
5484 else
5485 ioc->time_sync_interval =
5486 ioc->time_sync_interval * SECONDS_PER_MIN;
5487 dinitprintk(ioc, ioc_info(ioc,
5488 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5489 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5490 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5491 } else {
5492 if (ioc->is_gen35_ioc)
5493 ioc_warn(ioc,
5494 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5495 }
5496 rc = _base_assign_fw_reported_qd(ioc);
5497 if (rc)
5498 return rc;
5499 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5500 if (rc)
5501 return rc;
5502 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5503 if (rc)
5504 return rc;
5505 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5506 if (rc)
5507 return rc;
5508 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5509 if (rc)
5510 return rc;
5511 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5512 if (rc)
5513 return rc;
5514 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5515 if (rc)
5516 return rc;
5517 _base_display_ioc_capabilities(ioc);
5518
5519 /*
5520 * Enable task_set_full handling in iounit_pg1 when the
5521 * facts capabilities indicate that its supported.
5522 */
5523 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5524 if ((ioc->facts.IOCCapabilities &
5525 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5526 iounit_pg1_flags &=
5527 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5528 else
5529 iounit_pg1_flags |=
5530 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5531 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5532 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5533 if (rc)
5534 return rc;
5535
5536 if (ioc->iounit_pg8.NumSensors)
5537 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5538 if (ioc->is_aero_ioc) {
5539 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5540 if (rc)
5541 return rc;
5542 }
5543 if (ioc->is_gen35_ioc) {
5544 if (ioc->is_driver_loading) {
5545 rc = _base_get_diag_triggers(ioc);
5546 if (rc)
5547 return rc;
5548 } else {
5549 /*
5550 * In case of online HBA FW update operation,
5551 * check whether updated FW supports the driver trigger
5552 * pages or not.
5553 * - If previous FW has not supported driver trigger
5554 * pages and newer FW supports them then update these
5555 * pages with current diag trigger values.
5556 * - If previous FW has supported driver trigger pages
5557 * and new FW doesn't support them then disable
5558 * support_trigger_pages flag.
5559 */
5560 _base_check_for_trigger_pages_support(ioc, &tg_flags);
5561 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5562 _base_update_diag_trigger_pages(ioc);
5563 else if (ioc->supports_trigger_pages &&
5564 tg_flags == -EFAULT)
5565 ioc->supports_trigger_pages = 0;
5566 }
5567 }
5568 return 0;
5569 }
5570
5571 /**
5572 * mpt3sas_free_enclosure_list - release memory
5573 * @ioc: per adapter object
5574 *
5575 * Free memory allocated during enclosure add.
5576 */
5577 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)5578 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5579 {
5580 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5581
5582 /* Free enclosure list */
5583 list_for_each_entry_safe(enclosure_dev,
5584 enclosure_dev_next, &ioc->enclosure_list, list) {
5585 list_del(&enclosure_dev->list);
5586 kfree(enclosure_dev);
5587 }
5588 }
5589
5590 /**
5591 * _base_release_memory_pools - release memory
5592 * @ioc: per adapter object
5593 *
5594 * Free memory allocated from _base_allocate_memory_pools.
5595 */
5596 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)5597 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5598 {
5599 int i = 0;
5600 int j = 0;
5601 int dma_alloc_count = 0;
5602 struct chain_tracker *ct;
5603 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5604
5605 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5606
5607 if (ioc->request) {
5608 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5609 ioc->request, ioc->request_dma);
5610 dexitprintk(ioc,
5611 ioc_info(ioc, "request_pool(0x%p): free\n",
5612 ioc->request));
5613 ioc->request = NULL;
5614 }
5615
5616 if (ioc->sense) {
5617 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5618 dma_pool_destroy(ioc->sense_dma_pool);
5619 dexitprintk(ioc,
5620 ioc_info(ioc, "sense_pool(0x%p): free\n",
5621 ioc->sense));
5622 ioc->sense = NULL;
5623 }
5624
5625 if (ioc->reply) {
5626 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5627 dma_pool_destroy(ioc->reply_dma_pool);
5628 dexitprintk(ioc,
5629 ioc_info(ioc, "reply_pool(0x%p): free\n",
5630 ioc->reply));
5631 ioc->reply = NULL;
5632 }
5633
5634 if (ioc->reply_free) {
5635 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5636 ioc->reply_free_dma);
5637 dma_pool_destroy(ioc->reply_free_dma_pool);
5638 dexitprintk(ioc,
5639 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5640 ioc->reply_free));
5641 ioc->reply_free = NULL;
5642 }
5643
5644 if (ioc->reply_post) {
5645 dma_alloc_count = DIV_ROUND_UP(count,
5646 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5647 for (i = 0; i < count; i++) {
5648 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5649 && dma_alloc_count) {
5650 if (ioc->reply_post[i].reply_post_free) {
5651 dma_pool_free(
5652 ioc->reply_post_free_dma_pool,
5653 ioc->reply_post[i].reply_post_free,
5654 ioc->reply_post[i].reply_post_free_dma);
5655 dexitprintk(ioc, ioc_info(ioc,
5656 "reply_post_free_pool(0x%p): free\n",
5657 ioc->reply_post[i].reply_post_free));
5658 ioc->reply_post[i].reply_post_free =
5659 NULL;
5660 }
5661 --dma_alloc_count;
5662 }
5663 }
5664 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5665 if (ioc->reply_post_free_array &&
5666 ioc->rdpq_array_enable) {
5667 dma_pool_free(ioc->reply_post_free_array_dma_pool,
5668 ioc->reply_post_free_array,
5669 ioc->reply_post_free_array_dma);
5670 ioc->reply_post_free_array = NULL;
5671 }
5672 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5673 kfree(ioc->reply_post);
5674 }
5675
5676 if (ioc->pcie_sgl_dma_pool) {
5677 for (i = 0; i < ioc->scsiio_depth; i++) {
5678 dma_pool_free(ioc->pcie_sgl_dma_pool,
5679 ioc->pcie_sg_lookup[i].pcie_sgl,
5680 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5681 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5682 }
5683 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5684 }
5685 if (ioc->config_page) {
5686 dexitprintk(ioc,
5687 ioc_info(ioc, "config_page(0x%p): free\n",
5688 ioc->config_page));
5689 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5690 ioc->config_page, ioc->config_page_dma);
5691 }
5692
5693 kfree(ioc->hpr_lookup);
5694 ioc->hpr_lookup = NULL;
5695 kfree(ioc->internal_lookup);
5696 ioc->internal_lookup = NULL;
5697 if (ioc->chain_lookup) {
5698 for (i = 0; i < ioc->scsiio_depth; i++) {
5699 for (j = ioc->chains_per_prp_buffer;
5700 j < ioc->chains_needed_per_io; j++) {
5701 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5702 if (ct && ct->chain_buffer)
5703 dma_pool_free(ioc->chain_dma_pool,
5704 ct->chain_buffer,
5705 ct->chain_buffer_dma);
5706 }
5707 kfree(ioc->chain_lookup[i].chains_per_smid);
5708 }
5709 dma_pool_destroy(ioc->chain_dma_pool);
5710 kfree(ioc->chain_lookup);
5711 ioc->chain_lookup = NULL;
5712 }
5713
5714 kfree(ioc->io_queue_num);
5715 ioc->io_queue_num = NULL;
5716 }
5717
5718 /**
5719 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5720 * having same upper 32bits in their base memory address.
5721 * @start_address: Base address of a reply queue set
5722 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5723 *
5724 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5725 * memory address, else 0.
5726 */
5727 static int
mpt3sas_check_same_4gb_region(dma_addr_t start_address,u32 pool_sz)5728 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5729 {
5730 dma_addr_t end_address;
5731
5732 end_address = start_address + pool_sz - 1;
5733
5734 if (upper_32_bits(start_address) == upper_32_bits(end_address))
5735 return 1;
5736 else
5737 return 0;
5738 }
5739
5740 /**
5741 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5742 * @ioc: Adapter object
5743 *
5744 * Return: 0 for success, non-zero for failure.
5745 **/
5746 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)5747 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5748 {
5749 int reduce_sz = 64;
5750
5751 if ((ioc->hba_queue_depth - reduce_sz) >
5752 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5753 ioc->hba_queue_depth -= reduce_sz;
5754 return 0;
5755 } else
5756 return -ENOMEM;
5757 }
5758
5759 /**
5760 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5761 * for pcie sgl pools.
5762 * @ioc: Adapter object
5763 * @sz: DMA Pool size
5764 *
5765 * Return: 0 for success, non-zero for failure.
5766 */
5767
5768 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5769 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5770 {
5771 int i = 0, j = 0;
5772 struct chain_tracker *ct;
5773
5774 ioc->pcie_sgl_dma_pool =
5775 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5776 ioc->page_size, 0);
5777 if (!ioc->pcie_sgl_dma_pool) {
5778 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5779 return -ENOMEM;
5780 }
5781
5782 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5783 ioc->chains_per_prp_buffer =
5784 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5785 for (i = 0; i < ioc->scsiio_depth; i++) {
5786 ioc->pcie_sg_lookup[i].pcie_sgl =
5787 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5788 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5789 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5790 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5791 return -EAGAIN;
5792 }
5793
5794 if (!mpt3sas_check_same_4gb_region(
5795 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5796 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5797 ioc->pcie_sg_lookup[i].pcie_sgl,
5798 (unsigned long long)
5799 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5800 ioc->use_32bit_dma = true;
5801 return -EAGAIN;
5802 }
5803
5804 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5805 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5806 ct->chain_buffer =
5807 ioc->pcie_sg_lookup[i].pcie_sgl +
5808 (j * ioc->chain_segment_sz);
5809 ct->chain_buffer_dma =
5810 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5811 (j * ioc->chain_segment_sz);
5812 }
5813 }
5814 dinitprintk(ioc, ioc_info(ioc,
5815 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5816 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5817 dinitprintk(ioc, ioc_info(ioc,
5818 "Number of chains can fit in a PRP page(%d)\n",
5819 ioc->chains_per_prp_buffer));
5820 return 0;
5821 }
5822
5823 /**
5824 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5825 * for chain dma pool.
5826 * @ioc: Adapter object
5827 * @sz: DMA Pool size
5828 *
5829 * Return: 0 for success, non-zero for failure.
5830 */
5831 static int
_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5832 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5833 {
5834 int i = 0, j = 0;
5835 struct chain_tracker *ctr;
5836
5837 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5838 ioc->chain_segment_sz, 16, 0);
5839 if (!ioc->chain_dma_pool)
5840 return -ENOMEM;
5841
5842 for (i = 0; i < ioc->scsiio_depth; i++) {
5843 for (j = ioc->chains_per_prp_buffer;
5844 j < ioc->chains_needed_per_io; j++) {
5845 ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5846 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5847 GFP_KERNEL, &ctr->chain_buffer_dma);
5848 if (!ctr->chain_buffer)
5849 return -EAGAIN;
5850 if (!mpt3sas_check_same_4gb_region(
5851 ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
5852 ioc_err(ioc,
5853 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5854 ctr->chain_buffer,
5855 (unsigned long long)ctr->chain_buffer_dma);
5856 ioc->use_32bit_dma = true;
5857 return -EAGAIN;
5858 }
5859 }
5860 }
5861 dinitprintk(ioc, ioc_info(ioc,
5862 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5863 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5864 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5865 ioc->chain_segment_sz))/1024));
5866 return 0;
5867 }
5868
5869 /**
5870 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5871 * for sense dma pool.
5872 * @ioc: Adapter object
5873 * @sz: DMA Pool size
5874 * Return: 0 for success, non-zero for failure.
5875 */
5876 static int
_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5877 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5878 {
5879 ioc->sense_dma_pool =
5880 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5881 if (!ioc->sense_dma_pool)
5882 return -ENOMEM;
5883 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5884 GFP_KERNEL, &ioc->sense_dma);
5885 if (!ioc->sense)
5886 return -EAGAIN;
5887 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
5888 dinitprintk(ioc, pr_err(
5889 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5890 ioc->sense, (unsigned long long) ioc->sense_dma));
5891 ioc->use_32bit_dma = true;
5892 return -EAGAIN;
5893 }
5894 ioc_info(ioc,
5895 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5896 ioc->sense, (unsigned long long)ioc->sense_dma,
5897 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5898 return 0;
5899 }
5900
5901 /**
5902 * _base_allocate_reply_pool - Allocating DMA'able memory
5903 * for reply pool.
5904 * @ioc: Adapter object
5905 * @sz: DMA Pool size
5906 * Return: 0 for success, non-zero for failure.
5907 */
5908 static int
_base_allocate_reply_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5909 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5910 {
5911 /* reply pool, 4 byte align */
5912 ioc->reply_dma_pool = dma_pool_create("reply pool",
5913 &ioc->pdev->dev, sz, 4, 0);
5914 if (!ioc->reply_dma_pool)
5915 return -ENOMEM;
5916 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5917 &ioc->reply_dma);
5918 if (!ioc->reply)
5919 return -EAGAIN;
5920 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
5921 dinitprintk(ioc, pr_err(
5922 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5923 ioc->reply, (unsigned long long) ioc->reply_dma));
5924 ioc->use_32bit_dma = true;
5925 return -EAGAIN;
5926 }
5927 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5928 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5929 ioc_info(ioc,
5930 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5931 ioc->reply, (unsigned long long)ioc->reply_dma,
5932 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5933 return 0;
5934 }
5935
5936 /**
5937 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5938 * for reply free dma pool.
5939 * @ioc: Adapter object
5940 * @sz: DMA Pool size
5941 * Return: 0 for success, non-zero for failure.
5942 */
5943 static int
_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5944 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5945 {
5946 /* reply free queue, 16 byte align */
5947 ioc->reply_free_dma_pool = dma_pool_create(
5948 "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5949 if (!ioc->reply_free_dma_pool)
5950 return -ENOMEM;
5951 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5952 GFP_KERNEL, &ioc->reply_free_dma);
5953 if (!ioc->reply_free)
5954 return -EAGAIN;
5955 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
5956 dinitprintk(ioc,
5957 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5958 ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5959 ioc->use_32bit_dma = true;
5960 return -EAGAIN;
5961 }
5962 memset(ioc->reply_free, 0, sz);
5963 dinitprintk(ioc, ioc_info(ioc,
5964 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5965 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5966 dinitprintk(ioc, ioc_info(ioc,
5967 "reply_free_dma (0x%llx)\n",
5968 (unsigned long long)ioc->reply_free_dma));
5969 return 0;
5970 }
5971
5972 /**
5973 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5974 * for reply post free array.
5975 * @ioc: Adapter object
5976 * @reply_post_free_array_sz: DMA Pool size
5977 * Return: 0 for success, non-zero for failure.
5978 */
5979
5980 static int
_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER * ioc,u32 reply_post_free_array_sz)5981 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5982 u32 reply_post_free_array_sz)
5983 {
5984 ioc->reply_post_free_array_dma_pool =
5985 dma_pool_create("reply_post_free_array pool",
5986 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5987 if (!ioc->reply_post_free_array_dma_pool)
5988 return -ENOMEM;
5989 ioc->reply_post_free_array =
5990 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5991 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5992 if (!ioc->reply_post_free_array)
5993 return -EAGAIN;
5994 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
5995 reply_post_free_array_sz)) {
5996 dinitprintk(ioc, pr_err(
5997 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5998 ioc->reply_free,
5999 (unsigned long long) ioc->reply_free_dma));
6000 ioc->use_32bit_dma = true;
6001 return -EAGAIN;
6002 }
6003 return 0;
6004 }
6005 /**
6006 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6007 * for reply queues.
6008 * @ioc: per adapter object
6009 * @sz: DMA Pool size
6010 * Return: 0 for success, non-zero for failure.
6011 */
6012 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)6013 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6014 {
6015 int i = 0;
6016 u32 dma_alloc_count = 0;
6017 int reply_post_free_sz = ioc->reply_post_queue_depth *
6018 sizeof(Mpi2DefaultReplyDescriptor_t);
6019 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6020
6021 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6022 GFP_KERNEL);
6023 if (!ioc->reply_post)
6024 return -ENOMEM;
6025 /*
6026 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6027 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6028 * be within 4GB boundary i.e reply queues in a set must have same
6029 * upper 32-bits in their memory address. so here driver is allocating
6030 * the DMA'able memory for reply queues according.
6031 * Driver uses limitation of
6032 * VENTURA_SERIES to manage INVADER_SERIES as well.
6033 */
6034 dma_alloc_count = DIV_ROUND_UP(count,
6035 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6036 ioc->reply_post_free_dma_pool =
6037 dma_pool_create("reply_post_free pool",
6038 &ioc->pdev->dev, sz, 16, 0);
6039 if (!ioc->reply_post_free_dma_pool)
6040 return -ENOMEM;
6041 for (i = 0; i < count; i++) {
6042 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6043 ioc->reply_post[i].reply_post_free =
6044 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6045 GFP_KERNEL,
6046 &ioc->reply_post[i].reply_post_free_dma);
6047 if (!ioc->reply_post[i].reply_post_free)
6048 return -ENOMEM;
6049 /*
6050 * Each set of RDPQ pool must satisfy 4gb boundary
6051 * restriction.
6052 * 1) Check if allocated resources for RDPQ pool are in
6053 * the same 4GB range.
6054 * 2) If #1 is true, continue with 64 bit DMA.
6055 * 3) If #1 is false, return 1. which means free all the
6056 * resources and set DMA mask to 32 and allocate.
6057 */
6058 if (!mpt3sas_check_same_4gb_region(
6059 ioc->reply_post[i].reply_post_free_dma, sz)) {
6060 dinitprintk(ioc,
6061 ioc_err(ioc, "bad Replypost free pool(0x%p)"
6062 "reply_post_free_dma = (0x%llx)\n",
6063 ioc->reply_post[i].reply_post_free,
6064 (unsigned long long)
6065 ioc->reply_post[i].reply_post_free_dma));
6066 return -EAGAIN;
6067 }
6068 dma_alloc_count--;
6069
6070 } else {
6071 ioc->reply_post[i].reply_post_free =
6072 (Mpi2ReplyDescriptorsUnion_t *)
6073 ((long)ioc->reply_post[i-1].reply_post_free
6074 + reply_post_free_sz);
6075 ioc->reply_post[i].reply_post_free_dma =
6076 (dma_addr_t)
6077 (ioc->reply_post[i-1].reply_post_free_dma +
6078 reply_post_free_sz);
6079 }
6080 }
6081 return 0;
6082 }
6083
6084 /**
6085 * _base_allocate_memory_pools - allocate start of day memory pools
6086 * @ioc: per adapter object
6087 *
6088 * Return: 0 success, anything else error.
6089 */
6090 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)6091 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6092 {
6093 struct mpt3sas_facts *facts;
6094 u16 max_sge_elements;
6095 u16 chains_needed_per_io;
6096 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6097 u32 retry_sz;
6098 u32 rdpq_sz = 0, sense_sz = 0;
6099 u16 max_request_credit, nvme_blocks_needed;
6100 unsigned short sg_tablesize;
6101 u16 sge_size;
6102 int i;
6103 int ret = 0, rc = 0;
6104
6105 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6106
6107
6108 retry_sz = 0;
6109 facts = &ioc->facts;
6110
6111 /* command line tunables for max sgl entries */
6112 if (max_sgl_entries != -1)
6113 sg_tablesize = max_sgl_entries;
6114 else {
6115 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6116 sg_tablesize = MPT2SAS_SG_DEPTH;
6117 else
6118 sg_tablesize = MPT3SAS_SG_DEPTH;
6119 }
6120
6121 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6122 if (reset_devices)
6123 sg_tablesize = min_t(unsigned short, sg_tablesize,
6124 MPT_KDUMP_MIN_PHYS_SEGMENTS);
6125
6126 if (ioc->is_mcpu_endpoint)
6127 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6128 else {
6129 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6130 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6131 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6132 sg_tablesize = min_t(unsigned short, sg_tablesize,
6133 SG_MAX_SEGMENTS);
6134 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6135 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6136 }
6137 ioc->shost->sg_tablesize = sg_tablesize;
6138 }
6139
6140 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6141 (facts->RequestCredit / 4));
6142 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6143 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6144 INTERNAL_SCSIIO_CMDS_COUNT)) {
6145 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6146 facts->RequestCredit);
6147 return -ENOMEM;
6148 }
6149 ioc->internal_depth = 10;
6150 }
6151
6152 ioc->hi_priority_depth = ioc->internal_depth - (5);
6153 /* command line tunables for max controller queue depth */
6154 if (max_queue_depth != -1 && max_queue_depth != 0) {
6155 max_request_credit = min_t(u16, max_queue_depth +
6156 ioc->internal_depth, facts->RequestCredit);
6157 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6158 max_request_credit = MAX_HBA_QUEUE_DEPTH;
6159 } else if (reset_devices)
6160 max_request_credit = min_t(u16, facts->RequestCredit,
6161 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6162 else
6163 max_request_credit = min_t(u16, facts->RequestCredit,
6164 MAX_HBA_QUEUE_DEPTH);
6165
6166 /* Firmware maintains additional facts->HighPriorityCredit number of
6167 * credits for HiPriprity Request messages, so hba queue depth will be
6168 * sum of max_request_credit and high priority queue depth.
6169 */
6170 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6171
6172 /* request frame size */
6173 ioc->request_sz = facts->IOCRequestFrameSize * 4;
6174
6175 /* reply frame size */
6176 ioc->reply_sz = facts->ReplyFrameSize * 4;
6177
6178 /* chain segment size */
6179 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6180 if (facts->IOCMaxChainSegmentSize)
6181 ioc->chain_segment_sz =
6182 facts->IOCMaxChainSegmentSize *
6183 MAX_CHAIN_ELEMT_SZ;
6184 else
6185 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6186 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6187 MAX_CHAIN_ELEMT_SZ;
6188 } else
6189 ioc->chain_segment_sz = ioc->request_sz;
6190
6191 /* calculate the max scatter element size */
6192 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6193
6194 retry_allocation:
6195 total_sz = 0;
6196 /* calculate number of sg elements left over in the 1st frame */
6197 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6198 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6199 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6200
6201 /* now do the same for a chain buffer */
6202 max_sge_elements = ioc->chain_segment_sz - sge_size;
6203 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6204
6205 /*
6206 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6207 */
6208 chains_needed_per_io = ((ioc->shost->sg_tablesize -
6209 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6210 + 1;
6211 if (chains_needed_per_io > facts->MaxChainDepth) {
6212 chains_needed_per_io = facts->MaxChainDepth;
6213 ioc->shost->sg_tablesize = min_t(u16,
6214 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6215 * chains_needed_per_io), ioc->shost->sg_tablesize);
6216 }
6217 ioc->chains_needed_per_io = chains_needed_per_io;
6218
6219 /* reply free queue sizing - taking into account for 64 FW events */
6220 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6221
6222 /* mCPU manage single counters for simplicity */
6223 if (ioc->is_mcpu_endpoint)
6224 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6225 else {
6226 /* calculate reply descriptor post queue depth */
6227 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6228 ioc->reply_free_queue_depth + 1;
6229 /* align the reply post queue on the next 16 count boundary */
6230 if (ioc->reply_post_queue_depth % 16)
6231 ioc->reply_post_queue_depth += 16 -
6232 (ioc->reply_post_queue_depth % 16);
6233 }
6234
6235 if (ioc->reply_post_queue_depth >
6236 facts->MaxReplyDescriptorPostQueueDepth) {
6237 ioc->reply_post_queue_depth =
6238 facts->MaxReplyDescriptorPostQueueDepth -
6239 (facts->MaxReplyDescriptorPostQueueDepth % 16);
6240 ioc->hba_queue_depth =
6241 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6242 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6243 }
6244
6245 ioc_info(ioc,
6246 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6247 "sge_per_io(%d), chains_per_io(%d)\n",
6248 ioc->max_sges_in_main_message,
6249 ioc->max_sges_in_chain_message,
6250 ioc->shost->sg_tablesize,
6251 ioc->chains_needed_per_io);
6252
6253 /* reply post queue, 16 byte align */
6254 reply_post_free_sz = ioc->reply_post_queue_depth *
6255 sizeof(Mpi2DefaultReplyDescriptor_t);
6256 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6257 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6258 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6259 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6260 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6261 if (ret == -EAGAIN) {
6262 /*
6263 * Free allocated bad RDPQ memory pools.
6264 * Change dma coherent mask to 32 bit and reallocate RDPQ
6265 */
6266 _base_release_memory_pools(ioc);
6267 ioc->use_32bit_dma = true;
6268 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6269 ioc_err(ioc,
6270 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6271 return -ENODEV;
6272 }
6273 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6274 return -ENOMEM;
6275 } else if (ret == -ENOMEM)
6276 return -ENOMEM;
6277 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6278 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6279 ioc->scsiio_depth = ioc->hba_queue_depth -
6280 ioc->hi_priority_depth - ioc->internal_depth;
6281
6282 /* set the scsi host can_queue depth
6283 * with some internal commands that could be outstanding
6284 */
6285 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6286 dinitprintk(ioc,
6287 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6288 ioc->shost->can_queue));
6289
6290 /* contiguous pool for request and chains, 16 byte align, one extra "
6291 * "frame for smid=0
6292 */
6293 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6294 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6295
6296 /* hi-priority queue */
6297 sz += (ioc->hi_priority_depth * ioc->request_sz);
6298
6299 /* internal queue */
6300 sz += (ioc->internal_depth * ioc->request_sz);
6301
6302 ioc->request_dma_sz = sz;
6303 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6304 &ioc->request_dma, GFP_KERNEL);
6305 if (!ioc->request) {
6306 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6307 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6308 ioc->request_sz, sz / 1024);
6309 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6310 goto out;
6311 retry_sz = 64;
6312 ioc->hba_queue_depth -= retry_sz;
6313 _base_release_memory_pools(ioc);
6314 goto retry_allocation;
6315 }
6316
6317 if (retry_sz)
6318 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6319 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6320 ioc->request_sz, sz / 1024);
6321
6322 /* hi-priority queue */
6323 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6324 ioc->request_sz);
6325 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6326 ioc->request_sz);
6327
6328 /* internal queue */
6329 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6330 ioc->request_sz);
6331 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6332 ioc->request_sz);
6333
6334 ioc_info(ioc,
6335 "request pool(0x%p) - dma(0x%llx): "
6336 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6337 ioc->request, (unsigned long long) ioc->request_dma,
6338 ioc->hba_queue_depth, ioc->request_sz,
6339 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6340
6341 total_sz += sz;
6342
6343 dinitprintk(ioc,
6344 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6345 ioc->request, ioc->scsiio_depth));
6346
6347 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6348 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6349 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6350 if (!ioc->chain_lookup) {
6351 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6352 goto out;
6353 }
6354
6355 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6356 for (i = 0; i < ioc->scsiio_depth; i++) {
6357 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6358 if (!ioc->chain_lookup[i].chains_per_smid) {
6359 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6360 goto out;
6361 }
6362 }
6363
6364 /* initialize hi-priority queue smid's */
6365 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6366 sizeof(struct request_tracker), GFP_KERNEL);
6367 if (!ioc->hpr_lookup) {
6368 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6369 goto out;
6370 }
6371 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6372 dinitprintk(ioc,
6373 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6374 ioc->hi_priority,
6375 ioc->hi_priority_depth, ioc->hi_priority_smid));
6376
6377 /* initialize internal queue smid's */
6378 ioc->internal_lookup = kcalloc(ioc->internal_depth,
6379 sizeof(struct request_tracker), GFP_KERNEL);
6380 if (!ioc->internal_lookup) {
6381 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6382 goto out;
6383 }
6384 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6385 dinitprintk(ioc,
6386 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6387 ioc->internal,
6388 ioc->internal_depth, ioc->internal_smid));
6389
6390 ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6391 sizeof(u16), GFP_KERNEL);
6392 if (!ioc->io_queue_num)
6393 goto out;
6394 /*
6395 * The number of NVMe page sized blocks needed is:
6396 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6397 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6398 * that is placed in the main message frame. 8 is the size of each PRP
6399 * entry or PRP list pointer entry. 8 is subtracted from page_size
6400 * because of the PRP list pointer entry at the end of a page, so this
6401 * is not counted as a PRP entry. The 1 added page is a round up.
6402 *
6403 * To avoid allocation failures due to the amount of memory that could
6404 * be required for NVMe PRP's, only each set of NVMe blocks will be
6405 * contiguous, so a new set is allocated for each possible I/O.
6406 */
6407
6408 ioc->chains_per_prp_buffer = 0;
6409 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6410 nvme_blocks_needed =
6411 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6412 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6413 nvme_blocks_needed++;
6414
6415 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6416 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6417 if (!ioc->pcie_sg_lookup) {
6418 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6419 goto out;
6420 }
6421 sz = nvme_blocks_needed * ioc->page_size;
6422 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6423 if (rc == -ENOMEM)
6424 return -ENOMEM;
6425 else if (rc == -EAGAIN)
6426 goto try_32bit_dma;
6427 total_sz += sz * ioc->scsiio_depth;
6428 }
6429
6430 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6431 if (rc == -ENOMEM)
6432 return -ENOMEM;
6433 else if (rc == -EAGAIN)
6434 goto try_32bit_dma;
6435 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6436 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6437 dinitprintk(ioc,
6438 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6439 ioc->chain_depth, ioc->chain_segment_sz,
6440 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6441 /* sense buffers, 4 byte align */
6442 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6443 rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6444 if (rc == -ENOMEM)
6445 return -ENOMEM;
6446 else if (rc == -EAGAIN)
6447 goto try_32bit_dma;
6448 total_sz += sense_sz;
6449 ioc_info(ioc,
6450 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6451 "element_size(%d), pool_size(%d kB)\n",
6452 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6453 SCSI_SENSE_BUFFERSIZE, sz / 1024);
6454 /* reply pool, 4 byte align */
6455 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6456 rc = _base_allocate_reply_pool(ioc, sz);
6457 if (rc == -ENOMEM)
6458 return -ENOMEM;
6459 else if (rc == -EAGAIN)
6460 goto try_32bit_dma;
6461 total_sz += sz;
6462
6463 /* reply free queue, 16 byte align */
6464 sz = ioc->reply_free_queue_depth * 4;
6465 rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6466 if (rc == -ENOMEM)
6467 return -ENOMEM;
6468 else if (rc == -EAGAIN)
6469 goto try_32bit_dma;
6470 dinitprintk(ioc,
6471 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6472 (unsigned long long)ioc->reply_free_dma));
6473 total_sz += sz;
6474 if (ioc->rdpq_array_enable) {
6475 reply_post_free_array_sz = ioc->reply_queue_count *
6476 sizeof(Mpi2IOCInitRDPQArrayEntry);
6477 rc = _base_allocate_reply_post_free_array(ioc,
6478 reply_post_free_array_sz);
6479 if (rc == -ENOMEM)
6480 return -ENOMEM;
6481 else if (rc == -EAGAIN)
6482 goto try_32bit_dma;
6483 }
6484 ioc->config_page_sz = 512;
6485 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6486 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6487 if (!ioc->config_page) {
6488 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6489 goto out;
6490 }
6491
6492 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6493 ioc->config_page, (unsigned long long)ioc->config_page_dma,
6494 ioc->config_page_sz);
6495 total_sz += ioc->config_page_sz;
6496
6497 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6498 total_sz / 1024);
6499 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6500 ioc->shost->can_queue, facts->RequestCredit);
6501 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6502 ioc->shost->sg_tablesize);
6503 return 0;
6504
6505 try_32bit_dma:
6506 _base_release_memory_pools(ioc);
6507 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6508 /* Change dma coherent mask to 32 bit and reallocate */
6509 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6510 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6511 pci_name(ioc->pdev));
6512 return -ENODEV;
6513 }
6514 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6515 return -ENOMEM;
6516 goto retry_allocation;
6517
6518 out:
6519 return -ENOMEM;
6520 }
6521
6522 /**
6523 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6524 * @ioc: Pointer to MPT_ADAPTER structure
6525 * @cooked: Request raw or cooked IOC state
6526 *
6527 * Return: all IOC Doorbell register bits if cooked==0, else just the
6528 * Doorbell bits in MPI_IOC_STATE_MASK.
6529 */
6530 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)6531 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6532 {
6533 u32 s, sc;
6534
6535 s = ioc->base_readl(&ioc->chip->Doorbell);
6536 sc = s & MPI2_IOC_STATE_MASK;
6537 return cooked ? sc : s;
6538 }
6539
6540 /**
6541 * _base_wait_on_iocstate - waiting on a particular ioc state
6542 * @ioc: ?
6543 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6544 * @timeout: timeout in second
6545 *
6546 * Return: 0 for success, non-zero for failure.
6547 */
6548 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)6549 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6550 {
6551 u32 count, cntdn;
6552 u32 current_state;
6553
6554 count = 0;
6555 cntdn = 1000 * timeout;
6556 do {
6557 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6558 if (current_state == ioc_state)
6559 return 0;
6560 if (count && current_state == MPI2_IOC_STATE_FAULT)
6561 break;
6562 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6563 break;
6564
6565 usleep_range(1000, 1500);
6566 count++;
6567 } while (--cntdn);
6568
6569 return current_state;
6570 }
6571
6572 /**
6573 * _base_dump_reg_set - This function will print hexdump of register set.
6574 * @ioc: per adapter object
6575 *
6576 * Return: nothing.
6577 */
6578 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)6579 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6580 {
6581 unsigned int i, sz = 256;
6582 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6583
6584 ioc_info(ioc, "System Register set:\n");
6585 for (i = 0; i < (sz / sizeof(u32)); i++)
6586 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
6587 }
6588
6589 /**
6590 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6591 * a write to the doorbell)
6592 * @ioc: per adapter object
6593 * @timeout: timeout in seconds
6594 *
6595 * Return: 0 for success, non-zero for failure.
6596 *
6597 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6598 */
6599
6600 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6601 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6602 {
6603 u32 cntdn, count;
6604 u32 int_status;
6605
6606 count = 0;
6607 cntdn = 1000 * timeout;
6608 do {
6609 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6610 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6611 dhsprintk(ioc,
6612 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6613 __func__, count, timeout));
6614 return 0;
6615 }
6616
6617 usleep_range(1000, 1500);
6618 count++;
6619 } while (--cntdn);
6620
6621 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6622 __func__, count, int_status);
6623 return -EFAULT;
6624 }
6625
6626 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6627 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6628 {
6629 u32 cntdn, count;
6630 u32 int_status;
6631
6632 count = 0;
6633 cntdn = 2000 * timeout;
6634 do {
6635 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6636 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6637 dhsprintk(ioc,
6638 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6639 __func__, count, timeout));
6640 return 0;
6641 }
6642
6643 udelay(500);
6644 count++;
6645 } while (--cntdn);
6646
6647 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6648 __func__, count, int_status);
6649 return -EFAULT;
6650
6651 }
6652
6653 /**
6654 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6655 * @ioc: per adapter object
6656 * @timeout: timeout in second
6657 *
6658 * Return: 0 for success, non-zero for failure.
6659 *
6660 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6661 * doorbell.
6662 */
6663 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)6664 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6665 {
6666 u32 cntdn, count;
6667 u32 int_status;
6668 u32 doorbell;
6669
6670 count = 0;
6671 cntdn = 1000 * timeout;
6672 do {
6673 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6674 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6675 dhsprintk(ioc,
6676 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6677 __func__, count, timeout));
6678 return 0;
6679 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6680 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6681 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6682 MPI2_IOC_STATE_FAULT) {
6683 mpt3sas_print_fault_code(ioc, doorbell);
6684 return -EFAULT;
6685 }
6686 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6687 MPI2_IOC_STATE_COREDUMP) {
6688 mpt3sas_print_coredump_info(ioc, doorbell);
6689 return -EFAULT;
6690 }
6691 } else if (int_status == 0xFFFFFFFF)
6692 goto out;
6693
6694 usleep_range(1000, 1500);
6695 count++;
6696 } while (--cntdn);
6697
6698 out:
6699 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6700 __func__, count, int_status);
6701 return -EFAULT;
6702 }
6703
6704 /**
6705 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6706 * @ioc: per adapter object
6707 * @timeout: timeout in second
6708 *
6709 * Return: 0 for success, non-zero for failure.
6710 */
6711 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)6712 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6713 {
6714 u32 cntdn, count;
6715 u32 doorbell_reg;
6716
6717 count = 0;
6718 cntdn = 1000 * timeout;
6719 do {
6720 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6721 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6722 dhsprintk(ioc,
6723 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6724 __func__, count, timeout));
6725 return 0;
6726 }
6727
6728 usleep_range(1000, 1500);
6729 count++;
6730 } while (--cntdn);
6731
6732 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6733 __func__, count, doorbell_reg);
6734 return -EFAULT;
6735 }
6736
6737 /**
6738 * _base_send_ioc_reset - send doorbell reset
6739 * @ioc: per adapter object
6740 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6741 * @timeout: timeout in second
6742 *
6743 * Return: 0 for success, non-zero for failure.
6744 */
6745 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)6746 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6747 {
6748 u32 ioc_state;
6749 int r = 0;
6750 unsigned long flags;
6751
6752 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6753 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6754 return -EFAULT;
6755 }
6756
6757 if (!(ioc->facts.IOCCapabilities &
6758 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6759 return -EFAULT;
6760
6761 ioc_info(ioc, "sending message unit reset !!\n");
6762
6763 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6764 &ioc->chip->Doorbell);
6765 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6766 r = -EFAULT;
6767 goto out;
6768 }
6769
6770 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6771 if (ioc_state) {
6772 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6773 __func__, ioc_state);
6774 r = -EFAULT;
6775 goto out;
6776 }
6777 out:
6778 if (r != 0) {
6779 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6780 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6781 /*
6782 * Wait for IOC state CoreDump to clear only during
6783 * HBA initialization & release time.
6784 */
6785 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6786 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6787 ioc->fault_reset_work_q == NULL)) {
6788 spin_unlock_irqrestore(
6789 &ioc->ioc_reset_in_progress_lock, flags);
6790 mpt3sas_print_coredump_info(ioc, ioc_state);
6791 mpt3sas_base_wait_for_coredump_completion(ioc,
6792 __func__);
6793 spin_lock_irqsave(
6794 &ioc->ioc_reset_in_progress_lock, flags);
6795 }
6796 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6797 }
6798 ioc_info(ioc, "message unit reset: %s\n",
6799 r == 0 ? "SUCCESS" : "FAILED");
6800 return r;
6801 }
6802
6803 /**
6804 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6805 * @ioc: per adapter object
6806 * @timeout: timeout in seconds
6807 *
6808 * Return: Waits up to timeout seconds for the IOC to
6809 * become operational. Returns 0 if IOC is present
6810 * and operational; otherwise returns %-EFAULT.
6811 */
6812
6813 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)6814 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6815 {
6816 int wait_state_count = 0;
6817 u32 ioc_state;
6818
6819 do {
6820 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6821 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6822 break;
6823
6824 /*
6825 * Watchdog thread will be started after IOC Initialization, so
6826 * no need to wait here for IOC state to become operational
6827 * when IOC Initialization is on. Instead the driver will
6828 * return ETIME status, so that calling function can issue
6829 * diag reset operation and retry the command.
6830 */
6831 if (ioc->is_driver_loading)
6832 return -ETIME;
6833
6834 ssleep(1);
6835 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6836 __func__, ++wait_state_count);
6837 } while (--timeout);
6838 if (!timeout) {
6839 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6840 return -EFAULT;
6841 }
6842 if (wait_state_count)
6843 ioc_info(ioc, "ioc is operational\n");
6844 return 0;
6845 }
6846
6847 /**
6848 * _base_handshake_req_reply_wait - send request thru doorbell interface
6849 * @ioc: per adapter object
6850 * @request_bytes: request length
6851 * @request: pointer having request payload
6852 * @reply_bytes: reply length
6853 * @reply: pointer to reply payload
6854 * @timeout: timeout in second
6855 *
6856 * Return: 0 for success, non-zero for failure.
6857 */
6858 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)6859 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6860 u32 *request, int reply_bytes, u16 *reply, int timeout)
6861 {
6862 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6863 int i;
6864 u8 failed;
6865 __le32 *mfp;
6866
6867 /* make sure doorbell is not in use */
6868 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6869 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6870 return -EFAULT;
6871 }
6872
6873 /* clear pending doorbell interrupts from previous state changes */
6874 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6875 MPI2_HIS_IOC2SYS_DB_STATUS)
6876 writel(0, &ioc->chip->HostInterruptStatus);
6877
6878 /* send message to ioc */
6879 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6880 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6881 &ioc->chip->Doorbell);
6882
6883 if ((_base_spin_on_doorbell_int(ioc, 5))) {
6884 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6885 __LINE__);
6886 return -EFAULT;
6887 }
6888 writel(0, &ioc->chip->HostInterruptStatus);
6889
6890 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6891 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6892 __LINE__);
6893 return -EFAULT;
6894 }
6895
6896 /* send message 32-bits at a time */
6897 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6898 writel(request[i], &ioc->chip->Doorbell);
6899 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6900 failed = 1;
6901 }
6902
6903 if (failed) {
6904 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6905 __LINE__);
6906 return -EFAULT;
6907 }
6908
6909 /* now wait for the reply */
6910 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6911 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6912 __LINE__);
6913 return -EFAULT;
6914 }
6915
6916 /* read the first two 16-bits, it gives the total length of the reply */
6917 reply[0] = ioc->base_readl(&ioc->chip->Doorbell)
6918 & MPI2_DOORBELL_DATA_MASK;
6919 writel(0, &ioc->chip->HostInterruptStatus);
6920 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6921 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6922 __LINE__);
6923 return -EFAULT;
6924 }
6925 reply[1] = ioc->base_readl(&ioc->chip->Doorbell)
6926 & MPI2_DOORBELL_DATA_MASK;
6927 writel(0, &ioc->chip->HostInterruptStatus);
6928
6929 for (i = 2; i < default_reply->MsgLength * 2; i++) {
6930 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6931 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6932 __LINE__);
6933 return -EFAULT;
6934 }
6935 if (i >= reply_bytes/2) /* overflow case */
6936 ioc->base_readl(&ioc->chip->Doorbell);
6937 else
6938 reply[i] = ioc->base_readl(&ioc->chip->Doorbell)
6939 & MPI2_DOORBELL_DATA_MASK;
6940 writel(0, &ioc->chip->HostInterruptStatus);
6941 }
6942
6943 _base_wait_for_doorbell_int(ioc, 5);
6944 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6945 dhsprintk(ioc,
6946 ioc_info(ioc, "doorbell is in use (line=%d)\n",
6947 __LINE__));
6948 }
6949 writel(0, &ioc->chip->HostInterruptStatus);
6950
6951 if (ioc->logging_level & MPT_DEBUG_INIT) {
6952 mfp = (__le32 *)reply;
6953 pr_info("\toffset:data\n");
6954 for (i = 0; i < reply_bytes/4; i++)
6955 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6956 le32_to_cpu(mfp[i]));
6957 }
6958 return 0;
6959 }
6960
6961 /**
6962 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6963 * @ioc: per adapter object
6964 * @mpi_reply: the reply payload from FW
6965 * @mpi_request: the request payload sent to FW
6966 *
6967 * The SAS IO Unit Control Request message allows the host to perform low-level
6968 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6969 * to obtain the IOC assigned device handles for a device if it has other
6970 * identifying information about the device, in addition allows the host to
6971 * remove IOC resources associated with the device.
6972 *
6973 * Return: 0 for success, non-zero for failure.
6974 */
6975 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)6976 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6977 Mpi2SasIoUnitControlReply_t *mpi_reply,
6978 Mpi2SasIoUnitControlRequest_t *mpi_request)
6979 {
6980 u16 smid;
6981 u8 issue_reset = 0;
6982 int rc;
6983 void *request;
6984
6985 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6986
6987 mutex_lock(&ioc->base_cmds.mutex);
6988
6989 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6990 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6991 rc = -EAGAIN;
6992 goto out;
6993 }
6994
6995 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6996 if (rc)
6997 goto out;
6998
6999 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7000 if (!smid) {
7001 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7002 rc = -EAGAIN;
7003 goto out;
7004 }
7005
7006 rc = 0;
7007 ioc->base_cmds.status = MPT3_CMD_PENDING;
7008 request = mpt3sas_base_get_msg_frame(ioc, smid);
7009 ioc->base_cmds.smid = smid;
7010 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7011 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7012 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7013 ioc->ioc_link_reset_in_progress = 1;
7014 init_completion(&ioc->base_cmds.done);
7015 ioc->put_smid_default(ioc, smid);
7016 wait_for_completion_timeout(&ioc->base_cmds.done,
7017 msecs_to_jiffies(10000));
7018 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7019 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7020 ioc->ioc_link_reset_in_progress)
7021 ioc->ioc_link_reset_in_progress = 0;
7022 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7023 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7024 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7025 issue_reset);
7026 goto issue_host_reset;
7027 }
7028 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7029 memcpy(mpi_reply, ioc->base_cmds.reply,
7030 sizeof(Mpi2SasIoUnitControlReply_t));
7031 else
7032 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7033 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7034 goto out;
7035
7036 issue_host_reset:
7037 if (issue_reset)
7038 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7039 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7040 rc = -EFAULT;
7041 out:
7042 mutex_unlock(&ioc->base_cmds.mutex);
7043 return rc;
7044 }
7045
7046 /**
7047 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7048 * @ioc: per adapter object
7049 * @mpi_reply: the reply payload from FW
7050 * @mpi_request: the request payload sent to FW
7051 *
7052 * The SCSI Enclosure Processor request message causes the IOC to
7053 * communicate with SES devices to control LED status signals.
7054 *
7055 * Return: 0 for success, non-zero for failure.
7056 */
7057 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)7058 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7059 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7060 {
7061 u16 smid;
7062 u8 issue_reset = 0;
7063 int rc;
7064 void *request;
7065
7066 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7067
7068 mutex_lock(&ioc->base_cmds.mutex);
7069
7070 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7071 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7072 rc = -EAGAIN;
7073 goto out;
7074 }
7075
7076 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7077 if (rc)
7078 goto out;
7079
7080 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7081 if (!smid) {
7082 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7083 rc = -EAGAIN;
7084 goto out;
7085 }
7086
7087 rc = 0;
7088 ioc->base_cmds.status = MPT3_CMD_PENDING;
7089 request = mpt3sas_base_get_msg_frame(ioc, smid);
7090 ioc->base_cmds.smid = smid;
7091 memset(request, 0, ioc->request_sz);
7092 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7093 init_completion(&ioc->base_cmds.done);
7094 ioc->put_smid_default(ioc, smid);
7095 wait_for_completion_timeout(&ioc->base_cmds.done,
7096 msecs_to_jiffies(10000));
7097 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7098 mpt3sas_check_cmd_timeout(ioc,
7099 ioc->base_cmds.status, mpi_request,
7100 sizeof(Mpi2SepRequest_t)/4, issue_reset);
7101 goto issue_host_reset;
7102 }
7103 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7104 memcpy(mpi_reply, ioc->base_cmds.reply,
7105 sizeof(Mpi2SepReply_t));
7106 else
7107 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7108 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7109 goto out;
7110
7111 issue_host_reset:
7112 if (issue_reset)
7113 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7114 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7115 rc = -EFAULT;
7116 out:
7117 mutex_unlock(&ioc->base_cmds.mutex);
7118 return rc;
7119 }
7120
7121 /**
7122 * _base_get_port_facts - obtain port facts reply and save in ioc
7123 * @ioc: per adapter object
7124 * @port: ?
7125 *
7126 * Return: 0 for success, non-zero for failure.
7127 */
7128 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)7129 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7130 {
7131 Mpi2PortFactsRequest_t mpi_request;
7132 Mpi2PortFactsReply_t mpi_reply;
7133 struct mpt3sas_port_facts *pfacts;
7134 int mpi_reply_sz, mpi_request_sz, r;
7135
7136 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7137
7138 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7139 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7140 memset(&mpi_request, 0, mpi_request_sz);
7141 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7142 mpi_request.PortNumber = port;
7143 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7144 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7145
7146 if (r != 0) {
7147 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7148 return r;
7149 }
7150
7151 pfacts = &ioc->pfacts[port];
7152 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7153 pfacts->PortNumber = mpi_reply.PortNumber;
7154 pfacts->VP_ID = mpi_reply.VP_ID;
7155 pfacts->VF_ID = mpi_reply.VF_ID;
7156 pfacts->MaxPostedCmdBuffers =
7157 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7158
7159 return 0;
7160 }
7161
7162 /**
7163 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7164 * @ioc: per adapter object
7165 * @timeout:
7166 *
7167 * Return: 0 for success, non-zero for failure.
7168 */
7169 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)7170 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7171 {
7172 u32 ioc_state;
7173 int rc;
7174
7175 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7176
7177 if (ioc->pci_error_recovery) {
7178 dfailprintk(ioc,
7179 ioc_info(ioc, "%s: host in pci error recovery\n",
7180 __func__));
7181 return -EFAULT;
7182 }
7183
7184 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7185 dhsprintk(ioc,
7186 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7187 __func__, ioc_state));
7188
7189 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7190 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7191 return 0;
7192
7193 if (ioc_state & MPI2_DOORBELL_USED) {
7194 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7195 goto issue_diag_reset;
7196 }
7197
7198 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7199 mpt3sas_print_fault_code(ioc, ioc_state &
7200 MPI2_DOORBELL_DATA_MASK);
7201 goto issue_diag_reset;
7202 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7203 MPI2_IOC_STATE_COREDUMP) {
7204 ioc_info(ioc,
7205 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7206 __func__, ioc_state);
7207 return -EFAULT;
7208 }
7209
7210 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7211 if (ioc_state) {
7212 dfailprintk(ioc,
7213 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7214 __func__, ioc_state));
7215 return -EFAULT;
7216 }
7217
7218 issue_diag_reset:
7219 rc = _base_diag_reset(ioc);
7220 return rc;
7221 }
7222
7223 /**
7224 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7225 * @ioc: per adapter object
7226 *
7227 * Return: 0 for success, non-zero for failure.
7228 */
7229 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)7230 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7231 {
7232 Mpi2IOCFactsRequest_t mpi_request;
7233 Mpi2IOCFactsReply_t mpi_reply;
7234 struct mpt3sas_facts *facts;
7235 int mpi_reply_sz, mpi_request_sz, r;
7236
7237 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7238
7239 r = _base_wait_for_iocstate(ioc, 10);
7240 if (r) {
7241 dfailprintk(ioc,
7242 ioc_info(ioc, "%s: failed getting to correct state\n",
7243 __func__));
7244 return r;
7245 }
7246 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7247 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7248 memset(&mpi_request, 0, mpi_request_sz);
7249 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7250 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7251 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7252
7253 if (r != 0) {
7254 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7255 return r;
7256 }
7257
7258 facts = &ioc->facts;
7259 memset(facts, 0, sizeof(struct mpt3sas_facts));
7260 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7261 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7262 facts->VP_ID = mpi_reply.VP_ID;
7263 facts->VF_ID = mpi_reply.VF_ID;
7264 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7265 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7266 facts->WhoInit = mpi_reply.WhoInit;
7267 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7268 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7269 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7270 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7271 ioc->combined_reply_queue = 0;
7272 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7273 facts->MaxReplyDescriptorPostQueueDepth =
7274 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7275 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7276 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7277 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7278 ioc->ir_firmware = 1;
7279 if ((facts->IOCCapabilities &
7280 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7281 ioc->rdpq_array_capable = 1;
7282 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7283 && ioc->is_aero_ioc)
7284 ioc->atomic_desc_capable = 1;
7285 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7286 facts->IOCRequestFrameSize =
7287 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7288 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7289 facts->IOCMaxChainSegmentSize =
7290 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7291 }
7292 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7293 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7294 ioc->shost->max_id = -1;
7295 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7296 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7297 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7298 facts->HighPriorityCredit =
7299 le16_to_cpu(mpi_reply.HighPriorityCredit);
7300 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7301 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7302 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7303
7304 /*
7305 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7306 */
7307 ioc->page_size = 1 << facts->CurrentHostPageSize;
7308 if (ioc->page_size == 1) {
7309 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7310 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7311 }
7312 dinitprintk(ioc,
7313 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7314 facts->CurrentHostPageSize));
7315
7316 dinitprintk(ioc,
7317 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7318 facts->RequestCredit, facts->MaxChainDepth));
7319 dinitprintk(ioc,
7320 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7321 facts->IOCRequestFrameSize * 4,
7322 facts->ReplyFrameSize * 4));
7323 return 0;
7324 }
7325
7326 /**
7327 * _base_send_ioc_init - send ioc_init to firmware
7328 * @ioc: per adapter object
7329 *
7330 * Return: 0 for success, non-zero for failure.
7331 */
7332 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)7333 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7334 {
7335 Mpi2IOCInitRequest_t mpi_request;
7336 Mpi2IOCInitReply_t mpi_reply;
7337 int i, r = 0;
7338 ktime_t current_time;
7339 u16 ioc_status;
7340 u32 reply_post_free_array_sz = 0;
7341
7342 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7343
7344 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7345 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7346 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7347 mpi_request.VF_ID = 0; /* TODO */
7348 mpi_request.VP_ID = 0;
7349 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7350 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7351 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7352
7353 if (_base_is_controller_msix_enabled(ioc))
7354 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7355 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7356 mpi_request.ReplyDescriptorPostQueueDepth =
7357 cpu_to_le16(ioc->reply_post_queue_depth);
7358 mpi_request.ReplyFreeQueueDepth =
7359 cpu_to_le16(ioc->reply_free_queue_depth);
7360
7361 mpi_request.SenseBufferAddressHigh =
7362 cpu_to_le32((u64)ioc->sense_dma >> 32);
7363 mpi_request.SystemReplyAddressHigh =
7364 cpu_to_le32((u64)ioc->reply_dma >> 32);
7365 mpi_request.SystemRequestFrameBaseAddress =
7366 cpu_to_le64((u64)ioc->request_dma);
7367 mpi_request.ReplyFreeQueueAddress =
7368 cpu_to_le64((u64)ioc->reply_free_dma);
7369
7370 if (ioc->rdpq_array_enable) {
7371 reply_post_free_array_sz = ioc->reply_queue_count *
7372 sizeof(Mpi2IOCInitRDPQArrayEntry);
7373 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7374 for (i = 0; i < ioc->reply_queue_count; i++)
7375 ioc->reply_post_free_array[i].RDPQBaseAddress =
7376 cpu_to_le64(
7377 (u64)ioc->reply_post[i].reply_post_free_dma);
7378 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7379 mpi_request.ReplyDescriptorPostQueueAddress =
7380 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7381 } else {
7382 mpi_request.ReplyDescriptorPostQueueAddress =
7383 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7384 }
7385
7386 /*
7387 * Set the flag to enable CoreDump state feature in IOC firmware.
7388 */
7389 mpi_request.ConfigurationFlags |=
7390 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7391
7392 /* This time stamp specifies number of milliseconds
7393 * since epoch ~ midnight January 1, 1970.
7394 */
7395 current_time = ktime_get_real();
7396 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7397
7398 if (ioc->logging_level & MPT_DEBUG_INIT) {
7399 __le32 *mfp;
7400 int i;
7401
7402 mfp = (__le32 *)&mpi_request;
7403 ioc_info(ioc, "\toffset:data\n");
7404 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7405 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7406 le32_to_cpu(mfp[i]));
7407 }
7408
7409 r = _base_handshake_req_reply_wait(ioc,
7410 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7411 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7412
7413 if (r != 0) {
7414 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7415 return r;
7416 }
7417
7418 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7419 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7420 mpi_reply.IOCLogInfo) {
7421 ioc_err(ioc, "%s: failed\n", __func__);
7422 r = -EIO;
7423 }
7424
7425 /* Reset TimeSync Counter*/
7426 ioc->timestamp_update_count = 0;
7427 return r;
7428 }
7429
7430 /**
7431 * mpt3sas_port_enable_done - command completion routine for port enable
7432 * @ioc: per adapter object
7433 * @smid: system request message index
7434 * @msix_index: MSIX table index supplied by the OS
7435 * @reply: reply message frame(lower 32bit addr)
7436 *
7437 * Return: 1 meaning mf should be freed from _base_interrupt
7438 * 0 means the mf is freed from this function.
7439 */
7440 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)7441 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7442 u32 reply)
7443 {
7444 MPI2DefaultReply_t *mpi_reply;
7445 u16 ioc_status;
7446
7447 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7448 return 1;
7449
7450 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7451 if (!mpi_reply)
7452 return 1;
7453
7454 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7455 return 1;
7456
7457 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7458 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7459 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7460 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7461 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7462 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7463 ioc->port_enable_failed = 1;
7464
7465 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7466 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7467 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7468 mpt3sas_port_enable_complete(ioc);
7469 return 1;
7470 } else {
7471 ioc->start_scan_failed = ioc_status;
7472 ioc->start_scan = 0;
7473 return 1;
7474 }
7475 }
7476 complete(&ioc->port_enable_cmds.done);
7477 return 1;
7478 }
7479
7480 /**
7481 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7482 * @ioc: per adapter object
7483 *
7484 * Return: 0 for success, non-zero for failure.
7485 */
7486 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)7487 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7488 {
7489 Mpi2PortEnableRequest_t *mpi_request;
7490 Mpi2PortEnableReply_t *mpi_reply;
7491 int r = 0;
7492 u16 smid;
7493 u16 ioc_status;
7494
7495 ioc_info(ioc, "sending port enable !!\n");
7496
7497 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7498 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7499 return -EAGAIN;
7500 }
7501
7502 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7503 if (!smid) {
7504 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7505 return -EAGAIN;
7506 }
7507
7508 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7509 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7510 ioc->port_enable_cmds.smid = smid;
7511 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7512 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7513
7514 init_completion(&ioc->port_enable_cmds.done);
7515 ioc->put_smid_default(ioc, smid);
7516 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7517 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7518 ioc_err(ioc, "%s: timeout\n", __func__);
7519 _debug_dump_mf(mpi_request,
7520 sizeof(Mpi2PortEnableRequest_t)/4);
7521 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7522 r = -EFAULT;
7523 else
7524 r = -ETIME;
7525 goto out;
7526 }
7527
7528 mpi_reply = ioc->port_enable_cmds.reply;
7529 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7530 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7531 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7532 __func__, ioc_status);
7533 r = -EFAULT;
7534 goto out;
7535 }
7536
7537 out:
7538 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7539 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7540 return r;
7541 }
7542
7543 /**
7544 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7545 * @ioc: per adapter object
7546 *
7547 * Return: 0 for success, non-zero for failure.
7548 */
7549 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)7550 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7551 {
7552 Mpi2PortEnableRequest_t *mpi_request;
7553 u16 smid;
7554
7555 ioc_info(ioc, "sending port enable !!\n");
7556
7557 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7558 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7559 return -EAGAIN;
7560 }
7561
7562 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7563 if (!smid) {
7564 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7565 return -EAGAIN;
7566 }
7567 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7568 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7569 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7570 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7571 ioc->port_enable_cmds.smid = smid;
7572 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7573 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7574
7575 ioc->put_smid_default(ioc, smid);
7576 return 0;
7577 }
7578
7579 /**
7580 * _base_determine_wait_on_discovery - desposition
7581 * @ioc: per adapter object
7582 *
7583 * Decide whether to wait on discovery to complete. Used to either
7584 * locate boot device, or report volumes ahead of physical devices.
7585 *
7586 * Return: 1 for wait, 0 for don't wait.
7587 */
7588 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)7589 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7590 {
7591 /* We wait for discovery to complete if IR firmware is loaded.
7592 * The sas topology events arrive before PD events, so we need time to
7593 * turn on the bit in ioc->pd_handles to indicate PD
7594 * Also, it maybe required to report Volumes ahead of physical
7595 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7596 */
7597 if (ioc->ir_firmware)
7598 return 1;
7599
7600 /* if no Bios, then we don't need to wait */
7601 if (!ioc->bios_pg3.BiosVersion)
7602 return 0;
7603
7604 /* Bios is present, then we drop down here.
7605 *
7606 * If there any entries in the Bios Page 2, then we wait
7607 * for discovery to complete.
7608 */
7609
7610 /* Current Boot Device */
7611 if ((ioc->bios_pg2.CurrentBootDeviceForm &
7612 MPI2_BIOSPAGE2_FORM_MASK) ==
7613 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7614 /* Request Boot Device */
7615 (ioc->bios_pg2.ReqBootDeviceForm &
7616 MPI2_BIOSPAGE2_FORM_MASK) ==
7617 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7618 /* Alternate Request Boot Device */
7619 (ioc->bios_pg2.ReqAltBootDeviceForm &
7620 MPI2_BIOSPAGE2_FORM_MASK) ==
7621 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7622 return 0;
7623
7624 return 1;
7625 }
7626
7627 /**
7628 * _base_unmask_events - turn on notification for this event
7629 * @ioc: per adapter object
7630 * @event: firmware event
7631 *
7632 * The mask is stored in ioc->event_masks.
7633 */
7634 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)7635 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7636 {
7637 u32 desired_event;
7638
7639 if (event >= 128)
7640 return;
7641
7642 desired_event = (1 << (event % 32));
7643
7644 if (event < 32)
7645 ioc->event_masks[0] &= ~desired_event;
7646 else if (event < 64)
7647 ioc->event_masks[1] &= ~desired_event;
7648 else if (event < 96)
7649 ioc->event_masks[2] &= ~desired_event;
7650 else if (event < 128)
7651 ioc->event_masks[3] &= ~desired_event;
7652 }
7653
7654 /**
7655 * _base_event_notification - send event notification
7656 * @ioc: per adapter object
7657 *
7658 * Return: 0 for success, non-zero for failure.
7659 */
7660 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)7661 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7662 {
7663 Mpi2EventNotificationRequest_t *mpi_request;
7664 u16 smid;
7665 int r = 0;
7666 int i, issue_diag_reset = 0;
7667
7668 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7669
7670 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7671 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7672 return -EAGAIN;
7673 }
7674
7675 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7676 if (!smid) {
7677 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7678 return -EAGAIN;
7679 }
7680 ioc->base_cmds.status = MPT3_CMD_PENDING;
7681 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7682 ioc->base_cmds.smid = smid;
7683 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7684 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7685 mpi_request->VF_ID = 0; /* TODO */
7686 mpi_request->VP_ID = 0;
7687 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7688 mpi_request->EventMasks[i] =
7689 cpu_to_le32(ioc->event_masks[i]);
7690 init_completion(&ioc->base_cmds.done);
7691 ioc->put_smid_default(ioc, smid);
7692 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7693 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7694 ioc_err(ioc, "%s: timeout\n", __func__);
7695 _debug_dump_mf(mpi_request,
7696 sizeof(Mpi2EventNotificationRequest_t)/4);
7697 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7698 r = -EFAULT;
7699 else
7700 issue_diag_reset = 1;
7701
7702 } else
7703 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7704 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7705
7706 if (issue_diag_reset) {
7707 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7708 return -EFAULT;
7709 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7710 return -EFAULT;
7711 r = -EAGAIN;
7712 }
7713 return r;
7714 }
7715
7716 /**
7717 * mpt3sas_base_validate_event_type - validating event types
7718 * @ioc: per adapter object
7719 * @event_type: firmware event
7720 *
7721 * This will turn on firmware event notification when application
7722 * ask for that event. We don't mask events that are already enabled.
7723 */
7724 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)7725 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7726 {
7727 int i, j;
7728 u32 event_mask, desired_event;
7729 u8 send_update_to_fw;
7730
7731 for (i = 0, send_update_to_fw = 0; i <
7732 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7733 event_mask = ~event_type[i];
7734 desired_event = 1;
7735 for (j = 0; j < 32; j++) {
7736 if (!(event_mask & desired_event) &&
7737 (ioc->event_masks[i] & desired_event)) {
7738 ioc->event_masks[i] &= ~desired_event;
7739 send_update_to_fw = 1;
7740 }
7741 desired_event = (desired_event << 1);
7742 }
7743 }
7744
7745 if (!send_update_to_fw)
7746 return;
7747
7748 mutex_lock(&ioc->base_cmds.mutex);
7749 _base_event_notification(ioc);
7750 mutex_unlock(&ioc->base_cmds.mutex);
7751 }
7752
7753 /**
7754 * _base_diag_reset - the "big hammer" start of day reset
7755 * @ioc: per adapter object
7756 *
7757 * Return: 0 for success, non-zero for failure.
7758 */
7759 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)7760 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7761 {
7762 u32 host_diagnostic;
7763 u32 ioc_state;
7764 u32 count;
7765 u32 hcb_size;
7766
7767 ioc_info(ioc, "sending diag reset !!\n");
7768
7769 pci_cfg_access_lock(ioc->pdev);
7770
7771 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7772
7773 count = 0;
7774 do {
7775 /* Write magic sequence to WriteSequence register
7776 * Loop until in diagnostic mode
7777 */
7778 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7779 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7780 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7781 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7782 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7783 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7784 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7785 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7786
7787 /* wait 100 msec */
7788 msleep(100);
7789
7790 if (count++ > 20) {
7791 ioc_info(ioc,
7792 "Stop writing magic sequence after 20 retries\n");
7793 _base_dump_reg_set(ioc);
7794 goto out;
7795 }
7796
7797 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7798 drsprintk(ioc,
7799 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7800 count, host_diagnostic));
7801
7802 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7803
7804 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7805
7806 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7807 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7808 &ioc->chip->HostDiagnostic);
7809
7810 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7811 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7812
7813 /* Approximately 300 second max wait */
7814 for (count = 0; count < (300000000 /
7815 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7816
7817 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7818
7819 if (host_diagnostic == 0xFFFFFFFF) {
7820 ioc_info(ioc,
7821 "Invalid host diagnostic register value\n");
7822 _base_dump_reg_set(ioc);
7823 goto out;
7824 }
7825 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7826 break;
7827
7828 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7829 }
7830
7831 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7832
7833 drsprintk(ioc,
7834 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7835 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7836 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7837 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7838
7839 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7840 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7841 &ioc->chip->HCBSize);
7842 }
7843
7844 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7845 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7846 &ioc->chip->HostDiagnostic);
7847
7848 drsprintk(ioc,
7849 ioc_info(ioc, "disable writes to the diagnostic register\n"));
7850 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7851
7852 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7853 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7854 if (ioc_state) {
7855 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7856 __func__, ioc_state);
7857 _base_dump_reg_set(ioc);
7858 goto out;
7859 }
7860
7861 pci_cfg_access_unlock(ioc->pdev);
7862 ioc_info(ioc, "diag reset: SUCCESS\n");
7863 return 0;
7864
7865 out:
7866 pci_cfg_access_unlock(ioc->pdev);
7867 ioc_err(ioc, "diag reset: FAILED\n");
7868 return -EFAULT;
7869 }
7870
7871 /**
7872 * mpt3sas_base_make_ioc_ready - put controller in READY state
7873 * @ioc: per adapter object
7874 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7875 *
7876 * Return: 0 for success, non-zero for failure.
7877 */
7878 int
mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7879 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7880 {
7881 u32 ioc_state;
7882 int rc;
7883 int count;
7884
7885 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7886
7887 if (ioc->pci_error_recovery)
7888 return 0;
7889
7890 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7891 dhsprintk(ioc,
7892 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7893 __func__, ioc_state));
7894
7895 /* if in RESET state, it should move to READY state shortly */
7896 count = 0;
7897 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7898 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7899 MPI2_IOC_STATE_READY) {
7900 if (count++ == 10) {
7901 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7902 __func__, ioc_state);
7903 return -EFAULT;
7904 }
7905 ssleep(1);
7906 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7907 }
7908 }
7909
7910 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7911 return 0;
7912
7913 if (ioc_state & MPI2_DOORBELL_USED) {
7914 ioc_info(ioc, "unexpected doorbell active!\n");
7915 goto issue_diag_reset;
7916 }
7917
7918 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7919 mpt3sas_print_fault_code(ioc, ioc_state &
7920 MPI2_DOORBELL_DATA_MASK);
7921 goto issue_diag_reset;
7922 }
7923
7924 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7925 /*
7926 * if host reset is invoked while watch dog thread is waiting
7927 * for IOC state to be changed to Fault state then driver has
7928 * to wait here for CoreDump state to clear otherwise reset
7929 * will be issued to the FW and FW move the IOC state to
7930 * reset state without copying the FW logs to coredump region.
7931 */
7932 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7933 mpt3sas_print_coredump_info(ioc, ioc_state &
7934 MPI2_DOORBELL_DATA_MASK);
7935 mpt3sas_base_wait_for_coredump_completion(ioc,
7936 __func__);
7937 }
7938 goto issue_diag_reset;
7939 }
7940
7941 if (type == FORCE_BIG_HAMMER)
7942 goto issue_diag_reset;
7943
7944 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7945 if (!(_base_send_ioc_reset(ioc,
7946 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7947 return 0;
7948 }
7949
7950 issue_diag_reset:
7951 rc = _base_diag_reset(ioc);
7952 return rc;
7953 }
7954
7955 /**
7956 * _base_make_ioc_operational - put controller in OPERATIONAL state
7957 * @ioc: per adapter object
7958 *
7959 * Return: 0 for success, non-zero for failure.
7960 */
7961 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)7962 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7963 {
7964 int r, i, index, rc;
7965 unsigned long flags;
7966 u32 reply_address;
7967 u16 smid;
7968 struct _tr_list *delayed_tr, *delayed_tr_next;
7969 struct _sc_list *delayed_sc, *delayed_sc_next;
7970 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7971 u8 hide_flag;
7972 struct adapter_reply_queue *reply_q;
7973 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7974
7975 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7976
7977 /* clean the delayed target reset list */
7978 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7979 &ioc->delayed_tr_list, list) {
7980 list_del(&delayed_tr->list);
7981 kfree(delayed_tr);
7982 }
7983
7984
7985 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7986 &ioc->delayed_tr_volume_list, list) {
7987 list_del(&delayed_tr->list);
7988 kfree(delayed_tr);
7989 }
7990
7991 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7992 &ioc->delayed_sc_list, list) {
7993 list_del(&delayed_sc->list);
7994 kfree(delayed_sc);
7995 }
7996
7997 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7998 &ioc->delayed_event_ack_list, list) {
7999 list_del(&delayed_event_ack->list);
8000 kfree(delayed_event_ack);
8001 }
8002
8003 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8004
8005 /* hi-priority queue */
8006 INIT_LIST_HEAD(&ioc->hpr_free_list);
8007 smid = ioc->hi_priority_smid;
8008 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8009 ioc->hpr_lookup[i].cb_idx = 0xFF;
8010 ioc->hpr_lookup[i].smid = smid;
8011 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8012 &ioc->hpr_free_list);
8013 }
8014
8015 /* internal queue */
8016 INIT_LIST_HEAD(&ioc->internal_free_list);
8017 smid = ioc->internal_smid;
8018 for (i = 0; i < ioc->internal_depth; i++, smid++) {
8019 ioc->internal_lookup[i].cb_idx = 0xFF;
8020 ioc->internal_lookup[i].smid = smid;
8021 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8022 &ioc->internal_free_list);
8023 }
8024
8025 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8026
8027 /* initialize Reply Free Queue */
8028 for (i = 0, reply_address = (u32)ioc->reply_dma ;
8029 i < ioc->reply_free_queue_depth ; i++, reply_address +=
8030 ioc->reply_sz) {
8031 ioc->reply_free[i] = cpu_to_le32(reply_address);
8032 if (ioc->is_mcpu_endpoint)
8033 _base_clone_reply_to_sys_mem(ioc,
8034 reply_address, i);
8035 }
8036
8037 /* initialize reply queues */
8038 if (ioc->is_driver_loading)
8039 _base_assign_reply_queues(ioc);
8040
8041 /* initialize Reply Post Free Queue */
8042 index = 0;
8043 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8044 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8045 /*
8046 * If RDPQ is enabled, switch to the next allocation.
8047 * Otherwise advance within the contiguous region.
8048 */
8049 if (ioc->rdpq_array_enable) {
8050 reply_q->reply_post_free =
8051 ioc->reply_post[index++].reply_post_free;
8052 } else {
8053 reply_q->reply_post_free = reply_post_free_contig;
8054 reply_post_free_contig += ioc->reply_post_queue_depth;
8055 }
8056
8057 reply_q->reply_post_host_index = 0;
8058 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8059 reply_q->reply_post_free[i].Words =
8060 cpu_to_le64(ULLONG_MAX);
8061 if (!_base_is_controller_msix_enabled(ioc))
8062 goto skip_init_reply_post_free_queue;
8063 }
8064 skip_init_reply_post_free_queue:
8065
8066 r = _base_send_ioc_init(ioc);
8067 if (r) {
8068 /*
8069 * No need to check IOC state for fault state & issue
8070 * diag reset during host reset. This check is need
8071 * only during driver load time.
8072 */
8073 if (!ioc->is_driver_loading)
8074 return r;
8075
8076 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8077 if (rc || (_base_send_ioc_init(ioc)))
8078 return r;
8079 }
8080
8081 /* initialize reply free host index */
8082 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8083 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8084
8085 /* initialize reply post host index */
8086 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8087 if (ioc->combined_reply_queue)
8088 writel((reply_q->msix_index & 7)<<
8089 MPI2_RPHI_MSIX_INDEX_SHIFT,
8090 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8091 else
8092 writel(reply_q->msix_index <<
8093 MPI2_RPHI_MSIX_INDEX_SHIFT,
8094 &ioc->chip->ReplyPostHostIndex);
8095
8096 if (!_base_is_controller_msix_enabled(ioc))
8097 goto skip_init_reply_post_host_index;
8098 }
8099
8100 skip_init_reply_post_host_index:
8101
8102 mpt3sas_base_unmask_interrupts(ioc);
8103
8104 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8105 r = _base_display_fwpkg_version(ioc);
8106 if (r)
8107 return r;
8108 }
8109
8110 r = _base_static_config_pages(ioc);
8111 if (r)
8112 return r;
8113
8114 r = _base_event_notification(ioc);
8115 if (r)
8116 return r;
8117
8118 if (!ioc->shost_recovery) {
8119
8120 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8121 == 0x80) {
8122 hide_flag = (u8) (
8123 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8124 MFG_PAGE10_HIDE_SSDS_MASK);
8125 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8126 ioc->mfg_pg10_hide_flag = hide_flag;
8127 }
8128
8129 ioc->wait_for_discovery_to_complete =
8130 _base_determine_wait_on_discovery(ioc);
8131
8132 return r; /* scan_start and scan_finished support */
8133 }
8134
8135 r = _base_send_port_enable(ioc);
8136 if (r)
8137 return r;
8138
8139 return r;
8140 }
8141
8142 /**
8143 * mpt3sas_base_free_resources - free resources controller resources
8144 * @ioc: per adapter object
8145 */
8146 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)8147 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8148 {
8149 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8150
8151 /* synchronizing freeing resource with pci_access_mutex lock */
8152 mutex_lock(&ioc->pci_access_mutex);
8153 if (ioc->chip_phys && ioc->chip) {
8154 mpt3sas_base_mask_interrupts(ioc);
8155 ioc->shost_recovery = 1;
8156 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8157 ioc->shost_recovery = 0;
8158 }
8159
8160 mpt3sas_base_unmap_resources(ioc);
8161 mutex_unlock(&ioc->pci_access_mutex);
8162 return;
8163 }
8164
8165 /**
8166 * mpt3sas_base_attach - attach controller instance
8167 * @ioc: per adapter object
8168 *
8169 * Return: 0 for success, non-zero for failure.
8170 */
8171 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)8172 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8173 {
8174 int r, i, rc;
8175 int cpu_id, last_cpu_id = 0;
8176
8177 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8178
8179 /* setup cpu_msix_table */
8180 ioc->cpu_count = num_online_cpus();
8181 for_each_online_cpu(cpu_id)
8182 last_cpu_id = cpu_id;
8183 ioc->cpu_msix_table_sz = last_cpu_id + 1;
8184 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8185 ioc->reply_queue_count = 1;
8186 if (!ioc->cpu_msix_table) {
8187 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8188 r = -ENOMEM;
8189 goto out_free_resources;
8190 }
8191
8192 if (ioc->is_warpdrive) {
8193 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8194 sizeof(resource_size_t *), GFP_KERNEL);
8195 if (!ioc->reply_post_host_index) {
8196 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8197 r = -ENOMEM;
8198 goto out_free_resources;
8199 }
8200 }
8201
8202 ioc->smp_affinity_enable = smp_affinity_enable;
8203
8204 ioc->rdpq_array_enable_assigned = 0;
8205 ioc->use_32bit_dma = false;
8206 ioc->dma_mask = 64;
8207 if (ioc->is_aero_ioc)
8208 ioc->base_readl = &_base_readl_aero;
8209 else
8210 ioc->base_readl = &_base_readl;
8211 r = mpt3sas_base_map_resources(ioc);
8212 if (r)
8213 goto out_free_resources;
8214
8215 pci_set_drvdata(ioc->pdev, ioc->shost);
8216 r = _base_get_ioc_facts(ioc);
8217 if (r) {
8218 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8219 if (rc || (_base_get_ioc_facts(ioc)))
8220 goto out_free_resources;
8221 }
8222
8223 switch (ioc->hba_mpi_version_belonged) {
8224 case MPI2_VERSION:
8225 ioc->build_sg_scmd = &_base_build_sg_scmd;
8226 ioc->build_sg = &_base_build_sg;
8227 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8228 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8229 break;
8230 case MPI25_VERSION:
8231 case MPI26_VERSION:
8232 /*
8233 * In SAS3.0,
8234 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8235 * Target Status - all require the IEEE formatted scatter gather
8236 * elements.
8237 */
8238 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8239 ioc->build_sg = &_base_build_sg_ieee;
8240 ioc->build_nvme_prp = &_base_build_nvme_prp;
8241 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8242 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8243 if (ioc->high_iops_queues)
8244 ioc->get_msix_index_for_smlio =
8245 &_base_get_high_iops_msix_index;
8246 else
8247 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8248 break;
8249 }
8250 if (ioc->atomic_desc_capable) {
8251 ioc->put_smid_default = &_base_put_smid_default_atomic;
8252 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8253 ioc->put_smid_fast_path =
8254 &_base_put_smid_fast_path_atomic;
8255 ioc->put_smid_hi_priority =
8256 &_base_put_smid_hi_priority_atomic;
8257 } else {
8258 ioc->put_smid_default = &_base_put_smid_default;
8259 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8260 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8261 if (ioc->is_mcpu_endpoint)
8262 ioc->put_smid_scsi_io =
8263 &_base_put_smid_mpi_ep_scsi_io;
8264 else
8265 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8266 }
8267 /*
8268 * These function pointers for other requests that don't
8269 * the require IEEE scatter gather elements.
8270 *
8271 * For example Configuration Pages and SAS IOUNIT Control don't.
8272 */
8273 ioc->build_sg_mpi = &_base_build_sg;
8274 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8275
8276 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8277 if (r)
8278 goto out_free_resources;
8279
8280 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8281 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8282 if (!ioc->pfacts) {
8283 r = -ENOMEM;
8284 goto out_free_resources;
8285 }
8286
8287 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8288 r = _base_get_port_facts(ioc, i);
8289 if (r) {
8290 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8291 if (rc || (_base_get_port_facts(ioc, i)))
8292 goto out_free_resources;
8293 }
8294 }
8295
8296 r = _base_allocate_memory_pools(ioc);
8297 if (r)
8298 goto out_free_resources;
8299
8300 if (irqpoll_weight > 0)
8301 ioc->thresh_hold = irqpoll_weight;
8302 else
8303 ioc->thresh_hold = ioc->hba_queue_depth/4;
8304
8305 _base_init_irqpolls(ioc);
8306 init_waitqueue_head(&ioc->reset_wq);
8307
8308 /* allocate memory pd handle bitmask list */
8309 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8310 if (ioc->facts.MaxDevHandle % 8)
8311 ioc->pd_handles_sz++;
8312 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8313 GFP_KERNEL);
8314 if (!ioc->pd_handles) {
8315 r = -ENOMEM;
8316 goto out_free_resources;
8317 }
8318 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8319 GFP_KERNEL);
8320 if (!ioc->blocking_handles) {
8321 r = -ENOMEM;
8322 goto out_free_resources;
8323 }
8324
8325 /* allocate memory for pending OS device add list */
8326 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8327 if (ioc->facts.MaxDevHandle % 8)
8328 ioc->pend_os_device_add_sz++;
8329 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8330 GFP_KERNEL);
8331 if (!ioc->pend_os_device_add) {
8332 r = -ENOMEM;
8333 goto out_free_resources;
8334 }
8335
8336 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8337 ioc->device_remove_in_progress =
8338 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8339 if (!ioc->device_remove_in_progress) {
8340 r = -ENOMEM;
8341 goto out_free_resources;
8342 }
8343
8344 ioc->fwfault_debug = mpt3sas_fwfault_debug;
8345
8346 /* base internal command bits */
8347 mutex_init(&ioc->base_cmds.mutex);
8348 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8349 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8350
8351 /* port_enable command bits */
8352 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8353 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8354
8355 /* transport internal command bits */
8356 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8357 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8358 mutex_init(&ioc->transport_cmds.mutex);
8359
8360 /* scsih internal command bits */
8361 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8362 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8363 mutex_init(&ioc->scsih_cmds.mutex);
8364
8365 /* task management internal command bits */
8366 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8367 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8368 mutex_init(&ioc->tm_cmds.mutex);
8369
8370 /* config page internal command bits */
8371 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8372 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8373 mutex_init(&ioc->config_cmds.mutex);
8374
8375 /* ctl module internal command bits */
8376 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8377 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8378 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8379 mutex_init(&ioc->ctl_cmds.mutex);
8380
8381 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8382 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8383 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8384 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8385 r = -ENOMEM;
8386 goto out_free_resources;
8387 }
8388
8389 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8390 ioc->event_masks[i] = -1;
8391
8392 /* here we enable the events we care about */
8393 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8394 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8395 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8396 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8397 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8398 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8399 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8400 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8401 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8402 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8403 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8404 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8405 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8406 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8407 if (ioc->is_gen35_ioc) {
8408 _base_unmask_events(ioc,
8409 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8410 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8411 _base_unmask_events(ioc,
8412 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8413 }
8414 }
8415 r = _base_make_ioc_operational(ioc);
8416 if (r == -EAGAIN) {
8417 r = _base_make_ioc_operational(ioc);
8418 if (r)
8419 goto out_free_resources;
8420 }
8421
8422 /*
8423 * Copy current copy of IOCFacts in prev_fw_facts
8424 * and it will be used during online firmware upgrade.
8425 */
8426 memcpy(&ioc->prev_fw_facts, &ioc->facts,
8427 sizeof(struct mpt3sas_facts));
8428
8429 ioc->non_operational_loop = 0;
8430 ioc->ioc_coredump_loop = 0;
8431 ioc->got_task_abort_from_ioctl = 0;
8432 return 0;
8433
8434 out_free_resources:
8435
8436 ioc->remove_host = 1;
8437
8438 mpt3sas_base_free_resources(ioc);
8439 _base_release_memory_pools(ioc);
8440 pci_set_drvdata(ioc->pdev, NULL);
8441 kfree(ioc->cpu_msix_table);
8442 if (ioc->is_warpdrive)
8443 kfree(ioc->reply_post_host_index);
8444 kfree(ioc->pd_handles);
8445 kfree(ioc->blocking_handles);
8446 kfree(ioc->device_remove_in_progress);
8447 kfree(ioc->pend_os_device_add);
8448 kfree(ioc->tm_cmds.reply);
8449 kfree(ioc->transport_cmds.reply);
8450 kfree(ioc->scsih_cmds.reply);
8451 kfree(ioc->config_cmds.reply);
8452 kfree(ioc->base_cmds.reply);
8453 kfree(ioc->port_enable_cmds.reply);
8454 kfree(ioc->ctl_cmds.reply);
8455 kfree(ioc->ctl_cmds.sense);
8456 kfree(ioc->pfacts);
8457 ioc->ctl_cmds.reply = NULL;
8458 ioc->base_cmds.reply = NULL;
8459 ioc->tm_cmds.reply = NULL;
8460 ioc->scsih_cmds.reply = NULL;
8461 ioc->transport_cmds.reply = NULL;
8462 ioc->config_cmds.reply = NULL;
8463 ioc->pfacts = NULL;
8464 return r;
8465 }
8466
8467
8468 /**
8469 * mpt3sas_base_detach - remove controller instance
8470 * @ioc: per adapter object
8471 */
8472 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)8473 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8474 {
8475 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8476
8477 mpt3sas_base_stop_watchdog(ioc);
8478 mpt3sas_base_free_resources(ioc);
8479 _base_release_memory_pools(ioc);
8480 mpt3sas_free_enclosure_list(ioc);
8481 pci_set_drvdata(ioc->pdev, NULL);
8482 kfree(ioc->cpu_msix_table);
8483 if (ioc->is_warpdrive)
8484 kfree(ioc->reply_post_host_index);
8485 kfree(ioc->pd_handles);
8486 kfree(ioc->blocking_handles);
8487 kfree(ioc->device_remove_in_progress);
8488 kfree(ioc->pend_os_device_add);
8489 kfree(ioc->pfacts);
8490 kfree(ioc->ctl_cmds.reply);
8491 kfree(ioc->ctl_cmds.sense);
8492 kfree(ioc->base_cmds.reply);
8493 kfree(ioc->port_enable_cmds.reply);
8494 kfree(ioc->tm_cmds.reply);
8495 kfree(ioc->transport_cmds.reply);
8496 kfree(ioc->scsih_cmds.reply);
8497 kfree(ioc->config_cmds.reply);
8498 }
8499
8500 /**
8501 * _base_pre_reset_handler - pre reset handler
8502 * @ioc: per adapter object
8503 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)8504 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8505 {
8506 mpt3sas_scsih_pre_reset_handler(ioc);
8507 mpt3sas_ctl_pre_reset_handler(ioc);
8508 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8509 }
8510
8511 /**
8512 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8513 * @ioc: per adapter object
8514 */
8515 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)8516 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8517 {
8518 dtmprintk(ioc,
8519 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8520 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8521 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8522 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8523 complete(&ioc->transport_cmds.done);
8524 }
8525 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8526 ioc->base_cmds.status |= MPT3_CMD_RESET;
8527 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8528 complete(&ioc->base_cmds.done);
8529 }
8530 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8531 ioc->port_enable_failed = 1;
8532 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8533 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8534 if (ioc->is_driver_loading) {
8535 ioc->start_scan_failed =
8536 MPI2_IOCSTATUS_INTERNAL_ERROR;
8537 ioc->start_scan = 0;
8538 } else {
8539 complete(&ioc->port_enable_cmds.done);
8540 }
8541 }
8542 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8543 ioc->config_cmds.status |= MPT3_CMD_RESET;
8544 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8545 ioc->config_cmds.smid = USHRT_MAX;
8546 complete(&ioc->config_cmds.done);
8547 }
8548 }
8549
8550 /**
8551 * _base_clear_outstanding_commands - clear all outstanding commands
8552 * @ioc: per adapter object
8553 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)8554 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8555 {
8556 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8557 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8558 _base_clear_outstanding_mpt_commands(ioc);
8559 }
8560
8561 /**
8562 * _base_reset_done_handler - reset done handler
8563 * @ioc: per adapter object
8564 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)8565 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8566 {
8567 mpt3sas_scsih_reset_done_handler(ioc);
8568 mpt3sas_ctl_reset_done_handler(ioc);
8569 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8570 }
8571
8572 /**
8573 * mpt3sas_wait_for_commands_to_complete - reset controller
8574 * @ioc: Pointer to MPT_ADAPTER structure
8575 *
8576 * This function is waiting 10s for all pending commands to complete
8577 * prior to putting controller in reset.
8578 */
8579 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)8580 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8581 {
8582 u32 ioc_state;
8583
8584 ioc->pending_io_count = 0;
8585
8586 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8587 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8588 return;
8589
8590 /* pending command count */
8591 ioc->pending_io_count = scsi_host_busy(ioc->shost);
8592
8593 if (!ioc->pending_io_count)
8594 return;
8595
8596 /* wait for pending commands to complete */
8597 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8598 }
8599
8600 /**
8601 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8602 * attributes during online firmware upgrade and update the corresponding
8603 * IOC variables accordingly.
8604 *
8605 * @ioc: Pointer to MPT_ADAPTER structure
8606 */
8607 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)8608 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8609 {
8610 u16 pd_handles_sz;
8611 void *pd_handles = NULL, *blocking_handles = NULL;
8612 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8613 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8614
8615 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8616 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8617 if (ioc->facts.MaxDevHandle % 8)
8618 pd_handles_sz++;
8619
8620 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8621 GFP_KERNEL);
8622 if (!pd_handles) {
8623 ioc_info(ioc,
8624 "Unable to allocate the memory for pd_handles of sz: %d\n",
8625 pd_handles_sz);
8626 return -ENOMEM;
8627 }
8628 memset(pd_handles + ioc->pd_handles_sz, 0,
8629 (pd_handles_sz - ioc->pd_handles_sz));
8630 ioc->pd_handles = pd_handles;
8631
8632 blocking_handles = krealloc(ioc->blocking_handles,
8633 pd_handles_sz, GFP_KERNEL);
8634 if (!blocking_handles) {
8635 ioc_info(ioc,
8636 "Unable to allocate the memory for "
8637 "blocking_handles of sz: %d\n",
8638 pd_handles_sz);
8639 return -ENOMEM;
8640 }
8641 memset(blocking_handles + ioc->pd_handles_sz, 0,
8642 (pd_handles_sz - ioc->pd_handles_sz));
8643 ioc->blocking_handles = blocking_handles;
8644 ioc->pd_handles_sz = pd_handles_sz;
8645
8646 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8647 pd_handles_sz, GFP_KERNEL);
8648 if (!pend_os_device_add) {
8649 ioc_info(ioc,
8650 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8651 pd_handles_sz);
8652 return -ENOMEM;
8653 }
8654 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8655 (pd_handles_sz - ioc->pend_os_device_add_sz));
8656 ioc->pend_os_device_add = pend_os_device_add;
8657 ioc->pend_os_device_add_sz = pd_handles_sz;
8658
8659 device_remove_in_progress = krealloc(
8660 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8661 if (!device_remove_in_progress) {
8662 ioc_info(ioc,
8663 "Unable to allocate the memory for "
8664 "device_remove_in_progress of sz: %d\n "
8665 , pd_handles_sz);
8666 return -ENOMEM;
8667 }
8668 memset(device_remove_in_progress +
8669 ioc->device_remove_in_progress_sz, 0,
8670 (pd_handles_sz - ioc->device_remove_in_progress_sz));
8671 ioc->device_remove_in_progress = device_remove_in_progress;
8672 ioc->device_remove_in_progress_sz = pd_handles_sz;
8673 }
8674
8675 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8676 return 0;
8677 }
8678
8679 /**
8680 * mpt3sas_base_hard_reset_handler - reset controller
8681 * @ioc: Pointer to MPT_ADAPTER structure
8682 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8683 *
8684 * Return: 0 for success, non-zero for failure.
8685 */
8686 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8687 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8688 enum reset_type type)
8689 {
8690 int r;
8691 unsigned long flags;
8692 u32 ioc_state;
8693 u8 is_fault = 0, is_trigger = 0;
8694
8695 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8696
8697 if (ioc->pci_error_recovery) {
8698 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8699 r = 0;
8700 goto out_unlocked;
8701 }
8702
8703 if (mpt3sas_fwfault_debug)
8704 mpt3sas_halt_firmware(ioc);
8705
8706 /* wait for an active reset in progress to complete */
8707 mutex_lock(&ioc->reset_in_progress_mutex);
8708
8709 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8710 ioc->shost_recovery = 1;
8711 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8712
8713 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8714 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8715 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8716 MPT3_DIAG_BUFFER_IS_RELEASED))) {
8717 is_trigger = 1;
8718 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8719 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8720 (ioc_state & MPI2_IOC_STATE_MASK) ==
8721 MPI2_IOC_STATE_COREDUMP) {
8722 is_fault = 1;
8723 ioc->htb_rel.trigger_info_dwords[1] =
8724 (ioc_state & MPI2_DOORBELL_DATA_MASK);
8725 }
8726 }
8727 _base_pre_reset_handler(ioc);
8728 mpt3sas_wait_for_commands_to_complete(ioc);
8729 mpt3sas_base_mask_interrupts(ioc);
8730 mpt3sas_base_pause_mq_polling(ioc);
8731 r = mpt3sas_base_make_ioc_ready(ioc, type);
8732 if (r)
8733 goto out;
8734 _base_clear_outstanding_commands(ioc);
8735
8736 /* If this hard reset is called while port enable is active, then
8737 * there is no reason to call make_ioc_operational
8738 */
8739 if (ioc->is_driver_loading && ioc->port_enable_failed) {
8740 ioc->remove_host = 1;
8741 r = -EFAULT;
8742 goto out;
8743 }
8744 r = _base_get_ioc_facts(ioc);
8745 if (r)
8746 goto out;
8747
8748 r = _base_check_ioc_facts_changes(ioc);
8749 if (r) {
8750 ioc_info(ioc,
8751 "Some of the parameters got changed in this new firmware"
8752 " image and it requires system reboot\n");
8753 goto out;
8754 }
8755 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8756 panic("%s: Issue occurred with flashing controller firmware."
8757 "Please reboot the system and ensure that the correct"
8758 " firmware version is running\n", ioc->name);
8759
8760 r = _base_make_ioc_operational(ioc);
8761 if (!r)
8762 _base_reset_done_handler(ioc);
8763
8764 out:
8765 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8766
8767 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8768 ioc->shost_recovery = 0;
8769 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8770 ioc->ioc_reset_count++;
8771 mutex_unlock(&ioc->reset_in_progress_mutex);
8772 mpt3sas_base_resume_mq_polling(ioc);
8773
8774 out_unlocked:
8775 if ((r == 0) && is_trigger) {
8776 if (is_fault)
8777 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8778 else
8779 mpt3sas_trigger_master(ioc,
8780 MASTER_TRIGGER_ADAPTER_RESET);
8781 }
8782 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8783 return r;
8784 }
8785