1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31
32 #include "of_private.h"
33
34 /**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
of_graph_is_present(const struct device_node * node)41 bool of_graph_is_present(const struct device_node *node)
42 {
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, "port");
50 of_node_put(ports);
51 of_node_put(port);
52
53 return !!port;
54 }
55 EXPORT_SYMBOL(of_graph_is_present);
56
57 /**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)71 int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73 {
74 struct property *prop = of_find_property(np, propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88 }
89 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91 /**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)107 static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109 {
110 struct property *prop = of_find_property(np, propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(-EINVAL);
114 if (!prop->value)
115 return ERR_PTR(-ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(-EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(-EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125 }
126
127 /**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)144 int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147 {
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 ((index + 1) * sizeof(*out_value)),
150 0,
151 NULL);
152
153 if (IS_ERR(val))
154 return PTR_ERR(val);
155
156 *out_value = be32_to_cpup(((__be32 *)val) + index);
157 return 0;
158 }
159 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161 /**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)178 int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181 {
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 ((index + 1) * sizeof(*out_value)),
184 0, NULL);
185
186 if (IS_ERR(val))
187 return PTR_ERR(val);
188
189 *out_value = be64_to_cpup(((__be64 *)val) + index);
190 return 0;
191 }
192 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194 /**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
200 * @out_values: pointer to found values.
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)218 int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221 {
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 (sz_min * sizeof(*out_values)),
225 (sz_max * sizeof(*out_values)),
226 &sz);
227
228 if (IS_ERR(val))
229 return PTR_ERR(val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241 }
242 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244 /**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
250 * @out_values: pointer to found values.
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)268 int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271 {
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 (sz_min * sizeof(*out_values)),
275 (sz_max * sizeof(*out_values)),
276 &sz);
277
278 if (IS_ERR(val))
279 return PTR_ERR(val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(val++);
289
290 return sz;
291 }
292 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294 /**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
300 * @out_values: pointer to return found values.
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)315 int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318 {
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 (sz_min * sizeof(*out_values)),
322 (sz_max * sizeof(*out_values)),
323 &sz);
324
325 if (IS_ERR(val))
326 return PTR_ERR(val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(val++);
336
337 return sz;
338 }
339 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341 /**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)356 int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358 {
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 sizeof(*out_value),
361 0,
362 NULL);
363
364 if (IS_ERR(val))
365 return PTR_ERR(val);
366
367 *out_value = of_read_number(val, 2);
368 return 0;
369 }
370 EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372 /**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
378 * @out_values: pointer to found values.
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)393 int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396 {
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 (sz_min * sizeof(*out_values)),
400 (sz_max * sizeof(*out_values)),
401 &sz);
402
403 if (IS_ERR(val))
404 return PTR_ERR(val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(val, 2);
414 val += 2;
415 }
416
417 return sz;
418 }
419 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421 /**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)440 int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442 {
443 const struct property *prop = of_find_property(np, propname, NULL);
444 if (!prop)
445 return -EINVAL;
446 if (!prop->length)
447 return -ENODATA;
448 if (strnlen(prop->value, prop->length) >= prop->length)
449 return -EILSEQ;
450 *out_string = prop->value;
451 return 0;
452 }
453 EXPORT_SYMBOL_GPL(of_property_read_string);
454
455 /**
456 * of_property_match_string() - Find string in a list and return index
457 * @np: pointer to node containing string list property
458 * @propname: string list property name
459 * @string: pointer to string to search for in string list
460 *
461 * This function searches a string list property and returns the index
462 * of a specific string value.
463 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)464 int of_property_match_string(const struct device_node *np, const char *propname,
465 const char *string)
466 {
467 const struct property *prop = of_find_property(np, propname, NULL);
468 size_t l;
469 int i;
470 const char *p, *end;
471
472 if (!prop)
473 return -EINVAL;
474 if (!prop->value)
475 return -ENODATA;
476
477 p = prop->value;
478 end = p + prop->length;
479
480 for (i = 0; p < end; i++, p += l) {
481 l = strnlen(p, end - p) + 1;
482 if (p + l > end)
483 return -EILSEQ;
484 pr_debug("comparing %s with %s\n", string, p);
485 if (strcmp(string, p) == 0)
486 return i; /* Found it; return index */
487 }
488 return -ENODATA;
489 }
490 EXPORT_SYMBOL_GPL(of_property_match_string);
491
492 /**
493 * of_property_read_string_helper() - Utility helper for parsing string properties
494 * @np: device node from which the property value is to be read.
495 * @propname: name of the property to be searched.
496 * @out_strs: output array of string pointers.
497 * @sz: number of array elements to read.
498 * @skip: Number of strings to skip over at beginning of list.
499 *
500 * Don't call this function directly. It is a utility helper for the
501 * of_property_read_string*() family of functions.
502 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)503 int of_property_read_string_helper(const struct device_node *np,
504 const char *propname, const char **out_strs,
505 size_t sz, int skip)
506 {
507 const struct property *prop = of_find_property(np, propname, NULL);
508 int l = 0, i = 0;
509 const char *p, *end;
510
511 if (!prop)
512 return -EINVAL;
513 if (!prop->value)
514 return -ENODATA;
515 p = prop->value;
516 end = p + prop->length;
517
518 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
519 l = strnlen(p, end - p) + 1;
520 if (p + l > end)
521 return -EILSEQ;
522 if (out_strs && i >= skip)
523 *out_strs++ = p;
524 }
525 i -= skip;
526 return i <= 0 ? -ENODATA : i;
527 }
528 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
529
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)530 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
531 u32 *pu)
532 {
533 const void *curv = cur;
534
535 if (!prop)
536 return NULL;
537
538 if (!cur) {
539 curv = prop->value;
540 goto out_val;
541 }
542
543 curv += sizeof(*cur);
544 if (curv >= prop->value + prop->length)
545 return NULL;
546
547 out_val:
548 *pu = be32_to_cpup(curv);
549 return curv;
550 }
551 EXPORT_SYMBOL_GPL(of_prop_next_u32);
552
of_prop_next_string(struct property * prop,const char * cur)553 const char *of_prop_next_string(struct property *prop, const char *cur)
554 {
555 const void *curv = cur;
556
557 if (!prop)
558 return NULL;
559
560 if (!cur)
561 return prop->value;
562
563 curv += strlen(cur) + 1;
564 if (curv >= prop->value + prop->length)
565 return NULL;
566
567 return curv;
568 }
569 EXPORT_SYMBOL_GPL(of_prop_next_string);
570
571 /**
572 * of_graph_parse_endpoint() - parse common endpoint node properties
573 * @node: pointer to endpoint device_node
574 * @endpoint: pointer to the OF endpoint data structure
575 *
576 * The caller should hold a reference to @node.
577 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)578 int of_graph_parse_endpoint(const struct device_node *node,
579 struct of_endpoint *endpoint)
580 {
581 struct device_node *port_node = of_get_parent(node);
582
583 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
584 __func__, node);
585
586 memset(endpoint, 0, sizeof(*endpoint));
587
588 endpoint->local_node = node;
589 /*
590 * It doesn't matter whether the two calls below succeed.
591 * If they don't then the default value 0 is used.
592 */
593 of_property_read_u32(port_node, "reg", &endpoint->port);
594 of_property_read_u32(node, "reg", &endpoint->id);
595
596 of_node_put(port_node);
597
598 return 0;
599 }
600 EXPORT_SYMBOL(of_graph_parse_endpoint);
601
602 /**
603 * of_graph_get_port_by_id() - get the port matching a given id
604 * @parent: pointer to the parent device node
605 * @id: id of the port
606 *
607 * Return: A 'port' node pointer with refcount incremented. The caller
608 * has to use of_node_put() on it when done.
609 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)610 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
611 {
612 struct device_node *node, *port;
613
614 node = of_get_child_by_name(parent, "ports");
615 if (node)
616 parent = node;
617
618 for_each_child_of_node(parent, port) {
619 u32 port_id = 0;
620
621 if (!of_node_name_eq(port, "port"))
622 continue;
623 of_property_read_u32(port, "reg", &port_id);
624 if (id == port_id)
625 break;
626 }
627
628 of_node_put(node);
629
630 return port;
631 }
632 EXPORT_SYMBOL(of_graph_get_port_by_id);
633
634 /**
635 * of_graph_get_next_endpoint() - get next endpoint node
636 * @parent: pointer to the parent device node
637 * @prev: previous endpoint node, or NULL to get first
638 *
639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
640 * of the passed @prev node is decremented.
641 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)642 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
643 struct device_node *prev)
644 {
645 struct device_node *endpoint;
646 struct device_node *port;
647
648 if (!parent)
649 return NULL;
650
651 /*
652 * Start by locating the port node. If no previous endpoint is specified
653 * search for the first port node, otherwise get the previous endpoint
654 * parent port node.
655 */
656 if (!prev) {
657 struct device_node *node;
658
659 node = of_get_child_by_name(parent, "ports");
660 if (node)
661 parent = node;
662
663 port = of_get_child_by_name(parent, "port");
664 of_node_put(node);
665
666 if (!port) {
667 pr_err("graph: no port node found in %pOF\n", parent);
668 return NULL;
669 }
670 } else {
671 port = of_get_parent(prev);
672 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
673 __func__, prev))
674 return NULL;
675 }
676
677 while (1) {
678 /*
679 * Now that we have a port node, get the next endpoint by
680 * getting the next child. If the previous endpoint is NULL this
681 * will return the first child.
682 */
683 endpoint = of_get_next_child(port, prev);
684 if (endpoint) {
685 of_node_put(port);
686 return endpoint;
687 }
688
689 /* No more endpoints under this port, try the next one. */
690 prev = NULL;
691
692 do {
693 port = of_get_next_child(parent, port);
694 if (!port)
695 return NULL;
696 } while (!of_node_name_eq(port, "port"));
697 }
698 }
699 EXPORT_SYMBOL(of_graph_get_next_endpoint);
700
701 /**
702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
703 * @parent: pointer to the parent device node
704 * @port_reg: identifier (value of reg property) of the parent port node
705 * @reg: identifier (value of reg property) of the endpoint node
706 *
707 * Return: An 'endpoint' node pointer which is identified by reg and at the same
708 * is the child of a port node identified by port_reg. reg and port_reg are
709 * ignored when they are -1. Use of_node_put() on the pointer when done.
710 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)711 struct device_node *of_graph_get_endpoint_by_regs(
712 const struct device_node *parent, int port_reg, int reg)
713 {
714 struct of_endpoint endpoint;
715 struct device_node *node = NULL;
716
717 for_each_endpoint_of_node(parent, node) {
718 of_graph_parse_endpoint(node, &endpoint);
719 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
720 ((reg == -1) || (endpoint.id == reg)))
721 return node;
722 }
723
724 return NULL;
725 }
726 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
727
728 /**
729 * of_graph_get_remote_endpoint() - get remote endpoint node
730 * @node: pointer to a local endpoint device_node
731 *
732 * Return: Remote endpoint node associated with remote endpoint node linked
733 * to @node. Use of_node_put() on it when done.
734 */
of_graph_get_remote_endpoint(const struct device_node * node)735 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
736 {
737 /* Get remote endpoint node. */
738 return of_parse_phandle(node, "remote-endpoint", 0);
739 }
740 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
741
742 /**
743 * of_graph_get_port_parent() - get port's parent node
744 * @node: pointer to a local endpoint device_node
745 *
746 * Return: device node associated with endpoint node linked
747 * to @node. Use of_node_put() on it when done.
748 */
of_graph_get_port_parent(struct device_node * node)749 struct device_node *of_graph_get_port_parent(struct device_node *node)
750 {
751 unsigned int depth;
752
753 if (!node)
754 return NULL;
755
756 /*
757 * Preserve usecount for passed in node as of_get_next_parent()
758 * will do of_node_put() on it.
759 */
760 of_node_get(node);
761
762 /* Walk 3 levels up only if there is 'ports' node. */
763 for (depth = 3; depth && node; depth--) {
764 node = of_get_next_parent(node);
765 if (depth == 2 && !of_node_name_eq(node, "ports"))
766 break;
767 }
768 return node;
769 }
770 EXPORT_SYMBOL(of_graph_get_port_parent);
771
772 /**
773 * of_graph_get_remote_port_parent() - get remote port's parent node
774 * @node: pointer to a local endpoint device_node
775 *
776 * Return: Remote device node associated with remote endpoint node linked
777 * to @node. Use of_node_put() on it when done.
778 */
of_graph_get_remote_port_parent(const struct device_node * node)779 struct device_node *of_graph_get_remote_port_parent(
780 const struct device_node *node)
781 {
782 struct device_node *np, *pp;
783
784 /* Get remote endpoint node. */
785 np = of_graph_get_remote_endpoint(node);
786
787 pp = of_graph_get_port_parent(np);
788
789 of_node_put(np);
790
791 return pp;
792 }
793 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
794
795 /**
796 * of_graph_get_remote_port() - get remote port node
797 * @node: pointer to a local endpoint device_node
798 *
799 * Return: Remote port node associated with remote endpoint node linked
800 * to @node. Use of_node_put() on it when done.
801 */
of_graph_get_remote_port(const struct device_node * node)802 struct device_node *of_graph_get_remote_port(const struct device_node *node)
803 {
804 struct device_node *np;
805
806 /* Get remote endpoint node. */
807 np = of_graph_get_remote_endpoint(node);
808 if (!np)
809 return NULL;
810 return of_get_next_parent(np);
811 }
812 EXPORT_SYMBOL(of_graph_get_remote_port);
813
of_graph_get_endpoint_count(const struct device_node * np)814 int of_graph_get_endpoint_count(const struct device_node *np)
815 {
816 struct device_node *endpoint;
817 int num = 0;
818
819 for_each_endpoint_of_node(np, endpoint)
820 num++;
821
822 return num;
823 }
824 EXPORT_SYMBOL(of_graph_get_endpoint_count);
825
826 /**
827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
828 * @node: pointer to parent device_node containing graph port/endpoint
829 * @port: identifier (value of reg property) of the parent port node
830 * @endpoint: identifier (value of reg property) of the endpoint node
831 *
832 * Return: Remote device node associated with remote endpoint node linked
833 * to @node. Use of_node_put() on it when done.
834 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)835 struct device_node *of_graph_get_remote_node(const struct device_node *node,
836 u32 port, u32 endpoint)
837 {
838 struct device_node *endpoint_node, *remote;
839
840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
841 if (!endpoint_node) {
842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
843 port, endpoint, node);
844 return NULL;
845 }
846
847 remote = of_graph_get_remote_port_parent(endpoint_node);
848 of_node_put(endpoint_node);
849 if (!remote) {
850 pr_debug("no valid remote node\n");
851 return NULL;
852 }
853
854 if (!of_device_is_available(remote)) {
855 pr_debug("not available for remote node\n");
856 of_node_put(remote);
857 return NULL;
858 }
859
860 return remote;
861 }
862 EXPORT_SYMBOL(of_graph_get_remote_node);
863
of_fwnode_get(struct fwnode_handle * fwnode)864 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
865 {
866 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
867 }
868
of_fwnode_put(struct fwnode_handle * fwnode)869 static void of_fwnode_put(struct fwnode_handle *fwnode)
870 {
871 of_node_put(to_of_node(fwnode));
872 }
873
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)874 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
875 {
876 return of_device_is_available(to_of_node(fwnode));
877 }
878
of_fwnode_device_dma_supported(const struct fwnode_handle * fwnode)879 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
880 {
881 return true;
882 }
883
884 static enum dev_dma_attr
of_fwnode_device_get_dma_attr(const struct fwnode_handle * fwnode)885 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
886 {
887 if (of_dma_is_coherent(to_of_node(fwnode)))
888 return DEV_DMA_COHERENT;
889 else
890 return DEV_DMA_NON_COHERENT;
891 }
892
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)893 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
894 const char *propname)
895 {
896 return of_property_read_bool(to_of_node(fwnode), propname);
897 }
898
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)899 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
900 const char *propname,
901 unsigned int elem_size, void *val,
902 size_t nval)
903 {
904 const struct device_node *node = to_of_node(fwnode);
905
906 if (!val)
907 return of_property_count_elems_of_size(node, propname,
908 elem_size);
909
910 switch (elem_size) {
911 case sizeof(u8):
912 return of_property_read_u8_array(node, propname, val, nval);
913 case sizeof(u16):
914 return of_property_read_u16_array(node, propname, val, nval);
915 case sizeof(u32):
916 return of_property_read_u32_array(node, propname, val, nval);
917 case sizeof(u64):
918 return of_property_read_u64_array(node, propname, val, nval);
919 }
920
921 return -ENXIO;
922 }
923
924 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)925 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
926 const char *propname, const char **val,
927 size_t nval)
928 {
929 const struct device_node *node = to_of_node(fwnode);
930
931 return val ?
932 of_property_read_string_array(node, propname, val, nval) :
933 of_property_count_strings(node, propname);
934 }
935
of_fwnode_get_name(const struct fwnode_handle * fwnode)936 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
937 {
938 return kbasename(to_of_node(fwnode)->full_name);
939 }
940
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)941 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
942 {
943 /* Root needs no prefix here (its name is "/"). */
944 if (!to_of_node(fwnode)->parent)
945 return "";
946
947 return "/";
948 }
949
950 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)951 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
952 {
953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
954 }
955
956 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)957 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
958 struct fwnode_handle *child)
959 {
960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
961 to_of_node(child)));
962 }
963
964 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)965 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
966 const char *childname)
967 {
968 const struct device_node *node = to_of_node(fwnode);
969 struct device_node *child;
970
971 for_each_available_child_of_node(node, child)
972 if (of_node_name_eq(child, childname))
973 return of_fwnode_handle(child);
974
975 return NULL;
976 }
977
978 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)979 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
980 const char *prop, const char *nargs_prop,
981 unsigned int nargs, unsigned int index,
982 struct fwnode_reference_args *args)
983 {
984 struct of_phandle_args of_args;
985 unsigned int i;
986 int ret;
987
988 if (nargs_prop)
989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
990 nargs_prop, index, &of_args);
991 else
992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
993 nargs, index, &of_args);
994 if (ret < 0)
995 return ret;
996 if (!args)
997 return 0;
998
999 args->nargs = of_args.args_count;
1000 args->fwnode = of_fwnode_handle(of_args.np);
1001
1002 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1003 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1004
1005 return 0;
1006 }
1007
1008 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1009 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1010 struct fwnode_handle *prev)
1011 {
1012 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1013 to_of_node(prev)));
1014 }
1015
1016 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1017 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1018 {
1019 return of_fwnode_handle(
1020 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1021 }
1022
1023 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1024 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1025 {
1026 struct device_node *np;
1027
1028 /* Get the parent of the port */
1029 np = of_get_parent(to_of_node(fwnode));
1030 if (!np)
1031 return NULL;
1032
1033 /* Is this the "ports" node? If not, it's the port parent. */
1034 if (!of_node_name_eq(np, "ports"))
1035 return of_fwnode_handle(np);
1036
1037 return of_fwnode_handle(of_get_next_parent(np));
1038 }
1039
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1040 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1041 struct fwnode_endpoint *endpoint)
1042 {
1043 const struct device_node *node = to_of_node(fwnode);
1044 struct device_node *port_node = of_get_parent(node);
1045
1046 endpoint->local_fwnode = fwnode;
1047
1048 of_property_read_u32(port_node, "reg", &endpoint->port);
1049 of_property_read_u32(node, "reg", &endpoint->id);
1050
1051 of_node_put(port_node);
1052
1053 return 0;
1054 }
1055
1056 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1057 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1058 const struct device *dev)
1059 {
1060 return of_device_get_match_data(dev);
1061 }
1062
of_is_ancestor_of(struct device_node * test_ancestor,struct device_node * child)1063 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1064 struct device_node *child)
1065 {
1066 of_node_get(child);
1067 while (child) {
1068 if (child == test_ancestor) {
1069 of_node_put(child);
1070 return true;
1071 }
1072 child = of_get_next_parent(child);
1073 }
1074 return false;
1075 }
1076
of_get_compat_node(struct device_node * np)1077 static struct device_node *of_get_compat_node(struct device_node *np)
1078 {
1079 of_node_get(np);
1080
1081 while (np) {
1082 if (!of_device_is_available(np)) {
1083 of_node_put(np);
1084 np = NULL;
1085 }
1086
1087 if (of_find_property(np, "compatible", NULL))
1088 break;
1089
1090 np = of_get_next_parent(np);
1091 }
1092
1093 return np;
1094 }
1095
of_get_compat_node_parent(struct device_node * np)1096 static struct device_node *of_get_compat_node_parent(struct device_node *np)
1097 {
1098 struct device_node *parent, *node;
1099
1100 parent = of_get_parent(np);
1101 node = of_get_compat_node(parent);
1102 of_node_put(parent);
1103
1104 return node;
1105 }
1106
1107 /**
1108 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1109 * @con_np: consumer device tree node
1110 * @sup_np: supplier device tree node
1111 *
1112 * Given a phandle to a supplier device tree node (@sup_np), this function
1113 * finds the device that owns the supplier device tree node and creates a
1114 * device link from @dev consumer device to the supplier device. This function
1115 * doesn't create device links for invalid scenarios such as trying to create a
1116 * link with a parent device as the consumer of its child device. In such
1117 * cases, it returns an error.
1118 *
1119 * Returns:
1120 * - 0 if fwnode link successfully created to supplier
1121 * - -EINVAL if the supplier link is invalid and should not be created
1122 * - -ENODEV if struct device will never be create for supplier
1123 */
of_link_to_phandle(struct device_node * con_np,struct device_node * sup_np)1124 static int of_link_to_phandle(struct device_node *con_np,
1125 struct device_node *sup_np)
1126 {
1127 struct device *sup_dev;
1128 struct device_node *tmp_np = sup_np;
1129
1130 /*
1131 * Find the device node that contains the supplier phandle. It may be
1132 * @sup_np or it may be an ancestor of @sup_np.
1133 */
1134 sup_np = of_get_compat_node(sup_np);
1135 if (!sup_np) {
1136 pr_debug("Not linking %pOFP to %pOFP - No device\n",
1137 con_np, tmp_np);
1138 return -ENODEV;
1139 }
1140
1141 /*
1142 * Don't allow linking a device node as a consumer of one of its
1143 * descendant nodes. By definition, a child node can't be a functional
1144 * dependency for the parent node.
1145 */
1146 if (of_is_ancestor_of(con_np, sup_np)) {
1147 pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1148 con_np, sup_np);
1149 of_node_put(sup_np);
1150 return -EINVAL;
1151 }
1152
1153 /*
1154 * Don't create links to "early devices" that won't have struct devices
1155 * created for them.
1156 */
1157 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1158 if (!sup_dev &&
1159 (of_node_check_flag(sup_np, OF_POPULATED) ||
1160 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1161 pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1162 con_np, sup_np);
1163 of_node_put(sup_np);
1164 return -ENODEV;
1165 }
1166 put_device(sup_dev);
1167
1168 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1169 of_node_put(sup_np);
1170
1171 return 0;
1172 }
1173
1174 /**
1175 * parse_prop_cells - Property parsing function for suppliers
1176 *
1177 * @np: Pointer to device tree node containing a list
1178 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1179 * @index: For properties holding a list of phandles, this is the index
1180 * into the list.
1181 * @list_name: Property name that is known to contain list of phandle(s) to
1182 * supplier(s)
1183 * @cells_name: property name that specifies phandles' arguments count
1184 *
1185 * This is a helper function to parse properties that have a known fixed name
1186 * and are a list of phandles and phandle arguments.
1187 *
1188 * Returns:
1189 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1190 * on it when done.
1191 * - NULL if no phandle found at index
1192 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1193 static struct device_node *parse_prop_cells(struct device_node *np,
1194 const char *prop_name, int index,
1195 const char *list_name,
1196 const char *cells_name)
1197 {
1198 struct of_phandle_args sup_args;
1199
1200 if (strcmp(prop_name, list_name))
1201 return NULL;
1202
1203 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1204 &sup_args))
1205 return NULL;
1206
1207 return sup_args.np;
1208 }
1209
1210 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1211 static struct device_node *parse_##fname(struct device_node *np, \
1212 const char *prop_name, int index) \
1213 { \
1214 return parse_prop_cells(np, prop_name, index, name, cells); \
1215 }
1216
strcmp_suffix(const char * str,const char * suffix)1217 static int strcmp_suffix(const char *str, const char *suffix)
1218 {
1219 unsigned int len, suffix_len;
1220
1221 len = strlen(str);
1222 suffix_len = strlen(suffix);
1223 if (len <= suffix_len)
1224 return -1;
1225 return strcmp(str + len - suffix_len, suffix);
1226 }
1227
1228 /**
1229 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1230 *
1231 * @np: Pointer to device tree node containing a list
1232 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1233 * @index: For properties holding a list of phandles, this is the index
1234 * into the list.
1235 * @suffix: Property suffix that is known to contain list of phandle(s) to
1236 * supplier(s)
1237 * @cells_name: property name that specifies phandles' arguments count
1238 *
1239 * This is a helper function to parse properties that have a known fixed suffix
1240 * and are a list of phandles and phandle arguments.
1241 *
1242 * Returns:
1243 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1244 * on it when done.
1245 * - NULL if no phandle found at index
1246 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1247 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1248 const char *prop_name, int index,
1249 const char *suffix,
1250 const char *cells_name)
1251 {
1252 struct of_phandle_args sup_args;
1253
1254 if (strcmp_suffix(prop_name, suffix))
1255 return NULL;
1256
1257 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1258 &sup_args))
1259 return NULL;
1260
1261 return sup_args.np;
1262 }
1263
1264 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1265 static struct device_node *parse_##fname(struct device_node *np, \
1266 const char *prop_name, int index) \
1267 { \
1268 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1269 }
1270
1271 /**
1272 * struct supplier_bindings - Property parsing functions for suppliers
1273 *
1274 * @parse_prop: function name
1275 * parse_prop() finds the node corresponding to a supplier phandle
1276 * @parse_prop.np: Pointer to device node holding supplier phandle property
1277 * @parse_prop.prop_name: Name of property holding a phandle value
1278 * @parse_prop.index: For properties holding a list of phandles, this is the
1279 * index into the list
1280 * @optional: Describes whether a supplier is mandatory or not
1281 * @node_not_dev: The consumer node containing the property is never converted
1282 * to a struct device. Instead, parse ancestor nodes for the
1283 * compatible property to find a node corresponding to a device.
1284 *
1285 * Returns:
1286 * parse_prop() return values are
1287 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1288 * on it when done.
1289 * - NULL if no phandle found at index
1290 */
1291 struct supplier_bindings {
1292 struct device_node *(*parse_prop)(struct device_node *np,
1293 const char *prop_name, int index);
1294 bool optional;
1295 bool node_not_dev;
1296 };
1297
1298 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1299 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1300 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1301 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1302 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1303 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1304 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1305 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1306 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1307 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1308 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1309 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1310 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1311 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1312 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1313 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1314 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1315 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1316 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1317 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1318 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1319 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1320 DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1321 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1322 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1323 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1324 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1325 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1326 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1327
parse_gpios(struct device_node * np,const char * prop_name,int index)1328 static struct device_node *parse_gpios(struct device_node *np,
1329 const char *prop_name, int index)
1330 {
1331 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1332 return NULL;
1333
1334 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1335 "#gpio-cells");
1336 }
1337
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1338 static struct device_node *parse_iommu_maps(struct device_node *np,
1339 const char *prop_name, int index)
1340 {
1341 if (strcmp(prop_name, "iommu-map"))
1342 return NULL;
1343
1344 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1345 }
1346
parse_gpio_compat(struct device_node * np,const char * prop_name,int index)1347 static struct device_node *parse_gpio_compat(struct device_node *np,
1348 const char *prop_name, int index)
1349 {
1350 struct of_phandle_args sup_args;
1351
1352 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1353 return NULL;
1354
1355 /*
1356 * Ignore node with gpio-hog property since its gpios are all provided
1357 * by its parent.
1358 */
1359 if (of_find_property(np, "gpio-hog", NULL))
1360 return NULL;
1361
1362 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1363 &sup_args))
1364 return NULL;
1365
1366 return sup_args.np;
1367 }
1368
parse_interrupts(struct device_node * np,const char * prop_name,int index)1369 static struct device_node *parse_interrupts(struct device_node *np,
1370 const char *prop_name, int index)
1371 {
1372 struct of_phandle_args sup_args;
1373
1374 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1375 return NULL;
1376
1377 if (strcmp(prop_name, "interrupts") &&
1378 strcmp(prop_name, "interrupts-extended"))
1379 return NULL;
1380
1381 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1382 }
1383
1384 static const struct supplier_bindings of_supplier_bindings[] = {
1385 { .parse_prop = parse_clocks, },
1386 { .parse_prop = parse_interconnects, },
1387 { .parse_prop = parse_iommus, .optional = true, },
1388 { .parse_prop = parse_iommu_maps, .optional = true, },
1389 { .parse_prop = parse_mboxes, },
1390 { .parse_prop = parse_io_channels, },
1391 { .parse_prop = parse_interrupt_parent, },
1392 { .parse_prop = parse_dmas, .optional = true, },
1393 { .parse_prop = parse_power_domains, },
1394 { .parse_prop = parse_hwlocks, },
1395 { .parse_prop = parse_extcon, },
1396 { .parse_prop = parse_nvmem_cells, },
1397 { .parse_prop = parse_phys, },
1398 { .parse_prop = parse_wakeup_parent, },
1399 { .parse_prop = parse_pinctrl0, },
1400 { .parse_prop = parse_pinctrl1, },
1401 { .parse_prop = parse_pinctrl2, },
1402 { .parse_prop = parse_pinctrl3, },
1403 { .parse_prop = parse_pinctrl4, },
1404 { .parse_prop = parse_pinctrl5, },
1405 { .parse_prop = parse_pinctrl6, },
1406 { .parse_prop = parse_pinctrl7, },
1407 { .parse_prop = parse_pinctrl8, },
1408 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1409 { .parse_prop = parse_pwms, },
1410 { .parse_prop = parse_resets, },
1411 { .parse_prop = parse_leds, },
1412 { .parse_prop = parse_backlight, },
1413 { .parse_prop = parse_gpio_compat, },
1414 { .parse_prop = parse_interrupts, },
1415 { .parse_prop = parse_regulators, },
1416 { .parse_prop = parse_gpio, },
1417 { .parse_prop = parse_gpios, },
1418 {}
1419 };
1420
1421 /**
1422 * of_link_property - Create device links to suppliers listed in a property
1423 * @con_np: The consumer device tree node which contains the property
1424 * @prop_name: Name of property to be parsed
1425 *
1426 * This function checks if the property @prop_name that is present in the
1427 * @con_np device tree node is one of the known common device tree bindings
1428 * that list phandles to suppliers. If @prop_name isn't one, this function
1429 * doesn't do anything.
1430 *
1431 * If @prop_name is one, this function attempts to create fwnode links from the
1432 * consumer device tree node @con_np to all the suppliers device tree nodes
1433 * listed in @prop_name.
1434 *
1435 * Any failed attempt to create a fwnode link will NOT result in an immediate
1436 * return. of_link_property() must create links to all the available supplier
1437 * device tree nodes even when attempts to create a link to one or more
1438 * suppliers fail.
1439 */
of_link_property(struct device_node * con_np,const char * prop_name)1440 static int of_link_property(struct device_node *con_np, const char *prop_name)
1441 {
1442 struct device_node *phandle;
1443 const struct supplier_bindings *s = of_supplier_bindings;
1444 unsigned int i = 0;
1445 bool matched = false;
1446
1447 /* Do not stop at first failed link, link all available suppliers. */
1448 while (!matched && s->parse_prop) {
1449 if (s->optional && !fw_devlink_is_strict()) {
1450 s++;
1451 continue;
1452 }
1453
1454 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1455 struct device_node *con_dev_np;
1456
1457 con_dev_np = s->node_not_dev
1458 ? of_get_compat_node_parent(con_np)
1459 : of_node_get(con_np);
1460 matched = true;
1461 i++;
1462 of_link_to_phandle(con_dev_np, phandle);
1463 of_node_put(phandle);
1464 of_node_put(con_dev_np);
1465 }
1466 s++;
1467 }
1468 return 0;
1469 }
1470
of_fwnode_iomap(struct fwnode_handle * fwnode,int index)1471 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1472 {
1473 #ifdef CONFIG_OF_ADDRESS
1474 return of_iomap(to_of_node(fwnode), index);
1475 #else
1476 return NULL;
1477 #endif
1478 }
1479
of_fwnode_irq_get(const struct fwnode_handle * fwnode,unsigned int index)1480 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1481 unsigned int index)
1482 {
1483 return of_irq_get(to_of_node(fwnode), index);
1484 }
1485
of_fwnode_add_links(struct fwnode_handle * fwnode)1486 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1487 {
1488 struct property *p;
1489 struct device_node *con_np = to_of_node(fwnode);
1490
1491 if (IS_ENABLED(CONFIG_X86))
1492 return 0;
1493
1494 if (!con_np)
1495 return -EINVAL;
1496
1497 for_each_property_of_node(con_np, p)
1498 of_link_property(con_np, p->name);
1499
1500 return 0;
1501 }
1502
1503 const struct fwnode_operations of_fwnode_ops = {
1504 .get = of_fwnode_get,
1505 .put = of_fwnode_put,
1506 .device_is_available = of_fwnode_device_is_available,
1507 .device_get_match_data = of_fwnode_device_get_match_data,
1508 .device_dma_supported = of_fwnode_device_dma_supported,
1509 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1510 .property_present = of_fwnode_property_present,
1511 .property_read_int_array = of_fwnode_property_read_int_array,
1512 .property_read_string_array = of_fwnode_property_read_string_array,
1513 .get_name = of_fwnode_get_name,
1514 .get_name_prefix = of_fwnode_get_name_prefix,
1515 .get_parent = of_fwnode_get_parent,
1516 .get_next_child_node = of_fwnode_get_next_child_node,
1517 .get_named_child_node = of_fwnode_get_named_child_node,
1518 .get_reference_args = of_fwnode_get_reference_args,
1519 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1520 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1521 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1522 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1523 .iomap = of_fwnode_iomap,
1524 .irq_get = of_fwnode_irq_get,
1525 .add_links = of_fwnode_add_links,
1526 };
1527 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1528