1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 };
21
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 if (!val)
27 return -EINVAL;
28 if (!strncmp(val, "numa", 4))
29 iopolicy = NVME_IOPOLICY_NUMA;
30 else if (!strncmp(val, "round-robin", 11))
31 iopolicy = NVME_IOPOLICY_RR;
32 else
33 return -EINVAL;
34
35 return 0;
36 }
37
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 &iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 subsys->iopolicy = iopolicy;
51 }
52
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 struct nvme_ns_head *h;
56
57 lockdep_assert_held(&subsys->lock);
58 list_for_each_entry(h, &subsys->nsheads, entry)
59 if (h->disk)
60 blk_mq_unfreeze_queue(h->disk->queue);
61 }
62
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 struct nvme_ns_head *h;
66
67 lockdep_assert_held(&subsys->lock);
68 list_for_each_entry(h, &subsys->nsheads, entry)
69 if (h->disk)
70 blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 struct nvme_ns_head *h;
76
77 lockdep_assert_held(&subsys->lock);
78 list_for_each_entry(h, &subsys->nsheads, entry)
79 if (h->disk)
80 blk_freeze_queue_start(h->disk->queue);
81 }
82
nvme_failover_req(struct request * req)83 void nvme_failover_req(struct request *req)
84 {
85 struct nvme_ns *ns = req->q->queuedata;
86 u16 status = nvme_req(req)->status & 0x7ff;
87 unsigned long flags;
88 struct bio *bio;
89
90 nvme_mpath_clear_current_path(ns);
91
92 /*
93 * If we got back an ANA error, we know the controller is alive but not
94 * ready to serve this namespace. Kick of a re-read of the ANA
95 * information page, and just try any other available path for now.
96 */
97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 queue_work(nvme_wq, &ns->ctrl->ana_work);
100 }
101
102 spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 for (bio = req->bio; bio; bio = bio->bi_next) {
104 bio_set_dev(bio, ns->head->disk->part0);
105 if (bio->bi_opf & REQ_POLLED) {
106 bio->bi_opf &= ~REQ_POLLED;
107 bio->bi_cookie = BLK_QC_T_NONE;
108 }
109 }
110 blk_steal_bios(&ns->head->requeue_list, req);
111 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
112
113 blk_mq_end_request(req, 0);
114 kblockd_schedule_work(&ns->head->requeue_work);
115 }
116
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)117 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
118 {
119 struct nvme_ns *ns;
120
121 down_read(&ctrl->namespaces_rwsem);
122 list_for_each_entry(ns, &ctrl->namespaces, list) {
123 if (!ns->head->disk)
124 continue;
125 kblockd_schedule_work(&ns->head->requeue_work);
126 if (ctrl->state == NVME_CTRL_LIVE)
127 disk_uevent(ns->head->disk, KOBJ_CHANGE);
128 }
129 up_read(&ctrl->namespaces_rwsem);
130 }
131
132 static const char *nvme_ana_state_names[] = {
133 [0] = "invalid state",
134 [NVME_ANA_OPTIMIZED] = "optimized",
135 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
136 [NVME_ANA_INACCESSIBLE] = "inaccessible",
137 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
138 [NVME_ANA_CHANGE] = "change",
139 };
140
nvme_mpath_clear_current_path(struct nvme_ns * ns)141 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
142 {
143 struct nvme_ns_head *head = ns->head;
144 bool changed = false;
145 int node;
146
147 if (!head)
148 goto out;
149
150 for_each_node(node) {
151 if (ns == rcu_access_pointer(head->current_path[node])) {
152 rcu_assign_pointer(head->current_path[node], NULL);
153 changed = true;
154 }
155 }
156 out:
157 return changed;
158 }
159
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)160 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
161 {
162 struct nvme_ns *ns;
163
164 down_read(&ctrl->namespaces_rwsem);
165 list_for_each_entry(ns, &ctrl->namespaces, list) {
166 nvme_mpath_clear_current_path(ns);
167 kblockd_schedule_work(&ns->head->requeue_work);
168 }
169 up_read(&ctrl->namespaces_rwsem);
170 }
171
nvme_mpath_revalidate_paths(struct nvme_ns * ns)172 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
173 {
174 struct nvme_ns_head *head = ns->head;
175 sector_t capacity = get_capacity(head->disk);
176 int node;
177
178 list_for_each_entry_rcu(ns, &head->list, siblings) {
179 if (capacity != get_capacity(ns->disk))
180 clear_bit(NVME_NS_READY, &ns->flags);
181 }
182
183 for_each_node(node)
184 rcu_assign_pointer(head->current_path[node], NULL);
185 }
186
nvme_path_is_disabled(struct nvme_ns * ns)187 static bool nvme_path_is_disabled(struct nvme_ns *ns)
188 {
189 /*
190 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
191 * still be able to complete assuming that the controller is connected.
192 * Otherwise it will fail immediately and return to the requeue list.
193 */
194 if (ns->ctrl->state != NVME_CTRL_LIVE &&
195 ns->ctrl->state != NVME_CTRL_DELETING)
196 return true;
197 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
198 !test_bit(NVME_NS_READY, &ns->flags))
199 return true;
200 return false;
201 }
202
__nvme_find_path(struct nvme_ns_head * head,int node)203 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
204 {
205 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
206 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
207
208 list_for_each_entry_rcu(ns, &head->list, siblings) {
209 if (nvme_path_is_disabled(ns))
210 continue;
211
212 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
213 distance = node_distance(node, ns->ctrl->numa_node);
214 else
215 distance = LOCAL_DISTANCE;
216
217 switch (ns->ana_state) {
218 case NVME_ANA_OPTIMIZED:
219 if (distance < found_distance) {
220 found_distance = distance;
221 found = ns;
222 }
223 break;
224 case NVME_ANA_NONOPTIMIZED:
225 if (distance < fallback_distance) {
226 fallback_distance = distance;
227 fallback = ns;
228 }
229 break;
230 default:
231 break;
232 }
233 }
234
235 if (!found)
236 found = fallback;
237 if (found)
238 rcu_assign_pointer(head->current_path[node], found);
239 return found;
240 }
241
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)242 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
243 struct nvme_ns *ns)
244 {
245 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
246 siblings);
247 if (ns)
248 return ns;
249 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
250 }
251
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)252 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
253 int node, struct nvme_ns *old)
254 {
255 struct nvme_ns *ns, *found = NULL;
256
257 if (list_is_singular(&head->list)) {
258 if (nvme_path_is_disabled(old))
259 return NULL;
260 return old;
261 }
262
263 for (ns = nvme_next_ns(head, old);
264 ns && ns != old;
265 ns = nvme_next_ns(head, ns)) {
266 if (nvme_path_is_disabled(ns))
267 continue;
268
269 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
270 found = ns;
271 goto out;
272 }
273 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
274 found = ns;
275 }
276
277 /*
278 * The loop above skips the current path for round-robin semantics.
279 * Fall back to the current path if either:
280 * - no other optimized path found and current is optimized,
281 * - no other usable path found and current is usable.
282 */
283 if (!nvme_path_is_disabled(old) &&
284 (old->ana_state == NVME_ANA_OPTIMIZED ||
285 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
286 return old;
287
288 if (!found)
289 return NULL;
290 out:
291 rcu_assign_pointer(head->current_path[node], found);
292 return found;
293 }
294
nvme_path_is_optimized(struct nvme_ns * ns)295 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
296 {
297 return ns->ctrl->state == NVME_CTRL_LIVE &&
298 ns->ana_state == NVME_ANA_OPTIMIZED;
299 }
300
nvme_find_path(struct nvme_ns_head * head)301 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
302 {
303 int node = numa_node_id();
304 struct nvme_ns *ns;
305
306 ns = srcu_dereference(head->current_path[node], &head->srcu);
307 if (unlikely(!ns))
308 return __nvme_find_path(head, node);
309
310 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
311 return nvme_round_robin_path(head, node, ns);
312 if (unlikely(!nvme_path_is_optimized(ns)))
313 return __nvme_find_path(head, node);
314 return ns;
315 }
316
nvme_available_path(struct nvme_ns_head * head)317 static bool nvme_available_path(struct nvme_ns_head *head)
318 {
319 struct nvme_ns *ns;
320
321 list_for_each_entry_rcu(ns, &head->list, siblings) {
322 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
323 continue;
324 switch (ns->ctrl->state) {
325 case NVME_CTRL_LIVE:
326 case NVME_CTRL_RESETTING:
327 case NVME_CTRL_CONNECTING:
328 /* fallthru */
329 return true;
330 default:
331 break;
332 }
333 }
334 return false;
335 }
336
nvme_ns_head_submit_bio(struct bio * bio)337 static void nvme_ns_head_submit_bio(struct bio *bio)
338 {
339 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
340 struct device *dev = disk_to_dev(head->disk);
341 struct nvme_ns *ns;
342 int srcu_idx;
343
344 /*
345 * The namespace might be going away and the bio might be moved to a
346 * different queue via blk_steal_bios(), so we need to use the bio_split
347 * pool from the original queue to allocate the bvecs from.
348 */
349 blk_queue_split(&bio);
350
351 srcu_idx = srcu_read_lock(&head->srcu);
352 ns = nvme_find_path(head);
353 if (likely(ns)) {
354 bio_set_dev(bio, ns->disk->part0);
355 bio->bi_opf |= REQ_NVME_MPATH;
356 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
357 bio->bi_iter.bi_sector);
358 submit_bio_noacct(bio);
359 } else if (nvme_available_path(head)) {
360 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
361
362 spin_lock_irq(&head->requeue_lock);
363 bio_list_add(&head->requeue_list, bio);
364 spin_unlock_irq(&head->requeue_lock);
365 } else {
366 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
367
368 bio_io_error(bio);
369 }
370
371 srcu_read_unlock(&head->srcu, srcu_idx);
372 }
373
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)374 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
375 {
376 if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
377 return -ENXIO;
378 return 0;
379 }
380
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)381 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
382 {
383 nvme_put_ns_head(disk->private_data);
384 }
385
386 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)387 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
388 unsigned int nr_zones, report_zones_cb cb, void *data)
389 {
390 struct nvme_ns_head *head = disk->private_data;
391 struct nvme_ns *ns;
392 int srcu_idx, ret = -EWOULDBLOCK;
393
394 srcu_idx = srcu_read_lock(&head->srcu);
395 ns = nvme_find_path(head);
396 if (ns)
397 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
398 srcu_read_unlock(&head->srcu, srcu_idx);
399 return ret;
400 }
401 #else
402 #define nvme_ns_head_report_zones NULL
403 #endif /* CONFIG_BLK_DEV_ZONED */
404
405 const struct block_device_operations nvme_ns_head_ops = {
406 .owner = THIS_MODULE,
407 .submit_bio = nvme_ns_head_submit_bio,
408 .open = nvme_ns_head_open,
409 .release = nvme_ns_head_release,
410 .ioctl = nvme_ns_head_ioctl,
411 .compat_ioctl = blkdev_compat_ptr_ioctl,
412 .getgeo = nvme_getgeo,
413 .report_zones = nvme_ns_head_report_zones,
414 .pr_ops = &nvme_pr_ops,
415 };
416
cdev_to_ns_head(struct cdev * cdev)417 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
418 {
419 return container_of(cdev, struct nvme_ns_head, cdev);
420 }
421
nvme_ns_head_chr_open(struct inode * inode,struct file * file)422 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
423 {
424 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
425 return -ENXIO;
426 return 0;
427 }
428
nvme_ns_head_chr_release(struct inode * inode,struct file * file)429 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
430 {
431 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
432 return 0;
433 }
434
435 static const struct file_operations nvme_ns_head_chr_fops = {
436 .owner = THIS_MODULE,
437 .open = nvme_ns_head_chr_open,
438 .release = nvme_ns_head_chr_release,
439 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
440 .compat_ioctl = compat_ptr_ioctl,
441 .uring_cmd = nvme_ns_head_chr_uring_cmd,
442 };
443
nvme_add_ns_head_cdev(struct nvme_ns_head * head)444 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
445 {
446 int ret;
447
448 head->cdev_device.parent = &head->subsys->dev;
449 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
450 head->subsys->instance, head->instance);
451 if (ret)
452 return ret;
453 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
454 &nvme_ns_head_chr_fops, THIS_MODULE);
455 return ret;
456 }
457
nvme_requeue_work(struct work_struct * work)458 static void nvme_requeue_work(struct work_struct *work)
459 {
460 struct nvme_ns_head *head =
461 container_of(work, struct nvme_ns_head, requeue_work);
462 struct bio *bio, *next;
463
464 spin_lock_irq(&head->requeue_lock);
465 next = bio_list_get(&head->requeue_list);
466 spin_unlock_irq(&head->requeue_lock);
467
468 while ((bio = next) != NULL) {
469 next = bio->bi_next;
470 bio->bi_next = NULL;
471
472 submit_bio_noacct(bio);
473 }
474 }
475
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)476 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
477 {
478 bool vwc = false;
479
480 mutex_init(&head->lock);
481 bio_list_init(&head->requeue_list);
482 spin_lock_init(&head->requeue_lock);
483 INIT_WORK(&head->requeue_work, nvme_requeue_work);
484
485 /*
486 * Add a multipath node if the subsystems supports multiple controllers.
487 * We also do this for private namespaces as the namespace sharing flag
488 * could change after a rescan.
489 */
490 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
491 !nvme_is_unique_nsid(ctrl, head) || !multipath)
492 return 0;
493
494 head->disk = blk_alloc_disk(ctrl->numa_node);
495 if (!head->disk)
496 return -ENOMEM;
497 head->disk->fops = &nvme_ns_head_ops;
498 head->disk->private_data = head;
499 sprintf(head->disk->disk_name, "nvme%dn%d",
500 ctrl->subsys->instance, head->instance);
501
502 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
503 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
504 /*
505 * This assumes all controllers that refer to a namespace either
506 * support poll queues or not. That is not a strict guarantee,
507 * but if the assumption is wrong the effect is only suboptimal
508 * performance but not correctness problem.
509 */
510 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
511 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
512 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
513
514 /* set to a default value of 512 until the disk is validated */
515 blk_queue_logical_block_size(head->disk->queue, 512);
516 blk_set_stacking_limits(&head->disk->queue->limits);
517
518 /* we need to propagate up the VMC settings */
519 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
520 vwc = true;
521 blk_queue_write_cache(head->disk->queue, vwc, vwc);
522 return 0;
523 }
524
nvme_mpath_set_live(struct nvme_ns * ns)525 static void nvme_mpath_set_live(struct nvme_ns *ns)
526 {
527 struct nvme_ns_head *head = ns->head;
528 int rc;
529
530 if (!head->disk)
531 return;
532
533 /*
534 * test_and_set_bit() is used because it is protecting against two nvme
535 * paths simultaneously calling device_add_disk() on the same namespace
536 * head.
537 */
538 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
539 rc = device_add_disk(&head->subsys->dev, head->disk,
540 nvme_ns_id_attr_groups);
541 if (rc) {
542 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
543 return;
544 }
545 nvme_add_ns_head_cdev(head);
546 }
547
548 mutex_lock(&head->lock);
549 if (nvme_path_is_optimized(ns)) {
550 int node, srcu_idx;
551
552 srcu_idx = srcu_read_lock(&head->srcu);
553 for_each_node(node)
554 __nvme_find_path(head, node);
555 srcu_read_unlock(&head->srcu, srcu_idx);
556 }
557 mutex_unlock(&head->lock);
558
559 synchronize_srcu(&head->srcu);
560 kblockd_schedule_work(&head->requeue_work);
561 }
562
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))563 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
564 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
565 void *))
566 {
567 void *base = ctrl->ana_log_buf;
568 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
569 int error, i;
570
571 lockdep_assert_held(&ctrl->ana_lock);
572
573 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
574 struct nvme_ana_group_desc *desc = base + offset;
575 u32 nr_nsids;
576 size_t nsid_buf_size;
577
578 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
579 return -EINVAL;
580
581 nr_nsids = le32_to_cpu(desc->nnsids);
582 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
583
584 if (WARN_ON_ONCE(desc->grpid == 0))
585 return -EINVAL;
586 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
587 return -EINVAL;
588 if (WARN_ON_ONCE(desc->state == 0))
589 return -EINVAL;
590 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
591 return -EINVAL;
592
593 offset += sizeof(*desc);
594 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
595 return -EINVAL;
596
597 error = cb(ctrl, desc, data);
598 if (error)
599 return error;
600
601 offset += nsid_buf_size;
602 }
603
604 return 0;
605 }
606
nvme_state_is_live(enum nvme_ana_state state)607 static inline bool nvme_state_is_live(enum nvme_ana_state state)
608 {
609 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
610 }
611
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)612 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
613 struct nvme_ns *ns)
614 {
615 ns->ana_grpid = le32_to_cpu(desc->grpid);
616 ns->ana_state = desc->state;
617 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
618 /*
619 * nvme_mpath_set_live() will trigger I/O to the multipath path device
620 * and in turn to this path device. However we cannot accept this I/O
621 * if the controller is not live. This may deadlock if called from
622 * nvme_mpath_init_identify() and the ctrl will never complete
623 * initialization, preventing I/O from completing. For this case we
624 * will reprocess the ANA log page in nvme_mpath_update() once the
625 * controller is ready.
626 */
627 if (nvme_state_is_live(ns->ana_state) &&
628 ns->ctrl->state == NVME_CTRL_LIVE)
629 nvme_mpath_set_live(ns);
630 }
631
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)632 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
633 struct nvme_ana_group_desc *desc, void *data)
634 {
635 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
636 unsigned *nr_change_groups = data;
637 struct nvme_ns *ns;
638
639 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
640 le32_to_cpu(desc->grpid),
641 nvme_ana_state_names[desc->state]);
642
643 if (desc->state == NVME_ANA_CHANGE)
644 (*nr_change_groups)++;
645
646 if (!nr_nsids)
647 return 0;
648
649 down_read(&ctrl->namespaces_rwsem);
650 list_for_each_entry(ns, &ctrl->namespaces, list) {
651 unsigned nsid;
652 again:
653 nsid = le32_to_cpu(desc->nsids[n]);
654 if (ns->head->ns_id < nsid)
655 continue;
656 if (ns->head->ns_id == nsid)
657 nvme_update_ns_ana_state(desc, ns);
658 if (++n == nr_nsids)
659 break;
660 if (ns->head->ns_id > nsid)
661 goto again;
662 }
663 up_read(&ctrl->namespaces_rwsem);
664 return 0;
665 }
666
nvme_read_ana_log(struct nvme_ctrl * ctrl)667 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
668 {
669 u32 nr_change_groups = 0;
670 int error;
671
672 mutex_lock(&ctrl->ana_lock);
673 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
674 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
675 if (error) {
676 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
677 goto out_unlock;
678 }
679
680 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
681 nvme_update_ana_state);
682 if (error)
683 goto out_unlock;
684
685 /*
686 * In theory we should have an ANATT timer per group as they might enter
687 * the change state at different times. But that is a lot of overhead
688 * just to protect against a target that keeps entering new changes
689 * states while never finishing previous ones. But we'll still
690 * eventually time out once all groups are in change state, so this
691 * isn't a big deal.
692 *
693 * We also double the ANATT value to provide some slack for transports
694 * or AEN processing overhead.
695 */
696 if (nr_change_groups)
697 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
698 else
699 del_timer_sync(&ctrl->anatt_timer);
700 out_unlock:
701 mutex_unlock(&ctrl->ana_lock);
702 return error;
703 }
704
nvme_ana_work(struct work_struct * work)705 static void nvme_ana_work(struct work_struct *work)
706 {
707 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
708
709 if (ctrl->state != NVME_CTRL_LIVE)
710 return;
711
712 nvme_read_ana_log(ctrl);
713 }
714
nvme_mpath_update(struct nvme_ctrl * ctrl)715 void nvme_mpath_update(struct nvme_ctrl *ctrl)
716 {
717 u32 nr_change_groups = 0;
718
719 if (!ctrl->ana_log_buf)
720 return;
721
722 mutex_lock(&ctrl->ana_lock);
723 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
724 mutex_unlock(&ctrl->ana_lock);
725 }
726
nvme_anatt_timeout(struct timer_list * t)727 static void nvme_anatt_timeout(struct timer_list *t)
728 {
729 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
730
731 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
732 nvme_reset_ctrl(ctrl);
733 }
734
nvme_mpath_stop(struct nvme_ctrl * ctrl)735 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
736 {
737 if (!nvme_ctrl_use_ana(ctrl))
738 return;
739 del_timer_sync(&ctrl->anatt_timer);
740 cancel_work_sync(&ctrl->ana_work);
741 }
742
743 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
744 struct device_attribute subsys_attr_##_name = \
745 __ATTR(_name, _mode, _show, _store)
746
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)747 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
748 struct device_attribute *attr, char *buf)
749 {
750 struct nvme_subsystem *subsys =
751 container_of(dev, struct nvme_subsystem, dev);
752
753 return sysfs_emit(buf, "%s\n",
754 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
755 }
756
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)757 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
758 struct device_attribute *attr, const char *buf, size_t count)
759 {
760 struct nvme_subsystem *subsys =
761 container_of(dev, struct nvme_subsystem, dev);
762 int i;
763
764 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
765 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
766 WRITE_ONCE(subsys->iopolicy, i);
767 return count;
768 }
769 }
770
771 return -EINVAL;
772 }
773 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
774 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
775
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)776 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
777 char *buf)
778 {
779 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
780 }
781 DEVICE_ATTR_RO(ana_grpid);
782
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)783 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
784 char *buf)
785 {
786 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
787
788 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
789 }
790 DEVICE_ATTR_RO(ana_state);
791
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)792 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
793 struct nvme_ana_group_desc *desc, void *data)
794 {
795 struct nvme_ana_group_desc *dst = data;
796
797 if (desc->grpid != dst->grpid)
798 return 0;
799
800 *dst = *desc;
801 return -ENXIO; /* just break out of the loop */
802 }
803
nvme_mpath_add_disk(struct nvme_ns * ns,struct nvme_id_ns * id)804 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
805 {
806 if (nvme_ctrl_use_ana(ns->ctrl)) {
807 struct nvme_ana_group_desc desc = {
808 .grpid = id->anagrpid,
809 .state = 0,
810 };
811
812 mutex_lock(&ns->ctrl->ana_lock);
813 ns->ana_grpid = le32_to_cpu(id->anagrpid);
814 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
815 mutex_unlock(&ns->ctrl->ana_lock);
816 if (desc.state) {
817 /* found the group desc: update */
818 nvme_update_ns_ana_state(&desc, ns);
819 } else {
820 /* group desc not found: trigger a re-read */
821 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
822 queue_work(nvme_wq, &ns->ctrl->ana_work);
823 }
824 } else {
825 ns->ana_state = NVME_ANA_OPTIMIZED;
826 nvme_mpath_set_live(ns);
827 }
828
829 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
830 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
831 ns->head->disk->queue);
832 #ifdef CONFIG_BLK_DEV_ZONED
833 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
834 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
835 #endif
836 }
837
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)838 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
839 {
840 if (!head->disk)
841 return;
842 kblockd_schedule_work(&head->requeue_work);
843 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
844 nvme_cdev_del(&head->cdev, &head->cdev_device);
845 del_gendisk(head->disk);
846 }
847 }
848
nvme_mpath_remove_disk(struct nvme_ns_head * head)849 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
850 {
851 if (!head->disk)
852 return;
853 blk_mark_disk_dead(head->disk);
854 /* make sure all pending bios are cleaned up */
855 kblockd_schedule_work(&head->requeue_work);
856 flush_work(&head->requeue_work);
857 blk_cleanup_disk(head->disk);
858 }
859
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)860 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
861 {
862 mutex_init(&ctrl->ana_lock);
863 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
864 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
865 }
866
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)867 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
868 {
869 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
870 size_t ana_log_size;
871 int error = 0;
872
873 /* check if multipath is enabled and we have the capability */
874 if (!multipath || !ctrl->subsys ||
875 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
876 return 0;
877
878 if (!ctrl->max_namespaces ||
879 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
880 dev_err(ctrl->device,
881 "Invalid MNAN value %u\n", ctrl->max_namespaces);
882 return -EINVAL;
883 }
884
885 ctrl->anacap = id->anacap;
886 ctrl->anatt = id->anatt;
887 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
888 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
889
890 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
891 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
892 ctrl->max_namespaces * sizeof(__le32);
893 if (ana_log_size > max_transfer_size) {
894 dev_err(ctrl->device,
895 "ANA log page size (%zd) larger than MDTS (%zd).\n",
896 ana_log_size, max_transfer_size);
897 dev_err(ctrl->device, "disabling ANA support.\n");
898 goto out_uninit;
899 }
900 if (ana_log_size > ctrl->ana_log_size) {
901 nvme_mpath_stop(ctrl);
902 nvme_mpath_uninit(ctrl);
903 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
904 if (!ctrl->ana_log_buf)
905 return -ENOMEM;
906 }
907 ctrl->ana_log_size = ana_log_size;
908 error = nvme_read_ana_log(ctrl);
909 if (error)
910 goto out_uninit;
911 return 0;
912
913 out_uninit:
914 nvme_mpath_uninit(ctrl);
915 return error;
916 }
917
nvme_mpath_uninit(struct nvme_ctrl * ctrl)918 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
919 {
920 kvfree(ctrl->ana_log_buf);
921 ctrl->ana_log_buf = NULL;
922 ctrl->ana_log_size = 0;
923 }
924